CSCI 5832
Natural Language Processing

Jim Martin
Lecture 14

3/11/08 1

Today 3/4

» Parsing
+ CKY again
+ Earley
3/11/08

Sample Grammar

31

S — NPVP

S — Aux NP VP

S— VP

NP — Pronoun

NP — Proper-Noun
NP — Det Nominal
Nominal — Noun
Nominal — Nominal Noun
Nominal — Nominal PP
VP — Verb

VP — Verb NP

VP — Verb NP PP

VP — Verb PP

VP — VPPP

PP — Preposition NP

Det — that | this| a

Noun — book | flight | meal | money

Verb — book | include | prefer

Pronoun — I| she| me

Proper-Noun — Houston | TWA

Aux — does

Preposition — from | to | on | near | through

Dynamic Programming

» DP methods fill tables with partial results
and
+ Do not do too much avoidable repeated work

+ Solve exponential problems in polynomial
time (sort of)

+ Efficiently store ambiguous structures with
shared sub-parts.

3/11/08

CKY Parsing

* First we’ll limit our grammar to epsilon-
free, binary rules (more later)
+ Consider the rule A -> BC

+ If there is an A in the input then there must
be a B followed by a C in the input.

+ If the A spans from i to j in the input then
there must be some k st. i<k<j
= le. The B splits from the C someplace.

3/11/08

CKY

» So let’s build a table so that an A spanning
fromitojin the input is placed in cell [i,j] in
the table.

* So a non-terminal spanning an entire
string will sit in cell [0, n]

* If we build the table bottom up we’ll know
that the parts of the A must go from i to k
and fromk to j

3/11/08

CKY

* Meaning that for a rule like A ->B C we
should look for a B in [i,k] and a C in [k,j].

* In other words, if we think there might be
an A spanning i,j in the input... AND

« A->B Cis arule in the grammar THEN

» There must be a B in [i,k] and a C in [k,]]
for some i<k<j

3/11/08

CKY

 So to fill the table loop over the cell[i,j]
values in some systematic way
+ What constraint should we put on that?

+ For each cell loop over the appropriate k
values to search for things to add.

3/11/08

CKY Table

3/11/08

CKY Algorithm

function CKY-PARSE(words, grammar) returns table

for j < from 1 to LENGTH(words) da
table[j—1,j]+ {4 |4 — words[j] € grammar }
for i+ from j — 2 dovnto 0 do
i+1toj—1do
le[ij]+— table[ij] U
{4|4 — BC € grammar,
B € rableli k.
C < tablelk,j] }

10
3/11/08
CKY Parsing
* Is that really a parser?
"
3/11/08
Note
» We arranged the loops to fill the table a
column at a time, from left to right, bottom
to top.
+ This assures us that whenever we’re filling a
cell, the parts needed to fill it are already in
the table (to the left and below)
12

3/11/08

Example

3/11/08

Other Ways to Do It?

« Are there any other sensible ways to fill
the table that still guarantee that the cells

we need are already filled?

3/11/08

Other Ways to Do It?

3/11/08

Sample Grammar

§ — NPVP Det — that| this| a

§ — AuxNP VP Noun — book | flight | meal | money

S — VP Verb — book | include | prefer

NP — Pronoun Pronoun — 1| she | me

NP — Proper-Noun Proper-Noun — Houston | TWA

NP — Det Nominal Aux — does

Nominal — Noun Preposition — from | to| on | near | through

Nominal — Nominal Noun
Nominal — Nominal PP

VP — Verb

VP — Verb NP
VP — Verb NP PP
VP — Verb PP
VP — VP PP

sios PP — Preposition NP

Problem

* What if your grammar isn’t binary?
¢ As in the case of the TreeBank grammar?

» Convert it to binary... any arbitrary CFG can
be rewritten into Chomsky-Normal Form
automatically.

* What does this mean?

+ The resulting grammar accepts (and rejects) the
same set of strings as the original grammar.

+ But the resulting derivations (trees) are different.

3/11/08

Problem

» More specifically, rules have to be of the
form

A->BC
Or
A->w

That is, rules can expand to either 2 non-
terminals or to a single terminal.

3/11/08

Binarization Intuition

+ Eliminate chains of unit productions.

* Introduce new intermediate non-terminals into the
grammar that distribute rules with length > 2 over
several rules. So...

S->ABC

= Turns into
S->XC
X-AB

Where X is a symbol that doesn’t occur anywhere else in the the
grammar.

3/11/08
=
CNF Conversion
S — NPVP S — NPVP
§ — AuxNPVP S — X1VP
X1 — Aux NP
S — VP S — book | include | prefer
S — Verb NP
N X2prp
S — Verb PP
S — VPPP
NP — Pronoun NP — 1| she| me
NP — Proper-Noun NP — TWA| Houston
NP — Det Nominal NP — Det Nominal
Nominal — Noun Nominal — book | flight | meal | money
Nominal — Nominal Noun || Nominal — Nominal Noun
Nominal — Nominal PP Nominal — Nominal PP
VP — Verb VP — book | include | prefer
VP — Verb NP VP — Verb NP
VP — Verb NP PP VP — X2PP
X2 — VerbNP
VP — Verb PP VP — Verb PP
VP — VPPP VP — VPPP
100 PP — Preposition NP PP — Preposition NP

CKY Algorithm

function CKY-PARSE(words, grammar) returns table

for j < from 1 to LENGTH(words) da
table[j—1,j]+ {4 |4 — words[j] € grammar }
for i from j—2 downto 0 do
fork—i+1toj—1do
table[i j] — table[ij] U
{4|4 — BC € grammar,
€ rable[i k.
€ tablelk, j] }

aw

3/11/08

Example

Book the flight through Houston
[S\VP,

0,3] 0.4] 0,5]
NP

[1.3 [1.4] [1.5]
lominal,
loun

23] [[24] [[25]

Prep

Filling column 5

22
3/11/08
Book the flight through Houston
[SVPX2
031 o4 [os
NP
13] |14 |15
jominal,
joun
2
23] |24 |[25)
[Prepe—pP
3.4]
P,
roper-
loun
4.5
23
3/11/08
Book the flight through Houston
SVPX2
03 [04] [05]
NP
13 141 il
omi ominal
3 [Noun
23l |pa |V
Prep PP
24

3/11/08

Example

Book the flight through Houston
S,VP,X2

[1.3] [1.4]
lominal, Nominal
loun
4
23] |[[24] |[25]
PPrep PP
34] 3.5
P,
roper-
loun
25
3/11/08
the flight through Houston
=
S, VP,
| 1[$:VP,
loa N8,
P
[1.4]
INgminal
[2.4] A
Prep PP
26
3/11/08

CKY Notes

» Since it's bottom up, CKY populates the table
with a lot of phantom constituents.
+ Segments that by themselves are constituents but

cannot really occur in the context in which they are
being suggested.

+ To avoid this we can switch to a top-down control
strategy or
+ We can add some kind of filtering that blocks

constituents where they can not happen in a final
analysis.

3/11/08

27

Break

* Quiz pushed back to Tues 3/18
* Schedule
= Today: CKY and Earley

= Thursday: Partial parsing, chunking and more on
statistical sequence processing

= Next week: statistical parsing

3/11/08

28

Earley Parsing

» Allows arbitrary CFGs
* Top-down control

+ Fills a table in a single sweep over the input
words

+ Table is length N+1; N is number of words
+ Table entries represent

= Completed constituents and their locations

= In-progress constituents

= Predicted constituents

3/11/08

29

States

3/11/08

* The table-entries are called states and are
represented with dotted-rules.
S->-VP A VP is predicted
NP -> Det - Nominal

An NP is in progress
VP ->V NP -

A VP has been found

30

10

States/Locations

>
*S o VP [O’O] + A VP is predicted at the start

of the sentence

¢ NP -> Det @ Nominal « An NP is in progress; the Det
goes from 1 to 2
[1.2]
* A VP has been found
e VP->VNP o [0 3] starting at 0 and ending at 3
31
3/11/08
Graphically

VP ->VNP.

8-> .VP

NP -> Det . Nominal

® that O flight
0 1 2 3

3/11/08

32

Earley

» As with most dynamic programming
approaches, the answer is found by
looking in the table in the right place.

« In this case, there should be an S state in
the final column that spans from 0 to n and
is complete.

« If that's the case you're done.
*S—>xe[0,n]

3/11/08

33

11

Earley

» So sweep through the table from 0 to n...
+ New predicted states are created by starting

top-down from S
+ New incomplete states are created by

advancing existing states as new constituents

are discovered

+ New complete states are created in the same

way.

3/11/08

34

Earley

* More specifically...
1. Predict all the states you can upfront
2. Read a word
1. Extend states based on matches
2. Generate new predictions
3. Gotostep 2
3. Look at n to see if you have a winner

3/11/08

35

Earley Code

function EARLEY-PARSE(words, grammar) returns chart

ADDTOCHART((y — e S, [0,0]). chart[0])
for i — from 0 to LENGTH(words) do
for each srare in chart[i] do
if INCOMPLETE (stare) and
NEXT-CAT(state) is not a part of speech then
PREDICTOR(szate)
elseif INCOMPLETE ?(stare) and
NEXT-CAT(state) is a part of speech then
SCANNER(szate)
else
COMPLETER(sate)
end
end
3/11/08 return(chart)

36

12

Earley Code

procedure PREDICTOR((A — « ¢ B 3, [i, j])
for each (B — y) in GRAMMAR-RULES-FOR(B, grammar) do
ADDTOCHART((B — e v, [j, j]).chart[j])
end

procedure SCANNER((A — «a e B B, [i,j])
if B € PARTS-OF-SPEECH(word/[j]) then
ADDTOCHART((B — word([j] e, [j, j+ 1)), chart[j+1])
procedure COMPLETER((B — 7 o, [j.A])
for each (A — o ¢ B 3, [i, j]) in chari[j] do
ADDTOCHART((A — a B e f3, [i,k]).chart[k])
end

37
3/11/08

Example

* Book that flight

* We should find... an S from 0 to 3 that is a
completed state...

38

3/11/08
Example
Chart[0] SO y — oS [0,0] Dummy start state
SI S — e«NPVP [0,0] Predictor
S2 S — eAuxNPVP [0,0] Predictor
S3 S — VP [0.0] Predictor
S4 NP — e Pronoun [0,0] Predictor
S5 NP — e Proper-Noun [0,0] Predictor
S6 NP — e Det Nominal [0.0] Predictor
S7 VP — eVerb [0.0] Predictor
S8 VP — eVerb NP [0,0] Predictor
S9 VP — eVerb NP PP [0.0] Predictor
S10 VP — eVerb PP [0,0] Predictor
S11 VP — «VPPP [0,0] Predictor
39
3/11/08

13

Add To Chart

procedure ADDTOCHART(state, chart-entry)
if state is not already in chart-entry then
PUsH-ON-END(state, chart-entry)

end
3/11/08
Example
Chart[1] S12 Verb — book e [0.1] Scanner
S13 VP — Verbe [0,1] Completer
S14 VP — Verb « NP [0,1] Completer
S15 VP — Verb « NP PP [0,1] Completer
S16 VP — Verb e PP [0.1] Completer
S17 S — VPe [0.1] Completer
S18 VP — VP ePP [0,1] Completer
S19 NP — e Pronoun [1,1] Predictor
S20 NP — e Proper-Noun [1.1] Predictor
S21 NP — e Det Nominal [1.1] Predictor
S22 PP — e Prep NP [1.1] Predictor
3/11/08
Example

Chart[2] S23 Det — that e [1,2] Scanner

S24 NP — Det o Nominal [1.2] Completer

S25 Nominal — e Noun [2.2] Predictor

S26 Nominal — e Nominal Noun [2,2] Predictor

S27 Nominal — e Nominal PP [2,2] Predictor

Chart[3] S28 Noun — flight e [2.3] Scanner

S29 Nominal — Noun e [2.3] Completer

S30 NP — Det Nominal [1.3] Completer

S31 Nominal — Nominal « Noun [2,3] Completer

S32 Nominal — Nominal ¢ PP [2,3] Completer

S33 VP — VerbNP e [0.3] Completer

S34 VP — Verb NP e PP [0.3] Completer

S35 PP — ePrep NP [3.3] Predictor

S36 S — VPe [0.3] Completer

S37 VP — VPePP [0.3] Completer

3/11/08

Efficiency

* For such a simple example, there seems
to be a lot of useless stuff in there.

* Why?
« It's predicting things that aren't consistent

with the input
*That's the flipside to the CKY problem.

3/11/08

43

Details

» As with CKY that isn’t a parser until we
add the backpointers so that each state
knows where it came from.

3/11/08

44

Back to Ambiguity

* Did we solve it?

3/11/08

45

15

Ambiguity

NP VP A
| NP v
Pronoun Vﬂb/\yp |
| Pronoun
1 | VP Pp
shot gt Nominal 1
| Veb NP in my pajamas

2 Nominal PP P
shot Det Nominal

Noun “inmy pajamas i
an Noun

clephant

elephant

46
3/11/08

Ambiguity

* No...

+ Both CKY and Earley will result in multiple S
structures for the [0,n] table entry.

+ They both efficiently store the sub-parts that
are shared between multiple parses.

+ And they obviously avoid re-deriving those
sub-parts.

+ But neither can tell us which one is right.

47
311108

Ambiguity

* In most cases, humans don’t notice
incidental ambiguity (lexical or syntactic).
It is resolved on the fly and never noticed.

« We’'ll try to model that with probabilities.

» But note something odd and important
about the Groucho Marx example...

48
31108

16

Next Time

+ Partial Parsing and chunking
+ After that we’ll move on to probabilistic parsing

3/11/08

49

17

