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Abstract

There is a ever-growing need to add structure in the form
of semantic markup to the huge amounts of unstructured text
data now available. We present the technique of shallow se-
mantic parsing, the process of assigning a simple WHO did
WHAT to WHOM, etc., structure to sentences in text, as a
useful tool in achieving this goal. We formulate the seman-
tic parsing problem as a classification problem using Sup-
port Vector Machines. Using a hand-labeled training set
and a set of features drawn from earlier work together with
some feature enhancements, we demonstrate a system that
performs better than all other published results on shallow
semantic parsing.

1. Introduction

Automatic, accurate, wide-coverage techniques that can an-
notate naturally occurring text with semantic roles can fa-
cilitate the discovery of patterns of information in large text
collections [15]. Shallow semantic parsing is a process for
producing such a markup. In shallow semantic parsing, se-
mantic tags are assigned to the arguments, or case roles, as-
sociated with each predicate in the sentence. This technique
is used widely in Information Extraction, and is being eval-
uated for use in Summarization, Question Answering and
Machine Translation.

We treat the problem of tagging parsed constituents as
a multi-class classification problem, where the classifier is
trained in a supervised manner from human-annotated data
using Support Vector Machines [17]. The next section de-
scribes our training and test corpora. Rest of the paper de-
scribes our system in detail, compares it to other systems,
presents some analysis, and points to future work.

2. Semantic Annotation and Corpora

There are many possible approaches to specifying the roles
to be used for the markup. Two corpora are available for de-
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veloping and testing semantic annotation — FrameNet' [1]
and PropBank? [11]. FrameNet uses predicate specific la-
bels such as JUDGE and JUDGEE. PropBank uses predi-
cate independent labels — ARGO, ARG, etc. In this pa-
per, we will be reporting on results using PropBank, a one
million word corpus in which predicate argument relations
are marked for every occurrence of every verb in the Wall
Street Journal (WSJ) part of the Penn TreeBank [13]. The
arguments of a verb are labeled sequentially from ARGO to
ARGS5, where ARGO is usually the subject of a transitive
verb; ARG, its direct object, etc. In addition to these “core
arguments,” additional “adjunctive arguments,” for exam-
ple, ARGM-Loc, for locatives, and ARGM-TMP, for tem-
porals, are also marked. We will refer to these as ARGMs.
An example PropBank style markup:

1. [argo Merrill Lynch Co.] refuses to [predicate PET-
form] [ 4 r1 index arbitrage trades] for [ 4 rg2 clients.]

All experiments in this paper are performed on the July
2002 release of PropBank. In these experiments, the test set
is Section-23 of the WSJ data. Section-02 through Section-
21 are used for training. The training set comprises ap-
proximately 51,000 sentences with 132,000 arguments, and
the test set comprises approximately 2,700 sentences with
7,000 arguments.

3. System Architecture

The basic steps of our shallow semantic parser are similar
to those outlined by Gildea & Jurafsky (G&J) [6]:

procedure Parse(Sentence)
- Generate a full syntactic parse for the Sentence
- Identify all verb predicates
for predicate € Sentence do
- Extract a set of features for each node in the tree
relative to the predicate
- Classify each node as NULL, or as one of the
PropBank arguments
- Generate Parse
end for

lhtt:p: //www.icsi.berkeley.edu/  framenet/
2htt:p: //www.cis.upenn.edu/ ace/
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The features used by the classifier are:
Predicate — The predicate itself is used as a feature.

Path — The syntactic path through the parse tree from the
governing predicate to the parse constituent being classi-
fied. For example, in Figure 1, the path from ARGO — “The
lawyers” to the predicate “went”, is represented with the
string NPTS|VP|VBD.

Q&”S\Q
NP VP
| ———
The lawyers VBD PP NP
ARGO [ | |
went to work
predicate NULL ARG4

Figure 1. lllustration of path NP{S|VP|VBD

Phrase Type — The syntactic category (NP, PP, S, etc.) of
the phrase corresponding to the semantic role.

Position — Whether the phrase is before or after the govern-
ing predicate.

Voice — Whether the governing predicate is realized as an
active or passive construction.

Head Word - The syntactic head of the phrase.

Sub-categorization — This is the phrase structure rule ex-
panding the predicate’s parent node in the parse tree. For
example, in Figure 1, the sub-categorization for the predi-
cate “went” is VP—VBD-PP-NP.

We use SVM as the classifier in the ONE vs ALL for-
malism, where an SVM is trained for each class (ARGO-5,
ARGMs, and NULL) to discriminate between that class and
all others. We found it efficient to divide the classification
process into three stages:

1. A binary NULL vs NON-NULL classifier labels each
node as NULL or as being some argument class. A
threshold is set so that nodes with very high confidence
of being NULL are pruned.

2. Inasecond pass, each node not pruned in the first stage
is classified as one of the set of argument classes or
as NULL using the ONE vs ALL strategy. In this col-
lection of binary classifiers, the NULL vs NON-NULL
classifier is trained on nodes that weren’t pruned by
the first pass, and so is different than the one in the
first pass.

3. Overlapping argument assignments are disallowed.
Since there are no overlapping roles in the training set,
this is another constraint that can be enforced and re-
sults in a significant increase in precision with little or
no reduction in recall.

4. Experimental Configurations and Results

For our experiments, we used tinySVM? along with Yam-
Cha* as the SVM training and test software. The system
was optimized on three parameters: a) The kernel function
used - polynomial with degree 2; b) The cost per unit viola-
tion of the margin (C=1), and c¢) Tolerance of the termina-
tion criterion (e=0.001).

As a baseline, we trained a system using the set of fea-

tures listed earlier. The Precision, Recall and F; measure
are shown in the Baseline row of Table 1. We also tested
four new features, Verb Clusters, Named Entities, Partial-
Path and Head Word Part-of-Speech®.
Verb clustering — In order to improve performance on
verbs that are unseen in the training set, we clustered verbs
into 64 classes using the probabilistic co-occurrence model
of Hofmann [10] and using a distance function derived from
Lin’s database of verb-direct object relations [12]. The verb
class of the current predicate was added as a feature. The
performance improvement is shown in Table 1.

No Overlaps
P R

F,
Baseline 85 79 82
84

With verb clusters 86 81

Table 1. Improvement on adding verb-cluster

Named Entities in the constituents — Another obvious
improvement was considering the presence of named en-
tities present in the constituents. We tagged 7 named en-
tities (PERSON, ORGANIZATION, LOCATION, PERCENT,
MONEY, TIME, DATE) using Identifinder [2] and added
them as binary features. This feature is true if the entity is
contained in the constituent. On the task of assigning labels
to constituents known to represent either “core” or “adjunc-
tive” arguments, adding this feature increased the accuracy
from 87.74% to 88.24%. The most significant improvement
was for adjunct roles like temporals (ARGM-TMP) and loca-
tives (ARGM-L0OC) as shown in Table 2. Named Entities
are used in the argument classifiers but not in the NULL
vs NON-NULL classifier. We found the classifier degraded
when this feature was added.

H [ ArGM-Loc [ ArGM-TmP |

[ PITR[K [ PTRTF

‘ Without NE ‘ 64 ‘ 55 ‘ 59 ‘ 80 ‘ 85 ‘ 82 H
With NE 71 67 69 84 87 85

Table 2. Improvement using Named Entities

Partial Path — We tried generalizing the Path feature by
setting its value to the part of the original Path feature that
goes from the constituent to the common parent. Partial

2’htt:p ://cl.aist-nara.ac.jp/ talus-Au/software/TinySVM/

4htt:p ://cl.aist-nara.ac.jp/ taku-Au/software/yamcha/

SUnless mentioned otherwise, the test set comprises perfect hand-
corrected, “gold-standard” parses.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03)
0-7695-1978-4/03 $ 17.00 © 2003 |IEEE



Path for the Path illustrated in Figure 1 is NP7S. On the task
of assigning labels to constituents known to represent “core
arguments”, adding this feature increased the accuracy from
93.7% to 94%.

Head Word Part-of-Speech (POS) — Adding the Head
Word POS improved NULL vs NON-NULL classification ac-
curacy from 91% to 92%

4.1. Alternative Pruning Strategies. A preliminary error
analysis suggested that the biggest confusion was between
NULL and NON-NULL roles, therefore we decided to re-
examine our strategy of filtering out nodes that have a high
likelihood of being NULL in a first pass. To do this, we
converted the raw SVM scores to probabilities by fitting a
sigmoid function [14]. We trained and tested systems for
three conditions:

1. System I, a one pass system where all ONE vs ALL
classifiers are trained on all the data. This has consid-
erably higher training time as compared to the other
two.

2. System II, which uses a NULL vs NON-NULL clas-
sifier in a first pass. The difference is that here, all
nodes labeled NULL are filtered (not just high confi-
dence ones.)

3. System III, which also uses a NULL vs NON-NULL
classifier, but filters out nodes with high confidence of
being NULL in a first pass.

A detailed description of all possible formulations, are
described at length in [9, 8]

Table 3 shows performance on the task of identifying and
labeling PropBank arguments. The two-stage System III
performs the best. It slightly outperforms the system trained
on all the data. The fact that about 80% of the nodes in a tree
are NULL, and we have to train only one classifier on the
entire data, there is a considerable saving in training time.
Therefore, we decided to continue using this strategy.

No Overlaps
P R Fy
SVM System I 87 | 80 | 83.3
SVM System II 84 | 80 | 819
SVM SystemIII | 86 | 81 83.4

Table 3. Comparing Pruning Strategies

5. Comparing Performance with Other
Systems

We evaluated our system in a number of ways. First, we
compare it against 4 other shallow parsers in the literature.
Second, we compare the performance of our system when
using gold-standard parses versus when using an more re-
alistic parser — Charniak Parser [3]. Finally, we compare
the performance of our parser on “core arguments” (ARGO-
ARGS).

In comparing systems, results are reported for tree types
of tasks:

1. Argument Identification - Given a (correct) parse tree,
label each node as NULL or as being some argument
(the NULL - NON-NULL discrimination).

2. Argument Classification - Given the (correct) set of
nodes in the tree that are arguments, label each node
with the argument class label.

3. Combined Identification and Classification - This is
the real usage scenario where the system must classify
nodes as NULL or some specific argument.

5.1. Description of the Systems.

5.1.1 The Gildea and Palmer (G &P) System. This sys-
tem uses the same features used by G&J [6], which are the
ones that we started with. They report results on the De-
cember 2001 release of PropBank.

5.1.2 The Surdeanu ef al. System. Surdeanu ef al. [16]
report results on two systems. One that uses exactly the
same features as the G&J [6] system. We call this “Sur-
deanu System 1.” [16] They then show improved perfor-
mance of another system — “Surdeanu System II,” [16]
which uses some additional features. They use the July
2002 release of PropBank.

5.1.3 The Gildea and Hockenmaier (G&H) System.
The G&H [5] system uses features extracted from Com-
binatory Categorial Grammar (CCG) corresponding to the
features that were used by G&J [6] and G&P [7] systems.
They use a slightly newer — November 2002 release of Prop-
Bank. We will refer to this as “G&H System I”. They also
report performance on the Treebank-based data — “G&H
System I1.”

5.1.4 The Chen and Rambow (C&R) System. Chen
and Rambow report on two different systems. The first
“C&R System I” uses surface syntactic features much like
the G&P [7] system. The second “C&R System II”” uses
additional syntactic and semantic representations that are
extracted from a Tree Adjoining Grammar (TAG).

5.2. Role Classification Using Known Boundaries. Ta-
ble 4 compares the role classification accuracies of various
systems, and at various levels of classification granularity,
and parse accuracy. It can be seen that the SVM System
performs significantly better than all the other systems on
all PropBank arguments.

“C&R System II” [4] uses some additional syntactic fea-
tures extracted from TAG. The “C&R System I” [4] that
uses the almost the same features as the SVM System per-
forms considerably worse. The test sets of the “C&R Sys-
tem I’ [4] and SVM System are not identical, but neverthe-
less, the rough comparison is valuable.

5.3. Argument Identification (NULL vs NON-NULL). Ta-
ble 5 compares the results of the task of identifying the
parse constituents that represent semantic arguments. As
expected, the performance degrades considerably when we
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Classes System [ Gold | Automatic_]|
| Accuracy | Accuracy ||

ARGO-5 SVM 88 87

+ G&P 77 74

ARGMS Surdeanu System IT 84 -
Surdeanu System I 79 -

CORE ARGUMENTS SVM 93.9 90

(ARGO-5) C&R System II 93.5 -
C&R System [ 92.4

Table 4. Argument classification

extract features from an automatic parse as opposed to a
gold-standard parse. This indicates that the syntactic parser
performance directly influences the role boundary identifi-
cation performance. This could be attributed to the fact that
the two features, viz., Path and Head Word that have been
seen to be good discriminators of the semantically salient
nodes in the syntax tree, are derived from the syntax tree.

H Classes ‘ System | Gold | Automatic ||
| PITRJA [ P RIFE]
ARGO-5 | SVM 94 1 90 | 92 | 89 | 80 | 84
+ Surdeanu System II - - 89 - - -
ARGMS Surdeanu System I 85 | 84 85

Table 5. Argument identification

5.4. Argument Identification and Tagging. Table 6 shows
the results for the task where the system first identifies can-
didate argument boundaries and then labels them with the
most likely role as discussed in Sections 3 and 4. This is the
hardest of the three tasks outlined earlier. SVM does a very
good job of generalizing in both stages of processing.

Classes System [ Gold [ Automatic i
[ PIR[R [ P] R[F ]

ARGO-5 SVM System III 86 81 83 82 73 77
+ G&H System I 76 | 68 72 | 71 63 67
ARGMS G&H System 11 79 | 70 | 74 | 73 | 61 66

G&P 71 | 64 | 67 | 58 | 50 | 54
ARGO0-5 SVM SystemIIT | 89 | 85 87 | 85 | 77 81

G&H System I 82 | 79 80 | 76 | 73 75
G&H System 11 85 82 84 76 70 73
C&R System 1T - - - 65 75 70

Table 6. Identification and classification
6. Conclusions

We have extended the work of Gildea and Jurafsky [6] on
shallow semantic role labeling. We first made a number
of small augmentations to their system which generalizes
the statistical power of the original algorithm, improving
the precision and recall significantly on test data. We then
replaced the probability estimators of the original system
with an SVM. This resulted in a substantial improvement
the system’s overall performance. A detailed comparison of
our results with those reported by other groups working on
similar tasks indicate that ours outperforms all. One draw-
back of the current system is that it labels each argument in
a sentence independent of the others. We plan to overcome

this by converting the SVM output into an n-best lattice and
using other features such as role language model score.

We would like to thank Ralph Weischedel and Scott Miller of BBN Inc.
for letting us use their named entity tagger — IdentiFinder; Daniel Gildea
for providing the source for his parser; Martha Palmer for providing us
with the PropBank data; Valerie Krugler and Karin Kipper for mapping
the PropBank arguments to thematic roles.
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