
Towards Robust Semantic Role Labeling

Sameer S. Pradhan
BBN Technologies

Wayne Ward
University of Colorado

James H. Martin
University of Colorado

Most Semantic Role labeling research has been focused on training and evaluating on the
same corpus in order to develop the technology. This strategy, while appropriate for initiating
research, can lead to over-training to the particular corpus. The new work presented in this
paper focuses on analyzing the robustness of an SRL system when trained on one genre of
data and used to label a different genre. We first describe the development of a state-of-the-art
system for labeling propbank arguments on Wall Street Journal (WSJ) data. We detail further
developments to improve performance on the WSJ corpus – including evaluating new features
of several types including features from dependency parses, a features selection and calibration
process, error analysis that pointed out the problem with the method of classifying constituents
produced by a single syntactic parse, and an architecture for combining multiple syntactic
views. While performing well on WSJ test data, such a system shows significant performance
degradation when applied to label test data that is different than the genre of the data that it was
trained on. We then present a series of experiments designed to investigate the source of this lack
of portability. These experiments are based on comparisons of performance using PropBanked
WSJ data and PropBanked Brown corpus data. Our results indicate that while syntactic parses
and argument identification port relatively well to a new corpus, argument classification does
not. Our analysis of the reasons for this is presented and generally point to the nature of the
more lexical/semantic features dominating the classification task where more general structural
features are more dominant in the argument identification task.

1. Introduction

Automatic, accurate and wide-coverage techniques that can annotate naturally occur-
ring text with semantic argument structure can play a key role in NLP applications
such as Information Extraction (Harabagiu, Bejan, and Morarescu 2005), Question An-
swering (Narayanan and Harabagiu 2004) and Summarization. Semantic role labeling
is the process of producing such a markup. When presented with a sentence, a parser
should, for each predicate in the sentence, identify and label the predicate’s semantic
arguments. This process entails identifying groups of words in a sentence that represent
these semantic arguments and assigning specific labels to them. In recent work, a
number of researchers have cast this problem as a tagging problem and have applied
various supervised machine learning techniques to it. Using correct syntactic parses it is
possible to achieve accuracies rivaling human inter-annotator agreement. More recent
approaches have involved using improved features such as n-best parses (Koomen et

© 2005 Association for Computational Linguistics

Computational Linguistics Volume xx, Number xx

al. 2005; Toutanova, Haghighi, and Manning 2005; Haghighi, Toutanova, and Manning
2005), exploiting argument interdependence (Jiang, Li, and Ng 2005), using information
from fundamentally different, and complementary syntactic views (Pradhan et al. 2005),
combining hypotheses from different labeling systems using inference (Màrquez et al.
2005), as well as applied novel learning paradigms (Punyakanok et al. 2005; Toutanova,
Haghighi, and Manning 2005; Moschitti 2006) that try to capture more sequence and
contextual information. Some have also tried to jointly decode the syntactic and seman-
tic structures (Yi and Palmer 2005; Musillo and Merlo 2006). In fact, this has been the
subject of two CoNLL shared tasks (Carreras and Marquez 2004; Carreras and Màrquez
2005). While all these systems perform quite well on the WSJ test data, they show
significant performance degradation when applied to label test data that is different
than the genre of the data that it was trained on.

The new work presented in this paper focuses on analyzing the robustness of an
SRL system when trained on one genre of data and used to label a different genre.
We present a series of experiments designed to investigate the source of portability
of our semantic role labeling system. These experiments are based on comparisons of
performance using PropBanked WSJ data and PropBanked Brown corpus data. Our
results indicate that while syntactic parses and argument identification port relatively
well to a new corpus, argument classification does not. Our analysis of the reasons
for this is presented and generally point to the nature of the more lexical/semantic
features dominating the classification task where more general structural features are
more dominant in the argument identification task.

The remainder of this paper is organized as follows. We first describe the devel-
opment of a state-of-the-art baseline system for labeling propbank arguments on Wall
Street Journal (WSJ) data. A detailed error analysis of our system indicates that the
identification problem poses a significant bottleneck to improving overall system per-
formance on WSJ. The baseline system’s accuracy on the task of labeling nodes known to
represent semantic arguments is 90%. On the other hand, the system’s performance on
the identification task is quite a bit lower, achieving only 80% recall with 86% precision.
There are two sources of these identification errors: i) failures by the system to identify
all and only those constituents that correspond to semantic roles, when those constituents
are present in the syntactic analysis, and ii) failures by the syntactic analyzer to provide
the constituents that align with correct arguments.

We then report on two sets of experiments using techniques that improve perfor-
mance on the problem of finding arguments when they are present in the syntactic
analysis. In the first set of experiments we explore new features, including features
extracted from a parser that provides a different syntactic view – a Combinatory Cat-
egorial Grammar (CCG) parser (Hockenmaier and Steedman 2002b). In the second set
of experiments, we explore approaches to identify optimal subsets of features for each
argument class, and to calibrate the classifier probabilities.

We then report on experiments that address the problem of arguments missing from
a given syntactic analysis. We investigate ways to combine hypotheses generated from
semantic role taggers trained using different syntactic views – one trained using the
Charniak parser (Charniak 2000), and another based on a flat, shallow syntactic chunk
representation (Hacioglu 2004). We show that these two views complement each other
to improve performance.

The second half of the paper starts by presenting initial evidence that such a sys-
tem shows significant performance degradation when applied to label test data that
is different than the genre of the data that it was trained on. Further, we present a
series of experiments designed to investigate the source of this lack of portability. These

2

Running Author Running Title

experiments are based on comparisons of performance using PropBanked WSJ data and
PropBanked Brown corpus data.

2. Semantic Annotation and Corpora

We will be reporting on results using PropBank1 (Palmer et al., 2005), a corpus in which
predicate argument relations are marked for the verbs in the Wall Street Journal (WSJ)
part of the Penn Treebank (Marcus et al. 1994). The arguments of a verb are labeled
ARG0 to ARG5, where ARG0 is the PROTO-AGENT (usually the subject of a transitive
verb) ARG1 is the PROTO-PATIENT (usually its direct object), etc. PropBank attempts to
treat semantically related verbs consistently. In addition to these CORE ARGUMENTS,
additional ADJUNCTIVE ARGUMENTS, referred to as ARGMs are also marked.

PropBank was constructed by assigning semantic arguments to constituents of the
hand-corrected Treebank parses (hence Treebank parses.) Sometimes the tree can have
trace nodes which refer to another node in the tree, but do not have any words associated
with them. These can also be marked as arguments. As traces are not reproduced
by standard syntactic parsers, we decided not to consider them in our experiments
– whether or not they represent arguments of a predicate. PropBank also contains
arguments that are coreferential and those that are discontinuous. We treat discontin-
uous and coreferential arguments in accordance to the CoNLL 2004/5 shared task on
semantic role labeling. The first part of a discontinuous argument is labeled as it is,
while the second part of the argument is labeled with a prefix “C-” appended to it. All
coreferential arguments are labeled with a prefix “R-” appended to them.

The data comprise several sections of the WSJ, and we follow the standard con-
vention of using section-23 data as the test set. section-02 to section-21 were used for
training. The Feb 2004 release training set contains about 104,000 predicates instantiat-
ing about 250,000 arguments, and the test set comprises 5,400 predicates instantiating
about 12,000 arguments.

3. Problem Description

The problem of shallow semantic role labeling can be viewed as three different tasks as
introduced by Gildea and Jurafsky (2002).
Argument Identification – This is the process of identifying parsed constituents in the
sentence that represent semantic arguments of a given predicate.
Argument Classification – Given constituents known to represent arguments of a predi-
cate, assign the appropriate argument labels to them.
Argument Identification and Classification – A combination of the above two tasks.

Each node in the parse tree can be classified as either one that represents a semantic
argument (i.e., a NON-NULL node) or one that does not represent any semantic argu-
ment (i.e., a NULL node). The NON-NULL nodes can then be further classified into the
set of argument labels. For example, in the tree of Figure 1, the node IN that encom-
passes “for” is a NULL node because it does not correspond to a semantic argument.
The node NP that encompasses “about 20 minutes” is a NON-NULL node, since it does
correspond to a semantic argument – ARGM-TMP.

1 http://www.cis.upenn.edu/˜ace/

3

Computational Linguistics Volume xx, Number xx

[ARG0 He] [predicate talked] for [ARGM−TMP about 20 minutes].

S
h

h
h
h

(
(

(
(

NP

PRP
He

ARG0

VP
h

h
hh

(
(

((

VBD
talked

predicate

PP
h

h
h

(
(

(

IN
for

NULL

NP
h

h
h

hh

(
(

(
((

about 20 minutes

ARGM − TMP

Figure 1
Syntax tree for a sentence illustrating the PropBank arguments.

4. ASSERT (Automatic Statistical SEmantic Role Tagger)

We formulate the parsing problem as a multi-class classification problem and use a
Support Vector Machine (SVM) classifier (Hacioglu et al., 2003; Pradhan et al, 2003).
Since SVMs are binary classifiers, we have to convert the multi-class problem into a
number of binary-class problems. We use the ONE vs ALL (OVA) formalism, which
involves training n binary classifiers for a n-class problem.

Since the training time taken by SVMs scales exponentially with the number of
examples, and about 80% of the nodes in a syntactic tree have NULL argument labels,
we found it efficient to divide the training process into two stages, while maintaining
the same accuracy:

1. Filter out the nodes that have a very high probability of being NULL. A
binary NULL vs NON-NULL classifier is trained on the entire dataset. A
sigmoid function is fitted to the raw scores to convert the scores to
probabilities as described by (Platt 2000).

2. The remaining training data is used to train OVA classifiers, one of which
is the NULL-NON-NULL classifier.

With this strategy only one classifier (NULL vs NON-NULL) has to be trained on all
of the data. The remaining OVA classifiers are trained on the nodes passed by the filter
(approximately 20% of the total), resulting in a considerable savings in training time.

In the testing stage, we do not perform any filtering of NULL nodes. All the nodes
are classified directly as NULL or one of the arguments using the classifier trained in
step 2 above. We observe no significant performance improvement even if we filter the
most likely NULL nodes in a first pass.

For our experiments, we used TinySVM2 along with YamCha3 (Kudo and Mat-
sumoto 2000) (Kudo and Matsumoto 2001) as the SVM training and classification soft-
ware. The system uses a polynomial kernel with degree 2; the cost per unit violation of
the margin, C=1; and, tolerance of the termination criterion, e=0.001.

2 http://cl.aist-nara.ac.jp/˜talus-Au/software/TinySVM/

3 http://cl.aist-nara.ac.jp/˜taku-Au/software/yamcha/

4

Running Author Running Title

The baseline feature set is a combination of features introduced by Gildea and
Jurafsky (2002) and ones proposed in Pradhan et al., (2004), Surdeanu et al., (2003) and
the syntactic-frame feature proposed in (Xue and Palmer 2004). Following is the list of
features used:

1. Predicate Lemma

2. Path – Path from the constituent to the predicate in the parse tree.

3. Position – Whether the constituent is before or after the predicate.

4. Voice

5. Predicate sub-categorization

6. Predicate Cluster

7. Head Word – Head word of the constituent.

8. Head Word POS – POS of the head word

9. Named Entities in Constituents – 7 named entities as 7 binary features.

10. Partial Path – Path from the constituent to the lowest common ancestor of
the predicate and the constituent.

11. Verb Sense Information – Oracle verb sense information from PropBank

12. Head Word of PP – Head of PP replaced by head word of NP inside it, and
PP tag replaced by PP-preposition

13. First and Last Word/POS in Constituent

14. Ordinal Constituent Position

15. Constituent Tree Distance

16. Constituent Relative Features – Nine features representing the phrase
type, head word and head word part of speech of the parent, and left and
right siblings of the constituent.

17. Temporal Cue Words

18. Dynamic Class Context

19. Syntactic Frame

20. Content Word Features – Content word, its POS and named entities in the
content word

As described in (Pradhan et al. 2004), we first convert the raw SVM scores to prob-
abilities using a sigmoid function. Then, for each sentence being parsed, we generate
an argument lattice using the n-best hypotheses for each node in the syntax tree. We
then perform a Viterbi search through the lattice using the probabilities assigned by the
sigmoid as the observation probabilities, along with the language model probabilities,
to find the maximum likelihood path through the lattice, such that each node is either
assigned a value belonging to the PROPBANK ARGUMENTs, or NULL. The search is
constrained in such a way that no two NON-NULL nodes overlap with each other.

5

Computational Linguistics Volume xx, Number xx

ALL ARGs Task P R F A
(%) (%) (%)

TREEBANK Id. 96.2 95.8 96.0
Classification - - - 93.0
Id. + Classification 89.9 89.0 89.4

AUTOMATIC Id. 86.8 80.0 83.3
Classification - - - 90.1
Id. + Classification 80.9 76.8 78.8

Table 1
Baseline system performance on all three tasks using Treebank parses and automatic parses on
PropBank data.

Table 1 shows the performance of the system using the Treebank (TREEBANK) and
using parses produced by a Charniak parser (AUTOMATIC). Precision (P), Recall (R) and
F scores are given for the identification and combined tasks, and Classification Accuracy
(A) for the classification task.

Classification performance using Charniak parses is about 3% absolute worse than
when using Treebank parses. On the other hand, argument identification performance
using Charniak parses is about 12.7% absolute worse. Half of these errors – about 7% are
due to missing constituents, and the other half – about 6% are due to mis-classifications.

Motivated by this severe degradation in argument identification performance for
automatic parses, we examined a number of techniques for improving argument iden-
tification. We made a number of changes to the system which resulted in improved
performance. The changes fell into three categories: i) new features, ii) feature selection
and calibration, and iii) combining parses from different syntactic representations.

5. Additional Features

5.1 CCG Parse Features

While the Path feature has been identified to be very important for the argument
identification task, it is one of the most sparse features and may be difficult to train or
generalize (Pradhan et al. 2004; Xue and Palmer 2004). A dependency grammar should
generate shorter paths from the predicate to dependent words in the sentence, and could
be a more robust complement to the phrase structure grammar paths extracted from the
Charniak parse tree. Gildea and Hockenmaier (2003) report that using features extracted
from a Combinatory Categorial Grammar (CCG) representation improves semantic role
labeling performance on core arguments. We evaluated features from a CCG parser
combined with our baseline feature set. We used three features that were introduced by
Gildea and Hockenmaier (2003):

r Phrase type – This is the category of the maximal projection between the
two words – the predicate and the dependent word.

r Categorial Path – This is a feature formed by concatenating the following
three values: i) category to which the dependent word belongs, ii) the

6

Running Author Running Title

Figure 2
CCG parse of a sentence.

direction of dependence and iii) the slot in the category filled by the
dependent word.

r Tree Path – This is the categorial analogue of the path feature in the
Charniak parse based system, which traces the path from the dependent
word to the predicate through the binary CCG tree.

Parallel to the Treebank parses, we also had access to correct CCG parses derived
from the Treebank (Hockenmaier and Steedman 2002a). We performed two sets of
experiments. One using the correct CCG parses, and the other using parses obtained
using StatCCG4 parser (Hockenmaier and Steedman 2002b). We incorporated these
features in the systems based on Treebank parses and Charniak parses respectively. For
each constituent in the Charniak parse tree, if there was a dependency between the
head word of the constituent and the predicate, then the corresponding CCG features
for those words were added to the features for that constituent. Table 2 shows the
performance of the system when these features were added. The corresponding baseline
performances are mentioned in parentheses.

ALL ARGs Task P R F
(%) (%)

TREEBANK Id. 97.5 (96.2) 96.1 (95.8) 96.8 (96.0)
Id. + Class. 91.8 (89.9) 90.5 (89.0) 91.2 (89.4)

AUTOMATIC Id. 87.1 (86.8) 80.7 (80.0) 83.8 (83.3)
Id. + Class. 81.5 (80.9) 77.2 (76.8) 79.3 (78.8)

Table 2
Performance improvement upon adding CCG features to the Baseline system.

5.2 Other Features

We added the following more generalizable features to the system:

4 Many thanks to Julia Hockenmaier for providing us with the CCG bank as well as the StatCCG parser.

7

Computational Linguistics Volume xx, Number xx

5.2.1 Path Generalizations.

1. Clause-based path variations – Position of the clause node (S, SBAR)
seems to be an important feature in argument identification (Hacioglu et
al. 2004) Therefore we experimented with four clause-based path feature
variations.

(a) Replacing all the nodes in a path other than clause nodes with an
“*”. For example, the path NP↑S↑VP↑SBAR↑NP↑VP↓VBD becomes
NP↑S↑*S↑*↑*↓VBD

(b) Retaining only the clause nodes in the path, which for the above
example would produce NP↑S↑S↓VBD,

(c) Adding a binary feature that indicates whether the constituent is in
the same clause as the predicate,

(d) Collapsing the nodes between S nodes which gives
NP↑S↑NP↑VP↓VBD.

2. Path n-grams – This feature decomposes a path into a series of trigrams.
For example, the path NP↑S↑VP↑SBAR↑NP↑VP↓VBD becomes: NP↑S↑VP,
S↑VP↑SBAR, VP↑SBAR↑NP, SBAR↑NP↑VP, etc. Shorter paths were
padded with nulls.

3. Single character phrase tags – Each phrase category is clustered to a
category defined by the first character of the phrase label.

5.2.2 Predicate Context. We added the predicate context to capture predicate sense
variations. Two words before and two words after were added as features. The POS
of the words were also added as features.

5.2.3 Punctuation. For some adjunctive arguments, punctuation plays an important role
so we added punctuation immediately before and after the constituent as new features.

5.2.4 Feature Context. Features of constituents that are parent or siblings of the con-
stituent being classified were found useful. In the current machine learning technique,
we classify each of the constituents independently, however, in reality, there is a com-
plex interaction between the types and number of arguments that a constituent can
assume, given classifications of other nodes. As we will look at later, we perform a post-
processing step using the argument sequence information, but that does not cover all
possible constraints. One way of trying to capture those best in the current architecture
would be to take into consideration the feature vector compositions of all the NON-
NULL constituents for the sentence. This is exactly what this feature does. It uses all the
other feature vector values of the constituents that have been found to be likely NON-
NULL, as an added context.

5.3 N-Best Parses

Following (Koomen et al. 2005; Toutanova, Haghighi, and Manning 2005; Haghighi,
Toutanova, and Manning 2005), we also now use n-best parse hypotheses, and consider
the bag of constituents as potential argument candidates. We treat these as bag of
constituents while performing the search through the argument lattice using argument
sequence information.

8

Running Author Running Title

������������	
�
����
 ������������	
�
����

�
��
�
��
�	

�

���
�

�
��
�
��
�	

�

���
�

���	�� �����

Figure 3
Plots showing true probabilities versus predicted probabilities before and after calibration on the
test set for ARGM-TMP

.

6. Feature Selection and Calibration

In the baseline system, we used the same set of features for all the n binary ONE
VS ALL classifiers. Error analysis showed that some features specifically suited for
one argument class, for example, core arguments, tend to hurt performance on some
adjunctive arguments. Therefore, we thought that selecting subsets of features for each
argument class might improve performance. To achieve this, we performed a simple
feature selection procedure. For each argument, we started with the set of features
introduced by (Gildea and Jurafsky 2002). We pruned this set by training classifiers
after leaving out one feature at a time and checking its performance on a development
set. We used the χ2 significance while making pruning decisions. Following that, we
added each of the other features one at a time to the pruned baseline set of features
and selected ones that showed significantly improved performance. Since the feature
selection experiments were computationally intensive, we performed them using 10k
training examples.

SVMs output distances not probabilities. These distances may not be comparable
across classifiers, especially if different features are used to train each binary classifier. In
the baseline system, we used the algorithm described by Platt (2000) to convert the SVM
scores into probabilities by fitting to a sigmoid. When all classifiers used the same set of
features, fitting all scores to a single sigmoid was found to give the best performance.
Since different feature sets are now used by the classifiers, we trained a separate sigmoid
for each classifier.

Foster and Stine (2004) show that the pool-adjacent-violators (PAV) algorithm (Bar-
low et al. 1972) provides a better method for converting raw classifier scores to proba-
bilities when Platt’s algorithm fails. The probabilities resulting from either conversions
may not be properly calibrated. So, we binned the probabilities and trained a warping
function to calibrate them. For each argument classifier, we used both the methods for
converting raw SVM scores into probabilities and calibrated them using a development

9

Computational Linguistics Volume xx, Number xx

Raw Scores Probabilities
After lattice-rescoring

Uncalibrated Calibrated
(%) (%) (%)

Same Feat. same sigmoid 74.7 74.7 75.4
Selected Feat. diff. sigmoids 75.4 75.1 76.2

Table 3
Performance improvement on selecting features per argument and calibrating the probabilities
on 10k training data on WSJ section 23.

set. Then, we visually inspected the calibrated plots for each classifier and chose the
method that showed better calibration as the calibration procedure for that classifier.
Plots of the predicted probabilities versus true probabilities for the ARGM-TMP VS
ALL classifier, before and after calibration are shown in Figure 3. The performance
improvement over a classifier that is trained using all the features for all the classes
is shown in Table 3.

Table 4 shows the performance of the system after adding the CCG features, addi-
tional features extracted from the Charniak parse tree, and performing feature selection
and calibration. Numbers in parentheses are the corresponding baseline performances.

TASK P R F A
(%) (%) (%)

Id. 86.9 (86.8) 84.2 (80.0) 85.5 (83.3)
Class. - - - 92.0 (90.1)
Id. + Class. 82.1 (80.9) 77.9 (76.8) 79.9 (78.8)

Table 4
Best system performance on all tasks using automatically generated syntactic parses.

7. Alternative Syntactic Views

Adding new features can improve performance when the syntactic representation be-
ing used for classification contains the correct constituents. Additional features can’t
recover from the situation where the parse tree being used for classification doesn’t
contain the correct constituent representing an argument. Such parse errors account for
about 7% absolute of the errors (or, about half of 12.7%) for the Charniak parse based
system. To address these errors, we added one additional representations: i) chunking
parser (Hacioglu et al. 2004). The hope is that it will produce different errors than the
Charniak parser since it represents a different syntactic view. The Charniak parser is
trained on the Penn Treebank corpus. The chunking parser is trained on PropBank and
produces a flat syntactic representation that is very different from the full parse tree
produced by Charniak. A combination of the two representations could produce better
results than any single one.

10

Running Author Running Title

Treebank parse

Charniak parse

X

Figure 4
Illustration of how a parse error affects argument identification.

7.1 Chunk-based Semantic Role Labeler

Hacioglu has previously described a chunk based semantic role labeling method (Ha-
cioglu et al. 2004). This system uses SVM classifiers to first chunk input text into flat
chunks or base phrases, each labeled with a syntactic tag. A second SVM is trained to
assign semantic roles to the chunks. The system is trained on the PropBank training
data. Following features are used to train the base semantic chunker:

1. Words

2. Predicate lemmas

3. Part of Speech tags

4. BP Positions – The position of a token in a BP using the IOB2
representation (e.g. B-NP, I-NP, O, etc.)

5. Clause tags – The tags that mark token positions in a sentence with respect
to clauses.

6. Named entities – The IOB tags of named entities.

11

Computational Linguistics Volume xx, Number xx

NP Sales NNS B-NP NNS→→→→NP→→→→PRED→→→→VBD b
PRED declined VBD B-VP - t
NP % NN I-NP NN→→→→NP→→→→PRED→→→→VBD a
PP to TO B-PP TO→→→→PP→→→→NP→→→→PRED→→→→VBD a
NP million CD I-NP CD→→→→NP→→→→PP→→→→NP→→→→PRED→→→→VBD a
PP from IN B-PP IN→→→→PP→→→→NP→→→→PP→→→→NP→→→→PRED→→→→VBD a
NP million CD I-NP CD→→→→NP→→→→PP→→→→NP→→→→PP→→→→NP→→→→PRED→→→→VBD a

������������	�
��	������
��������������������������������������� ���

���������	��
�	�

��
	���	�
��	������������������

�����������������

������

B-A1
B-V
B-A2

O
B-A4

O
B-A3

�����
	�� � ��	�
��	�!�������� ��������������������

���������������������������

�����

"#
�$�������%��������&��	��#���	�

�'()*��
	�� �&+ �	�
��	�!�'()��������� �'()� ����������

��������� �'()� ����������

������

)	�	���	�����	

Figure 5
Semantic Chunker.

7. Token Position – The position of the phrase with respect to the predicate.
It has three values as "before", "after" and "-" (for the predicate)

8. Path – It defines a flat path between the token and the predicate

9. Clause bracket patterns

10. Clause position – A binary feature that identifies whether the token is
inside or outside the clause containing the predicate

11. Headword suffixes – Suffixes of headwords of length 2, 3 and 4.

12. Distance – Distance of the token from the predicate as a number of base
phrases, and the distance as the number of VP chunks.

13. Length – The number of words in a token.

14. Predicate POS tag – The part of speech category of the predicate

15. Predicate Frequency – Frequent or rare using a threshold of 3.

16. Predicate BP Context – The chain of BPs centered at the predicate within a
window of size -2/+2.

17. Predicate POS context – POS tags of words immediately preceding and
following the predicate.

18. Predicate Argument Frames – Left and right core argument patterns
around the predicate.

19. Number of predicates – This is the number of predicates in the sentence.

12

Running Author Running Title

For each token (base phrase) to be tagged, a set of features is created from a fixed
size context that surrounds each token. In addition to the above features, it also uses
previous semantic roles that have already been assigned to the tokens contained in the
linguistic context. A 5-token sliding window is used for the context.

P R F1

(%) (%)
Id. and Classification 72.6 66.9 69.6

Table 5
Semantic role chunker performance on the combined task of Id. and classification.

SVMs were trained for begin (B) and inside (I) classes of all arguments and outside
(O) class for a total of 78 one-vs-all classifiers. Again, TinySVM5 along with YamCha6

(Kudo and Matsumoto 2000, 2001) are used as the SVM training and test software.
Table 5 presents the system performances on the PropBank test set for the chunk-

based system.
We combined the output of semantic role labelers as follows: i) scores for arguments

were converted to calibrated probabilities, and arguments with scores below a threshold
value were deleted. Separate thresholds were used for each parser. ii) For the remaining
arguments, the more probable ones among overlapping ones were selected. In the
chunked system, an argument could consist of a sequence of chunks. The probability
assigned to the begin tag of an argument was used as the probability of the sequence
of chunks forming an argument. Table 6 shows the performance improvement after the
combination. Again, numbers in parentheses are respective baseline performances.

TASK P R F
(%) (%)

Id. 85.9 (86.8) 88.3 (80.0) 87.1 (83.3)
Id. + Class. 81.3 (80.9) 80.7 (76.8) 81.0 (78.8)

Table 6
Constituent-based best system performance on argument identification and argument
identification and classification tasks after combining both semantic role labelers.

To give an idea of what the potential improvements of the combinations could
be, we performed an oracle experiment for a combined system that tags head words
instead of exact constituents. In case of chunks, first word in prepositional base phrases
was selected as the head word, and for all other chunks, the last word was selected to
be the head word. If the correct argument was found present in either the Charniak,
Chunk hypotheses then that was selected. The results for this are shown in Table 7. It
can be seen that the head word based performance almost approaches the constituent
based performance reported on the Treebank parses in Table 2 and there seems to be
considerable scope for improvement.

5 http://chasen.org/˜taku/software/TinySVM/

6 http://chasen.org/˜taku/software/yamcha/

13

Computational Linguistics Volume xx, Number xx

Task P R F
(%) (%)

C Id. 92.2 87.5 89.8
Id. + Classification 85.9 81.6 83.7

C+CH Id. 98.9 88.8 93.6
Id. + Classification 92.5 83.3 87.7

Table 7
Performance improvement on head word based scoring after oracle combination. Charniak (C),
and Chunker (CH).

Table 8 shows the performance improvement in the actual system after combina-
tion.

Task P R F
(%) (%)

C Id. 92.2 87.5 89.8
Id. + Classification 85.9 81.6 83.7

C+CH Id. 91.5 91.1 91.3
Id. + Classification 84.9 84.3 84.7

Table 8
Performance improvement on head word based scoring after combination. Charniak (C) and
Chunker (CH).

8. Improved Architecture

The attempt to combine the hypotheses generated by the Charniak based semantic
role labeler and Chunk based semantic role labeler in the preceding section, after the
fact, seemed to be suboptimal, so now, we propose what we believe is an improved
framework for combining information from different syntactic views. Our goal is to
preserve the robustness and flexibility of the segmentation of the phrase-based chunker,
but to take advantage of features from full syntactic parses. We also want to combine
features from different syntactic parses to gain additional robustness.

The general framework is to train separate semantic role labeling systems for each
of the parse tree views, and then to use the role arguments output by these systems as
additional features in a semantic role labeler using a flat syntactic view. The constituent
based classifiers walk a syntactic parse tree and classify each node as NULL (no role)
or as one of the set of semantic roles. Chunk based systems classify each base phrase
as being the B(eginning) of a semantic role, I(nside) a semantic role, or O(utside) any
semantic role (ie. NULL). This is referred to as an IOB representation (Ramshaw and
Marcus 1995). The constituent level roles are mapped to the IOB representation used by
the chunker. The IOB tags are then used as features for a separate base-phase semantic
role labeler (chunker), in addition to the standard set of features used by the chunker.
An n-fold cross-validation paradigm is used to train the constituent based role classifiers
and the chunk based classifier.

14

Running Author Running Title

�������

�����	��
	�	���

�
�

������	�������������

�
� �
� �
�

����������������

��������

�������

�����

Figure 6
New Architecture.

For the system reported here, two full syntactic parsers were used, a Charniak
parser and a Collins parser. The chunking system for combining all features was trained
using a 4-fold paradigm. In each fold, separate SVM classifiers were trained for the
Collins and Charniak parses using 75% of the training data. That is, one system assigned
role labels to the nodes in Charniak based trees and a separate system assigned roles to
nodes in Collins based trees. The other 25% of the training data was then labeled by each
of the systems. Iterating this process 4 times created the training set for the chunker.
After the chunker was trained, the Charniak and Collins based semantic role labelers
were then retrained using all of the training data.

Two pieces of the system have problems scaling to large training sets – the final
chunk based classifier and the NULL vs NON-NULL classifier for the parse tree syn-
tactic views. Two techniques were used to reduce the amount of training data – active
sampling and NULL filtering. The active sampling process was performed as follows.
We first train a system using 10k seed examples from the training set. We then labeled
an additional block of data using this system. Any sentences containing an error were
added to the seed training set. The system was retrained and the procedure repeated
until there were no misclassified sentences remaining in the training data. The set of
examples produced by this procedure was used to train the final NULL vs NON-NULL
classifier. The same procedure was carried out for the chunking system. After both these
were trained, we tagged the training data using them and removed all most likely NULL
from the data.

In addition to the features extracted from the parse tree being labeled, five features
were extracted from the other parse tree (phrase, head word, head word POS, path and
predicate sub-categorization). So for example, when assigning labels to constituents in
a Charniak parse, all of the features in Table 1 were extracted from the Charniak tree,
and in addition phrase, head word, head word POS, path and sub-categorization were
extracted from the Collins tree. We have previously determined that using different
sets of features for each argument (role) achieves better results than using the same

15

Computational Linguistics Volume xx, Number xx

set of features for all argument classes. A simple feature selection was implemented by
adding features one by one to an initial set of features and selecting those that contribute
significantly to the performance. As described in (Pradhan et al. 2004), we post-process
lattices of n-best decision using a trigram language model of argument sequences.

SVMs were trained for begin (B) and inside (I) classes of all arguments and an
outside (O) class. One particular advantage of this architecture, as dipicted in Figure
7 is that the final segmentation does not have to necessarily be adhering to one of the
input segmentations, and depending on the provided information in terms of features,
the classifier can generate a new, better segmentation.

The B- A1 O B- A1 B- A1
s l i ckl y I - A1 O I - A1 I - A1

pr oduced I - A1 O I - A1 I - A1
ser i es I - A1 O I - A1 I - A1

has O O O O
been O O O O

cr i t i c i zed B- V B- V B- V B- V
by B- A0 B- A0 B- A0 B- A0

London I - A0 I - A0 I - A0 I - A0
' s I - A0 I - A0 I - A0 I - A0

f i nanci al I - A0 I - A0 I - A0 I - A0
cognoscent i I - A0 I - A0 I - A0 I - A0

as B- A2 B- A2 B- A2 B- A2
i naccur at e I - A2 I - A2 I - A2 I - A2

i n B- AM- MNR B- AM- MNR I - A2 I - A2
det ai l I - AM- MNR I - AM- MNR I - A2 I - A2

, O O O O
but O O O O

.

.

�����

������������������	
��������������	
�
������������������������	�	�	��	������������	���

�����	
	��

B- A2
I - A2

B- A2
I - A2

B- AM- MNR
I - AM- MNR

B- AM- MNR
I - AM- MNR

B- A2
I - A2
I - A2
I - A2

B- A2
I - A2
I - A2
I - A2

Figure 7
Example classification using the new architecture.

We participated in the CoNLL shared task on SRL (Carreras and Màrquez 2005).
This gave us an opportunity our integrated architecture. For this evaluation, various
syntactic features were provided, including output of a Base Phrase chunker, Charniak
parser, Collins’ parser, Clause tagger and Named Entities. In this evaluation, in addition
to the WSJ section-23, a portion of a completely different genre of text from The Brown
Corpus (Kučera and Francis 1967) was used. The section of the Brown Corpus that
was used for evaluation contains prose from “general fiction” and represents quite a
different genre of material from what the SRL systems were trained on. This was done
to investigate into the robustness of these systems.

Table 9 shows the performance of the new architecture on the CoNLL 2005 test set.
As it can be seen, almost all the state-of-the-art systems – including the one described
so far, suffered a 10 point drop in the F measure.

9. Robustness to Genre of Data

So far most of the recent work on SRL systems has been focused on improving the
labeling performance on a test set belonging to the same genre of text as the training
set. Both, the Treebank on which the syntactic parser is trained, and the PropBank on
which the SRL systems are trained represent articles from the year 1989 of the Wall
Street Journal. Part of the reason for this being the availability of data tagged with

16

Running Author Running Title

P R F
WSJ 82.95% 74.75% 78.63
Brown 74.49% 63.30% 68.44
WSJ+Brown 81.87% 73.21% 77.30

Table 9
Performance of the integrated architecture on the CoNLL-2005 shared task on semantic role
labeling.

similar semantic argument structure in multiple genres of text. At this juncture it is
quite possible that these tools are being subject to the effects of over-training to this
genre of text, and instead of any improvements to the system reflecting further progress
in the field, are getting tuned to this style of journalistic text. It is also important for this
technology to be widely accepted that it performs reasonably well on text that does not
represent the Wall Street Journal.

As a pilot experiment, Pradhan et al. (2004, 2005) reported some preliminary analy-
sis on a small test set that was tagged for a small portion of about 400 sentences from the
AQUAINT corpus, which is a collection of articles from the New York Times, Xinhua,
and FBIS. Although this collection also represent newswire text, it was aimed at finding
out whether an incremental change within the same general domain that occurred in
a different time period and presumably representing different entities and events and
maybe a different style would impact the performance of the SRL system. As a matter
of fact, the system performance dropped from F-scores in the high 70s to low 60s. As we
now know, this is not much different from the performance obtained on a test set from
the Brown corpus which represents quite different style of text. Fortunately, Palmer,
Gildea, and Kingsbury (2005) have also recently PropBanked a significant portion of
the Brown corpus, and therefore it is possible to perform a more systematic analysis of
the portability of SRL systems from one genre of text to another.

9.1 The Brown Corpus

The Brown corpus is a Standard Corpus of American English that consists of about one
million words of English text printed in the calendar year 1961 (Kučera and Francis
1967). The corpus contains about 500 samples of 2000+ words each. The idea behind
creating this corpus was to create a heterogeneous sample of English text so that it
would be useful for comparative language studies. It is comprised of the following
sections:

A. Press Reportage

B. Press Editorial

C. Press Reviews (theater, books, music and dance)

D. Religion

E. Skills and Hobbies

F. Popular Lore

G. Belles Lettres, Biography, Memoirs, etc.

17

Computational Linguistics Volume xx, Number xx

H. Miscellaneous

J. Learned

K. General Fiction

L. Mystery and Detective Fiction

M. Science Fiction

N. Adventure and Western Fiction

P. Romance and Love Story

R. Humor

9.2 Semantic Annotation

The Release 3 of the Penn Treebank contains the hand parsed syntactic trees of a subset
of the Brown Corpus – sections F, G, K, L, M, N, P and R. Sections belonging to the
newswire genre were especially not considered for Treebanking because a considerable
amount of the similar material was already available as the WSJ portion of the Treebank.
Palmer, Gildea, and Kingsbury (2005) have recently PropBanked a significant portion of
this Treebanked Brown corpus. The PropBanking philosophy is the same as described
earlier. In all, about 17,500 predicates are tagged with their semantic arguments. For
these experiments we use an limited release of PropBank dated September 2005.

Table 10 gives the amount of predicates that have been tagged from each section:

Section Total Predicates Total Lemmas
F 926 321
G 777 302
K 8231 1476
L 5546 1118
M 167 107
N 863 269
P 788 252
R 224 140

Table 10
Number of predicates that have been tagged in the PropBanked portion of Brown corpus

We used the tagging scheme used in the CoNLL shared task to generate the training
and test data. All the scoring in the following experiments was done using the scoring
scripts provided for the shared task. The version of the Brown corpus that we used for
out experiments did not have frame sense information, so we decided not to use that as
a feature.

10. Robustness Experiments

This section focuses on various experiments that we performed on the PropBanked
Brown corpus and which could go some way in analyzing the factors that affect the
portability of SRL systems, and might throw some light on what steps need to be taken
to improving the same. In order to avoid confounding the effects of the two distinct

18

Running Author Running Title

views that we saw before – the top-down syntactic view that extracts features from
a syntactic parse, and the bottom-up phrase chunking view, for all these experiments –
except one, we will use the system that is based on classifying constituents in a syntactic
tree with PropBank arguments.

10.1 Experiment 1: How does the ASSERT trained on WSJ perform on Brown?

In this section we will more throughly analyze what happens when a SRL system is
trained on semantic arguments tagged on one genre of text – the Wall Street Journal,
and is used to label those in a completely different genre – the Brown corpus.

The test set that was used for the CoNLL evaluation was a part of one of the Brown
sections consisting of about 800 examples from the section CK. This is about 5% of the
available PropBank Brown arguments, so we decided to use the entire Brown corpus as
a test set for this experiment and use ASSERT trained on WSJ sections 02-21 to tag its
arguments.

10.1.1 Results. Table 11 gives the details of the performance over each of the eight
different text genres. It can be seen that on an average, the F-score on the combined task
of identification and classification is comparable to the ones obtained on the AQUAINT
test set. It is interesting to note that although AQUAINT is a different text source, it
is still essentially newswire text. However, even though Brown corpus has much more
variety, on an average, the degradation in performance is almost identical. This tells us
that maybe the models are tuned to the particular vocabulary and sense structure asso-
ciated with the training data. Also, since the syntactic parser that is used for generating
the parse trees is also heavily lexicalized, could also have some impact on the accuracy
of the parses, and the features extracted from them.

Train Test Id. Id. + Class
F F

PropBank PropBank (WSJ) 87.4 81.2
PropBank Brown (Popular lore) 78.7 65.1
PropBank Brown (Biography, Memoirs) 79.7 63.3
PropBank Brown (General fiction) 81.3 66.1
PropBank Brown (Detective fiction) 84.7 69.1
PropBank Brown (Science fiction) 85.2 67.5
PropBank Brown (Adventure) 84.2 67.5
PropBank Brown (Romance and love Story) 83.3 66.2
PropBank Brown (Humor) 80.6 65.0
PropBank Brown (All) 82.4 65.1

Table 11
Performance on the entire PropBanked Brown corpus.

In order to check the extent of the deletion errors owing to the parser mistakes
which result in the constituents representing a valid node getting deleted, we generated
the appropriate numbers which are shown in Table 12. These numbers are for top one
parse.

It can be seen that, as expected, the parser deletes very few argument bearing nodes
in the tree when it is trained and tested on the same corpus. However, this number does

19

Computational Linguistics Volume xx, Number xx

Total Misses %
PropBank 12000 800 6.7
Brown (Popular lore) 2280 219 9.6
Brown (Biography, Memoirs) 2180 209 9.6
Brown (General fiction) 21611 1770 8.2
Brown (Detective fiction) 14740 1105 7.5
Brown (Science fiction) 405 23 5.7
Brown (Adventure) 2144 169 7.9
Brown (Romance and love Story) 1928 136 7.1
Brown (Humor) 592 61 10.3
Brown (All) 45880 3692 8.1

Table 12
Constituent deletions in WSJ test set and the entire PropBanked Brown corpus.

not drastically degrade when text from quite a disparate collection is parsed. In the
worse case, the error rate increases by about a factor of 1.5 (10.3/6.7) which goes some
ways in explaining the reduction in the overall performance. This seems to indicate that
syntactic the parser does not contribute heavily to the performance drop across genre.

10.2 Experiment 2: How well do the features transfer to a different genre?

Several researchers have come up with novel features that improve the performance
of SRL systems on WSJ test set, but a question lingers as to whether the same features
when used to train SRL systems on a different genre of text would contribute equally
well? There are actually two facets to this issue. One is whether the features themselves
– regardless of what text they are generated from, are useful as they seem to be, and
another is whether the values of some features for a particular corpus tend to represent
an idiosyncrasy of that corpus, and therefore artificially get weighted heavily. This
experiment is designed to throw some light on this issue.

In this experiment, we wanted to remove the effect of errors in estimating the
syntactic structure. Therefore, we used correct syntactic trees from the Treebank. We
trained ASSERT on a Brown training set and tested it on a test set also from the Brown
corpus. Instead of using the CoNLL test set which represents part of section CK, we
decided to use a stratified test set as used by the syntactic parsing community (Gildea
2001). The test set is generated by selecting every 10th sentence in the Brown Corpus.
We also held out a development set used by Bacchiani et al. (2006) to tune system
parameters for in the future. We did not perform any parameter tuning specially for this
or any of the following experiments, and used the same parameters as that reported for
the best performing version of ASSERT as reported in Table4 of this article. We compare
the performance on this test set with that obtained when ASSERT is trained using WSJ
sections 00-21 and use section 23 for testing. For a more balanced comparison, we also
retrained ASSERT on the same amount of data as used for training it on Brown, and
tested it on section 23. As usual, trace information, and function tag information from
the Treebank is stripped out.

20

Running Author Running Title

SRL SRL Task P R F A
Train Test (%) (%) (%)

WSJ WSJ Id. 97.5 96.1 96.8
(104k) (5k) Class. 93.0

Id. + Class. 91.8 90.5 91.2
WSJ WSJ Id. 96.3 94.4 95.3
(14k) (5k) Class. 86.1

Id. + Class. 84.4 79.8 82.0
BROWN BROWN Id. 95.7 94.9 95.2
(14k) (1.6k) Class. 80.1

Id. + Class. 79.9 77.0 78.4
WSJ BROWN Id. 94.2 91.4 92.7
(14k) (1.6k) Class. 72.0

Id. + Class. 71.8 65.8 68.6

Table 13
Performance when ASSERT is trained using correct Treebank parses, and is used to classify test
set from either the same genre or another. For each dataset, the number of examples used for
training are shown in parenthesis

10.2.1 Results. Table 13 shows that there is a very negligible difference in argument
identification performance when ASSERT is trained on 14,000 predicates and 104,000
predicates from the WSJ. We can notice a considerable drop in classification accuracy
though. Further, when ASSERT is trained on Brown training data and tested on the
Brown test data, the argument identification performance is quite similar to the one
that is obtained on the WSJ test set using ASSERT trained on Treebank WSJ parses.
It tells us that the drop in argument classification accuracy is much more severe. We
know that the predicate whose arguments are being identified, and the head word of the
syntactic constituent being classified are both important features in the task of argument
classification. This evidence tends to indicate one of the following: i) maybe the task of
classification needs much more data to train, and that this is merely an effect of the
quantity of data, ii) maybe the predicates and head words (or, words in general) in a
homogeneous corpus such as the WSJ are used more consistently, and that the style
is simple and therefore it becomes an easier task for classification as opposed to the
various usages and senses in a heterogeneous collection such as the Brown corpus, iii)
the features that are used for classification are more appropriate for WSJ than for Brown.

10.3 Experiment 3: How much does correct structure help?

In this experiment we will try to analyze how well do the structural features – the ones
such as path whose accuracy depends directly on the quality of the syntax tree, transfer
from one genre to another.

For this experiment we train ASSERT on PropBanked WSJ, using correct syntactic
parses from the Treebank, and using that model to test the same Brown test set, also
generated using correct Treebank parses.

21

Computational Linguistics Volume xx, Number xx

10.3.1 Results. Table 13 shows that the syntactic information from WSJ transfers quite
well to the Brown corpus. Once again we see, that there is a very slight drop in argument
identification performance, but an even greater drop in the argument classification
accuracy.

10.4 Experiment 4: How sensitive is semantic argument prediction to the syntactic
correctness across genre?

Now that we know that if you have correct syntactic information, that it transfers well
across genre for the task of identification, we would now like to find out what happens
when you use errorful automatically generated syntactic parses.

For this experiment, we used the same amount of training data from WSJ as avail-
able in the Brown training set – that is about 14,000 predicates. The examples from
WSJ were selected randomly. The Brown test set is the same as used in the previous
experiment, and the WSJ test set is the entire section 23.

Recently there have been some improvements to the Charniak parser, and that
provides us with an opportunity to experiment with its latest version that does n-best
re-ranking as reported in (Charniak and Johnson 2005) and one that uses self-training
and re-ranking using data from the North American News corpus (NANC) and adapts
much better to the Brown corpus (McClosky, Charniak, and Johnson 2006a, 2006b). We
also use another one that is trained on Brown corpus itself. The performance of these
parsers as reported in the respective literature are shown in Table 14

Train Test F
WSJ WSJ 91.0
WSJ Brown 85.2
Brown Brown 88.4
WSJ+NANC Brown 87.9

Table 14
Performance of different versions of Charniak parser used in the experiments.

We describe the results of the following five experiments:

1. ASSERT is trained on features extracted from automatically generated
parses of the PropBanked WSJ sentences. The syntactic parser – Charniak
parser – is itself trained on the WSJ training sections of the Treebank. This
is used to classify the section-23 of WSJ.

2. ASSERT is trained on features extracted from automatically generated
parses of the PropBanked WSJ sentences. The syntactic parser – Charniak
parser – is itself trained on the WSJ training sections of the Treebank. This
is used to classify the Brown test set.

3. ASSERT is trained on features extracted from automatically generated
parses of the PropBanked Brown corpus sentences. The syntactic parser is
trained using the WSJ portion of the Treebank. This is used to classify the
Brown test set.

4. ASSERT is trained on features extracted from automatically generated
parses of the PropBanked Brown corpus sentences. The syntactic parser is

22

Running Author Running Title

Setup Parser SRL SRL Task P R F A
Train Train Test (%) (%) (%)

A. WSJ WSJ WSJ Id. 87.3 84.8 86.0
(40k – sec:00-21) (14k) (5k) Class. 84.1

Id. + Class. 77.5 69.7 73.4
B. WSJ WSJ Brown Id. 81.7 78.3 79.9

(40k – sec:00-21) (14k) (1.6k) Class. 72.1
Id. + Class. 63.7 55.1 59.1

C. WSJ Brown Brown Id. 81.7 78.3 80.0
(40k – sec:00-21) (14k) (1.6k) Class. 79.2

Id. + Class. 78.2 63.2 69.8
D. Brown Brown Brown Id. 87.6 82.3 84.8

(20k) (14k) (1.6k) Class. 78.9
Id. + Class. 77.4 62.1 68.9

E. WSJ+NANC Brown Brown Id. 87.7 82.5 85.0
(2,500k) (14k) (1.6k) Class. 79.9

Id. + Class. 77.2 64.4 70.0

Table 15
Performance on WSJ and Brown test set when ASSERT is trained on features extracted from
automatically generated syntactic parses

trained using the Brown training portion of the Treebank. This is used to
classify the Brown test set.

5. ASSERT is trained on features extracted from automatically generated
parses of the PropBanked Brown corpus sentences. The syntactic parser is
the version that is self-trained using 2,500,000 sentences from NANC, and
where the starting version is trained only on WSJ data (McClosky,
Charniak, and Johnson 2006b). This is used to classify the Brown test set.

10.4.1 Results. Table 15 shows the results of these experiments. For simplicity of dis-
cussion we have tagged the five setups as A., B., C., D., and E. Looking at setups B.
and C. it can be seen that when the features used to train ASSERT are extracted using a
syntactic parser that is trained on WSJ it performs at almost the same level on the task
of identification, regardless of whether it is trained on the PropBanked Brown corpus
or the PropBanked WSJ corpus. This, however, is about 5-6 F-score points lower than
when all the three – the syntactic parser training set, ASSERT training set, and ASSERT
test set, are from the same genre – WSJ or Brown, as seen in A. and D. In case of the
combined task the gap between the performance for set up B. and C. is about 10 points
F-score apart (59.1 vs 69.8) Looking at the argument classification accuracies, we see that
using a ASSERT trained on WSJ to test Brown sentences give a 12 point drop in F-score.
Using ASSERT trained on Brown using WSJ trained syntactic parser seems to drop in
accuracy by about 5 F-score points. When ASSERT is trained on Brown using syntactic
parser also trained on Brown, we get a quite similar classification performance, which
is again about 5 points lower than what we get using all WSJ data. This shows lexical
semantic features might be very important to get a better argument classification on
Brown corpus.

23

Computational Linguistics Volume xx, Number xx

Parser BP Chunker SRL P R F
Train Train Train (%) (%)

WSJ WSJ Brown 64.2 57.0 60.3
WSJ+NANC WSJ Brown 77.7 66.0 71.3

Table 16
Performance of the task of argument identification and classification using architecture that
combines top down syntactic parses with flat syntactic chunks.

10.5 Experiment 5: How much does combining syntactic views help overcome the
errors?

At this point there seems to be quite a bit convincing evidence that the classification
and not identification task, undergoes more degradation when going from one genre
to another. What one would still like to see is how much does the integrated approach
using both top-down syntactic information and bottom up chunk information buy us in
moving from one genre to the other.

For this experiment we used the Syntactic parser trained on WSJ and one that
is adapted through self-training using the NANC, and a base phrase chunker that is
trained on WSJ Treebank, and use the integrated architecture as described in Section 8.

10.5.1 Results. As expected, we see a very small improvement in performance on the
combined task of identification and classification. As the main contribution of this
approach is to overcome the argument deletions, the improvement in performance is
almost entirely owing to that.

10.6 Experiment 6: How much data do we need to adapt to a new genre?

In general, it would be nice to know how much data from a new genre do we need to
annotate and add to the training data of an existing labeler so that it can adapt itself to
it and give the same level of performance when it is trained on that genre.

Fortunately, one section of the Brown corpus – section CK has about 8,200 predi-
cates annotated. Therefore, we will take six different scenarios – two in which we will
use correct Treebank parses, and the four others in which we will use automatically
generated parses using the variations used before. All training sets start with the same
number of examples as that of the Brown training set. We also happen to have a part
of this section used as a test set for the CoNLL 2005 shared task. Therefore, we will use
this as the test set for these experiments.

10.6.1 Results. Table 17 shows the result of these experiments. It can be seen that in all
the six settings, the performance on the task of identification and classification improves
gradually until about 5625 examples of section CK which is about 75% of the total
added, above which it adds very little. It is very nice to note that even when the syntactic
parser is trained on WSJ and the SRL is trained on WSJ, that adding 7,500 instances of
this new genres allows it to achieve almost the same amount of performance as that
achieved when all the three are from the same genre (67.2 vs 69.9) As for the task of
argument identification, the incremental addition of data from the new genre shows

24

Running Author Running Title

only minimally improvement. The system that uses self-trained syntactic parser seems
to perform slightly better than the rest of the versions that use automatically generated
syntactic parses. Another point that might be worth noting is that the improvement on
the identification performance is almost exclusively to the recall. The precison number
are almost unaffected – except when the labeler is trained on WSJ PropBank data.

Parser SRL Id. Id. + Class
P R F P R F

Train Train (%) (%) (%) (%)
WSJ WSJ (14k) (Treebank parses)
(Treebank parses) +0 examples from CK 96.2 91.9 94.0 74.1 66.5 70.1

+1875 examples from CK 96.1 92.9 94.5 77.6 71.3 74.3
+3750 examples from CK 96.3 94.2 95.1 79.1 74.1 76.5
+5625 examples from CK 96.4 94.8 95.6 80.4 76.1 78.1
+7500 examples from CK 96.4 95.2 95.8 80.2 76.1 78.1

Brown Brown (14k) (Treebank parses)
(Treebank parses) +0 examples from CK 96.1 94.2 95.1 77.1 73.0 75.0

+1875 examples from CK 96.1 95.4 95.7 78.8 75.1 76.9
+3750 examples from CK 96.3 94.6 95.3 80.4 76.9 78.6
+5625 examples from CK 96.2 94.8 95.5 80.4 77.2 78.7
+7500 examples from CK 96.3 95.1 95.7 81.2 78.1 79.6

WSJ WSJ (14k)
(40k) +0 examples from CK 83.1 78.8 80.9 65.2 55.7 60.1

+1875 examples from CK 83.4 79.3 81.3 68.9 57.5 62.7
+3750 examples from CK 83.9 79.1 81.4 71.8 59.3 64.9
+5625 examples from CK 84.5 79.5 81.9 74.3 61.3 67.2
+7500 examples from CK 84.8 79.4 82.0 74.8 61.0 67.2

WSJ Brown (14k)
(40k) +0 examples from CK 85.7 77.2 81.2 74.4 57.0 64.5

+1875 examples from CK 85.7 77.6 81.4 75.1 58.7 65.9
+3750 examples from CK 85.6 78.1 81.7 76.1 59.6 66.9
+5625 examples from CK 85.7 78.5 81.9 76.9 60.5 67.7
+7500 examples from CK 85.9 78.1 81.7 76.8 59.8 67.2

Brown Brown (14k)
(20k) +0 examples from CK 87.6 80.6 83.9 76.0 59.2 66.5

+1875 examples from CK 87.4 81.2 84.1 76.1 60.0 67.1
+3750 examples from CK 87.5 81.6 84.4 77.7 62.4 69.2
+5625 examples from CK 87.5 82.0 84.6 78.2 63.5 70.1
+7500 examples from CK 87.3 82.1 84.6 78.2 63.2 69.9

WSJ+NANC Brown (14k)
(2,500k) +0 examples from CK 89.1 81.7 85.2 74.4 60.1 66.5

+1875 examples from CK 88.6 82.2 85.2 76.2 62.3 68.5
+3750 examples from CK 88.3 82.6 85.3 76.8 63.6 69.6
+5625 examples from CK 88.3 82.4 85.2 77.7 63.8 70.0
+7500 examples from CK 88.9 82.9 85.8 78.2 64.9 70.9

Table 17
Effect of incrementally adding data from a new genre

25

Computational Linguistics Volume xx, Number xx

11. General Discussion

The following examples give some insight into the nature of over-fitting to the WSJ
corpus. The following output is produced by ASSERT:

(1) SRC enterprise prevented John from [predicate taking] [ARG1 the
assignment]

(2) SRC enterprise prevented [ARG0 John] from [predicate selling] [ARG1 the
assignment]

In example (1), “John” is not marked as the ARG0 of “taking” Whereas in example
(2), replacing the predicate “taking” with “selling” corrects the semantic roles, even
though the syntactic parse for both sentences is exactly the same. Even using several
other predicates in place of “taking” such as “distributing,” “submitting,” etc. give a
correct parse. So there is some idiosyncrasy with the predicate “take”

Further, consider the following set of examples labeled using ASSERT:

(3) [ARG1 The stock] [predicate jumped] [ARG3 from $ 140 billion to $ 250
billion] [ARGM−TMP in a few hours of time]

(4) [ARG1 The stock] [predicate jumped] [ARG4 to $ 140 billion from $ 250
billion in a few hours of time]

(5) [ARG1 The stock] [predicate jumped] [ARG4 to $ 140 billion] [ARG3 from $
250 billion]

(6) [ARG1 The stock] [predicate jumped] [ARG4 to $ 140 billion] [ARG3 from $
250 billion] [ARGM−TMP after the company promised to give the
customers more yields]

(7) [ARG1 The stock] [predicate jumped] [ARG4 to $ 140 billion] [ARG3 from $
250 billion] [ARGM−TMP yesterday]

(8) [ARG1 The stock] [predicate increased] [ARG4 to $ 140 billion] [ARG3 from $
250 billion] [ARGM−TMP yesterday]

(9) [ARG1 The stock] [predicate dropped] [ARG4 to $ 140 billion] [ARG3 from $
250 billion] [ARGM−TMP in a few hours of time]

(10) [ARG1 The stock] [predicate dropped] [ARG4 to $ 140 billion] [ARG3 from $
250 billion within a few hours]

WSJ articles almost always report jump in stock prices by the phrase “to ..” followed
by “from ...” and the syntactic parser statistics seem to be tuned to that, and therefore
when it faces a sentence like the example (3) above, two sibling noun phrases are
collapsed into one phrase, and so the there is only one node in the tree for the two
different arguments ARG3 and ARG4 and therefore the role labeler tags it as the more
probable of the two and that being ARG3. In example (4), the two noun phrases are
identified correctly. The difference in the two is just the transposition of the two words

26

Running Author Running Title

“to” and “from” In the example (4), however, the prepositional phrase “in a few hours
of time” get attached to the wrong node in the tree, and therefore deleting the node
that would have identified the exact boundary of the second argument. Upon deleting
the part of the text that is the wrongly attached prepositional phrase, we get the correct
semantic roles in example (5). Now, lets replace this prepositional phrase with a string
that happens to be present in the WSJ training data, and see what happens. As seen
in example (6), the parser identifies and attaches this phrase correctly and we get a
completely correct set of tags. This further strengthens our claim. Even replacing the
temporal with a simple one such as “yesterday” maintains the correctness of the tags
and also replacing “jumped” with “increased” maintains its correctness. Now, lets see
what happens when the predicate “jump” in example (4) is changed to yet another
synonymous predicate – “dropped”. Doing this gives us a correct tagset even though
the same syntactic structure is shared between the two, and the prepositional phrase
was not attached properly earlier. This shows that just the change of a verb to another
changes the syntactic parse to align with the right semantic interpretation. Changing
the temporal argument to something slightly different once again causes the parse to
fail as seen in (10).

12. Conclusions

Our experimental results on robustness to change in genre can be summarized as
follows:

r There is a significant drop in performance when training and testing on
different corpora – for both Treebank and Charniak parses

r In this process the classification task is more disrupted than the
identification task.

r There is a performance drop in classification even when training and
testing on Brown (compared to training and testing on WSJ)

r The syntactic parser error is not a larger part of the degradation for the
case of automatically generated parses.

The previous discussion shows that some of the features used in the semantic role
labeling, including the strong dependency on syntactic information and therefore the
features that are used by the syntactic parser, are too specific to the WSJ. Some obvious
possibilities are:

1. Lexical cues – word usage specific to WSJ.

2. Verb sub-categorizations – They can vary considerably from one sample
of text to another as seen in the examples above and as evaluated in an
empirical study by (Roland and Jurafsky 1998)

3. Word senses – domination by unusual word senses (stocks fell)

4. Topics and entities

While the obvious cause of this behavior is over-fitting to the training data, the
question is what to do about it. Two possibilities are:

27

Computational Linguistics Volume xx, Number xx

1. Less homogeneous corpora – Rather than using many examples drawn
from one source, fewer examples could be drawn from many sources. This
would reduce the likelihood of learning idiosyncratic senses and argument
structures for predicates.

2. Less specific entities – Entity values could be replaced by their class tag
(person, organization, location, etc). This would reduce the likelihood of
learning idiosyncratic associations between specific entities and predicates.
The system could be forced to use this and more general features.

Both of these manipulations would most likely reduce performance on the training
set, and on test sets of the same genre as the training data. But they would be likely
to generalize better. Training on very homogeneous training sets and testing on similar
test sets gives a misleading impression of the performance of a system. Very specific
features are likely to be given preference in this situation, preventing generalization.

13. Acknowledgments

We are extremely grateful to Martha Palmer for providing us with the PropBanked
Brown corpus, and to David McClosky for providing us with hypotheses on the Brown
test set as well as a cross-validated version of the Brown training data for the various
models reported in his work reported at HLT 2006.

This research was partially supported by the ARDA AQUAINT program via con-
tract OCG4423B and by the NSF via grants IS-9978025 and ITR/HCI 0086132. Computer
time was provided by NSF ARI Grant #CDA-9601817, NSF MRI Grant #CNS-0420873,
NASA AIST grant #NAG2-1646, DOE SciDAC grant #DE-FG02-04ER63870, NSF spon-
sorship of the National Center for Atmospheric Research, and a grant from the IBM
Shared University Research (SUR) program.

Special thanks to Matthew Woitaszek, Theron Voran and the other administrative
team of the Hemisphere and Occam Beowulf clusters. Without these the training would
never be possible.

References
Bacchiani, Michiel, Michael Riley, Brian Roark, and Richard Sproat. 2006. MAP adaptation of

stochastic grammars. Computer Speech and Language, 20(1):41–68.
Barlow, R. E., D. J. Bartholomew, J. M. Bremmer, and H. D. Brunk. 1972. Statistical Inference under

Order Restrictions. Wiley, New York.
Carreras, Xavier and Lluis Marquez. 2004. Introduction to the conll-2004 shared task: Semantic

role labeling. In Proceedings of 8th Conference on CoNLL-2004.
Carreras, Xavier and Lluís Màrquez. 2005. Introduction to the CoNLL-2005 shared task:

Semantic role labeling. In Proceedings of the Ninth Conference on Computational Natural Language
Learning (CoNLL-2005), pages 152–164, Ann Arbor, Michigan, June. Association for
Computational Linguistics.

Charniak, Eugene. 2000. A maximum-entropy-inspired parser. In Proceedings of the 1st Annual
Meeting of the North American Chapter of the ACL (NAACL), pages 132–139, Seattle, Washington.

Charniak, Eugene and Mark Johnson. 2005. Coarse-to-fine n-best parsing and maxent
discriminative reranking. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05), pages 173–180, Ann Arbor, Michigan, June. Association for
Computational Linguistics.

Foster, Dean P. and Robert A. Stine. 2004. Variable selection in data mining: building a predictive
model for bankruptcy. Journal of American Statistical Association, 99:303–313.

Gildea, Dan and Julia Hockenmaier. 2003. Identifying semantic roles using combinatory
categorial grammar. In Proceedings of the Conference on Empirical Methods in Natural Language

28

Running Author Running Title

Processing, Sapporo, Japan.
Gildea, Daniel. 2001. Corpus variation and parser performance. In In Proceedings of Empirical

Methors in Natural Language Processing (EMNLP).
Gildea, Daniel and Daniel Jurafsky. 2002. Automatic labeling of semantic roles. Computational

Linguistics, 28(3):245–288.
Hacioglu, Kadri. 2004. A lightweight semantic chunking model based on tagging. In Proceedings

of the Human Language Technology Conference /North American chapter of the Association of
Computational Linguistics (HLT/NAACL), Boston, MA.

Hacioglu, Kadri, Sameer Pradhan, Wayne Ward, James Martin, and Dan Jurafsky. 2003. Shallow
semantic parsing using support vector machines. Technical Report TR-CSLR-2003-1, Center
for Spoken Language Research, Boulder, Colorado.

Hacioglu, Kadri, Sameer Pradhan, Wayne Ward, James Martin, and Daniel Jurafsky. 2004.
Semantic role labeling by tagging syntactic chunks. In Proceedings of the 8th Conference on
CoNLL-2004, Shared Task – Semantic Role Labeling.

Haghighi, Aria, Kristina Toutanova, and Christopher Manning. 2005. A joint model for semantic
role labeling. In Proceedings of the Ninth Conference on Computational Natural Language Learning
(CoNLL-2005), pages 173–176, Ann Arbor, Michigan, June. Association for Computational
Linguistics.

Harabagiu, Sanda, Cosmin Adrian Bejan, and Paul Morarescu. 2005. Shallow semantics for
relation extraction. In Nineteenth International Joint Conference on Artificial Intelligence, pages
1061–1067, Edinburgh, Scotland, August.

Hockenmaier, Julia and Mark Steedman. 2002a. Acquiring compact lexicalized grammars from a
cleaner treebank.

Hockenmaier, Julia and Mark Steedman. 2002b. Generative models for statistical parsing with
combinatory grammars. In Proceedings of the 40th meeting of the ACL, pages 335–342.

Jiang, Zheng Ping, Jia Li, and Hwee Tou Ng. 2005. Semantic argument classification exploting
argument interdependence. In Nineteenth International Joint Conference on Artificial Intelligence,
pages 1067–1073, Edinburgh, Scotland, August.

Koomen, Peter, Vasin Punyakanok, Dan Roth, and Wen-tau Yih. 2005. Generalized inference
with multiple semantic role labeling systems. In Proceedings of the Ninth Conference on
Computational Natural Language Learning (CoNLL-2005), pages 181–184, Ann Arbor, Michigan,
June. Association for Computational Linguistics.

Kučera, Henry and W. Nelson Francis. 1967. Computational analysis of present-day American
English. Brown University Press, Providence, RI.

Kudo, Taku and Yuji Matsumoto. 2000. Use of support vector learning for chunk identification.
In Proceedings of the 4th Conference on CoNLL-2000 and LLL-2000, pages 142–144.

Kudo, Taku and Yuji Matsumoto. 2001. Chunking with support vector machines. In Proceedings
of the 2nd Meeting of the North American Chapter of the Association for Computational Linguistics
(NAACL-2001).

Marcus, Mitchell, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark
Ferguson, Karen Katz, and Britta Schasberger. 1994. The Penn Treebank: Annotating predicate
argument structure.

Màrquez, Lluís, Mihai Surdeanu, Pere Comas, and Jordi Turmo. 2005. A robust combination
strategy for semantic role labeling. In Proceedings of Human Language Technology Conference and
Conference on Empirical Methods in Natural Language Processing, pages 644–651, Vancouver,
British Columbia, Canada, October. Association for Computational Linguistics.

McClosky, David, Eugene Charniak, and Mark Johnson. 2006a. Effective self-training for parsing.
In Proceedings of the Human Language Technology Conference of the NAACL, Main Conference,
pages 152–159, New York City, USA, June. Association for Computational Linguistics.

McClosky, David, Eugene Charniak, and Mark Johnson. 2006b. Rerankinng and self-training for
parser adaptation. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics (COLING-ACL’06), Sydney, Australia, July. Association for Computational
Linguistics.

Moschitti, Alessandro. 2006. Syntactic kernels for natural language learning: the semantic role
labeling case. In Proceedings of the Human Language Technology Conference of the NAACL,
Companion Volume: Short Papers, pages 97–100, New York City, USA, June. Association for
Computational Linguistics.

Musillo, Gabriele and Paola Merlo. 2006. Accurate parsing of the proposition bank. In
Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short

29

Computational Linguistics Volume xx, Number xx

Papers, pages 101–104, New York City, USA, June. Association for Computational Linguistics.
Narayanan, Srini and Sanda Harabagiu. 2004. Question answering based on semantic structures.

In Proceedings of the International Conference on Computational Linguistics (COLING ’04), Geneva,
Switzerland, August. Association for Computational Linguistics.

Palmer, Martha, Daniel Gildea, and Paul Kingsbury. 2005. The proposition bank: An annotated
corpus of semantic roles. Computational Linguistics, 31(1):71–106.

Platt, John. 2000. Probabilities for support vector machines. In A. Smola, P. Bartlett, B. Scholkopf,
and D. Schuurmans, editors, Advances in Large Margin Classifiers. MIT press, Cambridge, MA.

Pradhan, Sameer, Kadri Hacioglu, Valerie Krugler, Wayne Ward, James Martin, and Dan
Jurafsky. 2005. Support vector learning for semantic argument classification. Machine Learning
Journal, 60(1):11–39.

Pradhan, Sameer, Kadri Hacioglu, Wayne Ward, James Martin, and Dan Jurafsky. 2003. Semantic
role parsing: Adding semantic structure to unstructured text. In Proceedings of the International
Conference on Data Mining (ICDM 2003), Melbourne, Florida.

Pradhan, Sameer, Wayne Ward, Kadri Hacioglu, James Martin, and Dan Jurafsky. 2004. Shallow
semantic parsing using support vector machines. In Proceedings of the Human Language
Technology Conference/North American chapter of the Association of Computational Linguistics
(HLT/NAACL), Boston, MA.

Pradhan, Sameer, Wayne Ward, Kadri Hacioglu, James Martin, and Dan Jurafsky. 2005. Semantic
role labeling using different syntactic views. In Proceedings of the Association for Computational
Linguistics 43rd annual meeting (ACL-2005), Ann Arbor, MI.

Punyakanok, Vasin, Dan Roth, Wen tau Yih, and Dav Zimak. 2005. Learning and inference over
constrained output. In Nineteenth International Joint Conference on Artificial Intelligence, pages
1124–1130, Edinburgh, Scotland, August.

Ramshaw, L. A. and M. P. Marcus. 1995. Text chunking using transformation-based learning. In
Proceedings of the Third Annual Workshop on Very Large Corpora, pages 82–94. ACL.

Roland, Douglas and Daniel Jurafsky. 1998. How verb subcategorization frequencies are affected
by corpus choice. In Proceedings of COLING/ACL, pages 1122–1128, Montreal, Canada.

Surdeanu, Mihai, Sanda Harabagiu, John Williams, and Paul Aarseth. 2003. Using
predicate-argument structures for information extraction. In Proceedings of the 41st Annual
Meeting of the Association for Computational Linguistics, Sapporo, Japan.

Toutanova, Kristina, Aria Haghighi, and Christopher Manning. 2005. Joint learning improves
semantic role labeling. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05), pages 589–596, Ann Arbor, Michigan, June. Association for
Computational Linguistics.

Xue, Nianwen and Martha Palmer. 2004. Calibrating features for semantic role labeling. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing, Barcelona,
Spain.

Yi, Szu-ting and Martha Palmer. 2005. The integration of syntactic parsing and semantic role
labeling. In Proceedings of the Ninth Conference on Computational Natural Language Learning
(CoNLL-2005), pages 237–240, Ann Arbor, Michigan, June. Association for Computational
Linguistics.

30

