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ABSTRACT

Understanding and predicting climate change is the key problem in climatology. The most well-accepted
current approach to this problem involves the development of general circulation models (GCMs). This approach
is based on modeling fundamental physical principles in large computer programs. At the same time, however,
an increasingly large proportion of the available information regarding the climate system exists in the form of
heuristics, or empirical rules of thumb. The objective of the CESNA (Climatic Expert System For the North
Atlantic) project is to develop a practical system that can manipulate this gualitative information in such a way
as to facilitate insights into observed and anticipated climate changes. The methods used to reach this objective
are based on concepts and techniques derived artificial intelligence research on representing and reasoning with
uncertain knowledge. A recently completed evaluation of the prototype CESNA measured how well it could
predict the sea temperatlire of the Kola section of the barents sea for the period 1965 to 1991 with a one-year
lead time. The system’s predictions paralleled the observed temperatures with remarkable accuracy. Similar
results were obtained for two other regions, the northwest Atlantic and the southeastern United States. Quali-
tatively, these experiments show that even though some rules may be poor predictors in a given year, the
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combined evidence from the remaining rules results in an accurate prediction.

1. Introduction

Understanding and predicting climate change is the
key problem in climatology. The most well-accepted
current approach to this problem involves the devel-
opment of general circulation models (GCMs). This
approach is based on modeling fundamental physical
principles in large computer programs. At the same
time, an increasingly large proportion of the available
information regarding the climate system exists in the
form of heuristics, or empirical rules of thumb. Nu-
merous articles presenting statistical analyses, detailed
case studies, and more anecdotal personal experiences
comprise a source of this sort of information. Unfor-
tunately, for both practical and theoretical reasons, it is
quite difficult to incorporate such information into nu-
merical models.

The objective of the CESNA (Climatic Expert Sys-
tem For the North Atlantic) project currently underway
at the Computer Science Department of the University
of Colorado at Boulder is to develop a practical system
that can manipulate qualitative information in such a
way as to facilitate insights into observed and antici-
pated climate changes. The methods used to reach this
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objective are based on concepts and techniques from
artificial intelligence (AI). Such methods usually ma-
terialized in the form of knowledge-based systems, or
expert systems. Expert systems are software systems
designed to ‘‘reason’’ as one or more human experts
would within their own area of expertise in order to
solve a problem or give advice. This is accomplished
through the use of declarative representations of expert
knowledge (instead of explicit procedures). Such sys-
tems are typically used to deal with problems that are
often poorly understood, for which there is no crisp
algorithmic solution, and that can benefit from some
sort of symbolic reasoning (Buchanan and Shortliffe
1984; Rolston 1988; Tsai and Weigert 1993).

There have been a number of previous efforts to ap-
ply Al techniques to problems in meteorology. These
efforts have been directed toward the development of
expert systems for weather predictions (operational
forecasts). Applications areas have typically involved
situations such as thunderstorm forecasting, where
there is little time to provide a more detailed analysis
(Conway 1989; Moninger 1990). In cases like this, an
expert system plays the role of a single human expert
who might not be available at the moment. Moreover,
such systems make their judgements on the basis of an
extremely limited and carefully circumscribed amount
of information.

The general framework of CESNA is quite similar
to these systems. Knowledge about the climate is rep-
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resented as a large set of interrelated macroclimatic
objects, such as centers of action, upper ridges and
troughs, jet streams, temperature anomalies in key
regions, extension of polar ice cover, precipitation
patterns, etc. Empirical rules describing the relation-
ships among the macroclimatic objects comprise the
knowledge base of the system. However, the CESNA
system differs from these meteorological systems and
more traditional expert systems in two ways: 1) the
individual rules used in the system have a high degree
of uncertainty when used for prediction and 2) the
knowledge base represents a superset of the infor-
mation that would normally be used in creating a pre-
diction or explanation by any single climate expert. It
is through the careful use of these two facts that
CESNA operates.

In preparing a forecast CESNA exploits several fea-
tures of the climate system and external factors that
make it possible to project the current state of climatic
parameters into the future.

® Cycles, for example, the 11-year cycle of solar ac-
tivity, or quasibiennial oscillation (QBO) of strato-
spheric winds over the equator. There are also numer-
ous other cycles found in variations of climatic char-
acteristics, but their confidence factors are much lower
(Burroughs 1992).

¢ Persistence, which can be caused by enormous
thermal capacity of the ocean or by positive feedback
Ioops in the large-scale air—sea interaction and may
exhibit itself in so-called climatic regimes (Namias
1982).

® Teleconnections with a significant time lag. One
of the most appealing predictors here is the El Nifio
signal. The observed lag correlations between sea sur-
face temperature (SST) anomalies in the equatorial Pa-
cific during the middie months of the year and atmo-
spheric teleconnection patterns in the Northern Hemi-
sphere during the following winter are strong enough
to be of some practical value in predicting wintertime
temperature anomalies one or two seasons in advance
(Wallace and Jiang 1992).

It is known that climatic forecasts based on empir-
ical relationships are not very reliable. Correlation co-
efficients between climatic variables may change over
time, amplitude of a cycle may reduce, and an obvious
trend may halt or change its direction. Nevertheless,
each of these rules gives small but valuable informa-
tion about future state of the climate system. What is
important is to collect as many such rules as possible
and put them into one system to provide a necessary
‘‘critical mass’’ of evidence. The goal is that even if
some of the rules are quite weak, the overall conclu-
sion can be quite strong if the evidence is combined
in the right way. A related, and no less important, goal
is that the system must then be able to display and
explain the chain of reasoning used to arrive at its
conclusion.
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2. An overview of knowledge-based systems

The problem of capturing an expert’s knowledge of
a domain has traditionally been approached by encod-
ing the knowledge in the form of a collection of ante-
cedent—consequent rules. In their purest form, such
rules correspond to a set of logical implications. Within
this approach there are two natural ways of encoding
the necessary domain knowledge: causal rules and di-
agnostic rules. Causal rules model the relationship of
events or states to their results in a direct fashion: in-
ferring the results of known causes. Diagnostic rules
work in the opposite fashion: allowing the reasoner to
infer possible causes from observed states.

Once a body of domain knowledge has been col-
lected, a logically correct and computable form of in-
ference is used to conclude useful new facts as needed.
For efficiency reasons, inference in such systems is typ-
ically implemented as some form of simple forward or
backward chaining through the rules.

Unfortunately, in practice the vast majority of expert
rules are heuristic rules of thumb. They are true often
enough to be useful but they are neither logically cor-
rect nor complete. What is needed is a way to capture
the inherent degree of uncertainty in the bulk of expert
domain knowledge. Over the past 20 years of Al re-
search, a number of formalisms have been developed
to deal with this problem. These formalisms all attempt
to capture uncertainty through the use of what amounts
to probabilistic reasoning. In addition, however, they
all attempt to do so in a way that remains computa-
tionally tractable. The most common and well-studied
methods include Bayesian Belief Nets (Pearl 1988)
and Certainty Theory (Gordon and Shortliffe 1984).
CESNA uses a variant of Certainty Theory.

In this approach, both ordinary atomic propositions
and implication rules are augmented with numeric cer-
tainty factors (CFs) representing an expert’s degree of
belief. In addition to these numeric values, a CF-based
system must specify a set of combination rules that par-
allel logical inference rules. The most important of
these involve chaining and evidence combination.

To make this discussion more concrete, consider the
following CESNA rule linking central pressure and
geographical position of the Icelandic low (Glowienka
1985):

if central_pressure = low
then position = shifted_north, CF = 60.

This rule is based on statistical analysis between
these two variables and reflects a general tendency for
the Icelandic low to be shifted northward when its cen-
tral pressure is anomalously low. Since this rule does
not work in every case, some degree of uncertainty
must be associated with this rule. In this case, the cer-
tainty factor 60, attached to the conclusion of the above
rule, indicates that the conclusion is drawn with 60%
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confidence. In our system, confidence factors vary from
0 to 100. A certainty factor with a value of zero indi-
cates that we do not believe in the rule at all, that is,
even if we know the premise of the rule, our forecast
based on this rule will not differ from a climatological
forecast based on statistical distribution of the concly-
sion of the rule alone. CF = 100 indicates knowing the
premise of the rule gives us 100% confidence that the
conclusion will occur.

Continuing with our example, the rule assigns a
confidence factor of 60 to the conclusion value
shifted_north if the variable central _pres-
sure is assigned the value low. But the certainty factor
in this conclusion assumes that a confidence factor of
100 has been assigned to the value of the premise. Sup-
pose instead that for some reason, we do not know for
sure that the atmospheric pressure was anomalously
low and we assign a confidence factor of 50 to this
value. In such a case, the confidence factor of the con-
clusion is derived by multiplying the CF of the premise
by the CF of the rule itself: (50 X 60)/100 = 30. This
technique is the fundamental means for propagating
CFs through a chain of rules.

In the above rule, this CF = 60 is based on an ob-
served correlation between the central pressure of the
Icelandic low and its geographical position. However,
it is important to note that such certainty factors may
reflect a subjective, rather than statistical, value; it may
reflect a personal belief in correctness of the statistical
analysis, whether or not it has been confirmed by other
independent studies, model experiments, and so forth.

In addition to chaining, CF-based systems must be
capable of computing the certainty of a proposition that
is supported by two or more distinct chains of rules.
Certainty theory provides a simple algorithm for these
computations, which is clear from the following ex-
ample. Suppose that a conclusion (c¢) is known to be
supported by two rules with the certainties CF1 and
CF2:

Rule 1

if (el), then (c), CF1l =170;
Rule 2

if (e2), then (¢), CF2 = 30.

The combination rule in the certainty theory pro-
duces a combined answer as follows:

CFcomp = CF1l + CF2
— (CF1 X CF2) /100 =179.

Now, suppose a third new piece of evidence is dis-
covered that activates a third rule in support of the same
conclusion:

Rule 3

if (e3) then (c¢), CF3 = 30.
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An updated estimate of the certainty of the conclu-
sion (CFcompnew ) will be

CFcompnew = CF3 + CFcomp —
(CF3 X CFcomp) = 85.

The remaining issue to be dealt with is the issue of
where the CFs come from. There are two aspects in
assigning confidence factors to rules and propositions.
First, the available data on climatic variables are often
imprecise, incomplete, vague, or uncertain. For exam-
ple, there are several indices that can be used to char-
acterize the strength of the midlatitude westerly winds
over the North Atlantic. Therefore, the result can be
somewhat different depending on which index was
used. In addition, some data might not be available for
the moment, and only indirect evidence can be used,
or it may be a predicted, rather than an observed, value.
In all these cases, the CFs reflect the degree of certainty
one has in the value of the climatic variable considered.

Another situation occurs when there is enough quan-
titative information to determine the value of a climatic
variable. However, the variable is not well pronounced
and just slightly deviates from normal. In this case we
also cannot assign 100 for the corresponding confi-
dence factor. We consider the variable as being fuzzy
(Zadeh 1965), with the confidence factor reflecting its
degree of membership. The membership function is de-
termined by the range of variation of a climatic vari-
able, being 100 for all the values exceeding one stan-
dard deviation. Intermediate values of the confidence
factor are calculated by linear interpolation between
zero and the standard deviation.

Generally, CFs for climatic variables represent a
mixture of these two interpretations. In practice, how-
ever, those climatic variables that have already been
observed by the time of issue of the forecast are inter-
preted as fuzzy sets. In contrast, for climatic rules, CFs
characterize our belief in them, and for forecasting
rules, such as those based on cycles and lag relation-
ships, CFs usually do not exceed 15 on a scale from 0
to 100. The result of this fact is that few of the rules
can by themselves lend a high degree of confidence to
any variable. It is only by chaining rules and combining
multiple sources of evidence that a conclusion reaches
a significant level of confidence.

3. Climatic Expert System for the North Atlantic
(CESNA)

A prototype of CESNA has been developed using
the VP-Expert system. VP-Expert is an expert system
development tool that provides an inference engine, ev-
idence combination methods, a graphical user inter-
face, and rudimentary database tools.

The rules in CESNA are divided into seven separate
sets, or knowledge bases. The first six are 1) solar ac-
tivity, 2) global characteristics, 3) El Nifio, 4) time
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series, 5) lag relationships, and 6) the North Pacific.
These comprise the system’s knowledge about climatic
factors that can effect the North Atlantic climate. The
final, seventh, set contains the rules describing rela-
tionships between climatic variables within the North
Atlantic region itself. The North Atlantic region in-
cludes eastern North America, the North Atlantic and
adjacent Arctic seas, and Europe. The system currently
contains 420 such rules. The following sections provide
brief overviews of the contents of each rule subset.

a. Set 1: Solar activity

Solar activity is one of the most fundamental quanti-
ties in relation to the terrestrial climate. It can be char-
acterized by such parameters as sunspot numbers, phase
of the 11-year solar cycle (ascending or descending
branch), magnetic polarity of sunspots (even or odd cy-
cle in Zurich numeration ), umbral —penumbral ratio, and
general level of solar activity (Coffey 1989). The latter,
for example, can be measured by the length of the solar
cycle (Friis-Christensen and Lassen 1991). Forecasts of
solar activity are based on the existence of the 11-year
cycle in its fluctuations and are available on the Internet
from the National Geophysical Data Center.

The rules in this set describe the effect of solar ac-
tivity on midlatitude westerlies ( Arora and Padgaonkar
1981), winters in central Europe (Lamb 1972), pre-
cipitation (Girskaya 1987), sea ice (Nikiforov and
Shpaiher 1980), temperature and cyclonic activity in
the Barents Sea (Bochkov and Seliverstov 1978), and
other climatic variables.

As an example of a rule from this subset, consider
the effect of solar activity on El Nifio described as fol-
lowing:

if solar_activity = decreases and
solar_activity = low and
sunspot_gradient = small

then E1_Nino =yes, CF = 6.

This rule is based on findings of Mendoza et al.
(1991), who analyzed the occurrence of El Nifios in
coastal Peru as related to solar activity. They found that
El Nifio events tend to occur for small negative gradi-
ents (differences in annual sunspot numbers) and low
sunspot numbers, conditions that in the sun correspond
mainly to the descending phase of the solar cycle and
around the minimum.

b. Set 2: Global characteristics

This set consists of those rules that have to do with
climatic variables that are global rather than regional
in nature. Variables of this class include stratospheric
winds, circumpolar vortex, and surface and tropo-
spheric temperature over the Northern Hemisphere
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among others. Of particular importance here are winds
in the stratosphere over the equator that exhibit quasi-
biannial oscillations (QBO). The regular reversal of
these winds appears to be the best-established periodic-
ity in climatic variables for frequencies lower than one
cycle per year. Westerly and easterly winds alternate
in an oscillation of around 28 months that dominates
all seasonal and lesser variations.

In spite of the ubiquity of the QBO in surface
weather records, there is no adequate physical expla-
nation as to how the QBO in the stratosphere is linked
with all the fluctuations of similar duration. There are,
however, some empirical forecasting rules supported
by high statistical correlations that allow us to use in-
formation on QBO to estimate atmospheric circulation
and temperature patterns in the lower troposphere. For
example, during the eastern phase of equatorial strato-
spheric winds (at 50 mb) frequency of tropical storms
is low (Gray and Sheaffer 1991).

Modulation of effects of other forces is also impor-
tant. Labitzke and van Loon (1990) proposed the fol-
lowing forecasting rule: when the sun is at its most
active and the stratospheric wind at 45 mb is in the
west phase, the pressure will be higher than normal
over North America and lower than normal over the
Pacific and Atlantic Oceans. Such anomalous pressure
patterns play a major role in extreme seasonal weather.
When pressure is high over North America in winter,
cold northerly winds will sweep down the eastern sea-
board. So in west-phase years we should expect to see
cold winters on the East Coast when the sun is most
active. In the CESNA this is encoded as

if solar_activity = high and
stratospheric_winds = west_phase

then SE_US = cold, CF =12.

c. Set 3: El Nirio

One of the most prominent sources of interannual
variation in weather and climate around the world is
the El Nifio—Southern Oscillation (ENSO) phenome-
non. All the rules in this set can be divided into two
groups. The first group of rules is used to establish
whether or not El Nifio (or La Nifia, which is consid-
ered here as just negative El Nifio) will occur later in
the year of forecast issue. Some judgement about pos-
sibility of El Nifio has already been made based on
information on solar activity (set 1). Other rules link
occurrence of El Nifio with preceding temperature and
precipitation patterns in the western equatorial Pacific
and regions surrounding the Indian Ocean (Kiladis and
Diaz 1989). CESNA also takes into account various El
Nifio forecasts that can be found in the Climate Diag-
nostic Bulletin regularly published by the Climate Pre-
diction Center. The performance of five ENSO predic-
tion systems is examined by Barnston et al. (1994 ).
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As soon as possibility of El Nifio is established, the
system considers what effect this can have on climate
in the Northern Hemisphere extratropics. The effect is
more clear in the Pacific North American sector and
has been discussed in numerous observational and ex-
perimental studies. It is particularly noticeable for the
Aleutian low, Pacific/North American (PNA) circu-
lation index, sea surface temperature and upwelling
along the American seaboard, and surface air temper-
ature in western Canada and the southeastern United
States.

El Nifio’s effect on the North Atlantic climate is less
obvious. However, some helpful relationships have
been established. For example, Fraedrich and Muller
(1992) analyzed the ENSO signal for the winter sea-
sons (December to February) at the end of the year of
the event when the midlatitude circulation reveals the
strongest response. They found that the mean surface
temperature anomaly fields show negative (positive)
temperature deviations over northern and northwestern
Europe as a response to warm (cold) ENSO events.

d. Set 4: Time series analysis

This set consists of rules that make use of internal
regularities, such as cycles, in the historical time series.
There seem to be no periods in the range from 2 to 20
years that have not been found in climatic variables.
Unfortunately, for the overwhelming majority of them
their energy of fluctuations is very low. Some cycles,
however, are strong enough to make contribution into
assessment of future climatic state. Among those are
alternation of cold and warm winters in central Europe
(Lamb 1972) and the United States (Dettinger et al.
1995), quasibiennial periodicity in the North Atlantic
Oscillation (van Loon and Rogers 1978), 9—12-yr cy-
cle in fluctuation of sea ice in the Labrador Sea (Deser
and Blackmon 1993), and others. In addition to rules
extracted directly from the published literature, this set
includes rules based on Box and Jenkins models that
proved to be useful in analysis and prediction of times
series of different climatic variables (Privalsky 1985).

Quite often climatic cycles can be asymmetric, with
phases of different longevity. For example, one of the
basic features of iceberg number variability in the
Northwest Atlantic is a tendency for high annual ice-
berg numbers to occur in groups of 3 or 4 consecutive
years, with local minimum counts tending to occur at
intervals of 4 to 9 years (Marko et al. 1994). Some
climatic variables demonstrate fluctuations in the form
of abrupt transition from one relatively stable regime
of fluctuations to another. Thus, Dickson and Namias
(1976) noted an existence of climatic regimes on the
order of about 10 years in surface air temperature fluc-
tuations in the southeastern United States. These cli-
mate regimes have much in common with those in the
Barents Sea (Rodionov and Krovnin 1992) and the Be-
ring Sea (Rodionov and Krovnin 1991). It implies that
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if a transition has occurred and a climatic regime has
established, one may assume that it is more likely for
temperature anomaly to be of the same sign next year.

The system also makes use of decadal and longer-
term climatic variability in terms of increased proba-
bility of a particular event. Thus, the rule

if year > 1992 and year < 2000,

then circulation_pattern
= meridional, CF =5,

describes the results obtained by Shirley (1988), who
found that because of the position of the sun, the period
after 1992 and until the end of the century will be char-
acterized by predominance of the meridional atmo-
spheric circulation pattern. Decadal climate regimes
(background memory ) are now part of the Climate Pre-
diction Center’s effort in seasonal forecasting.

e. Set 5: Lag relationships

This set is comprised of those rules that describe
relationships between climatic variables when one of
them (predictand) has an appreciable time lag in its
changes compared to another one (predictor). For ex-
ample, Deser and Blackmon (1993) found a link be-
tween winter sea-ice concentration anomalies in the
Davis Strait—Labrador Sea region and a time series of
the second EOF of winter (November—March) SST.
The latter is characterized by a dipole pattern with
anomalies of one sign east of Newfoundland and anom-
alies of the opposite polarity off the southeast of the
United States. If the two time series are superimposed,
the maxima in sea-ice concentration precede the max-
ima in SST by 1 to 2 years. The correlation between
the two time series is —0.26 at 0-lag; —0.62 when sea
ice leads SST by 1 year; —0.76 when sea-ice leads by
2 years; and —0.62 when sea ice leads by 3 years. The
strong lag correlations indicate that winters of heavy
sea ice in the Labrador Sea precede winters of colder
than normal SSTs east of Newfoundland.

In many cases these lags in relationships are caused
by gradual transportation of anomalies of temperature,
salinity, or other properties along the ocean currents. It
is plausible in the above example that sea-ice anomalies
in the Labrador Sea advected southward, resulting in
colder than normal SSTs east of Newfoundland in the
following (or second) year. Another prominent (and,
at the same time, controversial ) example is the ‘‘Great
Salinity Anomaly’’ that traveled along the subpolar
gyre from 1968 until 1982 (Dickson et al. 1988).

f. Set 6: The North Pacific

The importance of North America for the climatol-
ogy of the North Atlantic is well known (Dickson and
Namias 1976). North America, in turn, is under strong
influence of the processes in the North Pacific. There-
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fore, it is not surprising that climatic processes in the
North Pacific have a remote effect on the processes in
the North Atlantic. Lamb (1972), for example, showed
that if waters in the Namias region (30°-45°N, 155°-
175°W) are warmer than normal in winter (DJF), there
is a tendency for above-normal pressure over broad belt
across Arctic Canada and Greenland toward the British
Isles. This rule was confirmed later by Esbensen
(1984). His one-point correlation map shows that 500—
700-mb height anomalies in the east central North Pa-
cific are positively correlated with 500~700-mb height
anomalies west of the United Kingdom. Apparently,
this high pressure cell west of the United Kingdom is
indicative of blocking situations in this region.
Another good example is an opposition in sea level
pressure (SLP) fluctuations between the Aleutian and
Icelandic lows. Wallace and Gutzler (1981) found this
opposition so strong that they suggested to consider the
difference between SLP in these two centers of action as
another index of the North Atlantic Oscillation (NAO).

g. Set 7: The North Atlantic

This is the largest (236 rules) and, presently, most
developed set of rules. Five groups of rules can be dis-
tinguished in this set.

Atmospheric circulation—this group includes the
rules describing the relationships between such mac-
roclimatic variables as the Icelandic low and Azores
high, central pressure in these centers of action and
their geographical position, westerlies and stormtracks,
cyclonic activity and position of the atmospheric polar
front, upper trough over eastern seaboard of North
America, and frequency of blocking situations in the
Northeast Atlantic, and so forth.

Thermal advection—rules in this section describe
changes in temperature over Europe and eastern North
America caused by advection of cold and warm air.

Oceanic processes—this group comprises the rules
for such oceanic processes as position and intensity of
major ocean currents, oceanic polar front, sea surface
temperature anomalies, ice cover, and others.

Ocean—atmosphere interaction—the rules describe
large-scale interaction between oceanic and atmo-
spheric processes in the North Atlantic.

Teleconnections—the most well-known teleconnec-
tion is the seesaw in winter temperatures between
Greenland and Northern Europe. Some other telecon-
nection patterns (such as in-phase temperature fluctu-
ations between European Arctic seas and the Sargasso
Sea, between southeastern United States and northern
Africa, and others) are also included.

4. How the system works

A typical consultation session begins with a human—
computer dialog where the system asks questions and
the user answers those questions based on information
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provided by the system and his—her personal experi-
ence. The problem-solving method used by the CESNA
inference engine is called ‘‘backward chaining.”” In
each rule set the inference engine starts by identifying
the goal variable(s) and then moves through a se-
quence of rules until it finds a value that can help it
assign a value to the goal variable. In each rule set there
may be one or more such goal variables. Whenever the
inference engine cannot find a variable in the conclu-
sion of a rule, it first tries to get information from the
database. If the information is not found or it is marked
as preliminary, CESNA asks the user. In turn the user
can ask why the question was asked. As part of this
explanation, CESNA provides the user with a detailed
description of the rule under consideration, along with
other relevant text and graphical information that can
help the user to answer the question.

To be more specific, the system system begins by
asking the user for the year for which a prediction is
going to be made. Cursrently, a lead time for the forecast
is one year. CESNA then systematically processes the
rules in the rule sets in the order given above. When
the consultation session comes to the last, North Atlan-
tic, set of rules, CESNA asks the user to specify the
climatic variables and region that they are interested in
and comes up with the final assessment of this variable.
Since the climatic system is very complex and there are
so many rules involved, the final result usually contains
opposite categories of the variable with different con-
fidence factors attached. For example, if the user is in-
terested in thermal conditions in the southeastern
United States, the possible answer may look like this:

*‘in [the year of forecast], thermal con-
ditions in the southeastern United States
are expected to be:

COLD CFr = 25,

WARMCF =7.""'

An important advantage of the system is the ability
to trace back the line of reasoning and find out how
one arrives at each of the possible conclusions. During
the consultation, CESNA records the path of the infer-
ence engine and stores it in two files. The first file is a
graphic file and represents a logic tree that was used
during the current consultation. The second file is a text
file and represents a report prepared by the system. The
report contains references to all the rules that were used
during the consultation, preliminary results for each set
of rules, and the final result. Having this report, the user
can run CESNA again in the regime of information
retrieval. This regime has four options: a rule descrip-
tion, climate of the year, time series, and a rule inven-
tory. The first option gives the user detailed textual and
graphical descriptions of each rule in the system. The
second option provides information about characteris-
tic features of climatic situation in each year. The third
option allows the user to retrieve historical time series
of various climatic variables, along with analyses of
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their interannual variation. The final option gives the
user the ability to easily manipulate the inventory of
rules in a number of ways. Users can experiment with
the system by modifying, adding or deleting rules from
the knowledge and observing the effect (or lack of ef-
fect) on the final conclusion.

To test our approach, we used CESNA to produce
experimental forecasts of winter and annual climatic
conditions in the Barents Sea. An acknowledged indi-
cator of these conditions is sea temperature in the upper
200 m of the Kola section. The forecasts were given
with a 1-yr time lead for each year from 1965 to 1993.
Since the mean winter and annual sea temperatures are
highly correlated (correlation coefficient r = 0.73), we
will consider only annual values. As a forecast tem-
perature index we used the difference between confi-
dence factors for warm and cold gradations.

As seen in Fig. 1, there is strong parallelism between
the index and observed annual temperatures in the Kola
section. The correlation coefficient between these two
variables is r = .0.63. If we take into account only the
sign of anomaly, the skill score of the forecast, calcu-
lated as the relationship of the number of correct fore-
casts to the total number of forecasts given, will be
89%, which significantly outperforms forecasts based
on persistence (skill score 73%). In fact, there were
only two years when the sign of forecast did not co-
incide with the sign of observed temperature anomaly:
1971 and 1989. Both of these years were characterized
by a significant intraannual variations, so that winter
and annual temperature anomalies had different signs.

We also tested CESNA for two other regions, the
Northwest Atlantic and southeastern United States. The
forecasts were given one year in advance for the period
1965-1995. The results were compared with observed
air temperature anomalies at Gander (Newfoundland)
and Charleston (South Carolina), respectively. Although
the skill score of the forecast for the Northwest Atlantic
was high (83%), the low-frequency temperature varia-
tions in this region were so strong that the forecast based
on persistence had the same skill. As for the southeastern
United States, CESNA had a skill score of 77% and out-
performed persistence (skill score 65%).

5. Conclusions and future plans

The major objective of our early efforts with the
CESNA prototype has been to demonstrate a practical
system that can manipulate qualitative information in
such a way as to facilitate insights into observed and
anticipated climate changes. This has been accom-
plished through the use of declarative representations
of expert knowledge. An ever increasing amount of this
type of information exists in the form of heuristics, or
empirical rules of thumb. The principal technical issue
in using this kind of knowledge is dealing with the
inherent high degree of uncertainty of any given rule.

The fundamental idea behind CESNA is to overcome
this problem by combining various forecasting meth-
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SEA TEMPERATURE IN THE UPPER 200 M
Kola Section, Barents Sea
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FIG. 1. Observed and predicted changes in the sea temperatures in
the upper 200 m of the Kola section of the Barents Sea. These fore-
casts were made with a 1-yr lead time.

ods. This is, of course, not a new approach, but in the
past it has been limited to a few methods developed for
the same region. The existence of teleconnections be-
tween climatic variables allows us to make use of em-
pirical rules about the climate system from remote
areas, virtually from all over the globe. Each of these
rules, no matter how uncertain, carries valuable infor-
mation that can be used for predictions.

Fortunately, techniques derived from research in ar-
tificial intelligence and expert systems provide a ex-
cellent basis for combining exactly this kind of infor-
mation. Our experiments with CESNA have shown that
even though some rules may be poor predictors in a
given year, the combined evidence from the remaining
rules can result in accurate predictions. The system’s
predictions from the Barents Sea temperature evalua-
tion paralleled the observed temperatures with remark-
able accuracy. Similar results were obtained for two
other regions, the Northwest Atlantic and southeastern
United States. .

Our experience with the prototype system has lead
us to focus on a number of areas for improvement. One
major goal is to expand the system’s core knowledge
base to include more of the globe. CESNA system still
has a fairly limited number of rules. For example, the
knowledge-base for the North Pacific contains only
those rules that are particularly important for the North
Atlantic. In the future, we plan to develop this knowl-
edge base so that it can be used not only as a supple-
ment for the North Atlantic but to predict climatic pro-
cesses within the Pacific—North American sector itself.

A second area concerns the system’s ability to create
true forecasts. Note that the temperature forecasts pre-
sented here are actually ‘‘hindcasts’’ since the temper-
ature for the forecast years was already observed. True
forecasts require a significant amount of current infor-
mation on observations about various climatic variables
around the globe be readily available with a minimum
delay. For systems like CESNA, it is important that this
operational information becomes more and more avail-
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able through the global Internet. We are currently mod-
ifying CESNA so that it will easily incorporate such
information. Among the information of that kind, we
intend to access the monthly and seasonal forecasts of
temperature and precipitation over the United States
that have recently started to be issued by the Climate
Prediction Center.
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