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CSCI 5832
Natural Language Processing
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Today 3/4

• Parsing
 CKY again
 Earley
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Sample Grammar
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Dynamic Programming

• DP methods fill tables with partial results
and
 Do not do too much avoidable repeated work
 Solve exponential problems in polynomial

time (sort of)
 Efficiently store ambiguous structures with

shared sub-parts.
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CKY Parsing

• First we’ll limit our grammar to epsilon-
free, binary rules (more later)

• Consider the rule A -> BC
 If there is an A in the input then there must

be a B followed by a C in the input.
 If the A spans from i to j in the input then

there must be some k st. i<k<j
 Ie. The B splits from the C someplace.
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CKY

• So let’s build a table so that an A spanning
from i to j in the input is placed in cell [i,j] in
the table.

• So a non-terminal spanning an entire
string will sit in cell [0, n]

• If we build the table bottom up we’ll know
that the parts of the A must go from i to k
and from k to j
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CKY

• Meaning that for a rule like A -> B C we
should look for a B in [i,k] and a C in [k,j].

• In other words, if we think there might be
an A spanning i,j in the input… AND

• A -> B C is a rule in the grammar THEN
• There must be a B in [i,k] and a C in [k,j]

for some i<k<j
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CKY

• So to fill the table loop over the cell[i,j]
values in some systematic way
 What constraint should we put on that?

 For each cell loop over the appropriate k
values to search for things to add.
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CKY Table



4

3/11/08
10

CKY Algorithm
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CKY Parsing

• Is that really a parser?
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Note

• We arranged the loops to fill the table a
column at a time, from left to right, bottom
to top.
 This assures us that whenever we’re filling a

cell, the parts needed to fill it are already in
the table (to the left and below)
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Example
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Other Ways to Do It?

• Are there any other sensible ways to fill
the table that still guarantee that the cells
we need are already filled?
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Other Ways to Do It?
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Sample Grammar
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Problem

• What if your grammar isn’t binary?
 As in the case of the TreeBank grammar?

• Convert it to binary… any arbitrary CFG can
be rewritten into Chomsky-Normal Form
automatically.

• What does this mean?
 The resulting grammar accepts (and rejects) the

same set of strings as the original grammar.
 But the resulting derivations (trees) are different.
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Problem

• More specifically, rules have to be of the
form
A -> B C
Or
A -> w

That is, rules can expand to either 2 non-
terminals or to a single terminal.
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Binarization Intuition

• Eliminate chains of unit productions.
• Introduce new intermediate non-terminals into the

grammar that distribute rules with length > 2 over
several rules. So…
S -> A B C

 Turns into
S -> X C
X - A B

Where X is a symbol that doesn’t occur anywhere else in the the
grammar.
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CNF Conversion
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CKY Algorithm
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Example

Filling column 5
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Example
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Example
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Example
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Example
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CKY Notes

• Since it’s bottom up, CKY populates the table
with a lot of phantom constituents.
 Segments that by themselves are constituents but

cannot really occur in the context in which they are
being suggested.

 To avoid this we can switch to a top-down control
strategy or

 We can add some kind of filtering that blocks
constituents where they can not happen in a final
analysis.
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Break

• Quiz pushed back to Tues 3/18
 Schedule

 Today:  CKY and Earley
 Thursday: Partial parsing, chunking and more on

statistical sequence processing
 Next week: statistical parsing
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Earley Parsing

• Allows arbitrary CFGs
• Top-down control
• Fills a table in a single sweep over the input

words
 Table is length N+1; N is number of words
 Table entries represent

 Completed constituents and their locations
 In-progress constituents
 Predicted constituents
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States

• The table-entries are called states and are
represented with dotted-rules.
S -> · VP A VP is predicted

NP -> Det · Nominal An NP is in progress

VP -> V NP · A VP has been found
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States/Locations

• S ->  VP [0,0]

• NP -> Det  Nominal
[1,2]

• VP -> V NP   [0,3]

• A VP is predicted at the start
of the sentence

• An NP is in progress; the Det
goes from 1 to 2

• A VP has been found
starting at 0 and ending at 3
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Graphically
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Earley

• As with most dynamic programming
approaches, the answer is found by
looking in the table in the right place.

• In this case, there should be an S state in
the final column that spans from 0 to n and
is complete.

• If that’s the case you’re done.
 S –> α  [0,n]
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Earley

• So sweep through the table from 0 to n…
 New predicted states are created by starting

top-down from S
 New incomplete states are created by

advancing existing states as new constituents
are discovered

 New complete states are created in the same
way.
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Earley

• More specifically…
1. Predict all the states you can upfront
2. Read a word

1. Extend states based on matches
2. Generate new predictions
3. Go to step 2

3. Look at n to see if you have a winner
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Earley Code
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Earley Code
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Example

• Book that flight
• We should find… an S from 0 to 3 that is a

completed state…
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Example
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Add To Chart
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Example
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Example
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Efficiency

• For such a simple example, there seems
to be a lot of useless stuff in there.

• Why?

• It’s predicting things that aren’t consistent
with the input
•That’s the flipside to the CKY problem.
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Details

• As with CKY that isn’t a parser until we
add the backpointers so that each state
knows where it came from.
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Back to Ambiguity

• Did we solve it?
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Ambiguity
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Ambiguity

• No…
 Both CKY and Earley will result in multiple S

structures for the [0,n] table entry.
 They both efficiently store the sub-parts that

are shared between multiple parses.
 And they obviously avoid re-deriving those

sub-parts.
 But neither can tell us which one is right.
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Ambiguity

• In most cases, humans don’t notice
incidental ambiguity (lexical or syntactic).
It is resolved on the fly and never noticed.

• We’ll try to model that with probabilities.
• But note something odd and important

about the Groucho Marx example…
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Next Time

• Partial Parsing and chunking
• After that we’ll move on to probabilistic parsing


