
1

3/11/08 1

CSCI 5832
Natural Language Processing

Jim Martin
Lecture 14

3/11/08
2

Today 3/4

• Parsing
 CKY again
 Earley

3/11/08
3

Sample Grammar

2

3/11/08
4

Dynamic Programming

• DP methods fill tables with partial results
and
 Do not do too much avoidable repeated work
 Solve exponential problems in polynomial

time (sort of)
 Efficiently store ambiguous structures with

shared sub-parts.

3/11/08
5

CKY Parsing

• First we’ll limit our grammar to epsilon-
free, binary rules (more later)

• Consider the rule A -> BC
 If there is an A in the input then there must

be a B followed by a C in the input.
 If the A spans from i to j in the input then

there must be some k st. i<k<j
 Ie. The B splits from the C someplace.

3/11/08
6

CKY

• So let’s build a table so that an A spanning
from i to j in the input is placed in cell [i,j] in
the table.

• So a non-terminal spanning an entire
string will sit in cell [0, n]

• If we build the table bottom up we’ll know
that the parts of the A must go from i to k
and from k to j

3

3/11/08
7

CKY

• Meaning that for a rule like A -> B C we
should look for a B in [i,k] and a C in [k,j].

• In other words, if we think there might be
an A spanning i,j in the input… AND

• A -> B C is a rule in the grammar THEN
• There must be a B in [i,k] and a C in [k,j]

for some i<k<j

3/11/08
8

CKY

• So to fill the table loop over the cell[i,j]
values in some systematic way
 What constraint should we put on that?

 For each cell loop over the appropriate k
values to search for things to add.

3/11/08
9

CKY Table

4

3/11/08
10

CKY Algorithm

3/11/08
11

CKY Parsing

• Is that really a parser?

3/11/08
12

Note

• We arranged the loops to fill the table a
column at a time, from left to right, bottom
to top.
 This assures us that whenever we’re filling a

cell, the parts needed to fill it are already in
the table (to the left and below)

5

3/11/08
13

Example

3/11/08
14

Other Ways to Do It?

• Are there any other sensible ways to fill
the table that still guarantee that the cells
we need are already filled?

3/11/08
15

Other Ways to Do It?

6

3/11/08
16

Sample Grammar

3/11/08
17

Problem

• What if your grammar isn’t binary?
 As in the case of the TreeBank grammar?

• Convert it to binary… any arbitrary CFG can
be rewritten into Chomsky-Normal Form
automatically.

• What does this mean?
 The resulting grammar accepts (and rejects) the

same set of strings as the original grammar.
 But the resulting derivations (trees) are different.

3/11/08
18

Problem

• More specifically, rules have to be of the
form
A -> B C
Or
A -> w

That is, rules can expand to either 2 non-
terminals or to a single terminal.

7

3/11/08
19

Binarization Intuition

• Eliminate chains of unit productions.
• Introduce new intermediate non-terminals into the

grammar that distribute rules with length > 2 over
several rules. So…
S -> A B C

 Turns into
S -> X C
X - A B

Where X is a symbol that doesn’t occur anywhere else in the the
grammar.

3/11/08
20

CNF Conversion

3/11/08
21

CKY Algorithm

8

3/11/08
22

Example

Filling column 5

3/11/08
23

Example

3/11/08
24

Example

9

3/11/08
25

Example

3/11/08
26

Example

3/11/08
27

CKY Notes

• Since it’s bottom up, CKY populates the table
with a lot of phantom constituents.
 Segments that by themselves are constituents but

cannot really occur in the context in which they are
being suggested.

 To avoid this we can switch to a top-down control
strategy or

 We can add some kind of filtering that blocks
constituents where they can not happen in a final
analysis.

10

3/11/08
28

Break

• Quiz pushed back to Tues 3/18
 Schedule

 Today: CKY and Earley
 Thursday: Partial parsing, chunking and more on

statistical sequence processing
 Next week: statistical parsing

3/11/08
29

Earley Parsing

• Allows arbitrary CFGs
• Top-down control
• Fills a table in a single sweep over the input

words
 Table is length N+1; N is number of words
 Table entries represent

 Completed constituents and their locations
 In-progress constituents
 Predicted constituents

3/11/08
30

States

• The table-entries are called states and are
represented with dotted-rules.
S -> · VP A VP is predicted

NP -> Det · Nominal An NP is in progress

VP -> V NP · A VP has been found

11

3/11/08
31

States/Locations

• S ->  VP [0,0]

• NP -> Det  Nominal
[1,2]

• VP -> V NP  [0,3]

• A VP is predicted at the start
of the sentence

• An NP is in progress; the Det
goes from 1 to 2

• A VP has been found
starting at 0 and ending at 3

3/11/08
32

Graphically

3/11/08
33

Earley

• As with most dynamic programming
approaches, the answer is found by
looking in the table in the right place.

• In this case, there should be an S state in
the final column that spans from 0 to n and
is complete.

• If that’s the case you’re done.
 S –> α  [0,n]

12

3/11/08
34

Earley

• So sweep through the table from 0 to n…
 New predicted states are created by starting

top-down from S
 New incomplete states are created by

advancing existing states as new constituents
are discovered

 New complete states are created in the same
way.

3/11/08
35

Earley

• More specifically…
1. Predict all the states you can upfront
2. Read a word

1. Extend states based on matches
2. Generate new predictions
3. Go to step 2

3. Look at n to see if you have a winner

3/11/08
36

Earley Code

13

3/11/08
37

Earley Code

3/11/08
38

Example

• Book that flight
• We should find… an S from 0 to 3 that is a

completed state…

3/11/08
39

Example

14

3/11/08
40

Add To Chart

3/11/08
41

Example

3/11/08
42

Example

15

3/11/08
43

Efficiency

• For such a simple example, there seems
to be a lot of useless stuff in there.

• Why?

• It’s predicting things that aren’t consistent
with the input
•That’s the flipside to the CKY problem.

3/11/08
44

Details

• As with CKY that isn’t a parser until we
add the backpointers so that each state
knows where it came from.

3/11/08
45

Back to Ambiguity

• Did we solve it?

16

3/11/08
46

Ambiguity

3/11/08
47

Ambiguity

• No…
 Both CKY and Earley will result in multiple S

structures for the [0,n] table entry.
 They both efficiently store the sub-parts that

are shared between multiple parses.
 And they obviously avoid re-deriving those

sub-parts.
 But neither can tell us which one is right.

3/11/08
48

Ambiguity

• In most cases, humans don’t notice
incidental ambiguity (lexical or syntactic).
It is resolved on the fly and never noticed.

• We’ll try to model that with probabilities.
• But note something odd and important

about the Groucho Marx example…

17

3/11/08
49

Next Time

• Partial Parsing and chunking
• After that we’ll move on to probabilistic parsing

