CSCI 5832
Natural Language Processing

Jim Martin
Lecture 16
Today 3/11

* Review

+ Partial Parsing & Chunking
= Sequence classification

« Statistical Parsing

3/11/08

Back to Sequences

T = argmaxP(T|W) * HMMs
T
= argmaxP(W|T)P(T)
T

= arg;_naxHP(wm'{l,\lng,)HP(mg,\mg,,l)

T = argmaxP(T|W)
T
+ MEMMs

= argmaxHP(mg,\wor(I,.mg,-,l
T i

3/11/08

Back to Viterbi

w(j) = 2% Vo1 (i) P(sjlsi,or); 1< j<N,1<t<T

» The value for a cell is found by examining all the
cells in the previous column and multiplying by
the posterior for the current column (which
incorporates the transition as a factor, along with
any other features you like).

3/11/08
HMMs vs. MEMMs
HMM
Tagl @ /Ta-gii\ Tag4
means P(Y|X)
3/11/08

HMMs vs. MEMMs

MEMM

e e
: () : ()
PTW) = [Ptilti—1, w:)

3/11/08

HMMs vs. MEMMs

MEMM

slelelet

Features Features Features

T|W HPt|tz lywufz)

3/11/08

Dynamic Programming Parsing
Approaches

» Earley
+ Top-down, no filtering, no restriction on grammar form
+ CYK

+ Bottom-up, no filtering, grammars restricted to
Chomsky-Normal Form (CNF)

» Details are not important...
+ Bottom-up vs. top-down
+ With or without filters
+ With restrictions on grammar form or not

3/11/08
Back to Ambiguity
s s
N'P/\\'P " ‘p/\\'p
[
PIOTO\\[! \'EﬂJ/\NP Pro:lxo\m /\
1 shlm TN | VP PP
Det Nominal I
N Verb NP in my pajamas
' Nominal PP |

shot Det Nominal

Noun inmy pajamas 2
an Noun

elephant
elephant

3/11/08

Disambiguation

» Of course, to get the joke we need both
parses.

* But in general we’ll assume that there’s
one right parse.

* To get that we need knowledge: world
knowledge, knowledge of the writer, the
context, etc...

* Or maybe not..

3/11/08

Disambiguation

* Instead let's make some assumptions and
see how well we do...

3/11/08

Example

3/11/08

Probabilistic CFGs

* The probabilistic model

+ Assigning probabilities to parse trees
» Getting the probabilities for the model
» Parsing with probabilities

+ Slight modification to dynamic programming
approach

+ Task is to find the max probability tree for an
input

3/11/08

Probability Model

 Attach probabilities to grammar rules
» The expansions for a given non-terminal

sum to 1
VP -> Verb .55
VP-> Verb NP .40

VP->Verb NP NP .05
+ Read this as P(Specific rule | LHS)

3/11/08

Probability Model (1)

» A derivation (tree) consists of the bag of
grammar rules that are in the tree

» The probability of a tree is just the product
of the probabilities of the rules in the
derivation.

P(T,S)= H P(rule(n))

nodecT

3/11/08

Probability Mod

el (1.1)

» The probability of a word sequence (sentence) is
the probability of its tree in the unambiguous

case.

* |It's the sum of the probabilities
ambiguous case.

» Since we can use the probabilit

of the trees in the

y of the tree(s) as

a proxy for the probability of the sentence...
+ PCFGs give us an alternative to N-Gram models as a

kind of language model.

3/11/08
Example
| s
VP |
VP
/\
Verb NP
| Verb NP NP

Book ey Nominal

| N Book
the Nominal Noun

I |
Noun flight

/\)
Det Nominal Nominal

the Noun Noun

| I
dinner flight

dinner
17
3/11/08
Rule Probabilities
Rules P Rules P
S — VP .05 S — VP .05
VP — Verb NP 20 VP — Verb NPNP .10
NP — Det Nominal .20 NP — Det Nominal .20
Nominal — Nominal Noun .20 NP — Nominal 15
Nominal — Noun 5 Nominal — Noun 75
Nominal — Noun 75
Verb — book .30 Verb — book 30
Det — the .60 Det — the .60
Noun —dinner .10 Noun — dinner .10
Noun — flights 40 Noun — flights 40
2.2*10°¢ 6.1* 107

3/11/08

Getting the Probabilities

» From an annotated database (a treebank)
+ So for example, to get the probability for a
particular VP rule just count all the times the
rule is used and divide by the number of VPs

overall.
~ Count(aa—B) Count(a— B)
Plo.— Blo) = ZYCount(a —7v) Count(c)
19
3/11/08
Smoothing

» Using this method do we need to worry
about smoothing these probabilities?

20

3/11/08

Inside/Outside

» If we don’t have a treebank, but we do have a
grammar can we get reasonable
probabilities?

* Yes. Use a prob parser to parse a large
corpus and then get the counts as above.

* But

+ In the unambiguous case we’re fine
+ In ambiguous cases, weight the counts of the rules
by the probabilities of the trees they occur in.

21

3/11/08

Inside/Outside

* But...

Where do those probabilities come from?

* Make them up. And then re-estimate them.
This sounds a lot like....

3/11/08

22

Assumptions

* We’re assuming that there is a grammar to
be used to parse with.

» We're assuming the existence of a large
robust dictionary with parts of speech

* We're assuming the ability to parse (i.e. a
parser)

» Given all that... we can parse
probabilistically

3/11/08

23

Typical Approach

* Use CKY as the backbone of the algorithm

» Assign probabilities to constituents as they
are completed and placed in the table

» Use the max probability for each
constituent going up

3/11/08

24

What does that last bullet

mean?
» Say we're talking about a final part of a
parse
*+ S->NP,VP,

The probability of this S is...
P(S->NP VP)*P(NP)*P(VP)

The green stuff is already known if we’re using
some kind of sensible DP approach.

25

3/11/08

Max

* | said the P(NP) is known.

* What if there are multiple NPs for the span
of text in question (0 to i)?

» Take the max (where?)

26

3/11/08

CKY

function CKY-PARSE(words, grammar’) returns table

for j < from 1 to LENGTH(words) do
table[j— 1,71+ {4 | A — words|j] € grammar}
for i from j— 2 dovnto 0 do
fork—i+1toj—1do
) e

27

3/11/08

Prob CKY

function PROBABILISTIC-CKY(words,grammar) returns most probable parse
and its probability
for j— from 1 to LENGTH(words) do
forall { A| A — words[j] € grammar }
table[j— 1, j,A] — P(A — words|j])
for i« from j— 2 downto 0 do
for k—i+1to j—1do
forall {A|A — BC € grammar,
and table[i.k,B] > 0 and tablelk.j,C] > 0}
if (rable[ij,A] < P(A — BC) x table[ik,B] x table[k,C]) then

tablelij Al P(A — BC) x table[ik,B] x table[kj,C]
back[ij.A]—{k.B,C}

return BUILD_TREE(back[1l, LENGTH(words), S]), table[1, LENGTH(words), S]

3/11/08

28

Break

* Next assignment details have been posted.

See the course web page. It's due March
20.

* Quiz is a week from today.

3/11/08

29

Problems with PCFGs

» The probability model we’re using is just
based on the rules in the derivation...
+ Doesn’t use the words in any real way
+ Doesn’t take into account where in the
derivation a rule is used
+ Doesn’t really work (shhh)

= Most probable parse isn’t usually the right one (the
one in the treebank test set).

3/11/08

30

10

Solution 1

» Add lexical dependencies to the scheme...
+ Integrate the preferences of particular words
into the probabilities in the derivation

+ |.e. Condition the rule probabilities on the
actual words

31
3/11/08

Heads

» To do that we're going to make use of the
notion of the head of a phrase
+ The head of an NP is its noun
+ The head of a VP is its verb
+ The head of a PP is its preposition

(It's really more complicated than that but this
will do.)

32
3/11/08

Example (right)

S(dumped)
NP(workers) VP(dumped)
NNS(vlorkers) VBD(dumped) NP(sacks) PP(into)
NNS(Lacks) P(into) NP(bin)
DT(a) NN(bin)
workers dumped sacks into 1‘1 b‘in

33
3/11/08

11

Example (wrong)

S(dumped)
NP(workers) VP(dumped)
NNS(w‘orkets) VBD(dumped) NP(sacks)
NP(sacks) PP(into)
NNS(Lacks) P(into) NP(bin)
DT(@) NN(bin)
workers dumped sacks into 8

3/11/08

34

How?

* We used to have

+ VP >V NP PP P(rule|VP)

= That's the count of this rule divided by the number
of VPs in a treebank

* Now we have
+ VP(dumped)-> V(dumped) NP(sacks)PP(in)
* P(r|VP » dumped is the verb * sacks is the
head of the NP * in is the head of the PP)

+ Not likely to have significant counts in any
treebank

3/11/08

35

Declare Independence

* When stuck, exploit independence and
collect the statistics you can...

» We’'ll focus on capturing two things

+ Verb subcategorization

= Particular verbs have affinities for particular VP
rules

+ Objects affinities for their predicates (mostly
their mothers and grandmothers)

= Some objects fit better with some predicates than
others

3/11/08

36

12

Subcategorization

» Condition particular VP rules on their head... so
r: VP ->V NP PP P(r|VP)
Becomes
P(r | VP » dumped)

What's the count?

How many times was this rule used with dump, divided
by the number of VPs that dump appears in total

37
3/11/08

Preferences

» Subcat captures the affinity between VP
heads (verbs) and the VP rules they go
with.

* What about the affinity between VP heads
and the heads of the other daughters of
the VP

* Back to our examples...

38

3/11/08
Example (right)
S(dumped)
NP(workers) VP(dumped)
NNS(vlorkers) VBD(dumped) NP(sacks) PP(into)
NNS(Lacks) P(into) NP(bin)
DT(a) NN(bin)
| |

workers

dumped

sacks

into

a

in

3/11/08

39

13

Example (wrong)

S(dumped)
NP(workers) VP(dumped)
NNS(workers) VBD(dumped) NP(sacks)
NP(sacks) PP(into)
NNS(Lacks) P(into) NP(bin)
DT(a) NN(bin)
workers dumped sacks into a
. 40
Preferences

* The issue here is the attachment of the PP. So
the affinities we care about are the ones
between dumped and into vs. sacks and into.

» So count the places where dumped is the head
of a constituent that has a PP daughter with into
as its head and normalize

» Vs. the situation where sacks is a constituent
with into as the head of a PP daughter.

#“
311108

Preferences (2)

» Consider the VPs
+ Ate spaghetti with gusto
+ Ate spaghetti with marinara

» The affinity of gusto for eat is much larger than
its affinity for spaghetti

» On the other hand, the affinity of marinara for
spaghetti is much higher than its affinity for ate

42
31108

14

Preferences (2)

* Note the relationship here is more
distant and doesn’t involve a headword
since gusto and marinara aren’t the

heads of the PPs.
Vp (ate) Vp(ate)

Vp(ate) with) /%)
/P \ np Pp(with)
v np v

/ A4
Ate spaghetti with gusto ~ Ate spaghetti with marinara

43
3/11/08

Next Time

* Finish up 14
+ Rule re-writing approaches
+ Evaluation

44
311108

15

