
1

CSCI 5417
Information Retrieval Systems

Jim Martin!

Lecture 4
9/1/2011

9/6/11 CSCI 7000 - IR 2

Today

  Finish up spelling correction
  Realistic indexing

  Block merge
  Single-pass in memory
  Distributed indexing

  Next HW details

2

CSCI 5417 - IR

Query correction

  Our principal focus here
  Examples like the query

  Alanas Morisett

  We can either
  Retrieve using that spelling
  Retrieve documents indexed by the correct

spelling, OR
  Return several suggested alternative

queries with the correct spelling
  Did you mean … ?
  This requires an interactive session

CSCI 5417 - IR

Isolated word correction

  Fundamental premise – there is a lexicon
from which the correct spellings come

  Some basic choices for this
  A standard lexicon such as

  Webster’s English Dictionary
  An “industry-specific” lexicon – hand-maintained

  The lexicon derived from the indexed corpus
  E.g., all words on the web
  All names, acronyms etc.

  Including the misspellings?

3

CSCI 5417 - IR

Isolated word correction

  Given a lexicon and a character sequence
Q, return the words in the lexicon closest
to Q

  What does “closest” mean?
  Several alternatives

  Edit distance
  Weighted edit distance
  Bayesian models
  Character n-gram overlap

CSCI 5417 - IR

Edit distance

  Given two strings S1 and S2, the minimum
number of basic operations to covert one to
the other

  Basic operations are typically character-level
  Insert
  Delete
  Replace

  E.g., the edit distance from cat to dog is 3.
  Generally found by dynamic programming via

minimum edit distance

4

CSCI 5417 - IR

Weighted edit distance

  As above, but the weight of an operation
depends on the character(s) involved
  Meant to capture keyboard errors, e.g. m

more likely to be mis-typed as n than as q
  Therefore, replacing m by n is a smaller

edit distance than by q
  (Same ideas usable for OCR, but with

different weights)

  Require weight matrix as input
  Modify dynamic programming to handle

weights (Viterbi)

CSCI 5417 - IR

Edit distance to all dictionary terms?

  Given a (misspelled) query – do we
compute its edit distance to every
dictionary term?
  Expensive and slow

  How do we cut the set of candidate
dictionary terms?
  Heuristics

  Assume first letter(s) is correct
  Character n-gram overlap

5

CSCI 5417 - IR

General issue in spell correction

  Will enumerate multiple alternatives for
“Did you mean”

  Need to figure out which one (or small
number) to present to the user

  Use heuristics
  The alternative hitting most docs
  Query log analysis + tweaking

  For especially popular, topical queries

  Language modeling

9/6/11 CSCI 7000 - IR 10

Back to Index Construction

  How do we construct an index?
  What strategies can we use when

there is limited main memory?
  And there’s never enough memory

6

9/6/11 CSCI 7000 - IR 11

Hardware basics

  Many design decisions in information
retrieval are based on the characteristics of
hardware

  Start by reviewing hardware basics

9/6/11 CSCI 7000 - IR 12

RCV1: Our corpus for this lecture

  Shakespeare’s collected works definitely
aren’t large enough for demonstrating
many of the points in this course.

  The corpus we’ll use isn’t really large
enough either, but it’s publicly available
and is at least a more plausible example.

  As an example for applying scalable index
construction algorithms, we will use the
Reuters RCV1 collection.

  This is one year of Reuters newswire (part
of 1995 and 1996)

7

9/6/11 CSCI 7000 - IR 13

A Reuters RCV1 document

9/6/11 CSCI 7000 - IR 14

Reuters RCV1 statistics

symbol statistic value
N documents 800,000
L avg. # tokens per doc 120
M terms (= word types) 400,000
 avg. # bytes per token 6

 (incl. spaces/punct.)

 avg. # bytes per token 4.5
 (without spaces/punct.)

 avg. # bytes per term 7.5
 T tokens 100,000,000

8

9/6/11 CSCI 7000 - IR 15

  Documents are parsed to extract words
and these are saved with the Document
ID.

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Recall simple index construction
Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

9/6/11 CSCI 7000 - IR 16

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

 Key step

  After all documents have
been parsed, the pairs
file is sorted by terms.

We focus on this sort step.
We have 100M items to sort.

9

9/6/11 CSCI 7000 - IR 17

Scaling Index Construction

  Such in-memory index construction does
not scale.

  How can we construct an index for very
large collections?

  Taking into account basic hardware
constraints
  Memory, disk, speed etc.

9/6/11 CSCI 7000 - IR 18

Sort-based Index construction

  As we build the index, we parse docs one at a
time.
  The final postings for any term are incomplete

until the last doc has been processed.
  At 12 bytes per postings entry, demands a lot of

space for large collections.
  Term-id, doc-id, freq (4+4+4)

  T = 100,000,000 in the case of RCV1
  This can be done in memory now, but

typical collections are much larger. E.g.
New York Times provides index of >150
years of newswire

  So we’ll need to store intermediate results on
disk.

10

9/6/11 CSCI 7000 - IR 19

Use the same algorithm for disk?

  Can we use the same index construction
algorithm for larger collections, but by
using a disk-based sort instead of
memory?
  No: Sorting T = 100,000,000 records on

disk is too slow – too many disk seeks.

  We need an better idea

9/6/11 CSCI 7000 - IR 20

BSBI: Blocked Sort-Based Indexing

  12-byte (4+4+4) records (termid, docid, freq)
  These are generated as we parse docs
  Must now sort 100M such 12-byte records by term
  Define a Block ~ 10M such records

  Can easily fit a couple into memory
  Say we have 10 such blocks to start with

  Basic idea of algorithm:
  Accumulate postings for each block, sort, write to

disk.
  Then merge the blocks into one long sorted order.

11

Dictionary

  This assumes a data-structure to map from
terms (strings) to term-ids (ints).

  This dictionary has to be available (in
memory) as the blocks are processed to
make sure that the terms get assigned the
right term-ids
  That’s a structure with 400,000

  Term strings and Ints
  Say 20 bytes for the terms, 4 bytes per int

9/6/11 CSCI 7000 - IR 21

9/6/11 CSCI 7000 - IR 22

12

9/6/11 CSCI 7000 - IR 23

Sorting 10 blocks of 10M records

  First, read each block and sort within:
  Quicksort takes 2N ln N expected steps
  In our case 2 x (10M ln 10M) steps

  10 times this estimate - gives us 10 sorted
runs of 10M records each.

9/6/11 CSCI 7000 - IR 24

13

9/6/11 CSCI 7000 - IR 25

Ice Cream

  CS Colloquium Today
  Thursday 3:30pm in ECCR 265
  Welcome Back, Ice Cream Event
  Meet the faculty and staff,
  Learn some trivia about the faculty,
  Intro student associations

HW Questions?/Comments

9/6/11 CSCI 7000 - IR 26

14480

14

9/6/11 CSCI 7000 - IR 27

Main Problem with Sort-Based Algorithm

  Our assumption was we can keep the
dictionary in memory...

  We need the dictionary (which grows
dynamically) in order to implement a term
to termID mapping

  This isn’t a problem for 400k terms. But it
is a problem for 13B terms.

9/6/11 CSCI 7000 - IR 28

SPIMI: Single-pass in-memory indexing

  Key idea 1: Generate separate dictionaries
for each block – no need to maintain term-
termID mapping across blocks; just use
terms

  Key idea 2: Don’t sort. Accumulate
postings in postings lists as they occur.

  With these two ideas we can generate a
complete inverted index for each block.

  These separate indexes can then be
merged into one big index.

15

9/6/11 CSCI 7000 - IR 29

SPIMI-Invert

9/6/11 CSCI 7000 - IR 30

Merge algorithm

16

9/6/11 CSCI 7000 - IR 31

Lesson

  The fact that you need a sorted list as
output doesn’t mean that you need to do a
sort... Doing a merge can be good
enough.

9/6/11 CSCI 7000 - IR 32

Dynamic indexing

  New Docs come in over time
  postings updates for terms already in

dictionary
  new terms added to dictionary

  Docs can get deleted
  Docs can be altered

17

9/6/11 CSCI 7000 - IR 33

Simplest approach

  Maintain “big” main index
  New docs go into “small” auxiliary index
  Search across both, merge results
  Periodically, re-index into one main index

Dynamic indexing at search engines

  All the large search engines now do
dynamic indexing

  Their indices have frequent incremental
changes
  News items, blogs, new topical web pages

  But (sometimes/typically) they also
periodically reconstruct the index from
scratch
  Query processing is then switched to the

new index, and the old index is then deleted

18

9/6/11 CSCI 7000 - IR 35

Dynamic Indexing

  That assumes that the “main” index is
reasonably static and only needs periodic
updates...

  Not true with true real-time indexing
  Ala twitter

9/6/11 CSCI 7000 - IR 36

Distributed indexing

  For web-scale indexing must use a
distributed computing cluster

  How do we exploit such a pool of machines?

19

Google data centers

  Google data centers mainly contain
commodity machines.

  Data centers are distributed around the
world (often near cheap power)

  Estimate: a total of 1 million servers, 3
million processors/cores (Gartner 2007)

  Estimate: Google installs 100,000 servers
each quarter.
  Based on expenditures of 200–250 million

dollars per year

  About 10% of the computing capacity of
the world

Sec. 4.4

9/6/11 CSCI 7000 - IR 38

Distributed indexing

  So given a collection distributed
across many (thousands of)
machines

  Build an index distributed across
many (thousands of) machines

  Here we’ll look at such indexes
distributed across machines by term

20

9/6/11 CSCI 7000 - IR 39

Distributed indexing

  Maintain a master machine directing
the indexing job – considered “safe”

  Break up indexing into sets of
(concurrently executable) tasks

  Master machine assigns each task to
an idle machine from a pool

9/6/11 CSCI 7000 - IR 40

Parallel tasks

  We will use two sets of parallel tasks
  Parsers
  Inverters

  Break the input document collection into
splits
  Each split is a subset of documents

  Master assigns a split to an idle parser
machine

  Parser reads a document at a time and
emits <term,docID> pairs

21

9/6/11 CSCI 7000 - IR 41

Parser tasks

  Parser writes pairs into j partitions
  One each for a range of terms’ first letters

  (e.g., a-f, g-p, q-z) – here j=3.

  Now to complete the index inversion

9/6/11 CSCI 7000 - IR 42

Inverters

  Collect all (termID, docID) pairs for a
partition (from all the parsers)

  Sorts and writes to postings list
  Each partition then contains a set of

postings

22

9/6/11 CSCI 7000 - IR 43

Data flow

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

MapReduce

  The index construction algorithm we just
described is an instance of MapReduce

  MapReduce (Dean and Ghemawat 2004) is
a robust and conceptually simple
framework for distributed computing …
  without having to write code for the

distribution part.
  Open source version is called Hadoop

Sec. 4.4

23

9/6/11 CSCI 7000 - IR 45

Next Time

On to Chapter 6

