CSCI 5417
Information Retrieval Systems
Jim Martin

Lecture 4
9/1/2011

Today
[

» Finish up spelling correction
» Realistic indexing

» Block merge

» Single-pass in memory

» Distributed indexing
= Next HW details

9/6/11 CSCI 7000 - IR

Query correction
[

= Our principal focus here
» Examples like the query
« Alanas Morisett
= We can either
» Retrieve using that spelling
» Retrieve documents indexed by the correct
spelling, OR
= Return several suggested alternative
queries with the correct spelling

« Did you mean ... ?

« This requires an interactive session
CSCI 5417 - IR

Isolated word correction
[

» Fundamental premise - there is a lexicon
from which the correct spellings come

s Some basic choices for this

» A standard lexicon such as
« Webster’s English Dictionary
» An “industry-specific” lexicon - hand-maintained
= The lexicon derived from the indexed corpus
« E.g., all words on the web

« All names, acronyms etc.
= Including the misspellings?

CSCI 5417 - IR

Isolated word correction
[

» Given a lexicon and a character sequence
Q, return the words in the lexicon closest

to Q
» What does “closest” mean?
» Several alternatives

» Edit distance

» Weighted edit distance

» Bayesian models

» Character n-gram overlap

CSCI 5417 - IR

Edit distance
[

= Given two strings S; and S,, the minimum
number of basic operations to covert one to
the other

= Basic operations are typically character-level
= Insert
» Delete
» Replace

» E.g., the edit distance from cat to dog is 3.

» Generally found by dynamic programming via
minimum edit distance

CSCI 5417 - IR

Weighted edit distance
[

= As above, but the weight of an operation
depends on the character(s) involved
= Meant to capture keyboard errors, e.g. m
more likely to be mis-typed as n than as q
» Therefore, replacing m by n is a smaller
edit distance than by g
» (Same ideas usable for OCR, but with
different weights)
= Require weight matrix as input

» Modify dynamic programming to handle
weights (Viterbi)

CSCI 5417 - IR

Edit distance to all dictionary terms?

l

» Given a (misspelled) query — do we
compute its edit distance to every
dictionary term?

» Expensive and slow

= How do we cut the set of candidate

dictionary terms?

» Heuristics
« Assume first letter(s) is correct
» Character n-gram overlap

CSCI 5417 - IR

General issue in spell correction
[

= Will enumerate multiple alternatives for
“Did you mean”

= Need to figure out which one (or small
number) to present to the user

» Use heuristics
» The alternative hitting most docs

= Query log analysis + tweaking
« For especially popular, topical queries
» Language modeling

CSCI 5417 - IR

Back to Index Construction
[

» How do we construct an index?

= What strategies can we use when
there is limited main memory?

» And there’s never enough memory

9/6/11 CSCI 7000 - IR

Hardware basics
[

= Many design decisions in information
retrieval are based on the characteristics of
hardware

» Start by reviewing hardware basics

9/6/11 CSCI7000- IR 11

RCV1: Our corpus for this lecture
[

= Shakespeare’s collected works definitely
aren’t large enough for demonstrating
many of the points in this course.

s The corpus we’ll use isn’t really large
enough either, but it’s publicly available
and is at least a more plausible example.

= As an example for applying scalable index
construction algorithms, we will use the
Reuters RCV1 collection.

= This is one year of Reuters newswire (part
of 1995 and 1996)

9/6/11 CSCI 7000 - IR 12

A Reuters RCV1 document
[

REUTERS D

You are here: Home > News > Science > Article

GotoaSection: U.S. International Business Markets Poltics Entertainment Technology Sports Oddly Enouc
Extreme conditions create rare Antarctic clouds

Tue Aug 1, 2006 3:20am ET

Email This Articke | Print This Article | Reprints
Text [+
SYDNEY (Reuters) - Rare, mother-of-pearl colored clouds
caused by extreme weather conditions above Antarctica are a
possible indication of global warming, Australian scientists said on
' Tuesday.

Known as nacreous clouds, the spectacular formations showing delicate
wisps of colors were photographed in the sky over an Australian
meteorological base at Mawson Station on July 25.

9/6/11 CSCI7000- IR 13

Reuters RCV1 statistics
[

symbol statistic value

N documents 800,000
L avg. # tokens per doc 120

M terms (= word types) 400,000

avg. # bytes per token 6

(incl. spaces/punct.)
avg. # bytes per token 4.5
(without spaces/punct.)

avg. # bytes per term 7.5
T tokens 100,000,000

9/6/11 CSCI 7000 - IR 14

Term

Recall simple index construction .,
[

Doc #

1
1
enact 1
julius 1
» Documents are parsed to extract words Joes 1
and these are saved with the Document was 1
ID killed 1
. k)
::he 1
capitol 1
brutus 1
killed 1
1
Doc 1 Doc 2 — rsf: 2
let 2
it 2
| did enact Julius So let it be with with :
Caesar | was killed| | Caesar. The noble o 2
I the Capitol; Brutus hath told you noble 2
Brutus killed me. Caesar was ambitious hath 2
told 2
you 2
9/6/11 CSCI7000- 1R Nl 2
ambitious 2
Key Step ;"e"“ Doc: ::\Eirlious D°°§
[did 1 be 2
enact 1 brutus 1
julius 1 brutus 2
» After all documents have gaesar : capiol !
been parsed, the pairs was ! caesar 2
file is sorted by terms. i 1 did 1
the 1 enact 1
capitol 1 hath 1
killed 1 I 1
We focus on this sort step. iy - 2
We have 100M items to sort. et §'> e :
be 2 killed 1
with 2 let 2
the 2 noble 2
noble 2 so 2
brutus 2 the 1
hath 2 the 2
told 2 told 2
you 2 you 2
caesar 2 was 1
was 2 was 2
ambitious 2 with 2

9/6/11

CSCI 7000 - IR

Scaling Index Construction
[

= Such in-memory index construction does
not scale.

= How can we construct an index for very
large collections?

» Taking into account basic hardware
constraints

= Memory, disk, speed etc.

9/6/11 CSCI7000- IR 17

Sort-based Index construction
[

= As we build the index, we parse docs one at a
time.
» The final postings for any term are incomplete
until the last doc has been processed.
» At 12 bytes per postings entry, demands a lot of
space for large collections.
« Term-id, doc-id, freq (4+4+4)
= T =100,000,000 in the case of RCV1

» This can be done in memory now, but
typical collections are much larger. E.g.
New York Times provides index of >150
years of hewswire

s So we’ll need to store intermediate results on
9/6/1d ISk CSCI17000-IR 18

Use the same algorithm for disk?
[

= Can we use the same index construction
algorithm for larger collections, but by
using a disk-based sort instead of
memory?
» No: Sorting T = 100,000,000 records on
disk is too slow - too many disk seeks.

= We need an better idea

9/6/11 CSCI7000- IR 19

BSBI: Blocked Sort-Based Indexing
[

= 12-byte (4+4+4) records (termid, docid, freq)
= These are generated as we parse docs
= Must now sort 100M such 12-byte records by term
= Define a Block ~ 10M such records
= Can easily fit a couple into memory
= Say we have 10 such blocks to start with

= Basic idea of algorithm:

= Accumulate postings for each block, sort, write to
disk.

= Then merge the blocks into one long sorted order.

9/6/11 CSCI 7000 - IR 20

10

Dictionary
[

= This assumes a data-structure to map from
terms (strings) to term-ids (ints).

= This dictionary has to be available (in
memory) as the blocks are processed to
make sure that the terms get assigned the
right term-ids
= That's a structure with 400,000

« Term strings and Ints
« Say 20 bytes for the terms, 4 bytes per int

9/6/11 CSCI7000- IR 21

BSBINDEXCONSTRUCTION()

1 n<0

2 while (all documents have not been processed)
3 don—n+1

4 block «— PARSENEXTBLOCK()

5 BSBI-INVERT(block)

6 WRITEBLOCKTODISK(block, fp)

7 MERGEBLOCKS(f1, ..., fa; fmerged)

9/6/11 CSCI 7000 - IR 22

11

Sorting 10 blocks of 10M records
[

= First, read each block and sort within:
» Quicksort takes 2N In N expected steps

» In our case 2 x (10M In 10M) steps

= 10 times this estimate - gives us 10 sorted
runs of 10M records each.

9/6/11 CSCI 7000 - IR 23
postings
to be merged brutus d2
brutus d3
brutus d3 brutus d2 caesar dl
caesar d4 caesar dl caesar d4 merged
noble d3 julius d1 julius d1 postings
with d4 killed d2 killed d2
noble d3
\ with d4
disk
9/6/11 CSCI 7000 - IR 24

12

Ice Cream
[

s CS Colloquium Today

» Thursday 3:30pm in ECCR 265

» Welcome Back, Ice Cream Event

= Meet the faculty and staff,
Learn some trivia about the faculty,
Intro student associations

9/6/11 CSCI7000- IR

HW Questions?/Comments
[

14480

9/6/11 CSCI 7000 - IR

Main Problem with Sort-Based Algorithm
[

l

= Our assumption was we can keep the
dictionary in memory...

= We need the dictionary (which grows
dynamically) in order to implement a term
to termID mapping

= This isn't a problem for 400k terms. But it
is a problem for 13B terms.

9/6/11 CSCI7000- IR 27

SPIMI: Single-pass in-memory indexing
[

» Key idea 1: Generate separate dictionaries
for each block — no need to maintain term-
termID mapping across blocks; just use
terms

= Key idea 2: Don’t sort. Accumulate
postings in postings lists as they occur.

= With these two ideas we can generate a
complete inverted index for each block.

= These separate indexes can then be
merged into one big index.

9/6/11 CSCI 7000 - IR 28

14

SPIMI-Invert
[

SPIMI-INVERT(token_stream)
1 output_file = NEWFILE()
2 dictionary = NEWHASH()
3 while (free memory available)
4 do token < next(token_stream)
5 if term(token) ¢ dictionary
6 then postings_list = ADDTODICTIONARY (dictionary, term(token))
7 else postings_list = GETPOSTINGSLIST(dictionary, term(token))
8 if full(postings_list)
9 then postings_list = DOUBLEPOSTINGSLIST(dictionary, term(token))
10 ADDTOPOSTINGSLIST(postings_list, docID(token))
11 sorted_terms < SORTTERMS(dictionary)
12 WrITEBLOCKTODISK(sorted _terms, dictionary, output_file)
13 return output_file

9/6/11 CSCI7000- IR 29

Merge algorithm
[

Documents Runs on disk Final index

Parsed document

, merge

_-» | .., dark, ..., keep, night, ...,
\ < N

Ss ' update

S Sfush 7

|
T

o] |- ' 1
= el — !
é In—-memory index
9/6/11 CSCI 7000 - IR 30

15

Lesson
[

= The fact that you need a sorted list as
output doesn’t mean that you need to do a
sort... Doing a merge can be good
enough.

9/6/11 CSCI7000- IR 31

Dynamic indexing
[

s New Docs come in over time

» postings updates for terms already in
dictionary

= Nnew terms added to dictionary
= Docs can get deleted
= Docs can be altered

9/6/11 CSCI 7000 - IR 32

Simplest approach
[

Maintain “big” main index

New docs go into “small” auxiliary index
Search across both, merge results
Periodically, re-index into one main index

9/6/11 CSCI7000- IR 33

Dynamic indexing at search engines
[

= All the large search engines now do
dynamic indexing

» Their indices have frequent incremental
changes
= News items, blogs, new topical web pages

» But (sometimes/typically) they also
periodically reconstruct the index from
scratch
» Query processing is then switched to the

new index, and the old index is then deleted

17

Dynamic Indexing
[

» That assumes that the "main” index is
reasonably static and only needs periodic

updates...
= Not true with true real-time indexing
= Ala twitter
9/6/11 CSCI 7000 - IR 35

Distributed indexing
[

» For web-scale indexing must use a
distributed computing cluster

= How do we exploit such a pool of machines?

9/6/11 CSCI 7000 - IR 36

18

Google data centers
[

= Google data centers mainly contain
commodity machines.

» Data centers are distributed around the
world (often near cheap power)

» Estimate: a total of 1 million servers, 3
million processors/cores (Gartner 2007)

» Estimate: Google installs 100,000 servers
each quarter.
= Based on expenditures of 200-250 million

dollars per year

= About 10% of the computing capacity of
the world

Distributed indexing
[

= SO given a collection distributed
across many (thousands of)
machines

= Build an index distributed across
many (thousands of) machines

= Here we'll look at such indexes
distributed across machines by term

9/6/11 CSCI 7000 - IR

38

19

Distributed indexing
[

= Maintain a master machine directing
the indexing job — considered “safe”

= Break up indexing into sets of
(concurrently executable) tasks

= Master machine assigns each task to
an idle machine from a pool

9/6/11 CSCI7000- IR 39

Parallel tasks
[

= We will use two sets of parallel tasks
= Parsers
= Inverters

» Break the input document collection into
splits
» Each split is a subset of documents

= Master assigns a split to an idle parser
machine

s Parser reads a document at a time and
emits <term,docID> pairs

9/6/11 CSCI 7000 - IR 40

20

Parser tasks
[

» Parser writes pairs into j partitions

= One each for a range of terms’ first letters

« (e.qg., a-f, g-p, q-z) - here j=3.
= Now to complete the index inversion

9/6/11 CSCI7000- IR

41

Inverters
[

= Collect all (termID, docID) pairs for a
partition (from all the parsers)

= Sorts and writes to postings list

» Each partition then contains a set of
postings

9/6/11 CSCI 7000 - IR

42

21

Data flow
[

assign-{ Master j---.__ gssign

B) Postings

| -—

@ 2flg-pa-z /\g;

o o
o o o
o o

a-flg-p|lg-z 92

n
ogooo

—

n

9/6/11 CSCI7000- IR 43

MapReduce
[

» The index construction algorithm we just
described is an instance of MapReduce

» MapReduce (Dean and Ghemawat 2004) is
a robust and conceptually simple
framework for distributed computing ...

» without having to write code for the
distribution part.

= Open source version is called Hadoop

Next Time
[

On to Chapter 6

9/6/11

CSCI7000- IR

45

23

