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Information Retrieval Systems 

Jim Martin!

Lecture 4 
9/1/2011 
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Today 

  Finish up spelling correction 
  Realistic indexing 

  Block merge 
  Single-pass in memory 
  Distributed indexing 

  Next HW details 
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Query correction 

  Our principal focus here 
  Examples like the query  

  Alanas Morisett 

  We can either 
  Retrieve using that spelling 
  Retrieve documents indexed by the correct 

spelling, OR 
  Return several suggested alternative 

queries with the correct spelling 
  Did you mean … ? 
  This requires an interactive session  
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Isolated word correction 

  Fundamental premise – there is a lexicon 
from which the correct spellings come 

  Some basic choices for this 
  A standard lexicon such as 

  Webster’s English Dictionary 
  An “industry-specific” lexicon – hand-maintained 

  The lexicon derived from the indexed corpus 
  E.g., all words on the web 
  All names, acronyms etc. 

  Including the misspellings? 
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Isolated word correction 

  Given a lexicon and a character sequence 
Q, return the words in the lexicon closest 
to Q 

  What does “closest” mean? 
  Several alternatives 

  Edit distance 
  Weighted edit distance 
  Bayesian models 
  Character n-gram overlap 
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Edit distance 

  Given two strings S1 and S2, the minimum 
number of basic operations to covert one to 
the other 

  Basic operations are typically character-level 
  Insert 
  Delete 
  Replace 

  E.g., the edit distance from cat to dog is 3. 
  Generally found by dynamic programming via 

minimum edit distance 
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Weighted edit distance 

  As above, but the weight of an operation 
depends on the character(s) involved 
  Meant to capture keyboard errors, e.g. m 

more likely to be mis-typed as n than as q 
  Therefore, replacing m by n is a smaller 

edit distance than by q 
  (Same ideas usable for OCR, but with 

different weights) 

  Require weight matrix as input 
  Modify dynamic programming to handle 

weights (Viterbi) 
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Edit distance to all dictionary terms? 

  Given a (misspelled) query – do we 
compute its edit distance to every 
dictionary term? 
  Expensive and slow 

  How do we cut the set of candidate 
dictionary terms? 
  Heuristics 

  Assume first letter(s) is correct 
  Character n-gram overlap 
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General issue in spell correction 

  Will enumerate multiple alternatives for 
“Did you mean” 

  Need to figure out which one (or small 
number) to present to the user 

  Use heuristics 
  The alternative hitting most docs 
  Query log analysis + tweaking 

  For especially popular, topical queries 

  Language modeling 
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Back to Index Construction 

  How do we construct an index? 
  What strategies can we use when 

there is limited main memory? 
  And there’s never enough memory 
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Hardware basics 

  Many design decisions in information 
retrieval are based on the characteristics of 
hardware 

  Start by reviewing hardware basics 
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RCV1: Our corpus for this lecture 

  Shakespeare’s collected works definitely 
aren’t large enough for demonstrating 
many of the points in this course. 

  The corpus we’ll use isn’t really large 
enough either, but it’s publicly available 
and is at least a more plausible example. 

  As an example for applying scalable index 
construction algorithms, we will use the 
Reuters RCV1 collection. 

  This is one year of Reuters newswire (part 
of 1995 and 1996) 
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A Reuters RCV1 document 
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Reuters RCV1 statistics 

symbol  statistic     value 
N   documents     800,000 
L    avg. # tokens per doc  120 
M   terms (= word types)  400,000 
                avg. # bytes per token  6 

                   (incl. spaces/punct.) 

                avg. # bytes per token  4.5 
            (without spaces/punct.) 

                avg. # bytes per term  7.5 
 T           tokens     100,000,000 
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  Documents are parsed to extract words 
and these are saved with the Document 
ID. 

I did enact Julius 
Caesar I was killed  
i' the Capitol;  
Brutus killed me. 

Doc 1 

So let it be with 
Caesar. The noble 
Brutus hath told you 
Caesar was ambitious 

Doc 2 

Recall simple index construction 
Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2
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Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

 Key step 

  After all documents have 
been parsed, the pairs 
file is sorted by terms.  

We focus on this sort step. 
We have 100M items to sort. 
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Scaling Index Construction 

  Such in-memory index construction does 
not scale. 

  How can we construct an index for very 
large collections? 

  Taking into account basic hardware 
constraints 
  Memory, disk, speed etc. 
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Sort-based Index construction 

  As we build the index, we parse docs one at a 
time. 
  The final postings for any term are incomplete 

until the last doc has been processed. 
  At 12 bytes per postings entry, demands a lot of 

space for large collections. 
  Term-id, doc-id, freq (4+4+4) 

  T = 100,000,000 in the case of RCV1 
  This can be done in memory now, but 

typical collections are much larger.  E.g. 
New York Times provides index of >150 
years of newswire 

  So we’ll need to store intermediate results on 
disk. 
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Use the same algorithm for disk? 

  Can we use the same index construction 
algorithm for larger collections, but by 
using a disk-based sort instead of 
memory? 
  No: Sorting T = 100,000,000 records on 

disk is too slow – too many disk seeks. 

  We need an better idea 
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BSBI: Blocked Sort-Based Indexing 

  12-byte (4+4+4) records (termid, docid, freq) 
  These are generated as we parse docs  
  Must now sort 100M such 12-byte records by term 
  Define a Block ~ 10M such records 

  Can easily fit a couple into memory 
  Say we have 10 such blocks to start with 

  Basic idea of algorithm: 
  Accumulate postings for each block, sort, write to 

disk. 
  Then merge the blocks into one long sorted order. 
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Dictionary 

  This assumes a data-structure to map from 
terms (strings) to term-ids (ints). 

  This dictionary has to be available (in 
memory) as the blocks are processed to 
make sure that the terms get assigned the 
right term-ids 
  That’s a structure with 400,000 

  Term strings and Ints 
  Say 20 bytes for the terms, 4 bytes per int 
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Sorting 10 blocks of 10M records 

  First, read each block and sort within:   
  Quicksort takes 2N ln N expected steps 
  In our case 2 x (10M ln 10M) steps 

  10 times this estimate - gives us 10 sorted 
runs of 10M records each. 
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Ice Cream 

  CS Colloquium Today 
  Thursday 3:30pm in ECCR 265 
   Welcome Back, Ice Cream Event 
  Meet the faculty and staff, 
  Learn some trivia about the faculty, 
  Intro student associations 

HW Questions?/Comments 
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14480 
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Main Problem with Sort-Based Algorithm 

  Our assumption was we can keep the 
dictionary in memory... 

  We need the dictionary (which grows 
dynamically) in order to implement a term 
to termID mapping 

  This isn’t a problem for 400k terms.  But it 
is a problem for 13B terms. 
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SPIMI:  Single-pass in-memory indexing 

  Key idea 1: Generate separate dictionaries 
for each block – no need to maintain term-
termID mapping across blocks; just use 
terms 

  Key idea 2: Don’t sort. Accumulate 
postings in postings lists as they occur. 

  With these two ideas we can generate a 
complete inverted index for each block. 

  These separate indexes can then be 
merged into one big index. 
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SPIMI-Invert 
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Merge algorithm 
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Lesson 

  The fact that you need a sorted list as 
output doesn’t mean that you need to do a 
sort...  Doing a merge can be good 
enough. 
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Dynamic indexing 

  New Docs come in over time 
  postings updates for terms already in 

dictionary 
  new terms added to dictionary 

  Docs can get deleted 
  Docs can be altered 
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Simplest approach 

  Maintain “big” main index 
  New docs go into “small” auxiliary index 
  Search across both, merge results 
  Periodically, re-index into one main index 

Dynamic indexing at search engines 

  All the large search engines now do 
dynamic indexing 

  Their indices have frequent incremental 
changes 
  News items, blogs, new topical web pages 

  But (sometimes/typically) they also 
periodically reconstruct the index from 
scratch 
  Query processing is then switched to the 

new index, and the old index is then deleted 
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Dynamic Indexing 

  That assumes that the “main” index is 
reasonably static and only needs periodic 
updates... 

  Not true with true real-time indexing 
  Ala twitter 
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Distributed indexing 

  For web-scale indexing must use a 
distributed computing cluster 

  How do we exploit such a pool of machines? 
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Google data centers 

  Google data centers mainly contain 
commodity machines. 

  Data centers are distributed around the 
world (often near cheap power) 

  Estimate: a total of 1 million servers, 3 
million processors/cores (Gartner 2007) 

  Estimate: Google installs 100,000 servers 
each quarter. 
  Based on expenditures of 200–250 million 

dollars per year 

  About 10% of the computing capacity of 
the world 

Sec. 4.4 
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Distributed indexing 

  So given a collection distributed 
across many (thousands of) 
machines 

  Build an index distributed across 
many (thousands of) machines 

  Here we’ll look at such indexes 
distributed across machines by term 



20 

9/6/11 CSCI 7000 - IR 39 

Distributed indexing 

  Maintain a master machine directing 
the indexing job – considered “safe” 

  Break up indexing into sets of 
(concurrently executable) tasks 

  Master machine assigns each task to 
an idle machine from a pool 
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Parallel tasks 

  We will use two sets of parallel tasks 
  Parsers 
  Inverters 

  Break the input document collection into 
splits 
  Each split is a subset of documents 

  Master assigns a split to an idle parser 
machine 

  Parser reads a document at a time and 
emits <term,docID> pairs 
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Parser tasks 

  Parser writes pairs into j partitions 
  One each for a  range of terms’ first letters 

  (e.g., a-f, g-p, q-z) – here j=3. 

  Now to complete the index inversion 
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Inverters 

  Collect all (termID, docID) pairs for a 
partition (from all the parsers) 

  Sorts and writes to postings list 
  Each partition then contains a set of 

postings 
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Data flow 

splits 

Parser 

Parser 

Parser 

Master 

a-f g-p q-z 

a-f g-p q-z 

a-f g-p q-z 

Inverter 

Inverter 

Inverter 

Postings 

a-f 

g-p 

q-z 

assign assign 

MapReduce 

  The index construction algorithm we just 
described is an instance of MapReduce 

  MapReduce (Dean and Ghemawat 2004) is 
a robust and conceptually simple 
framework for distributed computing … 
   without having to write code for the 

distribution part. 
  Open source version is called Hadoop 

Sec. 4.4 
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Next Time 

On to  Chapter 6 


