
1

CSCI 5417
Information Retrieval Systems

Jim Martin!

Lecture 2
8/25/2011

8/25/11 CSCI 5417 - IR 2

Today 8/25

  Basic indexing, retrieval scenario
  Boolean query processing
  More on terms and tokens

2

3

Simple Unstructured Data Scenario

  Which plays of Shakespeare contain the
words Brutus AND Caesar but NOT
Calpurnia?

  We could grep all of Shakespeare’s plays
for Brutus and Caesar, then strip out
lines containing Calpurnia. This is
problematic:
  Slow (for large corpora)
  NOT Calpurnia is non-trivial
  Lines vs. Plays

4

Grepping is Not an Option

  So if we can’t search the documents in
response to a query what can we do?

  Create a data structure up front that will
facilitate the kind of searching we want to
do.

3

5

Term-Document Matrix

1 if play contains
word, 0 otherwise

Brutus AND Caesar but NOT
Calpurnia

6

Incidence Vectors

  So we have a 0/1 vector for each term
  Length of the term vector = number of plays

  To answer our query: take the vectors for
Brutus, Caesar and Calpurnia
(complemented) and then do a bitwise AND.

  110100 AND 110111 AND 101111 = 100100
  That is, plays 1 and 4
  “Antony and Cleopatra” and “Hamlet”

4

7

Answers to Query

  Antony and Cleopatra, Act III, Scene ii
  Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,
  When Antony found Julius Caesar dead,
  He cried almost to roaring; and he wept
  When at Philippi he found Brutus slain.

  Hamlet, Act III, Scene ii
  Lord Polonius: I did enact Julius Caesar I was killed i' the
  Capitol; Brutus killed me.

8

Bigger Collections

  Consider N = 1M documents, each with
about 1K terms.

  Avg 6 bytes/term including spaces and
punctuation
  6GB of data just for the documents.

  Assume there are m = 500K distinct terms
among these.
  Types

5

9

The Matrix

  500K x 1M matrix has 1/2 trillion entries
  But it has no more than one billion 1’s

  Matrix is extremely sparse.
  What’s the minimum number of 1’s in such

an index?

  What’s a better representation?
  Forget the 0’s. Only record the 1’s.

Why?

8/25/11 CSCI 5417 - IR 10

Inverted index

  For each term T, we must store a list of all
documents that contain T.

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

What happens if the word Caesar
is later added to document 14?

6

8/25/11 CSCI 5417 - IR 11

Inverted index

  Linked lists generally preferred to arrays
  Dynamic space allocation
  Insertion of terms into documents easy
  But there is the space overhead of pointers

Brutus

Calpurnia

Caesar

2 4 8 16 32 64 128

2 3 5 8 13 21 34

13 16

1

Dictionary Postings lists
Sorted by docID (more later on why).

Posting

8/25/11 CSCI 5417 - IR 12

Index Creation

Tokenizer

Token stream. Friends Romans Countrymen
Linguistic
modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed.

Friends, Romans, countrymen.

7

8/25/11 CSCI 5417 - IR 13

  From the documents generate a stream of
(Modified token, Document ID) pairs.

I did enact Julius
Caesar I was killed

i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Indexer steps

8/25/11 CSCI 5417 - IR 14

  Sort pairs by
terms.

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Core indexing step.

8

8/25/11 CSCI 5417 - IR 15

  Multiple term entries in a
single document are
merged.

  Frequency information is
added.

Term Doc # Term freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

8/25/11 CSCI 5417 - IR 16

  The result is then split into a
Dictionary file and a Postings file.

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Coll freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Term Doc # Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

Where’s the primary

storage cost?

Why split into two files?

9

Indexing

Of course you wouldn’t really do it that way
for large collections. Why?

17

The indexer would be too slow

8/25/11 CSCI 5417 - IR 18

Given an Index

  So what is such an index good for?
  Processing queries to get documents
  What’s a query?

  An encoding of a user’s information need
  For now we’ll keep it simple: boolean logic over

terms.

10

8/25/11 CSCI 5417 - IR 19

Example: WestLaw http://www.westlaw.com/

  Largest commercial (paying subscribers) legal
search service (started 1975; ranking added 1992)

  Tens of terabytes of data; 700,000 users
  Majority of users still use boolean queries
  Example query:

  What is the statute of limitations in cases involving
the federal tort claims act?

  LIMIT! /3 STATUTE ACTION /S FEDERAL /2
TORT /3 CLAIM

  /3 = within 3 words, /S = in same sentence

Boolean queries: Exact match

  The Boolean retrieval model is able to ask a
query that is a Boolean expression:
  Boolean Queries are queries using AND, OR and NOT to

join query terms
  Views each document as a set of words
  Is precise: a document matches condition or not

  Perhaps the simplest model of an IR system

  Primary commercial retrieval tool for 3 decades
  Many search systems you still use are Boolean:

  Email, library catalog, Mac OS X Spotlight

20

11

8/25/11 CSCI 5417 - IR 21

Query processing: AND

  Consider processing the query:
Brutus AND Caesar
  Locate Brutus in the Dictionary;

  Retrieve its postings.

  Locate Caesar in the Dictionary;
  Retrieve its postings.

  “Merge” the two postings:

128
34

2 4 8 16 32 64
1 2 3 5 8 13 21

Brutus
Caesar

8/25/11 CSCI 5417 - IR 22

34
128 2 4 8 16 32 64

1 2 3 5 8 13 21

The Merge (Intersection)

  Walk through the two postings
simultaneously, in time linear in the total
number of postings entries

128
34

2 4 8 16 32 64
1 2 3 5 8 13 21

Brutus
Caesar 2 8

If the list lengths are x and y, the merge takes O(x+y)
operations.
Crucial: postings sorted by docID.

12

Intersecting two postings lists
(a “merge” algorithm)

23

8/25/11 CSCI 5417 - IR 24

Query optimization

  What is the best order for query
processing?

  Consider a query that is an AND of t terms.
  For each of the t terms, get its postings,

then AND them together.

Brutus

Calpurnia

Caesar

1 2 3 5 8 16 21 34

2 4 8 16 32 64 128

13 16

Query: Brutus AND Calpurnia AND Caesar

13

8/25/11 CSCI 5417 - IR 25

Query optimization example

  Process in order of increasing freq:
  start with smallest set, then keep cutting

further.

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

This is why we kept
freq in dictionary

Execute the query as (Caesar AND Brutus) AND Calpurnia.

8/25/11 CSCI 5417 - IR 26

More general optimization

  For example
  (madding OR crowd) AND

(ignoble OR strife)

  Get frequencies for all terms
  Estimate the size of each OR by the

sum of its frequencies (conservative)
  Process in increasing order of OR

sizes.

14

8/25/11 CSCI 5417 - IR 27

Break

  Waitlist
  Is everyone ok?

  Homework 1

Assignment 1: Due 9/1

Build an indexer that produces a postings file
for a small document collection (MED)

8/25/11 CSCI 5417 - IR 28

.I 13

.W
analysis of mammalian lens proteins by electrophoresis .
 lens proteins of different mammalian species were analyzed
by two-dimensional starch gel electrophoresis . the number of
fractions detected by this means varied from 11-20 .
a-crystallin was resolved into two to three components,
b-crystallin into 5-11, and y-crystallin into three to five
components . this technique provides a sensitive method for
the fractionation of lens proteins and for analyzing species
differences .

15

Assignment 1: Due 9/1

  More specifically, a file with
  One line for each term in the collection
  Sorted alphabetically by terms
  With a postings list for each term

  Sort by document number

  Terms are...
  Maximal sequences of alphanumerics and

dashes

  Don’t use Lucene; any programming
language is ok.

8/25/11 CSCI 5417 - IR 29

8/25/11 CSCI 5417 - IR 30

Terms Revisited

  What’s a term and how do we find them?
  Tokenizing
  Stop lists
  Stemming
  Multi-word units

16

8/25/11 CSCI 5417 - IR 31

Tokenization

  Input: “Friends, Romans and Countrymen”
  Output: Tokens

  Friends
  Romans
  and
  Countrymen

  Each such token is now a candidate for an
index entry, after further processing

  But what are valid tokens to emit?

8/25/11 CSCI 5417 - IR 32

Tokenization

  Issues in tokenization:
  Finland’s capital →
 Finland? Finlands? Finland’s?
  Hewlett-Packard → Hewlett and Packard as

two tokens?
  State-of-the-art: break up hyphenated sequence

  Sometimes
  Lists, machine learning and voodoo

  San Francisco: one token or two?
  How do you decide if it is one token?

17

8/25/11 CSCI 5417 - IR 33

Numbers

  3/12/91 Mar. 12, 1991
  55 B.C.
  303
  11222
  324a3df234cb23e
  100.2.86.144

  Often, indexed by semantic type (if known)

8/25/11 CSCI 5417 - IR 34

Tokenization: Language issues

  L'ensemble → one token or two?
  L ? L’ ? Le ?
  Want l’ensemble to match with un

ensemble

  German noun compounds
  Lebensversicherungsgesellschaftsangestellter
  ‘life insurance company employee’

18

8/25/11 CSCI 5417 - IR 35

Tokenization: Language issues

  Chinese and Japanese have no spaces
between words:
  莎拉波娃现在居住在美国东南部的佛罗里达。	

  Not always guaranteed a unique
segmentation

  Further complicated when alphabets can
intermingle

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Tokenization: language issues

  Arabic (or Hebrew) is basically written right
to left, but with certain items like numbers
written left to right

  Words are separated, but letter forms
within a word form complex ligatures

  ‘Algeria achieved its independence in 1962
after 132 years of French occupation.’

19

8/25/11 CSCI 5417 - IR 37

Normalization

  May want to “normalize” terms in indexed
text as well as query terms into the same
form
  We want to match U.S.A. and USA

  Most commonly define equivalence classes
of terms
  e.g., by deleting periods in a term

  Alternative is to do asymmetric expansion:
  Enter: window Search: window, windows
  Enter: windows Search: Windows, windows
  Enter: Windows Search: Windows

  Potentially more powerful, but difficult to discover

8/25/11 CSCI 5417 - IR 38

Normalization: other languages

  Accents: résumé vs. resume.
  Most important criterion:

  How are your users like to write their
queries for these words?

  Even in languages that standardly have
accents, users often may not type them

  German: Tuebingen vs. Tübingen
  Should be equivalent

20

8/25/11 CSCI 5417 - IR 39

Case folding

  Reduce all letters to lower case
  exception: upper case (in mid-sentence?)

  e.g., General Motors
  Fed vs. fed
  IRA vs. Ira

  May require named entity recognition

  Often best to lower case everything, since
users will use lowercase regardless of
‘correct’ capitalization…

8/25/11 CSCI 5417 - IR 40

Stop words

  With a stop list, you exclude from dictionary entirely
the commonest words. Intuition:
  They have little semantic content: the, a, and, to, be
  They take a lot of space: ~30% of postings for top 30

  But the trend is now away from doing this:
  Good index compression techniques means the space for

including stopwords in a system is very small
  Good query optimization techniques mean you pay little at

query time for including stop words.
  You need them for:

  Phrase queries: “King of Denmark”
  Various song titles, etc.: “Let it be”, “To be or not to be”
  “Relational” queries: “flights to London” vs. “flights from

London”

21

8/25/11 CSCI 5417 - IR 41

Lemmatization

  Reduce inflectional/variant forms to base
form

  E.g.,
  am, are, is → be

  car, cars, car's, cars' → car

  the boy's cars are different colors → the
boy car be different color

  Lemmatization implies doing “proper”
reduction to dictionary headword form

8/25/11 CSCI 5417 - IR 42

Next time

  Read Chapters 1 through 3 of IIR for next
Tuesday.

