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+ Constraint Sat Problems
+ Admin/Break

+ Constraint Sat as Iterative
Improvement
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Search Types

* Backtracking State-Space Search
+ Optimization-Style Search
+ Constraint Satisfaction Search
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Constraint Satisfaction

+ In CSP problems, states are represented
as sets of variables, each with values
chosen from some domain

* A goal test consists of satisfying
constraints on sets of variable/value
combinations

* A goal state is one that has no constraint
violations
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Examples

+ Simple puzzles

+ Graph coloring

+ Scheduling problems

+ Any constrained resource problem
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N-Queens

* Place N queens on a chess board such
that no queen is under attack from
any other queen.
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4-Queen Example

Assume a 4x4 board

Assume one queen per column
4 Variables (Q1, Q2, Q3, Q4)
4 possible values (1,2,3,4)
Constraints...

CSCI 5582 Fall 2006

Constraints

* V(Q) 2 V(QY)

- Can't be in the same row

© IVIQ) - V(QII # i - Kl

- or the same diagonal

g,=1 0,=3
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Example: Map-Coloring

- Variables WA, NT, Q, NSW, V, SA, T

+ Domains D, = {red,green blue}
+ Constraints: adjacent regions must have different colors

- e A # NT, or (WANT) in

9., W
d, (red blue), Jred),
{(redareeny red blue)foreenred),
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Example: Map-Coloring

Y

Tasmapia
+ Solutions are complete and consistent
assignments, e.g., WA = red, NT = green,Q =
red NSW = green,V = red,SA = blue,T = green
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Constraint graph

Binary CSP: each constraint relates two variables

+ Constraint graph: nodes are variables, arcs are
constraints

e

N

od]
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Varieties of constraints

+ Unary constraints involve a single variable,
- eg., SA # green

Binary constraints involve pairs of variables,
- eg., SA#WA

+ Higher-order constraints involve 3 or more

variables,
- e.g., cryptarithmetic column constraints
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Approaches to CSPs
+ As a kind of backtracking search

- Uninformed or informed
+ As a kind of iterative improvement
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CSP as Backtracking (Dumb)

+ Start state has no variables assigned
+ Assign a variable at each step

+ Apply goal test to completed states

* Where are solutions found?

+ What kind of (dumb) search might be
applicable?
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Less Dumb

+ What it means to be a goal (or not)
can be decomposed
* What the heck does that mean?

- In CSPs a state is a goal state if all of
the constraints are satisfied.

- A state fails as a goal state if any
constraint is violated

- So...
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Less Dumb

Check to see if any constraints are
violated as variables are assigned
values.

This is backward checking since
you're checking to see if the current
assignment conflicts with any past
assighment
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Standard search formulation (incremental)

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

1

Initial state: the empty assignment { }

Successor function: assign a value to an unassigned variable that
does not conflict with current assignment

- fail if no legal assignments

Goal test: the current assignment is complete

This is the same for all CSPs

2. Every solution appears at depth nwith n variables

- use depth-first search

3. Pathis irrelevant, so can also use complete-state formulation
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Backtracking search

Variable assignments are commutative}, i.e.,
[ WA = red then NT = green ] same as
[ NT = green then WA = red ]

OnIK need to consider assignments to a single variable at
each node

Depth-first search for CSPs with single-variable
assignments is called backtracking search

gu%kfracking search is the basic uninformed algorithm for
SPs

Can solve n-queens for n ~ 25
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Backtracking search

function BACKTRACKING-SEARCH( ¢sp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({}, csp)
function RECURSIVE-BACKTRACKING( assignment, csp) returns a solution, or
failure
if assignment is complete then return assignment
var < SELECT- UNASSIGNED- VARIABLE( Variables[csp), assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is with according to C
add { var = value } to assignment
result «+— RECURSIVE- BACKTRACKING( assignment, csp)
if result # failue then return result
remove { var = value } from assignment
return failure

[csp] then
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Backtracking example
54

5
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Backtracking example
54
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Backtracking example
S48
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Backtracking example
S48
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Even Better

+ Add forward checking

- When you assign a variable check to see
if it still allows future assignments to
the remaining variables

+ Using forward checking and backward

checking roughly doubles the size of

N-queens problems that can be

practically solved (from 15 to 30).
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Forward checking

Idea:

- Keep track of remaining legal values for unassigned
variables

- Terminate search when any variable has no legal values

58]

wa wr o new v s T
CEOICE I CEC I IR 1CET 1CE ]|
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Forward checking

Idea:

- Keep track of remaining legal values for unassigned
variables

- Terminate search when any variable has no legal values

wA NT a NSW v sA T
[CECICEL ] ICECICEC LRI ]|
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Forward checking

Idea:

- Keep track of remaining legal values for unassigned
variables

- Terminate search when any variable has no legal values

SN S S
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Forward checking

Idea:
- Keep track of remaining legal values for unassigned
variables
- Terminate search when any variable has no legal values

Ho—4-o—4-h—4-%
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Constraint propagation

Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for

all failures:
R

WA NT Q Nsw v SA T
ORI IC L ICE I I I )|
[(S] RN RN EEN] SN[EeN]
[ — W[ mEaw (1]

At this point all variables have possible values. But NT and
SA cannot both be blue! Backtracking should occur here, not
at the next step.
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Arc consistency

- Simplest form of propagation makes each arc
consistent

+ X>>Vis consistent iff
For every value x for X there is some allowed value y for Y

S SR &
(S A sEEE A
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Arc Consistency

- Simplest form of propagation makes each arc
consistent

+ X>>Vis consistent iff
for every value x of X there is some allowed y for ¥

Iél "TII;MNSWX]IV SAlll;II
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Arc consistency

Simplest form of propagation makes each arc consistent
X > VY is consistent iff
for every value x of X there is some allowed y

S SR &
(T A XXEE W

If X loses a value, neighbors of X need to be rechecked
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Arc consistency

Simplest form of propagation makes each arc consistent
X>VYis consistent iff
for every value x of X there is some allowed y

e

wa Nt a Nsw v sa T

[ | [we XxEu] Xusn]
P— —

If X loses a value, neighbors of X need to be rechecked
Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment
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Informed Backtracking CSP
Search

* The previous discussion didn't use any
notion of heuristic.

+ There are two places heuristics can
help

- Which variable to assign next

- Which value to assign to a variable
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Minimum Remaining Values

* The variable with the min remaining
values is the most constrained
variable:

SSa S Sl
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Degree Heuristic

+ Tie-breaker among most constrained
variables (or at the start).

* Most constraining variable:

- choose the variable with the most
constraints on remaining variables

L Rt
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Least constraining value

+ Given a variable, choose the least
constraining value:
- The one that rules out the fewest values in the

remaining variables
‘ ‘ Allows 1 value for SA

<

+ Combining these heuristics makes 1000
N-queen puzzles feasible
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Admin/Break

+ Questions?

CSCI 5582 Fall 2006

Iterative Improvement

+ CSPs permit a complete-state
framework

- Sometimes it's better to look at
these problems as optimization
problems.

* Where you want to optimize
(minimize) the number of constraints
violated (to zero would be good)
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How?

* Randomly assign values to all the
variables in the problem (from their
domains)

+ Iteratively fix the variables (reassign
values) that are conflicted.

+ Continue until there are no conflicts
or no progress
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Min Conflict Heuristic

+ Randomly choose a variable from
among the problematic ones.

+ Reassign its value to be the one that
results in the fewest conflicts overall

+ Continue until there are no conflicts
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Min Conflict Example

+States: 4 Queens, 1 per column
+Operators: Move queen in its column
+Goal test: No attacks

+Evaluation metric: Total number of attacks

G o
A= e =N
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Min Conflict Performance

- Amazing factoid: Min Conflict often
has astounding performance.

* For example, it's been shown to solve
arbitrary size (in the millions)

N-Queens problems in constant time.

+ This appears to hold for arbitrary
CSPs with the caveat...
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Min Conflict Performance

+ Except in a certain
critical range of
the ratio -
constraints to "
variables.

CSCI 5582 Fall 2006

Search Review

* Backtracking search
+ Optimization search
+ Constraint sat search
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Next Time

+ On to game playing
+ Read Chapter 6
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