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Today 1/22

e Regexs, FSAs and languages
+ Determinism and Non-Determinism

e Combining FSAs
e English Morphology
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Finite State Automata

e Regular expressions can be viewed as a textual way
of specifying the structure of finite-state automata.

e FSAs and their probabilistic relatives are at the core
of what we’ll be doing all semester.

e They also conveniently (?) correspond closely to
what linguists say we need for morphology and
parts of syntax.

+ Coincidence?
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FSAs as Graphs

e Let’s start with the sheep language from
the text
+ /baa+!/

@ @ @ @
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Sheep FSA

e We can say the following things about
this machine
¢ It has 5 states
¢ b, a,and ! are in its alphabet
+ g0 is the start state
+ g4 is an accept state
¢ It has 5 transitions a

® -0 -0 6 ®
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More Formally

¢ You can specify an FSA by
enumerating the following things.
+ The set of states: Q
+ A finite alphabet:
¢ A start state
+ A set of accept/final states
+ A transition function that maps QxZ to Q
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Generative Formalisms

e Formal Languages are sets of strings
composed of symbols from a finite set of
symbols.

e Finite-state automata define formal
languages (without having to enumerate all
the strings in the language)

e The term Generative is based on the view
that you can run the machine as a generator
to get strings from the language.
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Generative Formalisms

e FSAs can be viewed from two
perspectives:
+ Acceptors that can tell you if a string is in
the language
+ Generators to produce all and only the
strings in the language
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Three Views

e Three equivalent formal ways to look
at what we’re up to (not including
table S) Regular Expressions

Finite State Automata Regular Grammars
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But note

e There are other machines that
correspond to this same language
a

a () a

@@ @ -@ @

e More on this one later
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About Alphabets

e Don’t take that word to narrowly; it
just means we need a finite set of
symbols in the input.

e These symbols can and will stand for
bigger objects that can have internal
structure.
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Dollars and Cents
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Recognition

Recognition is the process of determining if a
string should be accepted by a machine

Or... it’s the process of determining if a string is in
the language defined by the machine

Or... it’s the process of determining if a regular
expression matches a string

e Those all amount to the same thing in the end
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Recognition

e Traditionally, (Turing’s idea) this
recognition process is depicted with a tape.

99

1/24/08




Recognition

e Simply a process of starting in the
start state

e Examining the current input
e Consulting the table

e Going to a new state and updating the
tape pointer.
e Until you run out of tape.
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D-Recognize

function D-RECOGNIZE(tape, machine) returns accept or reject

index — Beginning of tape
curreni-state — Initial state of machine
loop
if End of input has been reached then
if current-state is an accept state then
return accept
clse
return reject
elsif rransition-table[current-state,tape/index// is empty then
return reject
clse
current-state — transition-table[current-state,tape[index] |
index— index + 1

end
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Key Points

e Deterministic means that at each point in
processing there is always one unique thing
to do (there are no choices to be made).

e D-recognize is a simple table-driven
interpreter

e The algorithm is universal for all
unambiguous regular languages.

¢ To change the machine, you just change the
table.
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Key Points

a matter of

+ translating the regular expression into a
machine (a table) and

¢ passing the table to an interpreter
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e Crudely therefore... matching strings with
regular expressions (ala Perl, grep, etc.) is

Recognition as Search

e You can view this algorithm as a trivial kind
of state-space search.

« States are pairings of tape positions and
state numbers.

e Operators are compiled into the table

o Goal state is a pairing with the end of tape
position and a final accept state

e lts trivial because?
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Non-Determinism

a
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Non-Determinism

e Yet another technique
+ Epsilon transitions

+ Key point: these transitions do not
examine or advance the tape during
recognition
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Equivalence

e Non-deterministic machines can be
converted to deterministic ones with
a fairly simple construction

e That means that they have the same
power; non-deterministic machines
are not more powerful than
deterministic ones in terms of the
languages they can and can not
accept
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ND Recognition

e Two basic approaches (used in all
major implementations of Regular
Expressions)

1. Either take a ND machine and convert it
to a D machine and then do recognition
with that.

2. Or explicitly manage the process of
recognition as a state-space search
(leaving the machine as is).
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Implementations
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Non-Deterministic
Recognition: Search

In a ND FSA there exists at least one path
through the machine for a string that is in
the language defined by the machine.

But not all paths directed through the
machine for an accept string lead to an
accept state.

e No paths through the machine lead to an
accept state for a string not in the
language.
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Non-Deterministic
Recognition

e So success in a non-deterministic
recognition occurs when a path is
found through the machine that ends
in an accept state.

e Failure occurs when all of the possible
paths lead to failure.
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Example

®6 | 9 -0'9-®

1/24/08 i
Example
o
1 %1.1.1.1.113 araar!
. o "0's'e'®
2%
3
o /
‘\gui
4
1/24/08 i
Example
o
1 %1.1.1.1.113 araar!
. o "0's'e'®
2%
3
o /
‘\gui
4
%
6 fhiLLITTT3
1/24/08 i

11



Example

-

T b ey

a
@ B T
., bl e'e'e'e'e

4 ilvlalalalt[ T T [elalalalt T T T3 6

34
1/24/08
Example
=
1 lblalalaltl T 3
G D) ! -
, l eeeee
9 |
3
/\
&
4 ‘b‘nl‘fn‘l‘ [1 [alalalal:T T T3 6
5 fhlalala BT T T3 7
35
1/24/08
Example
=
1 lblalalaltl T 3
G D) ! -
, l eeeee
9 |
3
/\
4 ‘b‘nl‘fn‘l‘ [1 [alalalal:T T T3 6
? \
5 %:\IEE\IIEED 7
mzz&m 8
36
1/24/08

12



Key Points

e States in the search space are pairings
of tape positions and states in the
machine.

¢ By keeping track of as yet unexplored
states, a recognizer can systematically
explore all the paths through the
machine given an input.

37
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function ND-RECOGNIZE(fape, machine) returns accept or reject
agenda— {(Initial state of machine, beginning of tape) }
current-search-state — NEXT(agenda)
loop
if ACCEPT-STATE Xcurrent-search-state) returns true then
return accept
else
agenda — agenda |\ GENERATE-NEW-STATES(current-search-state)
if agenda is empty then
return reject
else
current-search-state — NEXT(agenda)
end
38
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)
e If you're not careful such searches can
go into an infinite loop.
e How?
39
1/24/08

13



Why Bother?

e Non-determinism doesn’t get us more
formal power and it causes headaches
so why bother?

+ More natural (understandable) solutions
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Compositional Machines

e Formal languages are just sets of strings

¢ Therefore, we can talk about various set
operations (intersection, union,
concatenation)

¢ This turns out to be a useful exercise
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Concatenation
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Negation

e Construct a machine M2 to accept all
strings not accepted by machine M1
and reject all the strings accepted by
M1
+ Invert all the accept and not accept states

in M1

e Does that work for non-deterministic
machines?
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Intersection

e Accept a string that is in both of two
specified languages

e An indirect construction...
* AAB = ~(~A or ~B)
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Motivation

e Consider the expression

Let’s have a meeting on Thursday, Jan 26t

* Writing an FSA to recognize English date
expressions is not terribly hard.

+ Write two FSAs: one for the form of the dates,
and one for the calendar arithmetic part

¢ Intersect the two machines
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+ Except for the part about rejecting invalid dates.

46

Next Time

e Finish Chapter 3
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