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CSCI 5417 
Information Retrieval Systems 

Jim Martin!

Lecture 3 
8/30/2010 

CSCI 5417 - IR 

Today 8/30 

  Review 
  Conjunctive queries (intersect) 
  Dictionary contents 
  Phrasal queries 

  Tolerant query handling 
  Wildcards 
  Spelling correction 
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Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

   
  

Term N docs Coll freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Term Doc # Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

Index: Dictionary and Postings 
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Boolean AND: Intersection (1) 
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Boolean AND: Intersection (2) 
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Review: Dictionary 

  What goes into creating the terms that make it 
into the dictionary? 
  Tokenization 
  Case folding 
  Stemming 
  Stop-listing 
  Normalization 
  Dealing with numbers (and number-like entities) 
  Complex morphology 
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Dictionary 

  The dictionary data structure stores the 
term vocabulary, document frequency, and 
pointers to each postings list. In what kind 
of data structure? 
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A Naïve Dictionary 

  An array of structs? 

         char[20]   int                  postings * 
         20 bytes   4/8 bytes        4/8 bytes   
  How do we quickly look up elements at query 

time? 
CSCI 5417 - IR 
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Dictionary Data Structures 

  Two main choices: 
  Hash tables 
  Trees 

  Some IR systems use hashes, some trees. 
Choice depends on the application details. 
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Hashes 

  Each vocabulary term is hashed to an integer 
  I assume you’ve seen hashtables before 

  Pros: 
  Lookup is faster than for a tree: O(1) 

  Cons: 
  No easy way to find minor variants: 

  judgment/judgement 

  No prefix search   [tolerant  retrieval] 
  If vocabulary keeps growing, need to occasionally 

rehash everything 

CSCI 5417 - IR 
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Root 
a-m n-z 

a-hu hy-m n-sh si-z 

aa
rd
va
rk
!

hu
yg
en
s!

si
ck
le
!

zy
go
t!

Binary Tree Approach 

Sec. 3.1 
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Tree: B-tree 

  Definition: Every internal nodel has a number 
of children in the interval [a,b] where a, b are 
appropriate natural numbers, e.g., [2,4]. 

a-hu 
hy-m 

n-z 
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Trees 

  Simplest approach: binary trees 
  More typical : B-trees 
  Trees require a standard ordering of characters and hence 

strings … but we have that 
  Pros: 

  Facilitates prefix processing (terms starting with hyp) 
  Google’s “search as you type” 

  Cons: 
  Slower: O(log M)  [and this requires balanced tree] 
  Rebalancing binary trees is expensive 

  But B-trees mitigate the rebalancing problem 
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Back to Query Processing 

  Users are so demanding... 
  In addition to phrasal queries, they like to  

  Use wild-card queries 
  Misspell stuff 

  So we better see what we can do about 
those things 

CSCI 5417 - IR 
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Phrasal queries 

  Want to handle queries such as  
  “Colorado Buffaloes” – as a phrase 
  This concept is  popular with users; about 

10% of ad hoc web queries are phrasal 
queries 

  Postings that consist of document lists alone 
are not sufficient to handle phrasal queries 

  Two general approaches 
  Word N-gram indexing 
  Positional indexing  

CSCI 5417 - IR 

Positional Indexing 

  Change the content of the postings 
  Store, for each term, entries of the form: 

<number of docs containing term; 
doc1: position1, position2 … ; 
doc2: position1, position2 … ; 
etc.> 
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Positional index example 

<be: 993427; 
1: 7, 18, 33, 72, 86, 231; 
2: 3, 149; 
4: 17, 191, 291, 430, 434; 
5: 363, 367, …> 

Which of docs 1,2,4,5 
could contain “to be 

or not to be”? 
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Processing a phrase query 

  Extract postings for each distinct term: to, be, or, 
not. 

  Merge their doc:position lists to enumerate all 
positions with “to be or not to be”. 

  to:  

  2:1,17,74,222,551; 4:8,16,190,429,433; 
7:13,23,191; ... 

  be:   

  1:17,19; 4:17,191,291,430,434; 5:14,19,101; ... 

  Same general method for proximity searches 
(“near” operator). 
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Rules of thumb 

  Positional index size 35–50% of volume of 
original text 

  Caveat: all of this holds for “English-like” 
languages 
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Wild Card Queries 

  Two flavors 
  Word-based 

  Caribb* 
  Phrasal 

  “Pirates * Caribbean” 
  General approach 

  Spawn a new set of queries from the 
original query   

  Basically a dictionary operation 
  Run each of those queries in a not totally 

stupid way 
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Simple Single Wild-card Queries: * 

  Single instance of a * 
  * means an string of length 0 or more 

  This is not Kleene *. 

  mon*: find all docs containing any word 
beginning “mon”. 

  Using trees to implement the dictionary 
gives you prefixes 

  *mon: find words ending in “mon” 
  Maintain a backwards index 

Query processing 

  At this point, we have an enumeration of 
all terms in the dictionary that match the 
wild-card query. 

  We still have to look up the postings for 
each enumerated term. 

  For example, consider the query 
   mon* AND octob* 
 This results in the execution of many 
Boolean AND queries. 

CSCI 5417 - IR 
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Arbitrary Wildcards 

  How can we handle *’s in the middle of 
query term? 

  The solution: transform every possible 
wild-card query so that the *’s occur at the 
end 

  This motivates the Permuterm Index 
  The dictionary/tree scheme remains the 

same; but we populate the dictionary with 
extra (special) terms 
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Permuterm Index 

  For the real term hello create entries under: 
  hello$, ello$h, llo$he, lo$hel, o$hell 
where $ is a special symbol. 

  Example 
Query = hel*o 

Add the $ 
= hel*o$ 

Rotate * to the back 

Lookup o$hel* 
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Permuterm index 

  For term hello, index under: 
  hello$, ello$h, llo$he, lo$hel, o$hell 
where $ is a special symbol. 

  Queries: 
  X    lookup on X$           X*   lookup on   $X* 
  *X   lookup on X$*     *X*  lookup on   X* 
  X*Y lookup on Y$X*       
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Permuterm query processing 

  Rotate query wild-card to the right 
  Now use indexed lookup as before. 
  Permuterm problem: ≈ quadruples lexicon 

size 
Empirical observation for English. 
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Notice... 

  For every new type of query that we’d like 
to provide to users, a change to the index 
is required 
  Either to the postings  

  As in phrases 

  Or to the dictionary 
  As in wildcards 

  And normally that change means that the 
index gets bigger 
  That may have an impact on memory 

management issues 

CSCI 5417 - IR 

Programming Assignment 1 

Questions? 
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Spelling Correction 

  Two primary uses 
  Correcting document(s) being indexed 
  Retrieve matching documents when query 

contains a spelling error 

  Two main flavors: 
  Isolated word 

  Check each word on its own for misspelling 
  Will not catch typos resulting in correctly spelled words 

e.g., from → form 

  Context-sensitive 
  Look at surrounding words, e.g., I flew form 

Heathrow to Narita. 
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Document correction 

  Primarily for OCR’ed documents 
  Spelling correction algorithms must be 

tuned for this case 
  Think of Google Books 

  The index (dictionary) should contain fewer 
OCR-induced misspellings 

  Can use domain-specific knowledge 
  OCR confuses O and D more often than it 

would confuse O and I (adjacent on the 
QWERTY keyboard, so more likely 
interchanged in typing). 
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Google Books 

  The last library... 
  Scan and make available via the Web all the 

worlds books 
  Around 10M books scanned thus far 
  How many books are there anyway? 
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Google Books 

  Scanning 
  Getting the words right 

  Metadata 
  Getting authors, dates, number of pages, 

copyrights, publisher(s), etc. 
  Some is gotten from content providers (libraries, 

publishers) 

  Use of CAPTCHA for OCR difficulties 
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Query correction 

  Our principal focus here 
  Examples like the query Alanis Morisett 

  We can either 
  Retrieve using that spelling 
  Retrieve documents indexed by the correct 

spelling, OR 
  Return several suggested alternative 

queries with the correct spelling 
  Did you mean … ? 
  This requires an interactive session  
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Isolated word correction 

  Fundamental premise – there is a lexicon 
from which the correct spellings come 

  Some basic choices for this 
  A standard lexicon such as 

  Webster’s English Dictionary 
  An “industry-specific” lexicon – hand-maintained 

  The lexicon derived from the indexed corpus 
  E.g., all words on the web 
  All names, acronyms etc. 
  (Including the misspellings) 
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Isolated word correction 

  Given a lexicon and a character sequence 
Q, return the words in the lexicon closest 
to Q 

  What’s “closest”? 
  Several alternatives 

  Edit distance 
  Weighted edit distance 
  Bayesian models 
  Character n-gram overlap 
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Edit distance 

  Given two strings S1 and S2, the minimum 
number of basic operations to covert one to 
the other 

  Basic operations are typically character-level 
  Insert 
  Delete 
  Replace 

  E.g., the edit distance from cat to dog is 3. 
  Generally found by dynamic programming via 

minimum edit distance 
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Weighted edit distance 

  As above, but the weight of an operation 
depends on the character(s) involved 
  Meant to capture keyboard errors, e.g. m 

more likely to be mis-typed as n than as q 
  Therefore, replacing m by n is a smaller 

edit distance than by q 
  (Same ideas usable for OCR, but with 

different weights) 

  Require weight matrix as input 
  Modify dynamic programming to handle 

weights (Viterbi) 
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Using edit distances 

  Given query, first enumerate all dictionary 
terms within a preset (weighted) edit 
distance 

  Then look up enumerated dictionary terms 
in the term-document inverted index 
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Edit distance to all dictionary terms? 

  Given a (misspelled) query – do we 
compute its edit distance to every 
dictionary term? 
  Expensive and slow 

  How do we cut the set of candidate 
dictionary terms? 
  Heuristics 

  Assume first letter(s) is correct 
  Character n-gram overlap 
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Context-sensitive spell correction 

  Text: I flew from Heathrow to Narita. 
  Consider the phrase query “flew form 

Heathrow” 
  We’d like to respond 
Did you mean “flew from Heathrow”? 
because no docs matched the query phrase. 
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Context-sensitive correction 

  First idea: retrieve dictionary terms close (in 
weighted edit distance) to each query term 

  Now try all possible resulting phrases with one 
word “fixed” at a time 
  flew from heathrow  
  fled form heathrow 
  flea form heathrow 
  etc. 

  Suggest the alternative that has lots of hits 
  Suggest the alternative that matches previous 

queries?  
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General issue in spell correction 

  Will enumerate multiple alternatives for 
“Did you mean” 

  Need to figure out which one (or small 
number) to present to the user 

  Use heuristics 
  The alternative hitting most docs 
  Query log analysis + tweaking 

  For especially popular, topical queries 

  Language modeling 
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Next Time 

  On to Chapter 4 
  Back to indexing 


