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Abstract

The bandwidth usage due to HTTP traffic often varies
considerably over the course of a day, requiring high
network performance during peak periods while leav-
ing network resources unused during off-peak periods.
We show that using these extra network resources to
prefetch web content during off-peak periods can sig-
nificantly reduce peak bandwidth usage without com-
promising cache consistency. With large HTTP traffic
variations it is therefore feasible to apply “bandwidth
smoothing” to reduce the cost and the required capacity
of a network infrastructure. In addition to reducing the
peak network demand, bandwidth smoothing improves
cache hit rates. We apply machine learning techniques to
automatically develop prefetch strategies that have high
accuracy. Our results are based on web proxy traces gen-
erated at a large corporate Internet exchange point and
data collected from recent scans of popular web sites.

1 Introduction

The bandwidth usage due to web traffic can vary consid-
erable over the course of a day. Figure 1 shows the web
traffic bandwidth usage at the Palo Alto gateway of Dig-
ital Equipment Corporation. The figure shows that peak
bandwidth can be significantly higher than the average
bandwidth usage. Bandwidth usage varies dramatically
each day but the fluctuations are similar each week-
day with clearly discernible peak and off-peak periods.

�
For a more detailed version of this paper see [18].
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Figure 1: The typical bandwidth usage at the Palo Alto
Gateway over the course of two weekdays. Each data
point in the graph is the average Kbyte per second byte
request rate of a 15 minute interval. Bandwidth usage
varies dramatically each day but the fluctuations are sim-
ilar each weekday with clearly discernible peak and off-
peak periods. In this traffic profile the peak/off-peak
boundaries lie at around 4:30 AM and 4:30 PM.

These diurnal access profiles are typical for enterprise-
level web caches [22, 14, 17].

To perform well, a network needs to accommodate peak
bandwidth usages. A reduction in peak bandwidth usage
will therefore save network resources including lower
demand for DNS, lower server and proxy loads, and
smaller bandwidth design requirements.

A common approach to reducing bandwidth usage is to
cache web objects as they are requested. Demand-based
caching reduces both peak and off-peak bandwidth us-
age. The effectiveness of this form of caching is limited



because of the high rate-of-change of large parts of the
web content, the size of the web, the working set size,
and the object reuse rates [10].

Peak bandwidth usage can also be reduced by shifting
some bandwidth from peak periods to off-peak periods.
We call this approach bandwidth smoothing. In contrast
to caching, bandwidth smoothing does not necessarily
reduce the daily average bandwidth usage – in fact, it
will increase the total bandwidth usage. However, this
approach uses unused resources during off-peak to re-
duce peak bandwidth usage.

Bandwidth smoothing can be accomplished by either ap-
propriately changing user bandwidth usage behavior or
by prefetching data during off-peak time. In this paper
we will focus on the feasibility of the latter approach.

Web caching is performed by web proxies with caches
(web caches) or by routers with attached caches (trans-
parent caches). Both implementations are usually de-
ployed at network traffic aggregation points and edge
points between networks of multiple administrative do-
mains. Aggregation points combine the web traffic from
a large network user community. This larger user com-
munity increases the cache hit rate and reduces latency
[11]. Edge points are an opportunity to reduce the
bandwidth usage across domains because inter-domain
bandwidth is frequently more expensive than bandwidth
within domains. Corporate gateways are usually both
aggregation points and edge points. We account for this
common configuration by basing our feasibility study on
data collected from web proxies which are installed at a
major Internet gateway of a large international corpora-
tion.

Network resources such as bandwidth are frequently
purchased in quanta (e.g., a T1 or T3 line). Reducing
peak bandwidth usage by less than a quantum may not
result in any cost savings. However, small reductions of
peak bandwidth usage in many locations of a large or-
ganization can aggregate to savings that span bandwidth
purchase quanta and can therefore lead to real cost sav-
ings. Reducing peak bandwidth requirements also ex-
tends the lifetime of existing network resources by de-
laying the need to purchase the next bandwidth quantum.
For new networks, peak bandwidth reduction reduces
the bandwidth capacity requirements which allows the
purchase of fewer or smaller bandwidth quanta.

The rest of the paper is organized as follows: in the next
section we lay out a framework for bandwidth smooth-
ing, analyze the prefetchable bandwidth of the Palo Alto
gateway. The following section is on how to measure

prefetch performance. In section 4 we demonstrate and
discuss the performance of machine learning techniques
to automatically develop prefetch strategies. Section 5 is
an overview of related work. We conclude with a sum-
mary and future work.

2 Prefetchable Bandwidth

The goal of bandwidth smoothing is to shift some of
the bandwidth usage from the peak usage periods to off-
peak periods. Bandwidth smoothing is a technique that
requires caching; prefetched items must be stored in the
cache until they are referenced. Furthermore, we as-
sume that items remain in the cache whether they are
prefetched or demand fetched by a user. Obviously,
cached items no longer need to be prefetched.

The effect of caching needs to be taken into account
before smoothing techniques are applied to ensure the
effects are additive. We are therefore only interested
in “steady-state” bandwidth smoothing where we only
study the effect of off-peak prefetching on the directly
following peak period.

Figure 2 shows cache effects on bandwidth consump-
tion. Caching somewhat smoothes the bandwidth con-
sumption because it reduces the magnitude of the peak
bandwidth usage more than the off-peak bandwidth us-
age. Our measurements also indicate that the hit rate
during peak periods is higher than during off-peak peri-
ods.

One way to accomplish bandwidth smoothing is to pre-
dict peak period cache misses and prefetch the corre-
sponding objects during the preceding off-peak period.
The remainder of this section presents definitions and
evaluates the prefetch potential and characteristics of
prefetchable objects.

2.1 Definitions

We call an object prefetchable for a given peak period if
it has the following properties: the object

� is referenced during the peak period and was not
found in the cache,

� exists during the preceding off-peak time,

� is cacheable, and
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Figure 2: The smoothing effect of traditional caching
on bandwidth usage. The cache byte hit rate is higher
during the peak period because of more sharing oppor-
tunities of a larger network user community.

� is unaltered between the beginning of the preceding
off-peak period and the time it is requested.

If an object fails to meet any of these conditions for a
given peak period we call it non-prefetchable for that
peak period. Because of the first condition a non-
prefetchable object during one peak period can be a
prefetchable object during another peak period. Non-
prefetchable objects which meet all prefetchability con-
ditions except the first are called no-miss-prefetchable
objects.

The combined size of all prefetchable objects of a given
peak period is the prefetchable bandwidth. There are
three disjoint kinds of prefetchable objects, depending
on the web access history of the aggregated network user
community:

� Seen prefetchable objects have names which were
previously referenced. These are either revali-
dation misses (caused by stale data) or capacity
misses (caused by finite-capacity caches).

� Seen-server prefetchable objects are referenced for
the first time, but they are served from previously
accessed web servers. These are compulsory misses
because they have not been seen before.

� The names and servers of unseen-server prefetch-
able objects were unknown prior to the current
reference. Neither the object nor the server were
previously accessed. These are also compulsory
misses because the data has not been seen before

We distinguish seen-server prefetchable and unseen-
server prefetchable objects because predicting the latter
kind of objects is more difficult: the proxy access his-
tory offers no information about the existence of unseen
servers.

2.2 Experimental Measurement and Evalua-
tion Environment

In order to estimate the prefetchable bandwidth for band-
width smoothing we analyzed the Digital WRL HTTP
proxy request traces [15]. The traces cover the days from
August 29th through September 22nd, 1996 and consist
of over 22 million requests.

To identify prefetchable bandwidth in this trace we need
to determine the trace’s peak and off-peak periods, cache
misses, and the cacheability and object age of each
missed object. For the sake of simplicity we divided
bandwidth usage into off-peak periods starting at 4:30
PM and ending at 4:30 AM each weekday, and peak pe-
riods starting at 4:30 AM and ending at 4:30 PM each
weekday (see figure 1, all times in Pacific Daylight Sav-
ings Time). We analyzed the HTTP traffic to obtain ob-
ject age information in order to identify prefetchable ob-
jects.

To identify misses in the Digital WRL trace (which was
generated by a cacheless web proxy), we assumed (1) a
cache of infinite size, (2) a cache hit is represented by a
re-reference of an object with the same modification date
as the previous reference1, and (3) the cache never serves
a stale object. From this cache model we determine the
list of objects and the miss bandwidth for peak and off-
peak periods.

To preclude any cache cold-start effects on our mea-
surements we applied this model for at least two days
worth of trace data before taking any bandwidth mea-
surements.

2.3 Prefetchable Bandwidth Analysis

Figure 3 shows the composition of the miss bandwidth
during a typical weekday peak period of the Digital trace

1The modification date must be non-zero. By convention a mod-
ification date of zero is used for dynamic and non-cacheable objects,
i.e. these objects always miss in the cache. Some researchers use mod-
ification date and size to differentiate objects [19]. However, we are
not aware of any web caches which do not determine object staleness
solely based on object age.
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Figure 3: The components of the reference bandwidth.
The miss bandwidth was measured for one peak pe-
riod after a cache warm-up of over two days. The hit
rate of the warm cache is 31%. The contribution of
seen prefetchables and unseen-server prefetchables to
the miss bandwidth is negligible.

out of an infinite cache. About 40% of the miss band-
width is prefetchable.

Almost all the prefetchable bandwidth consists of seen-
server prefetchable objects. The other prefetchable com-
ponents (seen prefetchable and unseen-server prefetch-
able objects) are negligible. With a fixed size cache
the number of seen prefetchable objects would increase
through capacity misses. Unseen-server prefetchable
objects are entirely workload dependent and indepen-
dent of cache configurations. For a bandwidth smooth-
ing prefetching strategy to work, it must rely on web
server information in order to discover the names of
seen-server prefetchable objects. Thus, prefetching in-
volves two subproblems: predicting what to look for (the
object selection problem) and predicting where to look
(the server selection problem).

Before analyzing the server selection problem we intro-
duce a few definitions that proved to be convenient: We
call the prefetchable bandwidth served by a server the
prefetchable service of this server. A top prefetchable
service group is a subset of all servers such that the sub-
set consists of servers where each server serves a higher
amount of prefetchable bandwidth than any server in the
subset’s complement. Servers in a prefetchable service
order are ordered by their prefetchable service.

The server selection problem is simplified by the fact
that a small number of servers provide most of the
prefetchable items. According to our data, 10% of all
servers serve 70% of all prefetchable bandwidth. Fig-
ure 4 shows the cumulative prefetchable service distri-
bution over servers in reverse prefetchable service order.
These results, however, only show the existence of top
prefetchable service groups for a given day. The diur-
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Figure 4: The distribution of prefetchable bandwidth
over all servers that served a miss during a single peak
period, in reverse prefetchable service order. The mea-
surement was taken after a cache warm-up of over two
days. The fact that about 4% of servers serve 50% of all
prefetchables simplifies the server selection problem.

nal bandwidth usage suggests there may be a day-to-day
stability of top prefetchable service groups. To verify
this conjecture, we tested the following simple heuris-
tic: if a server serves prefetchable bandwidth during a
given peak period then the same server serves prefetch-
able bandwidth during the following peak period.

We found that unless the top prefetchable service group
consists only of a few hundred servers, this simple
heuristic fails [18]. There is a large spread of predictabil-
ity in larger groups which suggests that keeping track of
individual server behavior is beneficial. However, track-
ing prefetchability profiles of a large number of servers
is impractical if done manually. In section 4 we in-
vestigate the performance of prefetching strategies that
are automatically derived from using standard machine
learning techniques.

3 Prefetch Performance

In order to exploit prefetchable bandwidth we need to
actually prefetch objects from servers according to a
prefetch strategy. The performance of a prefetch strat-
egy depends on how closely the set of prefetched ob-
jects matches the set of prefetchable objects. In prac-
tice, a certain percentage of the prefetched bandwidth
consists of objects fetched because of false positive pre-
dictions and a certain amount of prefetchable bandwidth
is not prefetched because of false negative predictions.
Prefetch performance is defined by three measures:
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We now show how these performance metrics relate to
bandwidth smoothing. The goal of bandwidth smooth-
ing is to always keep bandwidth consumption below a
“target level” which ideally is significantly lower than
the peak level without bandwidth smoothing. The low-
est possible target level for a particular bandwidth profile
depends on the total amount of prefetchable bandwidth,
the extra bandwidth available for prefetching during off-
peak time, and the prefetch performance.

Figure 5 shows that the extra bandwidth available for
prefetching is bounded by the target level. Thus, the
definition of the lowest possible target level is recur-
sive: the lower the target level the less extra bandwidth is
available for prefetching, which in turn requires higher
prefetching performance to maintain the target level. If
the target level increases, more extra bandwidth becomes
available and less prefetching performance is required
to maintain the target level. Because of this counter-
balance of target level reduction and extra bandwidth
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Figure 5: The target level is the peak bandwidth con-
sumption after prefetching (peak of bandwdith profile
after prefetching). The extra bandwidth available for
prefetching during off-peak times is bounded by the
target level. The lowest achievable target level de-
pends (recursively) on the extra bandwidth available for
prefetching during off-peak times and the performance
of prefetching.

availability, the lowest possible target level is always de-
fined.

Figure 6 shows minimum target levels of the band-
width usage profile depicted in figure 2 depending on the
prefetchable bandwidth and different accuracy and cov-
erage levels (see [18] for a detailed description on how
to calculate minimum target levels). This figure quanti-
fies our earlier qualitative measures: higher accuracy re-
duces the needed bandwidth for prefetching during off-
peak periods while higher coverage increases the band-
width savings during peak periods. Interestingly, 25%
accuracy achieves already over 40% of the maximum
peak level reduction. This is due to the aforementioned
mutual relationship between target level and extra band-
width available for prefetching. Our later experiments
will show that we can automatically develop prefetch
strategies with high accuracy and medium coverage. We
developed these tests using a machine learning tool.

4 The Use of Machine Learning for Find-
ing Prefetch Strategies

The content as well as the traffic characteristics of
the World-Wide Web is complex, heterogeneous and
changes over time as new services become available and
new protocol standards replace old ones. To perform
well, prefetch algorithms have to be able to adapt to
these changing patterns. Other areas of computer sys-
tems research with similar problem complexities and
similar requirements for adaptability have successfully
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Figure 6: The relationship between prefetchable band-
width, prefetch performance, and the lowest achievable
target level (see [18] on how to calculate minimum tar-
get levels). A prefetch performance of zero coverage and
zero accuracy means that none of the prefetched objects
are prefetchable. For the ideal prefetch performance of
100% coverage and accuracy the target level is at first in-
versely proportional to the amount of prefetchable band-
width until the extra bandwidth available for prefetching
is exhausted. At that point additional prefetchable band-
width does not decrease the target level. Generally, cov-
erage determines the fraction of prefetched bandwidth
that actually lowers the target level and accuracy deter-
mines the maximum amount of prefetchable bandwidth
that can be prefetched until the extra bandwidth avail-
able for prefetching is exhausted.

applied machine learning techniques (see for exam-
ple [3]). We therefore investigate the use of machine
learning techniques to automatically generate prefetch-
ing strategies. Automatic generation allows us to adapt
prefetch strategies as often as every day.

The goal of a bandwidth smoothing prefetch strategy
is to predict prefetchable objects. As we have shown
in section 2.2 almost all prefetchable objects are seen-
server-prefetchable. It would be very difficult to come
up with prefetch strategies that predict the names of
prefetchable objects without knowing of their existence.
Instead we assume that the prefetch strategy has some-
how access to the names of potentially prefetchable ob-
jects and is trained to pick from these objects based on
their age, MIME-type, size, server name, and top level
domain. Clearly, knowing the names of all objects on the
Internet is an unrealistic assumption, especially consid-
ering the goals of bandwidth smoothing. We have how-
ever shown in section 2.2 that a relatively small number
of servers serve the majority of prefetchable bandwidth.
Thus, we can significantly reduce the number of consid-
ered web sites without losing much coverage. Addition-
ally, new services such as [2] allow the fast and compact

retrieval of web server content information. We think
that our approach becomes more realistic as these ser-
vices become more available.

4.1 Machine Learning

There are many approaches to machine learning. We
used an approach called supervised learning, where the
learning algorithm is given a set of input-output pairs (la-
beled data). The input describes the information avail-
able for making the decision and the output describes
the correct decision [8]. As we demonstrate below, trace
data of web proxy servers and content on the web pro-
vide a wealth of labeled data.

The result of a learning task is a classification model
(also called a classifier) which allows the classification
of unseen data below a certain error rate. For generating
prefetch strategies we use a tool called RIPPER [4] which
efficiently produces and evaluates a classifier in form of
a propositional rule set and which is freely available for
non-commercial use at [5].

To illustrate what RIPPER does we use a simple learn-
ing task from the golf playing domain. First we need to
declare the values of attributes and classes:

Play, ’No Play’.
outlook: sunny, overcast, rain.
temperature: continuous.
humidity: continuous.
windy: true, false.

The first line defines the possible class values (either
“Play” or “No Play”). The last four lines define the
name and possible values of each attribute that charac-
terizes each training case. Each line in the following
training data shows an example of when to play or not
to play golf. The first four values correspond to the four
attribute definition above, and the last value marks the
classification of the example.

sunny, 85, 85, false, ’No Play’.
sunny, 80, 90, true, ’No Play’.
overcast, 83, 78, false, Play.
rain, 70, 96, false, Play.
rain, 68, 80, false, Play.
rain, 65, 70, true, ’No Play’.
overcast, 64, 65, true, Play.
sunny, 72, 95, false, ’No Play’.



sunny, 69, 70, false, Play.
rain, 75, 80, false, Play.
sunny, 75, 70, true, Play.
overcast, 72, 90, true, Play.
overcast, 81, 75, false, Play.
rain, 71, 80, true, ’No Play’.

From this data RIPPER constructs a classifier in the form
of three rules: two rules on when not to play and one
rule that defines the default value as “Play”. The first
rule means,“if it is windy and rain is to be expected, do
not play golf,” and the second, “if the humidity is 85%
or higher and the outlook is sunny, do not play golf.”

’No Play’ :- windy=true, out-
look=rain (2/0).
’No Play’ :- humidity>=85, out-
look=sunny (3/0).
default Play (9/0).

The golf data set is a coherent data set, i.e. none of the
examples contradict each other. This is reflected in the
parenthesized values after each rule which indicate the
number of examples which support the rule and the num-
ber of examples which do not match the rule. In a coher-
ent data set the latter is always zero. The real strength
of RIPPER is its ability to deal with incoherent data sets
with contradicting examples. In this case RIPPER at-
tempts to identify a classifier with a low error rate.

RIPPER also supports the construction of ensembles
of classifiers. An ensemble of classifiers is a set of
classifiers whose individual decisions are combined in
some way, usually by weighted voting (see [9] for an
overview). Our results include performance data using
an ensemble construction algorithm called ADABOOST

[13, 12]. The technique is also called boosting and
works roughly like this: Each classifier is constructed
using a “weak learner” such as RIPPER. The difference
between the individual classifiers is that they are trained
on increasingly more difficult learning problems. The
first classifier is learned by the original training data.
The next learning problem is constructed by adding
weight to the examples which are misclassified by the
first classifier. This more difficult learning problem is
used to train the next classifier. The examples misclassi-
fied by the second classifier receive additional weight in
the next learning problem, and so on.

4.2 Training

In order to find a prefetch strategy, one has to find train-
ing data consisting of positive evidence, i.e. examples of
objects that should be prefetched, and negative evidence,
i.e. examples of objects that should not be prefetched.

Access log data from web proxy servers provides posi-
tive evidence because it includes sufficient information
to identify prefetchable objects (in the strict sense of our
definition of prefetchable objects). Negative evidence
consists of objects that do not meet all prefetchability
conditions. Access log data provides some negative ev-
idence as it includes all objects that are missed during
a peak period but either didn’t exist during the preced-
ing off-peak time, were not cacheable, or were modified
between the beginning of the preceding off-peak period
and the time it was requested. However, access log data
does not include any evidence of no-miss-prefetchables,
objects that meet all prefetchability conditions except
they are not missed during a peak period. This infor-
mation is only available from a content summary of
web servers which include the name and other attributes
about each potentially prefetchable object.

There are multiple ways to acquire this information
which differ in their impact on bandwidth consumption
and their requirements on local services. For example, if
the local site also runs a large search engine, the negative
evidence can be derived from the search engine index
as long as the search index contains information about
textual as well as non-textual objects (see for example
[2]). This approach has very little impact on bandwidth
consumption. If no local search engine is available, a
remote search engine could offer a service that allows
querying for a very compact representation of the names
and attributes of objects with certain properties. Finally,
servers themselves could provide such a querying ser-
vice in some well-known manner.

4.3 Training and Testing Methodology

We collected access log data of 14 days of full gateway
traffic at Digital WRL (Monday, 5/18/1998 - Sunday,
5/31/1998). Near the end of the 14 day period, during
Friday, 5/29/1998, we identified the top 320 prefetch-
able service group which serves about 45% of the total
prefetchable bandwidth during the 11 day period prior to
Friday. Having none of the above services available for
efficiently acquiring web server content information, we
used a “web robot” to scan these 320 servers during the



weekend (5/30-31/1998). The resulting scan contains in-
formation on 1,935,086 objects. Limited resources pre-
vented us from scanning more than 320 servers and be-
cause of time constraints we were unable to completely
scan these 320 servers. To estimate the relative size of
the scan data sample, we assume that prefetchable ob-
jects are uniformly distributed in any scan data. Since
we know the amount of prefetchable bandwidth from
the access log data we can then approximate the scan
data sample size by the fraction of the prefetchable band-
width contained in the scan data. According to this ap-
proximation our scan data sample size is about 22% of
the size of the entire content of the scanned servers.

For the positive evidence we identified and encoded each
prefetchable object in the access log by six attributes:
(1) age, (2) MIME Type, (3) size, (4) server name, (5)
top level domain, (6) the label that marks this entry as
prefetchable, and (7) a weight proportional to the size.
The first three attributes train object selection, the fourth
and fifth attribute train server selection, and the weight
represents the relative significance of an entry to the
overall bandwidth consumption.

For the negative evidence we collected each day’s no-
miss-prefetchable objects from the scan data. Recall
that no-miss-prefetchable objects are objects that meet
all prefetchability conditions as described in section 2.1
except the first condition, i.e. the object is not missed
during the peak period of the current day. Each no-miss-
prefetchable object is encoded and weighted in the same
way as prefetchable objects except that the entry is la-
beled as non-prefetchable.

The resulting training data consists mostly of negative
evidence (see Figure 7). The figure also shows that the
average size of objects in positive examples is 20,320
Bytes while the average size of in negative examples is
103,183 Bytes.

4.4 Experiments

We conducted two experiments: In the first experiment
we applied RIPPER to the training data of the days
5/20/1998 - 5/30/1998. This produced eleven sets of
rules. We tested each rule set against the training data
of the next day (5/21/1998 - 5/31/1998). This results in
prefetch performance data for 11 consecutive days, us-
ing a different prefetch strategy each day.

In the second experiment we used boosting to construct a
10 classifier ensemble using RIPPER as a weak learner.

Since boosting takes significantly longer than the gen-
eration of a single classifier, we only generated one
prefetch strategy based on the data of 5/20/1998 and
tested its performance on the training data of the 11 re-
maining days.

To better distinguish between the results of these exper-
iments we refer to the 11 prefetch strategies created by
the first experiment as the “non-boosted prefetch strate-
gies”, and we call the prefetch strategy from the second
experiment the “boosted prefetch strategy”.

4.5 Results

Figure 8 shows the performance of machine learned
prefetching strategies in terms of bandwidth and in terms
of accuracy and coverage. For non-boosted prefetch
strategies accuracy is particularly high. This means
that the bandwidth used for prefetching is well invested.
However coverage is generally low. One reason for this
is that the prefetch strategies pick out smaller objects
since the average size of positive examples is smaller
than the size of negative examples: if the performance is
measured based on number of examples instead of num-
ber of Bytes, the coverage is significantly higher.

Notice that the first weekend is Memorial Day weekend.
HTTP traffic pattern during weekends and holidays are
different from traffic patterns during work days. There-
fore, Friday provides poor training data for Saturday,
and Memorial Monday provides poor training data for
Tuesday. This is reflected by relatively low accuracy on
Saturday and Tuesday. A better strategy would be to use
the previous Sunday as training day for a Saturday, and
to use previous Friday as a training day for the first week
day, in this case Tuesday.

The performance of the boosted prefetch strategy is par-
ticularly high on the first Thursday and Friday because
of the proximity to the day of training. In terms of saved
bandwidth the boosted prefetch strategy out-performs all
non-boosted strategies but shows lower accuracy, par-
ticularly during the weekends. Since we only use one
strategy which was learned on a week day the boosted
strategy performs much better on Tuesday than the cor-
responding non-boosted strategy which was learned on
a holiday.

Figure 9 shows the bandwidth smoothing effect of the
learned prefetching strategies relative to the cacheable
service of the top 320 servers on Thursday and Friday
(for clarity we left out the other days but the results are
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Figure 7: The positive and negative evidence components of each day’s training data measured in number of examples
and number of Bytes. The � -axis is log-scaled. The vast majority of training examples are negative. Over time the
number and size of negative evidence remains almost unchanged. This indicates that most of the no-miss-prefetchable
objects are older than the measurement period.

similar). To simulate the effect of prefetching during
off-peak hours we raised the off-peak bandwidth usage
to a minimum level at which the difference between miss
bandwidth and the raised level equals the prefetched
bandwidth. The resulting increase in bandwidth usage is
represented by white areas below the black curve. Dur-
ing peak periods the bandwidth savings are shown by
grey areas above the black curve. No prefetching has
been done for the left-most period of the graph (peak
period of Wednesday).

The smoothing of peak bandwidth usage varies. At the
beginning of the peak period of Thursday, two miss
bandwidth peaks are completely cut off. The highest
peak on Thursday is reduced by 10.5% using a non-
boosted strategy (left graph) and nearly 15% using the
boosted strategy (right graph). The peak bandwidth of
misses to all servers during Thursday is around 200M
Byte/15 mins. Thus the reduction of the overall peak
bandwidth usage level is around 3% to 4.5%. While the
overall performance does not seem very impressive, the
peak load reduction for the selected 320 servers is sig-
nificant.

4.6 Discussion

The results show (a) and that there is considerable
“prefetchable” data available for bandwidth smoothing
and (b) that automated machine learning is a promising
method to rapidly and automatically develop prefetch
strategies (see [18] for an analysis of the machine-
learned prefetching strategies).

Our results assume a loss ratio of one. The loss ratio
is defined as the cost of false positives over the cost of
false negatives. A loss ratio ����� � means that accuracy

is valued higher than coverage, and a loss ratio ����� �
means that coverage is valued higher than accuracy. The
generated prefetch strategies tend to have high accuracy
and low coverage. Furthermore, figure 9 shows that our
current prefetch strategies do not fully utilize the extra
bandwidth available during off-peak peak periods. We
are currently investigating results with smaller loss ratios
to increase coverage at the expense of accuracy.

The training of these strategies, require information ob-
tained directly from web sites. Web site scanning con-
sumes considerable bandwidth since at least the entire
HTML content has to be down-loaded plus header infor-
mation of images and other objects. Clearly, this time
and resource consuming process would make our ap-
proach infeasible. However, a well-known query inter-
face that allows clients to issue a query to a server or a
search engine for information about objects that match
certain properties would significantly reduce the over-
head (see for example [2]). There are also a number of
promising projects in the Web metadata community [20]
which are interested in a compact representation of web
content. Finally, we expect that future search engines
will provide detailed profiles of web server content.

5 Related Work

We are not aware of any work that investigated real web
traffic work loads in terms of shifting peak bandwidth
usage to off-peak periods through prefetching; most
work on prefetching focuses on immediate prefetching
to reduce interaction latency.

In [16] Kroeger et al. examine the potential of prefetch-
ing for latency reduction. Their study is based on the
same traces as our analysis in section 2.3. They found
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Figure 8: The upper two graphs show the performance of non-boosted prefetch strategies, each one trained on the day
previous to the indicated day. The lower two graphs show the performance of the boosted prefetch strategy which
was learned on the Wednesday prior to the first Thursday. “Prefetchable bandwidth” represents the total prefetchable
bandwidth during the peak period of the indicated day. “Prefetched bandwidth” shows the total bandwidth prefetched
during the off-peak period prior to the peak period of the indicated day. “Prefetched prefetchables” shows the total
amount of bandwidth saved due to prefetching. The performance on Saturday and Tuesday (Monday was Memorial
Day) is weak because of the different traffic pattern of week days and weekend/holidays. In terms of saved bandwidth
the boosted prefetch strategy out-performs all non-boosted strategies but shows lower accuracy, particularly during
the weekends.

that a combined caching and prefetching approach can
at best reduce latency by 60%. Furthermore, the poten-
tial latency reduction depends on how far in advance an
object can be prefetched. For prefetch lead times below
100 seconds, the latency reduction is significantly lower.
In bandwidth smoothing we assume a diurnal bandwidth
profile and prefetch lead times of up to twelve hours.
The author’s stress that their results are based on a par-
ticular environment and assume off-line algorithms with
full knowledge of the future. Our results show that ma-
chine learning is a promising approach to approximate
these algorithms.

In [6] Crovella and Barford show that bandwidth
smoothing can lead to an overall reduction of queuing
delays in a network and therefore to an improvement of
network latency.

A server-initiated prefetching approach based on the
structure of web objects and user access heuristics as
well as statistical data is presented in [23]. Padmanab-
han and Mogul present an evaluation of a server-initiated
approach in which the server sends replies to clients to-

gether with “hints” indicating which objects are likely
to be referenced next [21]. Their trace-driven simulation
showed that their technique could reduce significantly
latency at the cost of an increase in bandwidth consump-
tion by a similar fraction. Padmanabhan and Mogul’s
approach is based on small extensions to the existing
HTTP protocol. A similar study but with an idealized
protocol was performed by Bestavros [1] in which the
author proposes “speculative service” in which a server
sends replies to clients together with a number of entire
objects. This method achieved up to 50% reduction in
perceived network latency.

The greatest challenge in prefetching is to achieve effi-
cient prefetching. In [24], Wang and Crowcroft define
prefetching efficiency as the ratio of prefetch hit rate
(the probability of a correct prefetch) and the relative
increase of bandwidth consumption to achieve that hit
rate. Assuming a simplifying queuing model (M/M/1)
they show an exponential relationship between the band-
width utilization of the network link and the required
prefetching efficiency to ensure network latency reduc-
tion. Crovella and Barford propose “rate controlled
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Figure 9: The impact of the learned prefetch strategies on bandwidth consumption (left without boosting, right with
boosting). The � -axis marks the beginning of each day. The gray curve shows the bandwidth consumption profile
of the top 320 servers. The black curve shows bandwidth consumption after prefetching. To show the impact of
prefetching during off-peak hours we raised the off-peak bandwidth usage to a minimum level at which the difference
between miss bandwidth and the raised level equals the prefetched bandwidth. White areas below the black curve
show the extra bandwidth used for prefetching during off-peak periods. Grey areas above the black curve show the
saved bandwidth during peak periods. The very left section of each graph is Wednesday’s peak period which was
only used for training and not for testing (i.e. no prefetching for Wednesday).

prefetching” in which traffic due to prefetching is treated
as a lower priority than traffic due to actual client re-
quests [7].

6 Summary and Future Work

We showed that using extra network resources to
prefetch web content during off-peak periods can signif-
icantly reduce peak bandwidth usage and that these ef-
fects are additive to effects of traditional demand-based
caching. We presented a mathematical model on how to
calculate the benefit of bandwidth-smoothing a particu-
lar bandwidth usage profile.

We also showed that machine learning is a promising
method to automatically generate prefetch strategies.
These strategies were able to prefetch up to 40% of the
prefetchable bandwidth and do so without wasting sig-
nificant bandwidth.

We are in the process of verifying and refining the pre-
sented models. We are also experimenting with various
machine learning techniques to increase learning per-
formance as well as reduce the duration of the learn-
ing process. We are currently working on a technique
that increases prefetch performance by finding the op-
timal balance between accuracy and coverage. Our re-
sults above show that even with prefetching there is still
a large amount of extra bandwidth available during off-
peak periods. Until this extra bandwidth is used we can
accept lower accuracy to increase coverage. The above

results are based on a machine learning algorithm that
assumes equal penalty for false positives and false neg-
atives (the loss ratio is 1). By increasing the penalty for
false negatives and reducing the penalty for false posi-
tives one reduces the accuracy in favor of coverage. We
are therefore interested in the relationship between the
loss ratio and prefetch performance.

While non-boosted learning of one prefetch strategy on
a dedicated workstation takes only a couple of hours,
boosted learning took in our case seven days (generating
10 rule sets). One way to speed up the learning process is
to increase the abstraction of training data without loos-
ing relevant pattern information. For example, size and
age of our training examples are real values. Grouping
these values in a well chosen manner can significantly
speed up learning.

The current framework assumes a priori definition of
peak and off-peak periods. Figure 8 and 9 show that the
actual bandwidth profile does not always match these
fixed periods and that a more flexible notion of peak
and off-peak periods would increase the amount of extra
bandwidth available for prefetching.
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