
1

2/7/08 1

CSCI 5832
Natural Language Processing

Jim Martin
Lecture 7

2/7/08
2

Today 2/5

• Review LM basics
 Chain rule
 Markov Assumptions

• Why should you care?
• Remaining issues

 Unknown words
 Evaluation
 Smoothing
 Backoff and Interpolation

2/7/08
3

Language Modeling

• We want to compute
P(w1,w2,w3,w4,w5…wn), the probability
of a sequence

• Alternatively we want to compute
P(w5|w1,w2,w3,w4,w5): the probability of
a word given some previous words

• The model that computes P(W) or
P(wn|w1,w2…wn-1) is called the language
model.

2

2/7/08
4

Computing P(W)

• How to compute this joint probability:

 P(“the”,”other”,”day”,”I”,”was”,”walking”,”along”
,”and”,”saw”,”a”,”lizard”)

• Intuition: let’s rely on the Chain Rule of
Probability

2/7/08
5

The Chain Rule

• Recall the definition of conditional probabilities

• Rewriting:

• More generally
• P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)
• In general
• P(x1,x2,x3,…xn) =

P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1…xn-1)

2/7/08
6

The Chain Rule

• P(“the big red dog was”)=

• P(the)*P(big|the)*P(red|the big)*P(dog|the big
red)*P(was|the big red dog)

3

2/7/08
7

Very Easy Estimate

• How to estimate?
 P(the | its water is so transparent that)

P(the | its water is so transparent that)
=
Count(its water is so transparent that the)

 Count(its water is so transparent that)

2/7/08
8

Very Easy Estimate

• According to Google those counts are 5/9.
 Unfortunately... 2 of those are to these

slides... So its really
 3/7

2/7/08
9

Unfortunately

• There are a lot of possible sentences
• In general, we’ll never be able to get

enough data to compute the statistics for
those long prefixes

• P(lizard|the,other,day,I,was,walking,along,a
nd, saw,a)

4

2/7/08
10

Markov Assumption

• Make the simplifying assumption
 P(lizard|the,other,day,I,was,walking,along,and

,saw,a) = P(lizard|a)
• Or maybe

 P(lizard|the,other,day,I,was,walking,along,and
,saw,a) = P(lizard|saw,a)

• Or maybe... You get the idea.

2/7/08
11

So for each component in the product replace with the
approximation (assuming a prefix of N)

 Bigram version

Markov Assumption

2/7/08
12

Estimating bigram probabilities

• The Maximum Likelihood Estimate

5

2/7/08
13

An example

• <s> I am Sam </s>
• <s> Sam I am </s>
• <s> I do not like green eggs and ham </s>

2/7/08
14

Maximum Likelihood Estimates

• The maximum likelihood estimate of some parameter of
a model M from a training set T
 Is the estimate that maximizes the likelihood of the training set T

given the model M
• Suppose the word Chinese occurs 400 times in a corpus

of a million words (Brown corpus)
• What is the probability that a random word from some

other text from the same distribution will be “Chinese”
• MLE estimate is 400/1000000 = .004

 This may be a bad estimate for some other corpus
• But it is the estimate that makes it most likely that

“Chinese” will occur 400 times in a million word corpus.

2/7/08
15

Berkeley Restaurant Project
Sentences

• can you tell me about any good cantonese
restaurants close by

• mid priced thai food is what i’m looking for
• tell me about chez panisse
• can you give me a listing of the kinds of food that

are available
• i’m looking for a good place to eat breakfast
• when is caffe venezia open during the day

6

2/7/08
16

Raw Bigram Counts

• Out of 9222 sentences: Count(col | row)

2/7/08
17

Raw Bigram Probabilities

• Normalize by unigrams:

• Result:

2/7/08
18

Bigram Estimates of Sentence
Probabilities

• P(<s> I want english food </s>) =
p(i|<s>) x p(want|I) x p(english|want)

x p(food|english) x p(</s>|food)
 =.000031

7

2/7/08
19

Kinds of knowledge?

• P(english|want) = .0011
• P(chinese|want) = .0065
• P(to|want) = .66
• P(eat | to) = .28
• P(food | to) = 0
• P(want | spend) = 0
• P (i | <s>) = .25

• World
knowledge

•Syntax

•Discourse

2/7/08
20

The Shannon Visualization
Method

• Generate random sentences:
• Choose a random bigram <s>, w according to its probability
• Now choose a random bigram (w, x) according to its probability
• And so on until we choose </s>
• Then string the words together
• <s> I
 I want

 want to
 to eat
 eat Chinese

 Chinese food
 food </s>

2/7/08
21

Shakespeare

8

2/7/08
22

Shakespeare as corpus

• N=884,647 tokens, V=29,066
• Shakespeare produced 300,000 bigram types

out of V2= 844 million possible bigrams: so,
99.96% of the possible bigrams were never seen
(have zero entries in the table)

• Quadrigrams worse: What's coming out looks
like Shakespeare because it is Shakespeare

2/7/08
23

The Wall Street Journal is Not
Shakespeare

2/7/08
24

Why?

• Why would anyone want the probability of
a sequence of words?

• Typically because of

9

2/7/08
25

Unknown words: Open versus
closed vocabulary tasks

• If we know all the words in advanced
 Vocabulary V is fixed
 Closed vocabulary task

• Often we don’t know this
 Out Of Vocabulary = OOV words
 Open vocabulary task

• Instead: create an unknown word token <UNK>
 Training of <UNK> probabilities

 Create a fixed lexicon L of size V
 At text normalization phase, any training word not in L changed to <UNK>
 Now we train its probabilities like a normal word

 At decoding time
 If text input: Use UNK probabilities for any word not in training

2/7/08
26

Evaluation

• We train parameters of our model on a training
set.

• How do we evaluate how well our model works?
• We look at the models performance on some new

data
• This is what happens in the real world; we want to

know how our model performs on data we haven’t
seen

• So a test set. A dataset which is different than our
training set

2/7/08
27

Evaluating N-gram models

• Best evaluation for an N-gram
Put model A in a speech recognizer
Run recognition, get word error rate

(WER) for A
Put model B in speech recognition, get

word error rate for B
Compare WER for A and B
Extrinsic evaluation

10

2/7/08
28

Difficulty of extrinsic (in-vivo)
evaluation of N-gram models

• Extrinsic evaluation
 This is really time-consuming
 Can take days to run an experiment

• So
 As a temporary solution, in order to run experiments
 To evaluate N-grams we often use an intrinsic

evaluation, an approximation called perplexity
 But perplexity is a poor approximation unless the test

data looks just like the training data
 So is generally only useful in pilot experiments

(generally is not sufficient to publish)
 But is helpful to think about.

2/7/08
29

Perplexity

• Perplexity is the probability of the test
set (assigned by the language model),
normalized by the number of words:

• Chain rule:

• For bigrams:

• Minimizing perplexity is the same as maximizing
probability
 The best language model is one that best predicts

an unseen test set

2/7/08
30

A Different Perplexity Intuition

• How hard is the task of recognizing digits
‘0,1,2,3,4,5,6,7,8,9’: pretty easy

• How hard is recognizing (30,000) names at Microsoft.
Hard: perplexity = 30,000

• Perplexity is the weighted equivalent branching factor
provided by your model

Slide from Josh Goodman

11

2/7/08
31

Lower perplexity = better model

• Training 38 million words, test 1.5 million
words, WSJ

2/7/08
32

Lesson 1: the perils of
overfitting

• N-grams only work well for word prediction
if the test corpus looks like the training
corpus
 In real life, it often doesn’t
 We need to train robust models, adapt to test

set, etc

2/7/08
33

Lesson 2: zeros or not?

• Zipf’s Law:
 A small number of events occur with high frequency
 A large number of events occur with low frequency
 You can quickly collect statistics on the high frequency events
 You might have to wait an arbitrarily long time to get valid statistics on

low frequency events
• Result:

 Our estimates are sparse! no counts at all for the vast bulk of things
we want to estimate!

 Some of the zeroes in the table are really zeros But others are simply
low frequency events you haven't seen yet. After all, ANYTHING
CAN HAPPEN!

 How to address?
• Answer:

 Estimate the likelihood of unseen N-grams!

12

2/7/08
34

Smoothing is like Robin Hood:
Steal from the rich and give to the poor (in

probability mass)

2/7/08
35

Laplace smoothing

• Also called add-one smoothing
• Just add one to all the counts!
• Very simple

• MLE estimate:

• Laplace estimate:

• Reconstructed counts:

2/7/08
36

Laplace smoothed bigram
counts

13

2/7/08
37

Laplace-smoothed bigrams

2/7/08
38

Reconstituted counts

2/7/08
39

Big Changes to Counts

• C(count to) went from 608 to 238!
• P(to|want) from .66 to .26!
• Discount d= c*/c

 d for “chinese food” =.10!!! A 10x reduction
 So in general, Laplace is a blunt instrument
 Could use more fine-grained method (add-k)

• Despite its flaws Laplace (add-k) is however still used to
smooth other probabilistic models in NLP, especially
 For pilot studies
 in domains where the number of zeros isn’t so huge.

14

2/7/08
40

Better Discounting Methods

• Intuition used by many smoothing
algorithms
 Good-Turing
 Kneser-Ney
 Witten-Bell

• Is to use the count of things we’ve seen
once to help estimate the count of things
we’ve never seen

2/7/08
41

Good-Turing

• Imagine you are fishing
 There are 8 species: carp, perch, whitefish, trout,

salmon, eel, catfish, bass
• You have caught

 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel
= 18 fish (tokens)

 = 6 species (types)
• How likely is it that you’ll next see another trout?

2/7/08
42

Good-Turing

• Now how likely is it that next species is
new (i.e. catfish or bass)

3/18

There were 18 distinct events... 3 of
those represent singleton species

15

2/7/08
43

Good-Turing

• But that 3/18s isn’t represented in our
probability mass. Certainly not the one we
used for estimating another trout.

2/7/08
44

Good-Turing Intuition

• Notation: Nx is the frequency-of-frequency-x
 So N10=1, N1=3, etc

• To estimate total number of unseen species
 Use number of species (words) we’ve seen once
 c0

* =c1 p0 = N1/N
• All other estimates are adjusted (down) to give

probabilities for unseen

Slide from Josh Goodman

2/7/08
45

Good-Turing Intuition

• Notation: Nx is the frequency-of-frequency-x
 So N10=1, N1=3, etc

• To estimate total number of unseen species
 Use number of species (words) we’ve seen once
 c0

* =c1 p0 = N1/N p0=N1/N=3/18

• All other estimates are adjusted (down) to give
probabilities for unseen

P(eel) = c*(1) = (1+1) 1/ 3 = 2/3

Slide from Josh Goodman

16

2/7/08
46

Bigram frequencies of
frequencies and GT re-estimates

2/7/08
47

Backoff and Interpolation

• Another really useful source of knowledge
• If we are estimating:

 trigram p(z|xy)
 but c(xyz) is zero

• Use info from:
 Bigram p(z|y)

• Or even:
 Unigram p(z)

• How to combine the trigram/bigram/unigram
info?

2/7/08
48

Backoff versus interpolation

• Backoff: use trigram if you have it,
otherwise bigram, otherwise unigram

• Interpolation: mix all three

17

2/7/08
49

Interpolation

• Simple interpolation

• Lambdas conditional on context:

2/7/08
50

How to set the lambdas?

• Use a held-out corpus
• Choose lambdas which maximize the

probability of some held-out data
 I.e. fix the N-gram probabilities
 Then search for lambda values
 That when plugged into previous equation
 Give largest probability for held-out set
 Can use EM to do this search

2/7/08
51

GT smoothed bigram probs

18

2/7/08
52

OOV words: <UNK> word

• Out Of Vocabulary = OOV words
• We don’t use GT smoothing for these

 Because GT assumes we know the number of unseen events
• Instead: create an unknown word token <UNK>

 Training of <UNK> probabilities
 Create a fixed lexicon L of size V
 At text normalization phase, any training word not in L changed to

<UNK>
 Now we train its probabilities like a normal word

 At decoding time
 If text input: Use UNK probabilities for any word not in training

2/7/08
53

Practical Issues

• We do everything in log space
 Avoid underflow
 (also adding is faster than multiplying)

2/7/08
54

Language Modeling Toolkits

• SRILM
• CMU-Cambridge LM Toolkit

19

2/7/08
55

Google N-Gram Release

2/7/08
56

Google N-Gram Release

• serve as the incoming 92
• serve as the incubator 99
• serve as the independent 794
• serve as the index 223
• serve as the indication 72
• serve as the indicator 120
• serve as the indicators 45
• serve as the indispensable 111
• serve as the indispensible 40
• serve as the individual 234

2/7/08
57

Summary

• Probability
 Basic probability
 Conditional probability
 Bayes Rule

• Language Modeling (N-grams)
 N-gram Intro
 The Chain Rule

 Perplexity
 Smoothing:

 Add-1
 Good-Turing

20

2/7/08
58

Next Time

• On to Chapter 5

