
1

1

CSCI 5417
Information Retrieval Systems!

Lecture 1
8/23/2011

Introduction

2

What is Information Retrieval?

Information retrieval is the science of searching for information in
documents, searching for documents themselves, searching for
metadata which describe documents, or searching within databases,
whether relational stand-alone databases or hypertextually-networked
databases such as the World Wide Web.
 Wikipedia

The study of methods and structures used to represent and access
information.
 Witten et al.

The IR definition can be found in this book.
 Salton

IR deals with the representation, storage, organization of, and access to
information items.
 Salton

Information retrieval is the term conventionally, though somewhat
inaccurately, applied to the type of activity discussed in this volume.
 van Rijsbergen

2

Manning et al.

3

  Information Retrieval (IR) is finding material
(usually documents) of an unstructured
nature (usually text) that satisfies an
information need from within large collections
(usually stored on computers).

4

How about: What you do when you use
Google

  Ad hoc retrieval is the core task that
modern IR systems address
  One-shot information seeking attempts by

ignorant users
  Ignorant about the structure and content of the

collection
  Ignorant about how the system works
  Ignorant about how to formulate queries

  Typically textual documents, but video and
audio are becoming more prevalent

  Collections are heterogeneous in nature

3

But Web Search is Not All of IR

  Specialist search (often
boolean)
  Research librarians
  Medical retrieval
  Legal search
  Google scholar
  MSN Academic search

  Enterprise search
  Social media

  Twitter, facebook, etc

  Desktop search
  Apple’s Spotlight

  Real time search
  Twitter

  Mobile search
  Voice
  Location aware search

5

6

Social Media

  Considerable interest right now lies in Web
2.0 issues...

  Dealing with User-Generated Content
  Discussion forums
  Blogs
  Microblogs
  Social network sites

  To deal with
  Sentiment, opinions, etc
  Social network structure
  Location

4

Web

7

8

Course Plan

  Cover the basics of IR technology in the
first part of the course
  The book provides the bulk of this material

  Investigate newer topics in the latter part
  Use discussions of real companies

throughout the semester
  Project presentations and discussions for

the last section of the class.

  I expect informed participation.

5

9

Course Plan

  Core technology areas
  Indexing and ranked retrieval

  Basic vector space model
  Probabilistic models
  Supervised ML ranking methods

  Document classification
  Sometimes called routing or filtering
  Supervised ML approaches

  Document clustering
  Unsupervised and semi-supervised ML

approaches

10

Administrivia

  Work/Grading
  Programming assignments 30%
  Quizzes 30%
  Project 30%
  Participation 10%

  Textbook
  Introduction to Information Retrieval ---

Manning, Raghavan and Schütze

6

11

Textbook

  Lots of good stuff on the book’s website
  Including the entire PDF of the book

  I still recommend you buy it but it’s up to
you

  Based on my experience, people who buy it are
more likely to read it

  Last semester, people who had a physical copy
got higher grades

12

Administrivia

  After the first assignments, the
programming assignments will involve the
use of Lucene (lucene.apache.org)
  Open-source full text indexing system
  Main Apache effort is Java
  Various side efforts in Python, Ruby, C++,

etc.
  I don’t care which one you use

  Your mileage may vary

  Whether or not you use Lucene for the
project is up to you

7

13

Lucene Documentation

  Lucene has all the usual
Java-doc style information
associated with it. See the
main Lucene page.

  The main reference text
associated with it is “Lucene
in Action” 2ed.
  See the publisher page for

more info. Chapter 1 is free.

14

CAETE

  Remote students have a 1 week offset for
assignments and quizzes
  With warning I’m flexible on the assignments
  Less so for the quizzes

  For quizzes you need to have an EO or come
to class for the quiz

  The #1 problem that CAETE students run into
is falling behind on the lectures
  For what its worth, that’s also the #1 problem

for local students who “attend” but are not
prepared for class.

8

15

Web/Email

  Slides will be available as ppt and pdf
shortly after each class

  You will be able to view the videos on the
web. You should use this for review and for
situations where you can’t come to class
(like the flu), not as a reason to skip class

  My roster has your colorado.edu email
addresses. If you read your mail
elsewhere then you need to set up a
forward.

Piazza

  We’ll be using a new website as a resource
for Q/A about the class.
  Topics
  Assignments
  Quiz reviews etc.

  Go to Piazza and register for this class
  At least some part of “participation” can be

taken care of through your use of Piazza

16

9

17

Administrivia

  Professor: Jim Martin
  James.martin@colorado.edu

  ECOT 726

  Office hours TBA
  www.cs.colorado.edu/~martin/csci5417/

18

Questions?

10

19

Simple Unstructured Data Scenario

  Which plays of Shakespeare contain the
words Brutus AND Caesar but NOT
Calpurnia?

  We could grep all of Shakespeare’s plays
for Brutus and Caesar, then strip out
lines containing Calpurnia. This is
problematic:
  Slow (for large corpora)
  NOT Calpurnia is non-trivial
  Other operations (e.g., find the word

Romans near countrymen) not feasible
  Lines vs Plays

20

Grepping is Not an Option

  So if we can’t search the documents in
response to a query what can we do?

  Create a data structure up front that will
facilitate the kind of searching we want to
do.

11

21

Term-Document Matrix

1 if play contains
word, 0 otherwise

Brutus AND Caesar but NOT
Calpurnia

22

Incidence Vectors

  So we have a 0/1 vector for each term
  Length of the term vector = number of plays

  To answer our query: take the vectors for
Brutus, Caesar and Calpurnia
(complemented) and then do a bitwise AND.

  110100 AND 110111 AND 101111 = 100100
  That is, plays 1 and 4
  “Antony and Cleopatra” and “Hamlet”

12

23

Answers to Query

  Antony and Cleopatra, Act III, Scene ii
  Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,
  When Antony found Julius Caesar dead,
  He cried almost to roaring; and he wept
  When at Philippi he found Brutus slain.

  Hamlet, Act III, Scene ii
  Lord Polonius: I did enact Julius Caesar I was killed i' the
  Capitol; Brutus killed me.

24

Bigger Collections

  Consider N = 1M documents, each with
about 1K terms.

  Avg 6 bytes/term including spaces and
punctuation
  6GB of data just for the documents.

  Assume there are m = 500K distinct terms
among these.
  Types vs. Tokens

13

25

The Matrix

  500K x 1M matrix has 1/2 trillion entries
  But it has no more than one billion 1’s

  Matrix is extremely sparse.
  What’s the minimum number of 1’s in such

an index?

  What’s a better representation?
  Forget the 0’s. Only record the 1’s.

Why?

26

Inverted Index

  For each term T, we store a list of all
documents that contain T.

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

14

27

Inverted Index

  Linked lists generally preferred to arrays
  Dynamic space allocation

  Insertion of terms into documents easy
  Space overhead of pointers is an issue

Brutus

Calpurnia

Caesar

2 4 8 16 32 64 128

2 3 5 8 13 21 34

13 16

1

Dictionary Postings lists
Sorted by docID (more later on why).

Posting

28

Creating an Inverted Index

Tokenizer

Token stream. Friends Romans countrymen
Linguistic
modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

More on
these later.

Documents to
be indexed.

Friends, Romans, countrymen.

15

Indexer steps: Token sequence

  First generate a sequence of
<token, Document-ID> pairs from
the stream of documents being
indexed.

I did enact Julius
Caesar I was killed

i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Indexer steps: Sort

  Sort the pairs by
terms
  And then minor sort by docID

Core	
 indexing	
 step	

16

Indexer steps: Dictionary & Postings

  Multiple term
entries in a
single document
are collapsed.

  Split list into
Dictionary and
Postings

Sec. 1.2

What are the storage implications?

32	
 Pointers

Terms
and

counts

Sec. 1.2

Lists of
docIDs

17

Indexing

Of course you wouldn’t really do it that way
for large collections. Why?

33

Too slow and too large:
•  The indexer would be too slow
•  The resulting index would be too big.

34

  Read Chapters 1 and 2
  Get Lucene installed on whatever machine

you plan to work on

Next time

