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existing programs to predict the branch behavior in a new program. We call this approach to
program-based branch prediction evidence-based static prediction, or ESP. The main idea of
ESP is that the behavior of a corpus of programs can be used to infer the behavior of new
programs. In this article, we use neural networks and decision trees to map static features
associated with each branch to a prediction that the branch will be taken. ESP shows significant
advantages over other prediction mechanisms. Specifically, it is a program-based technique; it is
effective across a range of programming languages and programming styles; and it does not rely
on the use of expert-defined heuristics. In this article, we describe the application of ESP to the
problem of static branch prediction and compare our results to existing program-based branch
predictors. We also investigate the applicability of ESP across computer architectures, program-
ming languages, compilers, and run-time systems. We provide results showing how sensitive ESP
is to the number and type of static features and programs included in the ESP training sets, and
we compare the efficacy of static branch prediction for subroutine libraries. Averaging over a body
of 43 C and Fortran programs, ESP branch prediction results in a miss rate of 20%, as compared
with the 25% miss rate obtained using the best existing program-based heuristics.
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1. INTRODUCTION

In this article, we propose a new technique for program-based branch
prediction based on a general approach that we have invented, called
Evidence-Based Static Prediction (ESP). Our results show that using our
new approach results in better branch prediction than all existing program-
based techniques. In addition, our ESP approach is very general, and can
be applied to a wide range of program behavior estimation problems. In
this article, we describe ESP and its successful application to the problem
of program-based branch prediction.
Branch prediction is the process of correctly predicting whether branches

will be taken or not before they are actually executed. Branch prediction is
important, both for computer architectures and compilers. Compilers rely
on branch prediction and execution estimation to implement optimizations
such as trace scheduling [Fisher 1981; Hank et al. 1993; Hwu and Chang
1989] and other profile-based optimizations [Chang and Hwu 1992; Chang
et al. 1991].
Wide-issue computer architectures rely on predictable control flow, and

failure to correctly predict a branch results in delays for fetching and
decoding the instructions along the incorrect path of execution. The penalty
for a mispredicted branch may be several cycles long. For example, the
mispredict penalty is four cycles on the Digital Alpha AXP 21064 processor
and five cycles in the Alpha AXP 21164 processor. In previous studies, we
found that conditional branches in C programs were executed approxi-
mately every eight instructions on the Alpha architecture [Calder et al.
1994]. Current wide-issue architectures can execute four or more instruc-
tions per cycle. As a result, such architectures are likely to execute branch
instructions every two cycles or less, and effective branch prediction on
such architectures is extremely important. Many approaches have been
taken toward branch prediction, some of which involve hardware [Calder
and Grunwald 1994a; Yeh and Patt 1993] while others involve software
[Ball and Larus 1993; Calder and Grunwald 1994b; Fisher and Freuden-
berger 1992]. Software methods usually work in tandem with hardware
methods. For example, some architectures have a “likely” bit that can be
set by a compiler if a branch is determined to be likely taken by a compiler.
Compilers typically rely on two general approaches for estimating the

behavior of branches at compile time: profile-based and program-based
branch prediction. Profile-based methods use program profiles to determine
the frequency that branch paths are executed. Fisher and Freudenberger
[1992] showed that profile-based branch prediction can be extremely suc-
cessful at predicting the future behavior of branches. The main drawback of
profile-based methods is that additional work is required on the part of the
programmer to generate the program profiles. Program-based branch pre-
diction methods attempt to predict branch behavior in the absence of
profile information and are based only on a program’s structure. Some of
these techniques use heuristics based on local knowledge that can be
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encoded in the architecture [McFarling and Hennessy 1986]. Other tech-
niques rely on applying heuristics based on less local program structure in
an effort to predict branch behavior [Ball and Larus 1993]. Hank et al.
[1993] showed that these program-based heuristics can be used to accu-
rately guide profile-based compiler optimization achieving performance
improvements close to what is achieved if real profiles were used.
In this article, we describe a new approach to program-based branch

prediction that does not rely on such heuristics. Our branch prediction
relies on a general program-based prediction framework that we call ESP.
The main idea of ESP is that the behavior of a corpus of programs can be
used to infer the behavior of new programs. That is, instead of using a
different execution of a program to predict its own behavior (as is done with
profile-based methods), we use the behavior of a large body of different
programs (the training set, or corpus) to identify and infer common behav-
ior. Then we use this knowledge to predict branches for programs that were
not included in the training set. Thus, our technique has two phases. The
first phase, performed once (e.g., when the compiler is constructed) involves
profiling the corpus of programs. The second phase, which is entirely
program based but which uses the results of the first phase, predicts the
branches in a new program. In this article we use neural networks and
decision trees to map static features associated with each branch to a
prediction that the branch will be taken.
Branch prediction using ESP has several important advantages over

existing program-based branch prediction methods. First, because the
technique generates predictions automatically, the predictions can be spe-
cialized based on specific languages, compilers, and computer architec-
tures. Existing techniques rely on heuristics defined by compiler writers
that are based on intuition and empirical studies (e.g., Smith [1981]) about
common programming idioms. Second, given a large amount of static
information about each branch, the technique automatically determines
what parts of that information are useful. Thus, it does not rely on trial and
error on the part of the compiler writer searching for good heuristics.
Finally, our results show that ESP branch prediction outperforms existing
heuristic program-based branch prediction techniques over a body of 43 C
and Fortran programs. In particular, our heuristics have an average overall
miss rate of 20%, which compares to the 25% miss rate of the best existing
heuristic technique and the 8% miss rate of the perfect static predictor.
This article has the following organization. In Section 2 we discuss

previous approaches to program-based branch prediction and other knowl-
edge-based approaches to program optimization. We discuss some problems
that occur with the previous program-based techniques in Section 3. In
Section 4 we discuss the details of our ESP branch prediction method.
Section 5 describes the methods we used to evaluate and compare ESP
prediction with previous approaches, and Section 6 presents our results.
We summarize our conclusions in Section 7 and discuss possible future
directions to take with this research.
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2. BACKGROUND

In this section, we discuss the existing approaches to program-based static
branch prediction and other knowledge-based approaches to compiler opti-
mization. Most of the previous work in program-based branch prediction
uses the final program binary to determine the direction of branches;
following those decisions, the program can be reorganized [Calder and
Grunwald 1994b; Pettis and Hansen 1990] to take advantage of the
program-based branch prediction information.

2.1 Program-Based Branch Prediction Methods

One of the simplest program-based methods for branch prediction is called
“backward-taken/forward-not-taken” (BTFNT). This technique relies on the
heuristic that backward branches are usually loop branches, and as such
are likely to be taken. One of the main advantages of this technique is that
it relies solely on the sign bit of the branch displacement, which is already
encoded in the instruction. Our results in Section 6 show it has an overall
miss rate in our experiments of 34%. While simple, BTFNT is also quite
successful, since many programs spend a lot of time executing inside of
loops, and the backward branch in a loop is correctly predicted as taken
when using the BTFNT heuristic.
To facilitate program-based methods for branch prediction, some modern

architectures provide a “branch-likely” bit in each branch instruction
[Alverson et al. 1990]. In these architectures, compilers can employ either
profile-based [Fisher and Freudenberger 1992] or program-based tech-
niques to predict what branches are likely to be taken. In recent work, Ball
and Larus [1993] showed that applying a number of simple program-based
heuristics can significantly improve the branch prediction miss rate over
BTFNT on tests based on the conditional branch operation. A complete
summary of the Ball and Larus heuristics is given in Table I (as described
by Wu and Larus [1994]). Their heuristics use information about the
branch opcode, operands, and characteristics of the branch successor
blocks, and the heuristics encode knowledge about common programming
idioms.
Two questions arise when employing an approach like that taken by Ball

and Larus. First, an important question is “which heuristics should be
used?” In their paper, they describe seven heuristics that they considered
successful, but also noted that “We tried many heuristics that were
unsuccessful” [Ball and Larus 1993]. A second issue that arises with
heuristic methods is “how to decide what to do when more than one
heuristic applies to a given branch.” This problem has existed in the
artificial intelligence community for many years and is commonly known as
the “evidence combination” problem. Ball and Larus considered this prob-
lem in their paper and decided that the heuristics should be applied in a
fixed order; thus the first heuristic that applied to a particular branch was
used to determine what direction it would take. They determined the “best”
fixed order by conducting an experiment in which all possible orders were
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considered. We call using this predetermined order for heuristic combina-
tion A Priori Heuristic Combination (APHC). Using the APHC method, Ball
and Larus report an average overall miss rate on the MIPS architecture of
20%; when their technique is applied to the DEC Alpha architecture, the
prediction accuracy worsens, becoming 25%.
In a related paper, Wu and Larus [1994] refined the APHC method of

Ball and Larus. In that paper, their goal was to determine branch proba-
bilities instead of simple branch prediction. With branch prediction, the
goal is to determine a single bit of information per branch (likely versus
unlikely). With branch probabilities, the goal is to determine the numeric
probability that a branch is taken or not taken. Wu and Larus abandoned
the simplistic evidence combination function of APHC in favor of an
evidence combination function borrowed from Dempster-Shafer theory
[Dempster 1968; Shafer 1976]. We call this form of evidence combination
Dempster-Shafer Heuristic Combination (DSHC). By making some fairly
strong assumptions concerning the independence of different attributes,
the Dempster-Shafer evidence combination function can produce an esti-
mate of the branch probability from any number of sources of evidence. For
example, if one heuristic indicates that a branch is likely to be taken with
probability X%, while another says it is likely to be taken with probability
Y%, then DSHC allows these two probabilities to be combined.
Unless it is shown that the data are truly independent, and that other

restrictions described by Dempster [1968] and Shafer [1976] are observed,
the Dempster-Shafer mechanism may not provide any useful information.
The probabilities that Wu and Larus [1994] use are taken directly from
Ball and Larus [1993]. We refer to a DSHC algorithm based on this data as
DSHC(B&L). Because the goal of Wu and Larus was to perform program-
based profile estimation, they give no results about how the DSHC method

Table I. Summary of the Ball/Larus Heuristics

Heuristic Name Heuristic Description

Loop Branch Predicting that the edge back to the loop’s head is taken and that the edge
exiting the loop is not taken.

Pointer If a branch compares a pointer against null or compares two pointers,
predict the branch on false condition as taken.

Opcode If a branch checks an integer for less than zero, less than or equal to zero,
or equal to a constant, predict the branch on false condition.

Guard If a register is an operand of the branch comparison, the register is used
before being defined in a successor block, and the successor block does
not postdominate the branch, predict the successor block as taken.

Loop Exit If a comparison is inside a loop, and no successor is a loop head, predict an
edge exiting the loop as not taken.

Loop Header Predict the successor that does not postdominate and is a loop header or a
loop preheader as taken.

Call Predict the successor that contains a call and does not postdominate the
branch as not taken.

Store Predict the successor that contains a store instruction and does not
postdominate the branch as not taken.

Return Predict the successor that contains a return as not taken.
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works for program-based branch prediction. One of the contributions of our
article is that we quantify the effectiveness of the DSHC method for branch
prediction. As we show later, the DSHC method provides worse prediction
than the simple APHC method.
Wagner et al. [1994] also used heuristics similar to those of Ball and

Larus to perform program-based profile estimation. They also applied the
heuristics in a fixed order. They report branch prediction miss rate results
similar to those of Ball and Larus.

2.2 Knowledge-Based Approaches to Optimization

Our ESP method relies on collecting data from a corpus of program
behavior and using that data to perform program-based prediction. There is
little other work in compiler optimization that has taken this approach. We
summarize the work we are aware of here.
Balasundaram et al. [1991] address a somewhat different program-based

estimation problem. They wanted to make compile-time decisions about
data partitioning across a parallel computer, and they report on the idea of
using profile data to “train” an estimator. This training, an off-line step,
generates code which is then incorporated into their compiler. Training
only needs to be done once per compilation target and is reported to be
better than using a parameterized theoretical model. While the strategy
they employ is similar to ESP, their application domain is quite different.
In addition, our results show that this general approach of knowledge-
based “training” can be used to enhance a wide class of optimizations based
on program behavior estimation.

3. PROBLEMS WITH A PRIORI PROGRAM ESTIMATION

Ball and Larus [1993] describe a number of prediction heuristics. These
heuristics were the foundation for the prediction scheme in both the study
by Ball and Larus and the study by Wu and Larus. In Wu and Larus [1994]
the values given in Ball and Larus [1993] were used for the Dempster-
Shafer combination method, even though the study by Wu and Larus used
a different architecture, compiler, and run-time system. In this section, we
show that the a priori heuristics described by Ball and Larus are sensitive
to differences in architecture, compiler, run-time system, and selection of
programs. This sensitivity implies that it is important to develop automatic
techniques for branch estimation and an understanding of the sensitivity of
those automatic techniques.
We use the CFG, dominator, postdominator, and loop information to

implement the same heuristics used by Ball and Larus, summarized in
Table I. Our implementation results for these heuristics on the Alpha
architecture are shown in Table II. The first column lists the miss rate for
loop branches. The second column shows the percentage of nonloop
branches. The third column shows the dynamic percentage of nonloop
branches that can be predicted using one of the heuristics, while the fourth
column shows the miss rate achieved when using those heuristics. For
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Table II. Results for the Program-Based Heuristic Approaches

Program

Loop
Branches Nonloop Branches

Miss Rate
for Loops

% Nonloop
Branches
(Dynamic)

% Branches
Covered by
Heuristics
(Dynamic)

Miss Rate
for

Heuristics

Miss Rate
with

Default

Overall
Miss
Rate

bc 39 74 80 30 36 37
bison 12 64 84 15 18 15
burg 22 66 80 39 42 35
flex 15 60 58 38 46 33
grep 9 60 89 36 39 27
gzip 4 48 31 45 62 32
indent 27 69 77 23 27 27
od 56 83 74 43 42 44
perl 43 69 80 34 38 39
sed 19 54 78 19 25 22
siod 34 74 59 29 34 34
sort 17 63 66 50 45 35
tex 33 51 78 40 41 37
wdiff 11 65 100 44 44 32
yacr 4 37 85 24 31 14

Other C Avg. 23 62 75 34 38 31

alvinn 0 3 65 40 42 2
compress 8 (12) 57 (66) 80 (90) 38 (39) 38 (40) 25 (30)
ear 2 17 96 41 41 8
eqntott 2 (3) 11 (49) 75 (5) 40 (37) 45 (50) 7 (26)
espresso 17 (18) 45 (37) 73 (44) 26 (25) 33 (26) 24 (21)
gcc 25 (22) 72 (73) 79 (79) 33 (32) 37 (37) 34 (33)
li 28 (28) 61 (62) 87 (90) 22 (25) 25 (28) 26 (28)
sc 10 64 76 40 40 29

SPEC C Avg. 11 41 79 35 38 19

doduc 10 (8) 42 (52) 69 (92) 23 (31) 31 (33) 19 (21)
fpppp 28 (34) 70 (86) 61 (82) 63 (40) 64 (42) 53 (41)
hydro2d 3 52 88 25 31 17
mdljsp2 9 81 33 38 49 41
nasa7 3 (1) 24 (10) 66 (95) 33 (29) 38 (32) 12 (4)
ora 3 64 57 15 27 18
spice 9 (9) 23 (21) 61 (75) 27 (33) 38 (36) 16 (14)
su2cor 1 44 78 46 47 21
swm256 1 1 65 9 13 1
tomcatv 1 (1) 43 (38) 100 (100) 99 (1) 99 (2) 44 (1)
wave5 10 50 82 45 44 27

SPEC Fortran Avg. 7 45 69 39 44 24

APS 26 52 62 25 33 30
CSS 22 62 57 35 34 29
LWS 15 60 62 26 44 32
NAS 5 74 38 10 14 12
OCS 3 10 54 15 31 6
SDS 22 36 58 26 48 32
TFS 6 24 76 14 23 10
TIS 22 40 44 20 32 26
WSS 18 40 56 33 43 28

Perfect Club Avg. 16 44 56 23 34 23

Common Avg. 13 (14) 45 (49) 75 (75) 41 (29) 45 (33) 26 (22)
Overall Avg. 15 50 70 33 38 25
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example, 80% of the nonloop branches in compress can be predicted using
some heuristic, and those heuristics have a 38% miss rate. Branches that
cannot be predicted using the heuristics are predicted using a uniform
random distribution. The fifth column shows the prediction miss rate for
the execution of all nonloop branches, combining the predictions from the
heuristics and the random predictions. Last, the sixth column lists the
misprediction rate when both loop and nonloop branches are included.
This table shows detailed information about how the branch heuristics

performed for each program. Some of the programs in our suite were also
used in the earlier study by Ball and Larus, and the values in parentheses
show the equivalent metrics recorded in that study. In general, the values
are quite similar, but there are some small differences that we believe arise
from different run-time libraries. For example, a binary-buddy memory
allocator would not contain any loops, while a coalescing implementation
may contain several loops. These library routines are part of the native
operating system and are not part of the distributed benchmark suite. Note
that there are considerable differences in the percentage of nonloop
branches, particularly in eqntott. Some of these differences are caused by
libraries and run-time systems, but others can be attributed to architec-
tural features. For example, the Alpha has a “conditional move” that avoids
the need for many short conditional branches, reducing the number of
conditional branches that are executed. Table II further demonstrates that
our implementation of the heuristics listed in Ball and Larus [1993] appear
to be correctly implemented. The loop miss rates are roughly the same; the
heuristics cover approximately the same percentage of branches; and the
overall branch prediction miss rates are similar.
Table III shows the comparison of the overall averages for the heuristics

comparing the Ball and Larus results on the MIPS architecture to our
results on the Alpha. We felt that the differences seen in Table III were to
be expected, because the two studies used a different collection of programs
with different compilers that implement different optimizations for differ-
ent architectures and used different run-time libraries. Table III supports
our position that at least some of Ball and Larus’ heuristics are quite
language dependent. First, we point out that pointers are very rare in
Fortran, and as such the great success of the Pointer heuristic in Fortran is
of little consequence because it applies to very few branches. Next, we see
that while the Store heuristic appears successful in our Fortran programs,
it performs much worse in our C programs. Conversely, the Loop Header
heuristic performs well in C programs, but poorly in Fortran programs.

3.1 The Influence of Architectures

In certain cases, we had slightly different implementations of heuristics
than Ball and Larus because the Alpha architecture did not allow us to
implement the heuristics as originally stated. For example, consider imple-
menting the Opcode heuristic. The Alpha architecture has two types of
branch instructions; one compares floating-point numbers to zero, and the
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other compares integer numbers to zero. The conditional branch instruc-
tions always compare a register to zero. On the MIPS architecture, the
instructions “branch if equal” (BEQ) and “branch if not-equal” (BNE)
compare two registers. To accomplish the same task on the Alpha, an
earlier comparison must be made between the two registers, and the
resulting value is then compared to zero.
Our implementation of the heuristics took these factors into account,

constructing an abstract syntax tree from the program binary and using
that to determine the outcome of the conditional branch. Clearly, determin-
ing this information at compile time would simplify the analysis, since
more program information would be available. Both Ball and Larus [1993]
and our study used binary instrumentation, so we felt that other factors
must also contribute to the prediction differences. We examined one pro-
gram for which the Ball and Larus heuristics provided good prediction
accuracy, tomcatv, in more detail, since our implementation of those
heuristics provided worse prediction accuracy (see Table II). On the Alpha,
tomcatv spends 99% of its execution in one procedure. Furthermore, most of
the basic-block transitions in that procedure involve three basic blocks,
shown in Figure 1. The edge from block 32 3 28 is a loop back edge, and
our implementations identify and predict this correctly. Of the remaining
three conditional branches, both of the two important ones (labeled 28 and
30 in the figure) only match the “guard” heuristic in the heuristics
described by Ball and Larus (see Table I). However, their study indicated
that tomcatv benefited from the “store” heuristic, which predicts that basic
blocks with store instructions following a conditional branch that do not
postdominate the branch are not taken. By comparison, on the Alpha, none
of the successors of block 28 (blocks 29 and 30) or block 30 (blocks 31 and
32) contain store instructions. This difference may be attributed to differ-
ent register-scheduling or register-saving conventions, requiring a store on

Table III. Comparison of Branch Miss Rates for Prediction Heuristics

Heuristic

Branch Prediction Miss Rates

B&L (MIPS)

Our Implementation (ALPHA)

C Fortran Overall

Loop Branch 12% 17% 12% 15%
Pointer 40% 58% 1% 55%
Call 22% 23% 44% 31%
Opcode 16% 33% 29% 32%
Loop Exit 20% 28% 30% 29%
Return 28% 29% 30% 30%
Store 45% 52% 30% 42%
Loop Header 25% 33% 48% 30%
Guard 38% 34% 31% 33%

These averages are for all the programs we simulated, and a program is only included in a
heuristics’s average if the heuristic applies to at least 1% of the dynamic branches in the
program.

196 • Brad Calder et al.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997.



the MIPS, but not on the Alpha. The “guard” heuristic still applies, but
predicts both branches in blocks 28 and 30 incorrectly.

3.2 The Influence of Compilers and Optimizations

To further validate our belief that the choice of compilers influences the
prediction accuracy of the various heuristics, we compiled one program,
espresso, with the following compilers: cc on OSF/1 V1.2, cc on OSF/1
V2.0, the DEC GEM C compiler, and the Gnu C compiler. The results are
shown in Table IV. The last column of the table is the miss rate for perfect
static profile prediction. In terms of the overall miss rate, the compilers all
show different behavior. The DEC GEM C compiler produced significantly
fewer loop branches and resulted in a program approximately 15% faster

Fig. 1. Sample code fragment from tomcatv benchmark that contains most of the branches in
the program. The numbers on the edges indicate the percentage of all edge transitions
attributed to a particular edge. The dotted edges indicate taken branches.
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than the other compilers. The GEM compiler unrolled one loop in the main
routine, inserting more forward branches and reducing the dynamic fre-
quency of loop edges.
This simple optimization changed the characteristics of the branches in

the program and the efficacy of the APHC branch prediction technique. The
difference caused by loop unrolling is significant if we want to use branch
probabilities after traditional optimizations have been applied. However,
many programmers unroll loops “by hand,” and other programmers use
source-to-source restructuring tools, such as KAP [Hudson et al. 1986] or
VAST [Arnold 1982]. The differences evinced by these applications may
render the fixed ordering of heuristics ineffective for some programs.

4. EVIDENCE-BASED STATIC BRANCH PREDICTION

In this section, we propose a general framework for program-based predic-
tion. Our method, ESP, is generally described as follows. A body of
programs and program input is gathered (the corpus). Particular static
information (the static feature set) about important static elements of the
corpus (e.g., instructions) are recorded. The programs in the corpus are
executed, and the corresponding dynamic behavior is associated with each
static element (e.g., the number of times a branch is taken and not taken is
associated with each branch). At this point, we have accumulated a body of
knowledge about the relationship between static program elements and
dynamic behavior. This body of knowledge can then be used at a later time
to predict the behavior of instructions with similar static features for
programs not in the corpus.
With this broad definition of our framework in mind, we now describe

how we apply this general framework to the specific problem of static
branch prediction. We first describe the features we extract from the test
programs for branch prediction. We then describe two machine-learning
systems (based on neural networks and decision trees) that use the data to
make decisions on branches seen in other programs.

4.1 ESP Branch Prediction

In applying ESP to the problem of branch prediction, we instantiate the
above framework in the following way. For each branch instruction in the

Table IV. Comparison of Accuracy of Prediction Heuristics Using Different Compilers

Program O/S Compiler

Loop
Branches Nonloop Branches

Overall
Miss
Rate

Perfect
Miss
RateMiss Rate

% Nonloop
Branches
(Dynamic)

Heuristic
Miss
Rate

Espresso 1.2 cc 17 45 26 24 15
Espresso 2.0 cc 18 46 27 25 15
Espresso 2.0 GEM C 25 57 26 32 12
Espresso 2.0 Gnu C 17 46 23 22 15
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program text, we record a large static feature set (see Table V). Some of the
features are properties of the branch instruction itself (e.g., the branch
opcode); others are properties of the registers used to define the register in
the branch instruction (e.g., the opcode of the instructions that defined
them); and others are properties of the procedure that the branch is in (leaf
versus nonleaf). Despite being a RISC processor, the Alpha instruction set
contains a wealth of instructions. Some machine-learning algorithms are
confused by too many choices when fitting empirical data, and this results
in no apparent pattern emerging from the data. For example, the instruc-
tions subq and sub1 both perform a subtraction, but the first uses quad-
words and the latter long-words. It may be that the important aspect of
those instructions is that a subtraction occurs. We aggregated certain
instructions into an “operand function” that captures that information.
Likewise, the important aspect may be that a quadword is used, rather
than the specific arithmetic function that is applied. The “operand type”
field encodes the type of the operand. A conditional branch may arise from
a complex instruction sequence used to produce the left and right-hand side
of the comparisons. We constructed and encoded an abstract syntax tree
representing those comparisons as the “RA” and “RB” features. Although
not precisely correct, it is useful to think of this as encoding comparisons of
the form “if ((RA1op1RA2)op2(RB1op3RB2)). . .”—the abstract syntax tree
includes information establishing the “context” of the conditional branch.
The majority of the features are related to the instructions following the

branch (features 15–30). It is easiest to understand those features by
considering the control flow graph in Figure 2. In that figure, the vertical
ordering of the nodes indicates their order in the program binary. The
conditional branch is followed by the “successor not taken”—the node in
the CFG that is the “fall through” of the conditional branch. Likewise,
the “successor taken” is the node representing the target of the branch.
The feature “Successor not taken ends” encodes the branch type of the
instruction ending the “successor not taken” node. The existence of some
features is dependent on the values of other features. For example,
feature 4 is only meaningful if feature 3 has an RA operand. We call
such features dependent static features.
We chose the feature set shown in Table V, based on several criteria.

First, we encoded information that we believed would likely be predictive of
behavior, even though we conducted no initial experimentation to confirm
our intuition. This information included some of the information used to
define the Ball/Larus heuristics (e.g., information about whether a call
appears in a successor of the branch). Second, we encoded other informa-
tion that was easily available. For example, since the opcodes that define
the branch instruction register are readily available, we include them as
well. Similarly, information about the procedure type is readily available.
Later in the article, we examine the predictive power of individual features
in the feature set and combinations of a subset of those features. We will
show that the machine-learning algorithms are able to effectively select
and combine the useful features from the set we have chosen. We note that
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Table V. Static Feature Set Used in the ESP Branch Prediction Study

Feature
Number Feature Name Feature Description

1 Branch Instruction The opcode of branch instruction
2 Branch Direction F—Forward branch, B—Backward branch
3 Branch Operand Opcode The opcode of the instruction that defines the register used

in the branch instruction (or ?, if the branch operand is
defined in a previous basic block)

4 Branch Operand Function The branch function (see text)
5 Branch Operand Type The operation type (see text)
6 RA Opcode If the instruction in (3) uses an RA register, this is the

opcode of the instruction that defines that register (?
otherwise)

7 RA Function The RA function (see text)
8 RA Type The RA type (see text)
9 RB Opcode If the instruction in (3) uses an RB register, this is the

opcode of the instruction that defines that register (?
otherwise)

10 RB Function (As “RA Function” above, but for RB register)
11 RB Type (As “RA Type” above, but for RB register)
12 Loop Header LH—the basic block is a loop header, NLH—not a loop

header
13 Language The language of the procedure is in C or Fortran
14 Procedure Type The branch’s procedure is a Leaf, NonLeaf, or calls itself

recursively (CallSelf)

15–22 Features of the Taken Successor of the Branch

15 Branch Dominates D—basic block dominates this successor, or ND—does not
dominate

16 Branch Postdominates PD—the successor basic block postdominates the basic block
with the branch, or NPD—does not postdominate

17 Successor Ends Branch type ending successor basic block, possible values
(FT—fall through, CBR—conditional branch,
UBR—unconditional branch, BSR—branch subroutines,
JUMP—jump, IJUMP—indirect jump, JSR—jump
subroutines, IJSR—indirect jump subroutine, RETURN,
or NOTHING)

18 Successor Loop LH—the successor basic block is a loop header or
unconditionally passes control to a basic block which is a
loop header, NLH—not a loop header

19 Successor Backedge LB—the edge getting to the successor is a loop backedge,
NLB—not a loop exit backedge

20 Successor Exit LE—the edge getting to the successor is a loop exit edge,
NLE—not a loop exit edge

21 Successor UseDef UBD—the successor basic block has a use of a register
before defining it and that register was used to determine
the destination of the current conditional branch
instruction, NU—no use before def in successor

22 Successor Call PC—the successor basic block contains a procedure call or
unconditionally passes control to a basic block with a
procedure call, NPC—no procedure call down here

23–30 Features of the Not Taken Successor of the Branch
Same as for features 15–22 above
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the feature set listed here is the only one we have tried. It may be possible
that extending the number of available features would improve the result-
ing branch prediction.
Having defined the static feature set, we then determine the static

feature set for each branch in the corpus of programs. We next run the
programs in the corpus and collect information about how often each
branch is taken and not taken. The goal is to associate two pieces of
dynamic information with each branch instruction: how frequently the
branch was executed and how often it was taken. Because execution
frequency is program dependent, we normalize the branch frequency by the
total number of branches executed in the program. We compute the
normalized branch weight by dividing how many times the branch was
executed by the total number of branches executed by the program (result-
ing in a number between zero and one). Finally, we associate the static
feature set, the normalized branch weight, and the branch probability
(percentage of the time the branch was taken) with each branch instruction
in the corpus.

4.2 Prediction Using Neural Nets

Our goal is to have a system that can effectively predict that a branch will
be taken based on its static feature set. This system should accurately
predict not just for the programs in the corpus, but also for previously
unseen programs.

Fig. 2. Simple control flow graph used to describe the feature set of branch instructions. The
vertical ordering of the nodes indicates their order in the program binary. The conditional
branch is followed by the “successor not taken”—the node in the CFG that is the “fall through”
of the conditional branch. Likewise, the “successor taken” is the node representing the target
of the branch.

Evidence-Based Static Branch Prediction • 201

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 1, January 1997.



One way of doing such prediction is via a feedforward neural network
[Smolensky et al. 1996]. A feedforward neural network maps a numerical
input vector to a numerical output. Here, the input vector consists of the
feature values in the static feature set, and the output is a scalar indicating
whether the branch will be taken.
Figure 3 depicts the branch prediction neural network. A neural network

is composed of processing units, depicted in the figure by circles. Each
processing unit conveys a scalar value known as its activity. The activity
pattern over the bottom row of units is the input to the network. The
activity of the top unit is the output of the network. Activity in the network
flows from input to output, through a layer of intermediate or hidden units,
via weighted connections. These connections are depicted in the figure by
links with arrows indicating the direction of activity flow.
This is a standard neural network architecture. We also use a fairly

standard neural network dynamics in which the activity of hidden unit i,
denoted hi, is computed as

hi 5 tanhS O
j

wijxj 1 biD ,
where xj is the activity of input unit j; wij is the connection weight from
input unit j to hidden unit i; bi is a bias weight associated with the unit;
and tanh is the hyperbolic tangent function

tanh~u! 5
eu 2 e2u

eu 1 e2u
.

Similarly, the output unit activity, denoted y, is computed from the hidden-

Fig. 3. The branch prediction neural network. Each circle represents a processing unit in the
network, and the links between units depict the flow of activity.
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unit activities:

y 5 0.5 tanhS O
i

vihi 1 aD 1 1,

where vi is the connection weight from hidden unit i to the output unit, and
a is a bias weight associated with the output unit. The tanh function is
normalized to achieve an activity range of [0, 1] for the output unit.
The input-output behavior of the neural network is determined by its free

parameters: the weights w and v and biases b and a. These parameters are
set by an algorithm known as back propagation [Rumelhart et al. 1986].
This is a gradient descent procedure for adjusting the parameters such that
performance of the network on a training corpus is optimized. The standard
measure of performance is the sum of squared errors,

E 5 O
k

~ yk 2 tk!2,

where k is an index over examples in the training corpus; yk is the actual
output of the network when training input k is presented; and tk is the
target output—the output indicated for that example in the training corpus.
In this application, however, we have a different criterion for good

performance. We want to minimize two sorts of errors: missed branches
(MB) and branches incorrectly taken (BIT). MBs occur when the predictor
says that the branch will be taken with probability less than 0.5 when the
branch is in reality taken; BITs occur when the predictor says that the
branch will be taken with probability greater than 0.5 when the branch is
in reality not taken. If the network output for example k is binary—1 if the
predicate “the branch probability is greater than 0.5” is believed to be true,
0 otherwise—then the relative number of errors due to MB for example k is

EMB 5 ~1 2 yk!tknk ,

where nk is the normalized branch weight (e.g., the proportion of branches
with that particular feature set in the corpus). The product tknk gives the
relative number of cases where the branch is taken. All of these branches
are missed if yk 5 0 (or equivalently, 1 2 yk 5 1). Similarly, the relative
number of errors due to BIT is

EBIT 5 yk~1 2 tk!nk .

Because these two types of errors have equal cost, the overall error is
simply

E 5 O
k

EMB 1 EBIT 5 O
k

nk@ yk~1 2 tk! 1 tk~1 2 yk!#.
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This is used as the error measure to be minimized by the neural net
training procedure. That is, the free parameters in the neural net are
adjusted such that the network will produce outputs yk such that E is
minimized. Note that this does not require that the network accurately
predict branch probabilities per se, as we were assuming previously.1

Each input unit’s activity is normalized over the training set to have 0
mean and standard deviation 1. The same normalization is applied for test
cases. We deal with nonmeaningful dependent static features by setting
their input activity to 0 after the normalization step; this prevents the
nonmeaningful features from having any effect on the computation and is
equivalent to gating the flow of activity from these features by another
feature that indicates the relevance of the dependent features for a partic-
ular example. We use a “batch” training procedure in which weights are
updated following a sweep through the entire training corpus, and we use
an adaptive learning rate procedure wherein the learning rate for the
network is increased if error drops regularly or is decreased otherwise.
Momentum is not used. Training of the network continues until the
threshold error of the net no longer decreases. By thresholded error, we
mean the error computed when the output is first thresholded to values 0
or 1. This achieves a form of early stopping and thereby helps to prevent
overfitting.

4.3 Prediction Using Decision Trees

As described in the previous section, the branch prediction task can be
formulated as a probability prediction task. Given a branch characterized
as a feature vector, we would like to predict the percentage of times such a
branch is likely to be taken. It is, however, also possible to cast the branch
prediction problem as a classification problem; given a branch character-
ized as a feature vector, we would like to assign that branch to either the
class “branch” (taken) or “no branch” (not taken) based on the classification
of similar branches in the training corpus. Casting the problem in these
terms permits the use of some simple, yet effective, techniques to build
classifiers from training data. Decision tree induction systems represent
one such approach.
Decision trees consist of internal test nodes that examine single features

of objects, branches emanating from these internal nodes that correspond
to each possible result of the test, and leaf nodes that denote object
classifications. Operationally, decision trees are used to classify objects by
first performing the test specified at the root node and then following the
branch indicated by the result of the test down to the next level of the tree.
The result of the tests at each successive level determines an object’s

1In the above discussion we assumed that the network output will be either 0 or 1. However,
the output must be continuous valued in order to apply gradient-based training procedures.
Thus, we use the continuous activation rule for y presented earlier, and we simply interpret
the continuous output as the network’s confidence that the true branch probability is greater
than 0.5.
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unique path to a leaf node. When a leaf node is reached, the classification
associated with that leaf is assigned to the object.
Note that such decision trees are directly interpretable by experts in the

domain of interest, since they are expressed in terms of the features used to
describe the objects. Indeed, each path in the tree from the root to a leaf
can be thought of as a logical rule where a conjunction of the tests forms
the antecedent and where the classification specified at the leaf is the
consequent. This direct interpretability was one of our primary motivations
for investigating the use of decision trees.
Fortunately, there are effective and efficient algorithms for learning

decision trees directly from a corpus of data represented as feature vectors
with assigned categories. (See Quinlan [1993] for a survey of such meth-
ods.) There are two key notions underlying all of these algorithms. The first
is the notion that any diverse collection of objects can be assigned a value
based on the heterogeneity of the collection. The second is that a given
collection can be partitioned into two or more subpartitions based on the
results of testing a single feature of all the objects in the collection.
Taken together, these two notions suggest a greedy divide-and-conquer

approach to tree construction given a training corpus. The algorithm first
assigns as the root node the feature test that results in subpartitions that
are maximally homogeneous—in other words, the single feature that best
creates a set of partitions that groups objects with the same category
together and separates objects with differing classifications. Since the
resulting partitions are still likely to be diverse, it next recursively builds
subtrees for each partition created by the application of a test to an earlier
partition. This recursion typically halts when all the partitions at the
leaves of the tree have uniform membership, when there are no more
features left to be tested, or when the size of the subpartition is so small
that it is unlikely that any further splitting would be reliable.
As with most data-intensive machine-learning methods, it is important to

avoid having the system memorize, or overfit, the training data. Two
approaches have traditionally been taken to address this problem: the
system is only allowed to view a fraction of the available training data with
the remainder being held back as a test set, and the tree resulting from the
training is “pruned” back from the leaves to avoid idiosyncratic overfitting
of the data.
The decision tree induction experiments reported here were performed

using the well-studied, and widely distributed, C4.5 system [Quinlan 1993].
The results reported here were achieved using C4.5’s default training
settings, along with its standard tree-pruning mechanism.
To be more specific, C4.5 requires a training set made up of individual

feature vectors labeled with correct classifications and outputs a decision
tree capable of classifying such vectors. In our experiments, the first step
taken was to assign each feature vector to the category “branch” or
“nobranch” based on whether its recorded branch probability was greater
than or less than 0.5. The next task was to capture the fact that the
branches contained in the training set displayed widely varying frequencies
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during the original data gathering. To reflect these differences, copies of
each labeled branch were created in sufficient numbers to reflect the
proportion of dynamic branches that each branch was responsible for. Due
to practical limitations, we limited this copying to 1000 times the normal-
ized frequency. This has the effect of eliminating a number of low-fre-
quency branches from the training set while still allowing C4.5 to focus on
the important frequent branches.

4.4 Discussion and Summary

The ESP method automatically extracts the important features that can be
used to predict the direction that branches will take. Because the method is
automatic, it can be used to specialize predictions based on specific pro-
gramming languages, compilers, run-time systems, architectures, and ap-
plication domains. Thus, ESP has advantages over existing methods based
on heuristics. In particular, the effectiveness of heuristics may depend on
the context in which they are developed and evaluated, such as the
programming language or architecture (as we have shown), and given a set
of heuristics, there is no clear insight that guides how they can be combined
effectively.
The ESP method has disadvantages, as well. First, a corpus of programs

must be available. For our results in Section 6, we initially had only eight C
programs to examine. On average, ESP prediction results for these eight
programs were the same as the APHC and DSHC results. After we
increased the corpus of eight C programs to 23 C programs, the average
misprediction rate for ESP was 5% lower than the average miss rates for
the APHC and DSHC techniques. Second, our approach requires that the
feature set be defined. Our results in Section 6.3.2 show that as more
features are used the miss rate improves, although not monotonically.
Finally, if the neural net ESP approach is to be used, it requires someone
who understands neural nets fairly well, probably at the level of a person
who has taken a course in neural nets. We envision that if this approach
becomes sufficiently widespread, then tools that facilitate such training
would be made available. In contrast, decision trees are easier to use for
ESP, and the knowledge they encode can be automatically translated into
relatively transparent if-then rules. The results we have obtained using
decision trees are comparable to the neural net results. The C4.5 system
was able to build trees with performance on average 1% worse than the
corresponding neural net. Therefore, a decision tree approach may be more
practical for most users of ESP.

5. EVALUATION METHODS

To perform our evaluation, we collected information from 43 C and Fortran
programs. During our study, we instrumented the programs from the
SPEC92 benchmark suite and other programs, including many from the
Perfect Club [Berry 1989] suite. We used ATOM [Srivastava and Eustace
1994] to instrument the programs. Due to the structure of ATOM, we did
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not need to record traces and could trace very long-running programs. The
programs were compiled on a DEC 3000-400 using the Alpha AXP-21064
processor using either the DEC C or Fortran compilers. We used versions of
the SPEC benchmark suite compiled on the OSF/1 V1.2 operating system
using the same compiler options used to report the official SPEC bench-
mark suite. During the period we conducted this study, we migrated from
the OSF/1 V1.2 operating system to the OSF/1 V2.0 system, and most of the
non-SPEC programs were compiled on that system. Unless otherwise
noted, the programs were compiled using the normal C compiler, which was
a derivative of the MIPS C compiler, or the DEC Fortran compiler, which
uses a different code generator. All programs were compiled with standard
optimization (-E). Each program was run once to collect information about
branch frequency and the percentage of “taken” branches. For the SPEC92
programs, we used the largest input distributed with the SPEC92 suite.
Table VI shows the basic statistics for the programs we instrumented.

The first column lists the number of instructions traced, and the second
column gives the percentage of instructions that are conditional branches.
The third column gives the percentage of conditional branches that are
taken. The Q-50, Q-75, Q-90, Q-95, Q-99, and Q-100 columns show the
number of branch instruction sites that contribute 50, 75, 90, 95, 99, and
100% of all the executed conditional branches in the program. The column
“Static” shows the total number of conditional branch sites in each pro-
gram. Thus, in alvinn, two branch instructions constitute over 90% of all
executed branches, and correctly predicting these two conditional branches
is very important. The last column contains the percentage represented by
Q-100/Static, which indicates the fraction of total static branches exercised
by the particular input data used.
The ATOM instrumentation tool has an interface that allows the ele-

ments of the program executable (including all libraries), such as instruc-
tions, basic blocks, and procedures, to be queried and manipulated. In
particular, ATOM allows an “instrumentation” program to navigate
through the basic blocks of a program executable and then collect informa-
tion about registers used, opcodes, branch conditions, control flow, etc.
During this instrumentation phase, our tools collect all the static feature
information described in Table V. By gathering information about the
targets of branches, we used this information to construct a control flow
graph. Using the control flow graph, we computed the dominator and
postdominator trees. Following this, we determined the natural loop head-
ers and applied the same definition of natural loops used by Ball and Larus
[1993] to determine the loop bodies.
As the instrumentation program runs, it can also add procedure calls to

the executable that allow information about the executing program to be
collected. Thus, we also use ATOM to determine the execution frequency
and branch probability for each branch in the corpus for the purpose of
training and, in the test programs, for the purpose of determining the miss
rate of the methods.
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For ESP, we did not use the information gathered about a given program
to predict the branches for that same program; rather we used a cross-
validation study. We took all of the programs, except the one program for
which we want to gather prediction results, and fed the corpus of programs
into the neural net and decision tree. We then used the neural net’s and
decision tree’s branch classifications to predict branches for that program
not included in the corpus. This provides a conservative estimate of how
well ESP will perform, since we are predicting the behavior of a program
that the neural net and decision tree have not seen. For the ESP results

Table VI. Measured Attributes of the Traced Program Executables Including Libraries

Program

Number of
Instructions

Traced

Percentage
of

Conditional
Branches

Percentage
Taken

Conditional Branch Quantiles

Static

Q-100/
Static
(%)Q-50 Q-75 Q-90 Q-95 Q-99 Q-100

bc 93,395,683 10.06 42.43 41 97 160 204 273 753 1,956 38
bison 6,344,388 10.02 76.83 16 89 197 311 654 1,348 2,905 46
burg 721,029 12.17 62.32 30 84 153 220 465 802 1,766 45
flex 15,458,984 12.89 68.37 29 102 190 260 421 1,204 2,969 41
grep 745,131 19.35 72.40 6 25 94 196 422 910 3,310 27
gzip 309,547,166 11.08 60.75 3 13 29 36 49 342 2,476 14
indent 32,569,634 14.72 51.91 27 74 159 244 457 1,065 2,272 47
od 210,341,272 12.88 45.72 30 56 76 84 118 433 1,702 25
perl 181,256,552 10.26 39.89 28 88 233 342 719 2,690 12,288 22
sed 85,604,071 10.63 65.55 16 59 91 109 151 863 2,570 34
siod 28,750,877 13.04 56.85 14 38 95 128 186 684 2,156 32
sort 10,301,164 14.01 59.12 13 24 51 63 77 352 1,810 19
tex 147,820,930 7.58 57.47 39 111 259 416 790 2,365 6,050 39
wdiff 76,185,396 13.21 53.65 7 11 19 24 29 502 1,618 31
yacr 1,017,126,630 19.24 70.73 11 33 88 127 345 1,673 3,442 49

alvinn 5,240,969,586 8.93 97.77 2 2 2 3 102 430 1,622 27
compress 92,629,658 12.31 68.25 4 7 12 14 16 230 1,124 20
ear 17,005,801,014 4.97 90.13 2 4 6 8 32 530 1,846 29
eqntott 1,810,540,418 10.78 90.30 2 2 14 42 72 466 1,536 30
espresso 513,008,174 15.96 61.90 44 104 163 221 470 1,737 4,568 38
gcc 143,737,915 12.60 59.42 245 804 1,612 2,309 3,724 7,640 16,294 47
li 1,355,059,387 11.30 47.30 16 33 52 80 127 556 2,428 23
sc 1,450,134,411 17.99 66.88 14 41 94 153 336 1,471 4,478 33

doduc 1,149,864,756 6.94 48.68 3 40 175 231 296 1,447 7,073 20
fpppp 4,333,190,877 2.44 47.74 10 28 51 73 109 744 6,260 12
hydro2d 5,682,546,752 6.02 73.34 14 43 74 111 230 1,613 7,088 23
mdljsp2 3,343,833,266 10.12 83.62 6 10 14 16 23 1,010 6,789 15
nasa7 6,128,388,651 2.51 79.29 8 21 55 94 277 1,083 6,581 16
ora 6,036,097,925 5.25 53.24 5 8 11 12 17 641 5,899 11
spice 16,148,172,565 11.51 71.63 2 12 38 63 116 1,762 9,089 19
su2cor 4,776,762,363 3.34 73.07 8 15 26 34 60 1,569 7,246 22
swm256 11,037,397,884 1.65 98.42 2 2 3 3 13 795 6,080 14
tomcatv 899,655,317 3.35 99.28 3 4 5 7 7 515 5,474 9
wave5 3,554,909,341 4.37 61.79 18 40 82 132 276 1,331 8,149 16

APS 1,490,454,770 3.99 50.64 44 123 283 357 524 1,617 8,926 18
CSS 379,319,722 7.32 55.63 32 109 211 262 467 2,202 9,670 23
LWS 14,183,394,882 7.92 66.34 3 9 18 26 38 1,148 6,927 17
NAS 3,603,798,937 3.43 60.67 5 14 34 69 125 1,663 7,614 22
OCS 5,187,329,629 3.02 88.57 3 10 46 79 197 1,447 7,084 20
SDS 1,108,675,255 6.77 53.05 9 25 43 67 169 1,669 7,585 22
TFS 1,694,450,064 3.17 77.42 15 38 122 220 464 1,598 7,270 22
TIS 1,722,430,820 5.27 51.08 8 20 31 36 66 863 6,292 14
WSS 5,422,412,141 4.76 62.36 41 145 275 344 533 1,756 7,592 23
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shown in Section 6, we performed the cross-validation study breaking the
programs into two groups—C programs and Fortran programs. We per-
formed cross-validation feeding the feature sets for 22 of the C programs at
a time into the neural net and decision tree, predicting branches for the
23rd C program not included in the initial 22. We did the same for Fortran
programs feeding into the neural net and decision tree the feature sets for
19 of the 20 programs in order to predict branches for the 20th program.

6. RESULTS

We now compare the prediction accuracy of a priori heuristic combination
(APHC) branch prediction [Ball and Larus 1993], the Dempster-Shafer
heuristic combination (DSHC) proposed by Wu and Larus [1994], and our
ESP techniques.

6.1 Comparison: APHC, DSHC, and ESP

Table VII shows the branch misprediction rate for the methods we imple-
mented. The first column shows the results for the BTFNT architecture.
The second column shows the results for our implementation of the Ball
and Larus heuristics, and the third and fourth columns show the results
when applying Dempster-Shafer to those heuristics. In implementing
DSHC, we use both the original prediction rates specified by Ball and
Larus, DSHC(B&L), and the prediction rates produced by our implementa-
tion, DSHC(Ours). The fifth column in Table VII shows the results for ESP
using neural nets, and the sixth column shows results for ESP using
decision trees. The last column shows the results for the perfect static
profile prediction. By perfect profile prediction, we mean the miss rate
achieved when the same input is used to both profile a program, in order to
predict the program’s branches, and used when recording the miss rate.
Table VII reveals several interesting points. First, the overall average
shows that the Dempster-Shafer method performs no better than the fixed
order of heuristics. Wu and Larus said

When more than one heuristic applies to a branch, combining the probabilities
estimated by the applicable heuristics should produce an overall branch proba-
bility that is more accurate than the individual probabilities [Wu and Larus
1994].

However, there was no comparison to the earlier results of Ball and Larus.
In six cases (flex, sort, mdljsp2, CSS, NAS, TFS), the Dempster-Shafer’s
miss rate is more than 5% higher (worse) than the simple APHC ordering,
while the APHC ordering method is 5% worse in only three cases (wdiff,
SDS, LWS). The intuition of Wu and Larus was correct; however, the
Dempster-Shafer theory does not combine the evidence well enough to
improve branch prediction. The ESP techniques perform significantly bet-
ter than the Dempster-Shafer and the APHC methods for most of the
programs.
The ESP DT (self) column provides insight into the upper limit of the

effectiveness of the ESP approach. In this case, the same data set was used
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Table VII. Comparison of Using Heuristics in Ball and Larus Ordering, Dempster-Shafer
Theory, and ESP

Program

Branch Prediction Miss Rates

BTFNT
APHC
(B&L’s)

DSHC
(B&L’s)

DSHC
(Ours)

ESP
NN

ESP
DT

ESP
DT
(self) Perfect

bc 40 37 35 35 32 30 27 14
bison 52 15 16 16 14 16 12 4
burg 53 35 33 32 26 22 16 9
flex 43 33 39 38 19 27 23 9
grep 42 27 23 22 19 23 15 12
gzip 33 32 33 33 20 32 11 9
indent 42 27 28 27 19 22 13 6
od 44 44 40 40 30 21 12 8
perl 35 39 36 36 26 27 13 4
sed 45 22 22 23 25 26 8 5
siod 50 34 32 33 27 30 15 10
sort 44 35 41 42 21 19 18 8
tex 43 37 38 36 30 31 19 13
wdiff 42 32 11 11 4 11 8 3
yacr 32 14 11 12 14 13 8 6

Other C Avg 43 31 29 29 22 23 15 8

alvinn 2 2 2 2 1 2 2 0
compress 44 25 26 28 30 28 14 14
ear 10 8 8 8 8 8 7 7
eqntott 47 7 7 7 6 5 3 2
espresso 34 24 23 23 32 25 18 15
gcc 48 34 35 34 31 32 27 12
li 43 26 25 27 28 29 13 12
sc 39 29 31 29 24 26 16 9

SPEC C Avg 34 19 20 20 20 19 12 9

doduc 23 19 20 19 16 39 10 5
fpppp 42 53 52 52 35 22 14 11
hydro2d 28 17 16 16 12 10 5 4
mdljsp2 69 41 62 62 64 65 10 10
nasa7 8 12 12 11 5 5 5 3
ora 46 18 18 18 18 12 5 5
spice 16 16 18 14 14 11 11 7
su2cor 17 21 20 20 12 12 11 10
swm256 1 1 1 1 1 1 1 1
tomcatv 44 44 44 44 1 44 1 1
wave5 19 27 24 23 21 24 9 6

SPEC Fortran Avg 29 24 26 25 18 22 7 6

APS 28 30 34 31 26 29 17 10
CSS 39 29 40 36 33 25 24 9
LWS 38 32 25 25 18 17 17 16
NAS 42 12 22 22 12 12 6 4
OCS 4 6 5 5 4 6 4 2
SDS 18 32 25 19 21 22 15 12
TFS 12 10 15 13 11 11 8 6
TIS 18 26 25 22 16 16 16 16
WSS 32 28 26 26 25 24 25 11

Perf Club Avg 26 23 24 22 18 18 15 10

Overall Avg 34 25 26 25 20 21 12 8
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for training as well as testing. Ideally, such a method should approach the
performance of the perfect static predictor, and in many cases, but not all,
it does. In most cases, self-training performs significantly better than
cross-validation training, suggesting that the choice of training set and its
closeness to the application being predicted can have a significant effect on
the performance of the method.
Table VII also allows us to compare the effectiveness of the decision tree

and neural network prediction methods. In many cases the methods pro-
duce quite similar results, and this similarity is also reflected in the values
of the overall average miss rates. The largest difference seen between the
methods occurs in the tomcatv application, which we have already dis-
cussed in the context of the heuristic prediction methods. Tomcatv exhibits
such large differences between methods because there are a very small
number of important branches that must be correctly predicted for good
performance. The table shows that the neural network correctly predicts all
of these important branches, whereas the decision tree method misses two
of them. One reason that the neural network can perform better than the
decision tree is that the decision tree method uses a greedy algorithm and
selects one feature at a time in determining what features to use in
categorizing branches. The neural net, on the other hand, is capable of
identifying multifeature combinations that could correlate highly with the
branch direction.
To better understand why the decision tree method fails to predict the

branches of tomcatv, we can look in detail at the different programs used to
predict its behavior. In Figures 4 and 5 (discussed in more detail in Section
6.3.1), we show the miss rates that result from using one program to
predict another (i.e., using one program as the training set and another as
the test set). In Figure 5, in the “to” column (3rd to last) we show how
effective the other Fortran programs in the corpus are at predicting
tomcatv using a decision tree. It is clear from this figure that only five of
the other 19 programs contain information that the decision tree method
can use to predict the branches of tomcatv. This suggests that the branch
behavior in tomcatv is not highly typical of the other Fortran programs we
used.

6.2 Predicting Library and Main-Program Branches

The miss rates for ESP in Table VII were gathered using a cross-validation
study in order to achieve a realistic estimate of ESP’s performance. A
cross-validation study allows this, since the program being measured is not
included in the set of programs used to create the cross-validation training
set. Therefore, the code for the program being examined is not profiled in
the cross-validation study. This is true for the main program branches, but
not necessarily true for the library code, since the same library routines
may have been used by the programs included in the cross-validation
study. If a majority of the library branches are executed in the cross-
validation training set, and the library routines have similar behavior
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between different programs, then ESP may be achieving a lot of its
performance improvement by more accurately predicting the library
branches than main-program branches.
Tables VIII and IX show the breakdown of the average miss rates in

terms of library branches and branches executed in the main program. For
ESP, results are only shown for using the decision tree approach (ESP-DT).
The library branches are all the branches executed by the programs for the
standard Digital-Unix libraries. The libraries used by the programs we
examined are libc, libm, libFutil, libUfor, libfor, libcursors, libots, and libterm-
cap. In Table VIII, Lib shows the miss rates for library branches for
ESP-DT when only library branches are included in the cross-validation
training set, and All represents when all branches are included in the
cross-validation training set. Table IX shows the miss rates for the main-
program branches for ESP-DT when only Main program branches are
included in the training set and when All branches are included in the
cross-validation training set. The reason for using two different training
sets was to examine the difference in performance when excluding either
the main-program branches or the library branches from the training
profiles.
Tables VIII and IX show that the miss rate difference between the B&L

heuristics and ESP-DT is significantly larger for the library branches, from
35% down to 23%, than for the main-program branches, from 23% down to

Fig. 4. Using one C program to predict another. Each row shows the miss rates obtained
using one program to predict the behavior of the others. The results for individual programs
are listed in each column.
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22%. This difference is largest for the branches occurring in Fortran library
routines. This decrease in miss rate for the library branches most likely
comes from the library branches having very similar behavior between
different programs. In a related study [Calder et al. 1995], we found this to
be the case. In that study we found that when using a cross-validation
profile of library code to predict library branches for a program not
included in the profile, the miss rate for the library branches was 12%,
which was close to the perfect profile miss rate of 6% and significantly
lower than the B&L heuristic miss rate of 47%. This indicates that these
library branches had very predictable behavior between different pro-
grams, and the results in Table VIII show that ESP was also able to
provide a better automatic identification of the heuristics that identify
these predictable library branches.
Table X shows the overall average miss rates from Table VII. The

ESP-DT results are shown for when separate (Sep) cross-validation train-
ing sets are used to predict the library and main-program branches and
when one combined cross-validation training set is used to predict all (All)
branches. These results and the results in Tables VIII and IX show that it
is better to use the combined training including all the branches when
predicting either library or main-program branches, especially for the C
programs. When using the combined training set in Table X the miss rate is
lowered from 22% to 21% in comparison to using separate training sets.

Fig. 5. Using one Fortran program to predict another. Each row shows the miss rates
obtained using one program to predict the behavior of the others. The results for individual
programs are listed in each column.
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Table VIII shows that including the main program branch feature sets into
the cross-validation training set when predicting library branches reduces
the miss rate from 23% down to 21%. These results indicate that it is better
to include all program branches in the training sets in order to achieve the
best prediction accuracy for either library or main program branches.
Even though ESP shows only a small improvement in miss rate, 23%

down to 22%, over the APHC heuristics in Table IX for main-program
branches, ESP is still a much more attractive automated solution for
finding program-based static branch prediction for a given architecture,
programming language, and run-time system over using expert-defined
heuristics.

6.3 Sensitivity of Decision Tree ESP Results

We now examine how sensitive ESP is to the number of programs used in
the training set for prediction and the types of features included in the
feature set when using decision tree ESP prediction.

Table VIII. Effectiveness of Predicting Library Branches Only

Program

% Library
Branches
(Dynamic)

Library Prediction Miss Rates

BTFNT
APHC
(B&L’s)

DSHC
(B&L’s)

DSHC
(Ours)

ESP-DT

PerfectLib All

Other C Avg. 29 39 34 31 31 26 25 10
SPEC C Avg. 11 44 39 36 37 33 24 4
SPEC Fortran Avg. 11 38 33 35 34 14 13 8
Perfect Club Avg. 23 46 36 35 35 20 23 7
Overall Avg. 20 41 35 34 34 23 21 8

ESP results are only shown for the decision tree approach. Lib represents the miss rate when
only features for library branches are included in the cross-validation training set. All
represents the miss rate when all the branches executed in a program are included in the
cross-validation training set used to predict the library branches.

Table IX. Effectiveness of Predicting Nonlibrary Branches Only

Program

% Main
Branches
(Dynamic)

Main-Program Miss Rates

BTFNT
APHC
(B&L’s)

DSHC
(B&L’s)

DSHC
(Ours)

ESP-DT

PerfectMain All

Other C Avg. 71 43 28 28 28 26 24 7
SPEC C Avg. 89 34 20 19 20 21 20 10
SPEC Fortran Avg. 89 27 22 24 23 22 23 6
Perfect Club Avg. 77 21 20 21 20 18 20 11
Overall Avg. 80 33 23 24 24 22 22 8

Main represents the miss rate when only features for main-program branches are included in
the cross-validation training set. All represents the miss rate when all the branches executed
in a program are included in the cross-validation set used to predict the main-program
branches.
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6.3.1 Effect of Size and Content of Training Set. Figures 4 and 5 show a
matrix of miss rates using the ESP training set from one program to
predict branches in all the other programs. The miss rate for each box in
the matrix is for the corresponding program listed at the top of the matrix
when the ESP training set from the program listed on the left-hand side of
the matrix is used to predict the branches. For example in Figure 4, when
using the ESP training set from alvinn to predict the branches in ear(ea),
ear has an 8% miss rate. The miss rates with a darkened box around them
are the highest miss rates for each program listed in the columns. The miss
rates that are shaded are the lowest miss rates for each program listed in
the columns.
Not surprisingly, both of the matrices show that the best predictor for

most programs was the own program’s training set. In Figure 4, the C
program training sets that provided the worst prediction came from li, wdiff,
and alvinn. In Figure 5, the Fortran programs that provided the worst
training set for prediction are not as concentrated as in the C programs,
and they include mdljsp2, SDS, fpppp, swm256, and tomcatv. What makes
these programs particularly poor training sets? The answer can be seen in
the “branch quantile” values in Table VI. Each of the programs that are
poorly predictive tend to have a small number of branches that dominate
the branch activity in the program, as indicated by the “Q95” value in Table
VI. A small number of branches provides little training information for the
machine-learning algorithms.
Figure 6 shows the average miss rates for adding one program at a time

into the cross-validation training set. The “Best First” order adds one
program at a time to the training set, starting with the program that
achieved the lowest average miss rate in Figures 4 and 5 (e.g., the C
program flex and the Fortran program ora) and ending with the program
that had the highest miss rate. In Figure 6, the “Worst First” order adds
the programs to the cross-validation training set in the reverse order of
“Best First” (i.e., adding the program with the highest average miss rate to
the training set first).

Table X. Effectiveness of Predicting All Branches

Program

Combined Overall Miss Rates

BTFNT
APHC
(B&L’s)

DSHC
(B&L’s)

DSHC
(Ours)

ESP-DT

PerfectSep All

Other C Avg. 43 31 29 29 25 23 8
SPEC C Avg. 34 19 20 20 20 19 8
SPEC Fortran Avg. 29 24 26 25 21 22 6
Perfect Club Avg. 26 23 24 22 18 18 10
Overall Avg. 34 25 26 25 22 21 8

Sep represents the miss rate when only features for library branches are used to predict
library branches and when only features for main-program branches are used to predict
main-program branches. All represents the miss rate when all the branches executed in a
program are included in the cross-validation training set for prediction.
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While the curves are not monotonic, the trend for the first half of all
curves in Figure 6 is that the miss rate of the training set decreases as the
size of the training set increases. Interesting, for the “Best First” lines,
beyond the first half, the miss rate stays relatively constant, and in the
case of Fortran it actually increases. This effect is not as apparent in the
“Worst First” curves. Based on the previous figures, it is clear that some of
the programs in the corpus are quite atypical. Atypical programs in the
corpus would have a negative effect on the ESP method, especially if they
formed a majority of the programs in the corpus. The results in Figure 6
suggest that both our C and Fortran corpuses were sufficiently large and
diverse that the atypical programs did not have large negative effect on
their predictive ability. But the figure also indicates that care must be
taken that the programs in the corpus are “typical” of the programs being
predicted, an admittedly difficult quality to measure.

6.3.2 Effect of Size and Content of Feature Set. Table XI shows the miss
rates for each of the features described in Table V in sorted order of the
feature’s performance for both the C and Fortran programs. One interest-
ing result is that the best feature for predicting the Fortran programs,
Branch Instruction, is the worst predictor for the C programs. The features
with the best prediction between the Fortran and C programs are NotTaken
Successor Exit, Taken Successor Exit, and Taken Successor Ends. The first
two features correspond to the loop-exiting heuristic which predicts that
conditional branches with edges exiting a loop will not have that edge
taken.
The best single predictor for the C programs is Taken Successor Ends.

This feature encodes the branch type of the instruction that ends the
“taken successor” block (see Figure 2 for an explanation). Basic blocks can
be terminated by a number of instructions, the most frequent of which is
another conditional branch, which occurs 65% of the time. We examined the
decision tree formed by the Taken Successor Ends heuristic in more detail;
while the branch prediction contribution of the conditional branches was
largest, the seven other branch types contributed significantly to the
overall branch prediction rate—no one feature stood out as particularly
more important than the others. Simply ignoring the extra information, as
a human expert may be tempted to do, would have increased the miss rate
by a few percent. Using an automated expert system, we were able to
benefit from the additional information with little effort.
Table XII gives the top 10 double, triple, and quadruple feature combina-

tions, which provided the lowest miss rates. The feature numbers listed in
the table correspond to the feature numbers in Table XI. The table shows
that combining the top 4 features in Table XI does not necessarily achieve
the lowest miss rate. For example, three of the features in the best
quadruple feature combination (01,03,28,25) for the C programs have
among the worst miss rate for individual feature performance in Table XI.
It is also striking that using the best four-feature combination in Fortran
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can result in miss rates significantly lower than those achieved when using
the entire feature set (15.6% versus 20.3%).
Figure 7 shows the miss rate for adding features one at a time into the

cross-validation profile when using the decision tree ESP approach. Similar
to that in Figure 6, the “Best First” order for the C and Fortran programs
represents adding the features in the order shown in Table XI going from
the features with the lowest miss rate to the highest miss rate. The “Worst
First” order in Figure 7 adds the features in the reverse order of “Best
First.”
The figure shows a slight downward trend in the lines as more features

are added, although as with Figure 6 the trends are not monotonic. One
striking aspect of some of the lines is how adding a single feature (and not
necessarily an important one by itself) can significantly reduce the miss
rate. This is particularly true when the 13th feature (NotTaken Successor
Ends, feature 25) is added in the “Best First” Fortran line. This result, in
combination with the data in Table XII, strongly suggests that for Fortran,
at least, a small feature set containing the most important features results
in the best miss rates for the technique. Any additional features appear to
have little effect and sometimes reduce the effectiveness of the technique.

Fig. 6. Effect of adding programs incrementally to training set.
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7. SUMMARY

Branch prediction is very important in modern computer architectures. In
this article, we investigated methods for static program-based branch
prediction. Such methods are important, since they can be used to estimate
branch behavior at compile-time when performing compiler optimizations
[Hank et al. 1993].
We proposed a new, general approach to program-based behavior estima-

tion called evidence-based static prediction (ESP). We then showed how our

Table XI. Effectiveness of Using Individual Features for Prediction

C Sorted Features Fortran Sorted Features

Number Heuristic
Miss
Rate Number Heuristic Miss Rate

17 Taken Successor Ends 30.4 1 Branch Instruction 23.2
20 Taken Successor Exit 32.1 28 NotTaken Successor Exit 26.4
22 Taken Successor Call 34.8 2 Branch Direction 27.3
26 NotTaken Successor Loop 35.4 19 Taken Successor Backedge 27.4
16 Taken Block Postdominates 35.8 24 NotTaken Block

Postdominates
28.5

28 NotTaken Successor Exit 35.8 17 Taken Successor Ends 28.9
4 Branch Operand Function 36.3 20 Taken Successor Exit 29.0
5 Branch Operand Type 36.3 10 RB Function 29.1
6 RA Opcode 36.3 18 Taken Successor Loop 30.0
7 RA Function 36.3 3 Branch Operand Opcode 30.1
8 RA Type 36.3 6 RA Opcode 30.1
9 RB Opcode 36.3 26 NotTaken Successor Loop 31.1
10 RB Function 36.3 25 NotTaken Successor Ends 31.7
11 RB Type 36.3 8 RA Type 31.9
12 Loop Header 36.3 9 RB Opcode 32.0
13 Language 36.3 5 Branch Operand Type 32.2
15 Taken Block Dominates 36.3 7 RA Function 32.2
21 Taken Successor UseDef 36.3 11 RB Type 32.2
23 NotTaken Block Dominates 36.3 12 Loop Header 32.2
24 NotTaken Block

Postdominates
36.3 13 Language 32.2

27 NotTaken Successor
Backedge

36.3 16 Taken Block
Postdominates

32.2

30 NotTaken Successor Call 36.3 21 Taken Successor UseDef 32.2
14 Procedure Type 36.4 23 NotTaken Block

Dominates
32.2

29 NotTaken Successor UseDef 37.0 27 NotTaken Successor
Backedge

32.2

2 Branch Direction 37.9 29 NotTaken Successor
UseDef

32.2

18 Taken Successor Loop 37.9 30 NotTaken Successor Call 32.2
25 NotTaken Successor Ends 38.3 14 Procedure Type 32.4
3 Branch Operand Opcode 39.1 22 Taken Successor Call 32.7
19 Taken Successor Backedge 39.2 4 Branch Operand Function 34.2
1 Branch Instruction 42.5 15 Taken Block Dominates 35.0

For each feature there is a number, a short description of the feature, and the feature’s miss
rate for the C and Fortran program. Number represents the feature’s number.
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general approach can be applied specifically to the problem of program-
based branch prediction. The main idea of ESP is that the behavior of a
corpus of programs can be used to infer the behavior of new programs. In
this article, we used a neural network and decision tree to map static
features associated with each branch to a prediction that the branch will be
taken.
ESP has the following advantages over existing program-based branch

prediction approaches. First, instead of being based on heuristics, it is
based on a corpus of information about actual program behavior and
structure. We have observed that the effectiveness of heuristic approaches
to branch prediction can be architecture, compiler, and language depen-
dent. Thus, ESP can be specialized easily to work with new and different
programming languages, compilers, computer architectures, or run-time

Table XII. Effectiveness of Using the Best Small Combinations of Features for Prediction

C Combinations Fortran Combinations

Features Miss Rate Features Miss Rate

17,25 26.3 02,25 18.2
01,17 26.8 19,25 18.2
02,17 27.6 25,28 18.4
17,19 27.6 24,25 18.9
17,24 27.6 01,25 20.4
17,28 27.8 18,25 20.5
17,20 28.1 01,26 21.6
06,17 28.6 01,28 21.6
28,30 28.6 01,02 22.0
08,17 28.7 01,16 22.0

17,20,25 24.0 01,25,28 15.8
01,17,20 24.7 03,25,28 16.5
01,03,28 25.3 17,25,28 16.8
02,15,17 25.3 03,19,25 17.0
15,17,19 25.3 01,02,25 17.2
02,17,20 25.5 01,19,25 17.2
15,17,18 25.5 02,17,25 17.2
15,17,28 25.5 17,19,25 17.2
17,19,20 25.5 02,03,25 17.3
17,20,28 25.5 02,16,25 17.3

01,03,28,25 22.0 01,25,28,18 15.6
01,03,28,30 23.8 01,25,28,05 15.7
17,20,25,28 23.9 01,25,28,17 15.7
01,03,28,15 24.0 17,25,28,01 15.7
01,03,28,18 24.0 01,25,28,01 15.8
17,20,25,08 24.0 01,25,28,11 15.8
17,20,25,10 24.0 01,25,28,13 15.8
17,20,25,13 24.0 01,25,28,22 15.8
17,20,25,17 24.0 01,25,28,25 15.8
17,20,25,20 24.0 01,25,28,27 15.8

Top 10 double, triple, quadruple combinations are shown.
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systems. It is our hope that it can even be customized for specific applica-
tion domains or workgroups with a modest amount of effort.
Second, the ESP approach does not require careful consideration when

deciding what features to include in the training data. The neural net and
decision tree are capable of ignoring information that is irrelevant, and
such information does not degrade the performance of the branch predic-
tions. On the other hand, with heuristic methods, trial and error are often
required to find heuristics that are effective.
Finally, we have shown that the ESP approach results in branch predic-

tion miss rates that are better than previous program-based heuristic
approaches. Over a collection of 43 C and Fortran programs, the overall
miss rate of ESP branch prediction was 20%, which compares against the
25% miss rate using a fixed ordering of the Ball and Larus heuristics and
the overall 8% miss rate of the perfect static-profile predictor.
We see many future directions to take with this work. Currently, we have

investigated how effective the neural network and decision tree are at
providing a prediction for each branch. But both methods provide addi-
tional information, and the decision tree in particular provides an estimate
of the branch probability. If that probability is greater than 50% we
estimate that the branch will be taken. One future goal is to incorporate
this branch probability data to perform program-based profile estimation
using ESP. It is simple to add more “features” into our training informa-
tion. We also plan to gather large bodies of programs in other programming
languages, such as C11, Java, and Scheme and evaluate how ESP branch
prediction works for those languages. We are also interested in seeing how
effective other classification techniques, such as memory-based reasoning,

Fig. 7. Effect of adding features incrementally to training set.
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will perform for ESP prediction. Finally, we are interested in comparing
the effectiveness of using ESP prediction techniques against using profile-
based methods across a range of optimization problems.
In order to achieve full instruction-level parallelism on future processors,

profile-based compiler optimizations need to be performed. Since not all
users will take the time and effort to profile their programs, techniques
that estimate program behavior at compile time, such as ESP, will become
increasingly important.
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