CSCI 5832
Natural Language
Processing

Lecture 3
Jim Martin

1/24/08

Today 1/22

e Regexs, FSAs and languages
+ Determinism and Non-Determinism

e Combining FSAs
e English Morphology

1/24/08

Finite State Automata

e Regular expressions can be viewed as a textual way
of specifying the structure of finite-state automata.

e FSAs and their probabilistic relatives are at the core
of what we’ll be doing all semester.

e They also conveniently (?) correspond closely to
what linguists say we need for morphology and
parts of syntax.

+ Coincidence?

1/24/08

FSAs as Graphs

e Let’s start with the sheep language from
the text
+ /baa+!/

@ @ @ @

1/24/08

Sheep FSA

e We can say the following things about
this machine
¢ It has 5 states
¢ b, a,and ! are in its alphabet
+ g0 is the start state
+ g4 is an accept state
¢ It has 5 transitions a

® -0 -0 6 ®

1/24/08

More Formally

¢ You can specify an FSA by
enumerating the following things.
+ The set of states: Q
+ A finite alphabet:
¢ A start state
+ A set of accept/final states
+ A transition function that maps QxZ to Q

1/24/08

Generative Formalisms

e Formal Languages are sets of strings
composed of symbols from a finite set of
symbols.

e Finite-state automata define formal
languages (without having to enumerate all
the strings in the language)

e The term Generative is based on the view
that you can run the machine as a generator
to get strings from the language.

1/24/08

Generative Formalisms

e FSAs can be viewed from two
perspectives:
+ Acceptors that can tell you if a string is in
the language
+ Generators to produce all and only the
strings in the language

1/24/08

Three Views

e Three equivalent formal ways to look
at what we’re up to (not including
table S) Regular Expressions

Finite State Automata Regular Grammars

1/24/08

But note

e There are other machines that
correspond to this same language
a

a () a

@@ @ -@ @

e More on this one later

1/24/08

About Alphabets

e Don’t take that word to narrowly; it
just means we need a finite set of
symbols in the input.

e These symbols can and will stand for
bigger objects that can have internal
structure.

1/24/08

Dollars and Cents

eeeeee toen six ten sty eleven sixteen
ventoon two seven twenty seventy twelve soventeen
hiser three eight thity eighty thi eighteen
nine foty ninety fourteen ninetoen

iy ifteen

three eight thity eighty thireen eig
four nine forty minety fourteen nineteen
five I fieen

nnnnnnnnnnnnnnnnnnn
nnnnnn

wo seven ty seven

forty eighty three eight forty eighty three eight

fity ninaty four nine fity ninety four nine
fve fve

1/24/08

Qxz - Q
e The guts of FSAs State [b | a [! |e
can ultimately be 0 1lo|olo
represented as 1 ol 2 1212
tables
2 J12,3|19|9
3 g1 |4|D
4 gl T |D|D
a
© © @
13
1/24/08
Recognition

Recognition is the process of determining if a
string should be accepted by a machine

Or... it’s the process of determining if a string is in
the language defined by the machine

Or... it’s the process of determining if a regular
expression matches a string

e Those all amount to the same thing in the end

1/24/08

Recognition

e Traditionally, (Turing’s idea) this
recognition process is depicted with a tape.

99

1/24/08

Recognition

e Simply a process of starting in the
start state

e Examining the current input
e Consulting the table

e Going to a new state and updating the
tape pointer.
e Until you run out of tape.

1/24/08

D-Recognize

function D-RECOGNIZE(tape, machine) returns accept or reject

index — Beginning of tape
curreni-state — Initial state of machine
loop
if End of input has been reached then
if current-state is an accept state then
return accept
clse
return reject
elsif rransition-table[current-state,tape/index// is empty then
return reject
clse
current-state — transition-table[current-state,tape[index] |
index— index + 1

end
1/24/08

Key Points

e Deterministic means that at each point in
processing there is always one unique thing
to do (there are no choices to be made).

e D-recognize is a simple table-driven
interpreter

e The algorithm is universal for all
unambiguous regular languages.

¢ To change the machine, you just change the
table.

1/24/08

Key Points

a matter of

+ translating the regular expression into a
machine (a table) and

¢ passing the table to an interpreter

1/24/08

e Crudely therefore... matching strings with
regular expressions (ala Perl, grep, etc.) is

Recognition as Search

e You can view this algorithm as a trivial kind
of state-space search.

« States are pairings of tape positions and
state numbers.

e Operators are compiled into the table

o Goal state is a pairing with the end of tape
position and a final accept state

e lts trivial because?

1/24/08

Non-Determinism

a
b a ()

® @ -® @@

@ @ -0 @

(&)

1/24/08

Non-Determinism

e Yet another technique
+ Epsilon transitions

+ Key point: these transitions do not
examine or advance the tape during
recognition

1/24/08

Equivalence

e Non-deterministic machines can be
converted to deterministic ones with
a fairly simple construction

e That means that they have the same
power; non-deterministic machines
are not more powerful than
deterministic ones in terms of the
languages they can and can not
accept

1/24/08

ND Recognition

e Two basic approaches (used in all
major implementations of Regular
Expressions)

1. Either take a ND machine and convert it
to a D machine and then do recognition
with that.

2. Or explicitly manage the process of
recognition as a state-space search
(leaving the machine as is).

1/24/08

Implementations

1/24/08

Non-Deterministic
Recognition: Search

In a ND FSA there exists at least one path
through the machine for a string that is in
the language defined by the machine.

But not all paths directed through the
machine for an accept string lead to an
accept state.

e No paths through the machine lead to an
accept state for a string not in the
language.

1/24/08

Non-Deterministic
Recognition

e So success in a non-deterministic
recognition occurs when a path is
found through the machine that ends
in an accept state.

e Failure occurs when all of the possible
paths lead to failure.

1/24/08

Example

@
0B

anon

oooo
2

Yo
1/24/08 *®
Example
o
¢ wee®
1/24/08 »
Example
o
1 ,%ul.l.l.l.l 1 . aa !
, L ee'e'e'e
1/24/08 %

10

Example

®6 | 9 -0'9-®

1/24/08 i
Example
o
1 %1.1.1.1.113 araar!
. o "0's'e'®
2%
3
o /
‘\gui
4
1/24/08 i
Example
o
1 %1.1.1.1.113 araar!
. o "0's'e'®
2%
3
o /
‘\gui
4
%
6 fhiLLITTT3
1/24/08 i

11

Example

-

T b ey

a
@ B T
., bl e'e'e'e'e

4 ilvlalalalt[T T [elalalalt T T T3 6

34
1/24/08
Example
=
1 lblalalaltl T 3
G D) ! -
, l eeeee
9 |
3
/\
&
4 ‘b‘nl‘fn‘l‘ [1 [alalalal:T T T3 6
5 fhlalala BT T T3 7
35
1/24/08
Example
=
1 lblalalaltl T 3
G D) ! -
, l eeeee
9 |
3
/\
4 ‘b‘nl‘fn‘l‘ [1 [alalalal:T T T3 6
? \
5 %:\IEE\IIEED 7
mzz&m 8
36
1/24/08

12

Key Points

e States in the search space are pairings
of tape positions and states in the
machine.

¢ By keeping track of as yet unexplored
states, a recognizer can systematically
explore all the paths through the
machine given an input.

37
1/24/08
function ND-RECOGNIZE(fape, machine) returns accept or reject
agenda— {(Initial state of machine, beginning of tape) }
current-search-state — NEXT(agenda)
loop
if ACCEPT-STATE Xcurrent-search-state) returns true then
return accept
else
agenda — agenda |\ GENERATE-NEW-STATES(current-search-state)
if agenda is empty then
return reject
else
current-search-state — NEXT(agenda)
end
38
1/24/08
)
e If you're not careful such searches can
go into an infinite loop.
e How?
39
1/24/08

13

Why Bother?

e Non-determinism doesn’t get us more
formal power and it causes headaches
so why bother?

+ More natural (understandable) solutions

1/24/08

40

Compositional Machines

e Formal languages are just sets of strings

¢ Therefore, we can talk about various set
operations (intersection, union,
concatenation)

¢ This turns out to be a useful exercise

1/24/08

41

1/24/08

42

14

Concatenation

1/24/08

43

Negation

e Construct a machine M2 to accept all
strings not accepted by machine M1
and reject all the strings accepted by
M1
+ Invert all the accept and not accept states

in M1

e Does that work for non-deterministic
machines?

1/24/08

44

Intersection

e Accept a string that is in both of two
specified languages

e An indirect construction...
* AAB = ~(~A or ~B)

1/24/08

45

15

Motivation

e Consider the expression

Let’s have a meeting on Thursday, Jan 26t

* Writing an FSA to recognize English date
expressions is not terribly hard.

+ Write two FSAs: one for the form of the dates,
and one for the calendar arithmetic part

¢ Intersect the two machines

1/24/08

+ Except for the part about rejecting invalid dates.

46

Next Time

e Finish Chapter 3

1/24/08

47

16

