CSCI 5832
Natural Language Processing

Jim Martin
Lecture 7

2/7/08 1

Today 2/5

* Review LM basics
¢ Chain rule
+ Markov Assumptions
* Why should you care?
* Remaining issues
+ Unknown words
+ Evaluation
¢ Smoothing
+ Backoff and Interpolation

2/7/08

Language Modeling

* We want to compute
P(w1,w2,w3,w4,w5...wn), the probability
of a sequence

 Alternatively we want to compute
P(w5|w1,w2,w3,w4,w5): the probability of
a word given some previous words

* The model that computes P(W) or
P(wn|w1,w2...wn-1) is called the language
model.

2/7/08

Computing P(W)

* How to compute this joint probability:

+ P(“the”,"other’,"day”,"I",'was”,"walking”, along”

,”and”,”saw”,”a”,”lizard”)

* Intuition: let’s rely on the Chain Rule of
Probability

2/7/08

The Chain Rule

» Recall the definition of conditional probabilities

e sl |

+ Rewriting: |] - =
™] - Wy |y
* More generally
+ P(A,B,C,D) = P(A)P(BJA)P(C|A,B)P(D|A,B,C)
* In general
o P(Xq,X5,X3,...%,) =

P(x1)P(Xa|X1)P(X3|X1,Xz). .. P(Xq X1 Xn.1)

2/7/08

The Chain Rule

P(w]) = P(wp)P(wa|wy)P(w3 \w%) o P(wy| w’l”l)
n

= [TPOwlwi™)

k=1

* P(“the big red dog was”)=

+ P(the)*P(big|the)*P(red|the big)*P(dog|the big
red)*P(was|the big red dog)

2/7/08

Very Easy Estimate

* How to estimate?
+ P(the | its water is so transparent that)

P(the | its water is so transparent that)

Count(its water is so transparent that the)

Count(its water is so transparent that)

2/7/08

Very Easy Estimate

» According to Google those counts are 5/9.

+ Unfortunately... 2 of those are to these
slides... So its really

* 3/7

2/7/08

Unfortunately

» There are a lot of possible sentences

* In general, we’ll never be able to get
enough data to compute the statistics for
those long prefixes

 P(lizard|the,other,day,|,was,walking,along,a
nd, saw,a)

2/7/08

Markov Assumption

* Make the simplifying assumption
+ P(lizard|the,other,day,|,was,walking,along,and
,saw,a) = P(lizard|a)
* Or maybe

+ P(lizard|the,other,day,|,was,walking,along,and
,saw,a) = P(lizard|saw,a)

* Or maybe... You get the idea.

2/7/08

Markov Assumption

So for each component in the product replace with the
approximation (assuming a prefix of N)

e) =

Bigram version

Hw, | =Hw, =]

2/7/08

Estimating bigram probabilities

* The Maximum Likelihood Estimate
meni]s, =]
meni]s, |

Hjw, lm,] -

ufm, .=]

Hiw, |,]~
wjm, I

2/7/08

An example

* <s>|am Sam </s>
* <s>Sam | am </s>
» <s>|do not like green eggs and ham </s>

P(I|<s>)=3=.67 P(Sam|<s>)=1=33 P(am|I)=3
P(</s>|sam)=1=05 P(Sam|am)=4%=.5 P(do|T)=1=.

n—1
C(wn—N—Hw”)
n—1

P(w M)”_ly _
(”‘ 11—1\+1) C(W,,,N+l)

2/7/08

Maximum Likelihood Estimates

» The maximum likelihood estimate of some parameter of
a model M from a training set T

+ Is the estimate that maximizes the likelihood of the training set T
given the model M

» Suppose the word Chinese occurs 400 times in a corpus
of a million words (Brown corpus)

* What is the probability that a random word from some
other text from the same distribution will be “Chinese”

* MLE estimate is 400/1000000 = .004

+ This may be a bad estimate for some other corpus

+ Butitis the estimate that makes it most likely that

“Chinese” will occur 400 times in a million word corpus.

2/7/08

Berkeley Restaurant Project
Sentences

» can you tell me about any good cantonese
restaurants close by

* mid priced thai food is what i’'m looking for
* tell me about chez panisse

* can you give me a listing of the kinds of food that
are available

* i’m looking for a good place to eat breakfast
* when is caffe venezia open during the day

2/7/08

Raw Bigram Counts

» Out of 9222 sentences: Count(col | row)

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
16
2/7/08

Raw Bigram Probabilities

* Normalize by unigrams:

[want_ | to [eat | chinese | food [Tunch [spend |
[[2533 1927 [2417 [746 [138 [1093 T 341 [278]

i want | to eat chinese | food | lunch | spend
i 0002 | 0330 0.0036| 0 0 0 0.00079
want [0.0022 |0 [0.66 |0.0011|0.0065 |0.0065|0.0054 | 0.0011
0 0.00083| 0 [0.0017| 028 | 0.00083 | 0 0.0025 | 0.087
eat 0 0 [0.0027]0 0021 | 0.0027 | 0.056 |0
chinese | 0.0063 |0 |0 0 0 052 [0.0063|0
food | 0014 |0 [0.014 |0 0.00092 | 0.0037 | 0 0
lunch | 0.0059 [0 |0 0 0 0.0029| 0 0
spend || 0.0036 | 0 | 0.0036]0 0 0 0 0

17
2/7/08
Bigram Estimates of Sentence
Probabilities

* P(<s> | want english food </s>) =

p(il<s>) x p(want|l) x p(english|want)

x p(food|english) x p(</s>|food)
=.000031
18

2/7/08

Kinds of knowledge?

english|jwant) =.0011 * World

+ P
; - knowledge
* P(chinese|want) = .0065 g
* P(toJwant) = .66
*Syntax
* P(eat|to) =.28
* P(food | to) =0
* P(want | spend)=0
: *Discourse
* P(i|<s>)=.25
19
2/7/08
The Shannon Visualization
« Generate random sentences:
« Choose a random bigram <s>, w according to its probability
« Now choose a random bigram (w, x) according to its probability
« And so on until we choose </s>
« Then string the words together
. <s>|
| want
want to
to eat
eat Chinese
Chinese food
food </s>
20
2/7/08
« To him swallowed confess hear both. Which. Of save on trail for are ay device
and rote life have
 Every enter now severally so, let
« Hill he late speaks; or! a more to leg less first you enter
 Are where exeunt and sighs have rise excellency took of... Sleep knave we. near;
vile like
© What means, sir. I confess she? then all sorts, he 1s trim, captain
@Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry
' Live king. Follow.
eWhat we, hath got so she that I rest and sent to scold and nature bankrupt, nor the
first gentleman?
er Menenius, if it 5o many good direction found’st thou art a strong upon com:
and of fear not a liberal largess given away, Falstaff! Exeunt
Sweet prince, Falstait shall die. Harry o ave.
This shall forbid it should be branded, if renown made it empty.
= e Indeed the duke; and had a very good friend.
 Fly, and will rid me these news of price. Therefore the sadness of parting, as they
tis done.
o King Henry. What! T will go seek the traitor Gloucester. Exeunt some of the
watch. A great banquet serv'd in;
5 e Will younot tell me who I am?
o It cannot be but so. 21

2/7/08

o Indeed the short and the long. Marry, 'tis a noble Lepidus.

Shakespeare as corpus

* N=884,647 tokens, V=29,066

» Shakespeare produced 300,000 bigram types
out of V2= 844 million possible bigrams: so,
99.96% of the possible bigrams were never seen
(have zero entries in the table)

* Quadrigrams worse: What's coming out looks
like Shakespeare because it is Shakespeare

22
2/7/08

The Wall Street Journal is Not
Shakespeare

unigram: Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

bigram: Last December through the way to preserve the Hudson corporation
N. B. E. C. Taylor would seem to complete the major central planners one
point five percent of U. S. E. has already old M. X. corporation of living on
information such as more frequently fishing to keep her

trigram: They also point to ninety nine point six billion dollars from two
hundred four oh six three percent of the rates of interest stores as Mexico and
Brazil on market conditions

23
2/7/08

Why?

* Why would anyone want the probability of
a sequence of words?

* Typically because of

24
2/7/08

Unknown words: Open versus
closed vocabulary tasks

If we know all the words in advanced
+ Vocabulary V is fixed
+ Closed vocabulary task
« Often we don’t know this
+ Out Of Vocabulary = OOV words
+ Open vocabulary task
Instead: create an unknown word token <UNK>
+ Training of <UNK> probabilities
= Create a fixed lexicon L of size V
= At text normalization phase, any training word not in L changed to <UNK>
= Now we train its probabilities like a normal word
+ At decoding time
= If text input: Use UNK probabilities for any word not in training

25

2/7/08

Evaluation

» We train parameters of our model on a training
set.

* How do we evaluate how well our model works?

We look at the models performance on some new

data

» This is what happens in the real world; we want to
know how our model performs on data we haven’t
seen

» So a test set. A dataset which is different than our
training set

26
2/7/08

Evaluating N-gram models

* Best evaluation for an N-gram
+ Put model A in a speech recognizer

+ Run recognition, get word error rate
(WER) for A

+ Put model B in speech recognition, get
word error rate for B

+ Compare WER for A and B
+ Extrinsic evaluation

27
2/7/08

Difficulty of extrinsic (in-vivo)
evaluation of N-gram models

» Extrinsic evaluation
¢ This is really time-consuming
¢ Can take days to run an experiment
* So
+ As a temporary solution, in order to run experiments
+ To evaluate N-grams we often use an intrinsic
evaluation, an approximation called perplexity
+ But perplexity is a poor approximation unless the test
data looks just like the training data
+ So is generally only useful in pilot experiments
(generally is not sufficient to publish)

+ But is helpful to think about. 28

2/7/08

Perplexity

Perplexity is the probability of the test

set (assigned by the language model),

normalized by the number of words: Kv/ 1
P(

WIW2 .. WN

PP(W) = P(wiwa...wy) ¥

)

-
1

. X PP(W) = ¥ P S

Chain rule: W) \jl_[lrw.m,,.m D

N
1
. PP(W) = |
For bigrams:) \’ l[’(w,\n-, 1)

» Minimizing perplexity is the same as maximizing
probability
+ The best language model is one that best predicts -
217108 an unseen test set

A Different Perplexity Intuition

» How hard is the task of recognizing digits
‘0,1,2,3,4,5,6,7,8,9": pretty easy

» How hard is recognizing (30,000) names at Microsoft.
Hard: perplexity = 30,000

+ Perplexity is the weighted equivalent branching factor
provided by your model

Slide from Josh Goodman 30
2/7/08

10

Lower perplexity = better model

* Training 38 million words, test 1.5 million
w

~

N-gram Order || Unigram | Bigram | Trigram
Perplexity 962 170 109

31
2/7/08

Lesson 1: the perils of
overfitting

* N-grams only work well for word prediction
if the test corpus looks like the training
corpus

+ In real life, it often doesn’t

+ We need to train robust models, adapt to test
set, etc

32

2/7/08

Lesson 2: zeros or not?

« Zipf's Law:
+ A small number of events occur with high frequency
+ A large number of events occur with low frequency
+ You can quickly collect statistics on the high frequency events

+ You might have to wait an arbitrarily long time to get valid statistics on

low frequency events
Result:

+ Our estimates are sparse! no counts at all for the vast bulk of things
we want to estimate!

+ Some of the zeroes in the table are really zeros But others are simply
low frequency events you haven't seen yet. After all, ANYTHING
CAN HAPPEN!

+ How to address?

* Answer:
+ Estimate the likelihood of unseen N-grams!

33
2/7/08

11

Smoothing is like Robin Hood:

probability mass)

Steal from the rich and give to the poor (in

= We often want to make predictions from sparse statistics
P(w | denied the) ™

3 allegations s

2 reports s

1 claims B @ 2
IR . £

1 request o % E E § c 8

7 total sg| 5 g 3

Smoothing flattens spiky distributions so they generalize better

P(w | denied the)
2.5 allegations

1.5 reports

0.5 claims (-

0.5 request E c

2other @ m 5 S
® E

7 total — e e

= Very important all over NLP, but easy to do badly!

ttack
outcome

2/7/08

34
2/7/08
Laplace smoothing
+ Also called add-one smoothing
» Just add one to all the counts!
* Very simple
Y SIMPIE iy =&
N
* MLE estimate: e+l
PLaplace(Wi) = N1V
» Laplace estimate: N
i =(c+1)——
N+V
» Reconstructed counts: +
35
2/7/08
Laplace smoothed bigram
counts
i want to eat chinese food | lunch | spend
i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1
36

12

Laplace-smoothed bigrams

" Cwy_1wy) +1
P(Wn‘wn—l): (-)

C(W11—1)+V
i want to eat chinese | food lunch spend
i 0.0015 | 021 0.00025] 0.0025 | 0.00025] 0.00025] 0.00025] 0.00075
want 0.0013 | 0.00042| 0.26 0.00084| 0.0029 | 0.0029 | 00025 | 0.00084
to 0.00078| 0.00026| 0.0013 | 0.18 0.00078| 0.00026| 0.0018 | 0.055
eat 0.00046| 0.00046| 0.0014 | 0.00046| 0.0078 | 0.0014 | 0.02 0.00046
chinese | 0.0012 | 0.00062| 0.00062| 0.00062| 0.00062| 0.052 0.0012 | 0.00062
food 0.0063 | 0.00039| 0.0063 | 0.00039| 0.00079| 0.002 0.00039| 0.00039
lunch 0.0017 | 0.00056| 0.00056| 0.00056| 0.00056| 0.0011 | 0.00056| 0.00056
spend || 0.0012 | 0.00058| 0.0012 | 0.00058| 0.00058| 0.00058| 0.00058 | 0.00058
37
2/7/08
* - [C(Wn—1wy) + 1] x C(wy,_1)
c (Wn—lwn) ==
C(W71—1)+V
i want to eat chinese | food| lunch| spend
i 38 | 527 0.64 | 64 0.64 0.64[064 [19
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
eat 034 034 1 0.34 58 1 15 0.34
chinese 0.2 0.098(0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 22 0.43 043
lunch 0.57| 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16
38
2/7/08
+ C(count to) went from 608 to 238!
+ P(to]want) from .66 to .26!
+ Discount d=c*/c
+ d for “chinese food” =.10!!! A 10x reduction
+ Soin general, Laplace is a blunt instrument
+ Could use more fine-grained method (add-k)
+ Despite its flaws Laplace (add-k) is however still used to
smooth other probabilistic models in NLP, especially
+ For pilot studies
+ in domains where the number of zeros isn’t so huge.
39
2/7/08

13

Better Discounting Methods

* Intuition used by many smoothing
algorithms
+ Good-Turing
+ Kneser-Ney
+ Witten-Bell

* Is to use the count of things we’ve seen
once to help estimate the count of things
we’ve never seen

2/7/08

40

Good-Turing

» Imagine you are fishing
+ There are 8 species: carp, perch, whitefish, trout,
salmon, eel, catfish, bass

* You have caught
+ 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel
= 18 fish (tokens)

= 6 species (types)
* How likely is it that you’ll next see another trout?

2/7/08

4“1

Good-Turing

* Now how likely is it that next species is
new (i.e. catfish or bass)

There were 18 distinct events... 3 of
those represent singleton species

3/18

2/7/08

42

14

Good-Turing

» But that 3/18s isn’t represented in our
probability mass. Certainly not the one we
used for estimating another trout.

2/7/08

43

Good-Turing Intuition

* Notation: N, is the frequency-of-frequency-x
¢ So Nyg=1, N;=3, etc

* To estimate total number of unseen species
¢ Use number of species (words) we’ve seen once
*cy'=C; po=Ny/N

» All other estimates are adjusted (down) to give
probabilities for unseen

Nc+1

N,

" =(c+1)

2/7/08 Slide from Josh Goodman

44

Good-Turing Intuition

* Notation: N, is the frequency-of-frequency-x
¢ So Nyp=1, N;=3, etc

* To estimate total number of unseen species
¢ Use number of species (words) we’ve seen once
*cy'=C; po=Ny/N pe=N,/N=3/18

i

F
» All other estimates are adjusted (down) to give
probabilities for unseen

P{r(things with frequency zero in training) =

Peel) = c*(1) = (1+1) 1/3=23
Nc+1
¢ =(c+1)—
Slide from Josh Goodman N,

2/7/08

45

15

Bigram frequencies of
frequencies and GT re-estimates

AP Newswire I Berkeley Restaurant—

¢ (MLE) N, ¢ (GT) | c¢MLE) Ne ¢ (GT)

0 74,671,100,000 0.0000270 || 0 2,081,496 0.002553
1 2,018,046 0.446 1 5315 0.533960
2 449,721 1.26 2 1419 1.357294
3 188,933 224 3 642 2.373832
4 105,668 324 4 381 4.081365
5 68,379 422 5 311 3.781350
6 48,190 5.19 6 196 4.500000

46

2/7/08

Backoff and Interpolation

» Another really useful source of knowledge
 If we are estimating:
* trigram p(z|xy)
¢ but c(xyz) is zero
» Use info from:
+ Bigram p(z|y)
* Oreven:
+ Unigram p(z)
* How to combine the trigram/bigram/unigram
info?

47
2/7/08

Backoff versus interpolation

» Backoff: use trigram if you have it,
otherwise bigram, otherwise unigram

* Interpolation: mix all three

48
2/7/08

Interpolation

» Simple interpolation Sh-1
P(walwy-1wn_2) = MP(Wy|Wy_1wy_2)
AP (wy|wy—1)
AP ()

« Lambdas conditional on context:

P(wy|wy_awyo1) = MOWAT)POw[w,_2w,1)
Fha (W P(wylwat)
+ A3 (WyZ3)P(wn)

49
2/7/08
How to set the lambdas?
* Use a held-out corpus
* Choose lambdas which maximize the
probability of some held-out data
+ |.e. fix the N-gram probabilities
+ Then search for lambda values
+ That when plugged into previous equation
+ Give largest probability for held-out set
+ Can use EM to do this search
50
2/7/08
GT smoothed bigram probs
B want o eat chinese food Tunch spend
i 0.0014 0.326 0.00248 0.00355 0.000205 0.0017 0.00073 0.000489
want 0.00134 0.00152 0.656 0.000483 0.00455 0.00455 0.00384 0.000483
to 0.000512 0.00152 0.00165 0.284 0.000512 0.0017 0.00175 0.0873
eat 0.00101 0.00152 0.00166 0.00189 0.0214 0.00166 0.0563 0.000585
chinese 0.00283 0.00152 0.00248 0.00189 0.000205 0519 0.00283 0.000585
food 0.0137 0.00152 0.0137 0.00189 0.000409 0.00366 0.00073 0.000585
lunch 0.00363 0.00152 0.00248 0.00189 0.000205 0.00131 0.00073 0.000585
spend 0.00161 0.00152 0.00161 0.00189 0.000205 0.0017 0.00073 0.000585
51
2/7/08

17

OOV words: <UNK> word

+ Out Of Vocabulary = OOV words
* We don’t use GT smoothing for these
+ Because GT assumes we know the number of unseen events
* Instead: create an unknown word token <UNK>
+ Training of <UNK> probabilities
= Create a fixed lexicon L of size V

= At text normalization phase, any training word not in L changed to
<UNK>

= Now we train its probabilities like a normal word
+ At decoding time
= |f text input: Use UNK probabilities for any word not in training

52
2/7/08

Practical Issues

* We do everything in log space
+ Avoid underflow

P1 X p2 X p3 X pg = exp(log p1 +log p2 +log p3 +1log ps)

53
2/7/08

Language Modeling Toolkits

* SRILM
* CMU-Cambridge LM Toolkit

54
2/7/08

18

Google N-Gram Release

AII Our N-gram are Belong to You
eter Norvig - 8/03/2006 26:00 AM

Posted by Alex Franz and Thorsten Brants, Google Machine Translation
Team

Here at Google Research we have been using word n-gram models for a

variety of R&D projects, such as statistical machine translation, speech

recognition, spelling n, entity , information

and others. While such models have usually been estimated from lralmng
to share this enormous dataset with everyone. We processed
1,024,908,267,229 words of running text and are publishing the counts
forall 1,176,470,663 five-word sequences that appear at least 40 times.
There are 13,588,391 unique words, after discarding words that appear
less than 200 times.

55
2/7/08
Google N-Gram Release
* serve as the incoming 92
* serve as the incubator 99
* serve as the independent 794
* serve as the index 223
* serve as the indication 72
* serve as the indicator 120
* serve as the indicators 45
* serve as the indispensable 111
* serve as the indispensible 40
* serve as the individual 234
56
2/7/08
Summary
* Probability
+ Basic probability
+ Conditional probability
+ Bayes Rule
» Language Modeling (N-grams)
+ N-gram Intro
¢ The Chain Rule
= Perplexity
¢ Smoothing:
= Add-1
= Good-Turing
57

2/7/08

19

Next Time

* On to Chapter 5

2/7/08

58

20

