
1

CSCI 5417
Information Retrieval Systems

Jim Martin!

Lecture 3
8/30/2010

CSCI 5417 - IR

Today 8/30

  Review
  Conjunctive queries (intersect)
  Dictionary contents
  Phrasal queries

  Tolerant query handling
  Wildcards
  Spelling correction

2

CSCI 5417 - IR

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Coll freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Term Doc # Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

Index: Dictionary and Postings

CSCI 5417 - IR

Boolean AND: Intersection (1)

3

CSCI 5417 - IR

Boolean AND: Intersection (2)

CSCI 5417 - IR

Review: Dictionary

  What goes into creating the terms that make it
into the dictionary?
  Tokenization
  Case folding
  Stemming
  Stop-listing
  Normalization
  Dealing with numbers (and number-like entities)
  Complex morphology

4

Dictionary

  The dictionary data structure stores the
term vocabulary, document frequency, and
pointers to each postings list. In what kind
of data structure?

CSCI 5417 - IR

A Naïve Dictionary

  An array of structs?

 char[20] int postings *
 20 bytes 4/8 bytes 4/8 bytes
  How do we quickly look up elements at query

time?
CSCI 5417 - IR

5

Dictionary Data Structures

  Two main choices:
  Hash tables
  Trees

  Some IR systems use hashes, some trees.
Choice depends on the application details.

CSCI 5417 - IR

Hashes

  Each vocabulary term is hashed to an integer
  I assume you’ve seen hashtables before

  Pros:
  Lookup is faster than for a tree: O(1)

  Cons:
  No easy way to find minor variants:

  judgment/judgement

  No prefix search [tolerant retrieval]
  If vocabulary keeps growing, need to occasionally

rehash everything

CSCI 5417 - IR

6

Root
a-m n-z

a-hu hy-m n-sh si-z

aa
rd
va
rk
!

hu
yg
en
s!

si
ck
le
!

zy
go
t!

Binary Tree Approach

Sec. 3.1

CSCI 5417 - IR

Tree: B-tree

  Definition: Every internal nodel has a number
of children in the interval [a,b] where a, b are
appropriate natural numbers, e.g., [2,4].

a-hu
hy-m

n-z

CSCI 5417 - IR

7

Trees

  Simplest approach: binary trees
  More typical : B-trees
  Trees require a standard ordering of characters and hence

strings … but we have that
  Pros:

  Facilitates prefix processing (terms starting with hyp)
  Google’s “search as you type”

  Cons:
  Slower: O(log M) [and this requires balanced tree]
  Rebalancing binary trees is expensive

  But B-trees mitigate the rebalancing problem

CSCI 5417 - IR

Back to Query Processing

  Users are so demanding...
  In addition to phrasal queries, they like to

  Use wild-card queries
  Misspell stuff

  So we better see what we can do about
those things

CSCI 5417 - IR

8

CSCI 5417 - IR

Phrasal queries

  Want to handle queries such as
  “Colorado Buffaloes” – as a phrase
  This concept is popular with users; about

10% of ad hoc web queries are phrasal
queries

  Postings that consist of document lists alone
are not sufficient to handle phrasal queries

  Two general approaches
  Word N-gram indexing
  Positional indexing

CSCI 5417 - IR

Positional Indexing

  Change the content of the postings
  Store, for each term, entries of the form:

<number of docs containing term;
doc1: position1, position2 … ;
doc2: position1, position2 … ;
etc.>

9

CSCI 5417 - IR

Positional index example

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of docs 1,2,4,5
could contain “to be

or not to be”?

CSCI 5417 - IR

Processing a phrase query

  Extract postings for each distinct term: to, be, or,
not.

  Merge their doc:position lists to enumerate all
positions with “to be or not to be”.

  to:

  2:1,17,74,222,551; 4:8,16,190,429,433;
7:13,23,191; ...

  be:

  1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

  Same general method for proximity searches
(“near” operator).

10

CSCI 5417 - IR

Rules of thumb

  Positional index size 35–50% of volume of
original text

  Caveat: all of this holds for “English-like”
languages

CSCI 5417 - IR

Wild Card Queries

  Two flavors
  Word-based

  Caribb*
  Phrasal

  “Pirates * Caribbean”
  General approach

  Spawn a new set of queries from the
original query

  Basically a dictionary operation
  Run each of those queries in a not totally

stupid way

11

CSCI 5417 - IR

Simple Single Wild-card Queries: *

  Single instance of a *
  * means an string of length 0 or more

  This is not Kleene *.

  mon*: find all docs containing any word
beginning “mon”.

  Using trees to implement the dictionary
gives you prefixes

  *mon: find words ending in “mon”
  Maintain a backwards index

Query processing

  At this point, we have an enumeration of
all terms in the dictionary that match the
wild-card query.

  We still have to look up the postings for
each enumerated term.

  For example, consider the query
 mon* AND octob*
 This results in the execution of many
Boolean AND queries.

CSCI 5417 - IR

12

CSCI 5417 - IR

Arbitrary Wildcards

  How can we handle *’s in the middle of
query term?

  The solution: transform every possible
wild-card query so that the *’s occur at the
end

  This motivates the Permuterm Index
  The dictionary/tree scheme remains the

same; but we populate the dictionary with
extra (special) terms

CSCI 5417 - IR

Permuterm Index

  For the real term hello create entries under:
  hello$, ello$h, llohe, lohel, o$hell
where $ is a special symbol.

  Example
Query = hel*o

Add the $
= hel*o$

Rotate * to the back

Lookup o$hel*

13

Permuterm index

  For term hello, index under:
  hello$, ello$h, llohe, lohel, o$hell
where $ is a special symbol.

  Queries:
  X lookup on X$ X* lookup on $X*
  *X lookup on X$* *X* lookup on X*
  X*Y lookup on Y$X*

CSCI 5417 - IR

Permuterm query processing

  Rotate query wild-card to the right
  Now use indexed lookup as before.
  Permuterm problem: ≈ quadruples lexicon

size
Empirical observation for English.

14

CSCI 5417 - IR

Notice...

  For every new type of query that we’d like
to provide to users, a change to the index
is required
  Either to the postings

  As in phrases

  Or to the dictionary
  As in wildcards

  And normally that change means that the
index gets bigger
  That may have an impact on memory

management issues

CSCI 5417 - IR

Programming Assignment 1

Questions?

15

CSCI 5417 - IR

Spelling Correction

  Two primary uses
  Correcting document(s) being indexed
  Retrieve matching documents when query

contains a spelling error

  Two main flavors:
  Isolated word

  Check each word on its own for misspelling
  Will not catch typos resulting in correctly spelled words

e.g., from → form

  Context-sensitive
  Look at surrounding words, e.g., I flew form

Heathrow to Narita.

CSCI 5417 - IR

Document correction

  Primarily for OCR’ed documents
  Spelling correction algorithms must be

tuned for this case
  Think of Google Books

  The index (dictionary) should contain fewer
OCR-induced misspellings

  Can use domain-specific knowledge
  OCR confuses O and D more often than it

would confuse O and I (adjacent on the
QWERTY keyboard, so more likely
interchanged in typing).

16

CSCI 5417 - IR

Google Books

  The last library...
  Scan and make available via the Web all the

worlds books
  Around 10M books scanned thus far
  How many books are there anyway?

CSCI 5417 - IR

Google Books

  Scanning
  Getting the words right

  Metadata
  Getting authors, dates, number of pages,

copyrights, publisher(s), etc.
  Some is gotten from content providers (libraries,

publishers)

  Use of CAPTCHA for OCR difficulties

17

CSCI 5417 - IR

Query correction

  Our principal focus here
  Examples like the query Alanis Morisett

  We can either
  Retrieve using that spelling
  Retrieve documents indexed by the correct

spelling, OR
  Return several suggested alternative

queries with the correct spelling
  Did you mean … ?
  This requires an interactive session

CSCI 5417 - IR

Isolated word correction

  Fundamental premise – there is a lexicon
from which the correct spellings come

  Some basic choices for this
  A standard lexicon such as

  Webster’s English Dictionary
  An “industry-specific” lexicon – hand-maintained

  The lexicon derived from the indexed corpus
  E.g., all words on the web
  All names, acronyms etc.
  (Including the misspellings)

18

CSCI 5417 - IR

Isolated word correction

  Given a lexicon and a character sequence
Q, return the words in the lexicon closest
to Q

  What’s “closest”?
  Several alternatives

  Edit distance
  Weighted edit distance
  Bayesian models
  Character n-gram overlap

CSCI 5417 - IR

Edit distance

  Given two strings S1 and S2, the minimum
number of basic operations to covert one to
the other

  Basic operations are typically character-level
  Insert
  Delete
  Replace

  E.g., the edit distance from cat to dog is 3.
  Generally found by dynamic programming via

minimum edit distance

19

CSCI 5417 - IR

Weighted edit distance

  As above, but the weight of an operation
depends on the character(s) involved
  Meant to capture keyboard errors, e.g. m

more likely to be mis-typed as n than as q
  Therefore, replacing m by n is a smaller

edit distance than by q
  (Same ideas usable for OCR, but with

different weights)

  Require weight matrix as input
  Modify dynamic programming to handle

weights (Viterbi)

CSCI 5417 - IR

Using edit distances

  Given query, first enumerate all dictionary
terms within a preset (weighted) edit
distance

  Then look up enumerated dictionary terms
in the term-document inverted index

20

CSCI 5417 - IR

Edit distance to all dictionary terms?

  Given a (misspelled) query – do we
compute its edit distance to every
dictionary term?
  Expensive and slow

  How do we cut the set of candidate
dictionary terms?
  Heuristics

  Assume first letter(s) is correct
  Character n-gram overlap

CSCI 5417 - IR

Context-sensitive spell correction

  Text: I flew from Heathrow to Narita.
  Consider the phrase query “flew form

Heathrow”
  We’d like to respond
Did you mean “flew from Heathrow”?
because no docs matched the query phrase.

21

CSCI 5417 - IR

Context-sensitive correction

  First idea: retrieve dictionary terms close (in
weighted edit distance) to each query term

  Now try all possible resulting phrases with one
word “fixed” at a time
  flew from heathrow
  fled form heathrow
  flea form heathrow
  etc.

  Suggest the alternative that has lots of hits
  Suggest the alternative that matches previous

queries?

CSCI 5417 - IR

General issue in spell correction

  Will enumerate multiple alternatives for
“Did you mean”

  Need to figure out which one (or small
number) to present to the user

  Use heuristics
  The alternative hitting most docs
  Query log analysis + tweaking

  For especially popular, topical queries

  Language modeling

22

CSCI 5417 - IR

Next Time

  On to Chapter 4
  Back to indexing

