CSCI 5582
Artificial Intelligence

Fall 2006
Jim Martin

CSCI 5582 Fall 2006

Today 9/14

+ Constraint Sat Problems
+ Admin/Break

+ Constraint Sat as Iterative
Improvement

CSCI 5582 Fall 2006

Search Types

* Backtracking State-Space Search
+ Optimization-Style Search
+ Constraint Satisfaction Search

CSCI 5582 Fall 2006

Constraint Satisfaction

+ In CSP problems, states are represented
as sets of variables, each with values
chosen from some domain

* A goal test consists of satisfying
constraints on sets of variable/value
combinations

* A goal state is one that has no constraint
violations

CSCI 5582 Fall 2006

Examples

+ Simple puzzles

+ Graph coloring

+ Scheduling problems

+ Any constrained resource problem

CSCI 5582 Fall 2006

N-Queens

* Place N queens on a chess board such
that no queen is under attack from
any other queen.

CSCI 5582 Fall 2006

4-Queen Example

Assume a 4x4 board

Assume one queen per column
4 Variables (Q1, Q2, Q3, Q4)
4 possible values (1,2,3,4)
Constraints...

CSCI 5582 Fall 2006

Constraints

* V(Q) 2 V(QY)

- Can't be in the same row

© IVIQ) - V(QII # i - Kl

- or the same diagonal

g,=1 0,=3

CSCI 5582 Fall 2006

Example: Map-Coloring

- Variables WA, NT, Q, NSW, V, SA, T

+ Domains D, = {red,green blue}
+ Constraints: adjacent regions must have different colors

- e A # NT, or (WANT) in

9., W
d, (red blue), Jred),
{(redareeny red blue)foreenred),

CSCI 5582 Fall 2006

Example: Map-Coloring

Y

Tasmapia
+ Solutions are complete and consistent
assignments, e.g., WA = red, NT = green,Q =
red NSW = green,V = red,SA = blue,T = green

CSCI 5582 Fall 2006

Constraint graph

Binary CSP: each constraint relates two variables

+ Constraint graph: nodes are variables, arcs are
constraints

e

N

od]

CSCI 5582 Fall 2006

Varieties of constraints

+ Unary constraints involve a single variable,
- eg., SA # green

Binary constraints involve pairs of variables,
- eg., SA#WA

+ Higher-order constraints involve 3 or more

variables,
- e.g., cryptarithmetic column constraints

CSCI 5582 Fall 2006

Approaches to CSPs
+ As a kind of backtracking search

- Uninformed or informed
+ As a kind of iterative improvement

CSCI 5582 Fall 2006

CSP as Backtracking (Dumb)

+ Start state has no variables assigned
+ Assign a variable at each step

+ Apply goal test to completed states

* Where are solutions found?

+ What kind of (dumb) search might be
applicable?

CSCI 5582 Fall 2006

Less Dumb

+ What it means to be a goal (or not)
can be decomposed
* What the heck does that mean?

- In CSPs a state is a goal state if all of
the constraints are satisfied.

- A state fails as a goal state if any
constraint is violated

- So...

CSCI 5582 Fall 2006

Less Dumb

Check to see if any constraints are
violated as variables are assigned
values.

This is backward checking since
you're checking to see if the current
assignment conflicts with any past
assighment

CSCI 5582 Fall 2006

Standard search formulation (incremental)

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

1

Initial state: the empty assignment { }

Successor function: assign a value to an unassigned variable that
does not conflict with current assignment

- fail if no legal assignments

Goal test: the current assignment is complete

This is the same for all CSPs

2. Every solution appears at depth nwith n variables

- use depth-first search

3. Pathis irrelevant, so can also use complete-state formulation

CSCI 5582 Fall 2006

Backtracking search

Variable assignments are commutative}, i.e.,
[WA = red then NT = green] same as
[NT = green then WA = red]

OnIK need to consider assignments to a single variable at
each node

Depth-first search for CSPs with single-variable
assignments is called backtracking search

gu%kfracking search is the basic uninformed algorithm for
SPs

Can solve n-queens for n ~ 25

CSCI 5582 Fall 2006

Backtracking search

function BACKTRACKING-SEARCH(¢sp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({}, csp)
function RECURSIVE-BACKTRACKING(assignment, csp) returns a solution, or
failure
if assignment is complete then return assignment
var < SELECT- UNASSIGNED- VARIABLE(Variables[csp), assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is with according to C
add { var = value } to assignment
result «+— RECURSIVE- BACKTRACKING(assignment, csp)
if result # failue then return result
remove { var = value } from assignment
return failure

[csp] then

CSCI 5582 Fall 2006

Backtracking example
54

5

CSCI 5582 Fall 2006

Backtracking example
54

T

¢4 ¢

CSCI 5582 Fall 2006

Backtracking example
S48

5

— T
4= & €
—
e &

CSCI 5582 Fall 2006

Backtracking example
S48

5

—]
L SO SN S
—
@ &

T
<r

CSCI 5582 Fall 2006

Even Better

+ Add forward checking

- When you assign a variable check to see
if it still allows future assignments to
the remaining variables

+ Using forward checking and backward

checking roughly doubles the size of

N-queens problems that can be

practically solved (from 15 to 30).

CSCI 5582 Fall 2006

Forward checking

Idea:

- Keep track of remaining legal values for unassigned
variables

- Terminate search when any variable has no legal values

58]

wa wr o new v s T
CEOICE I CEC I IR 1CET 1CE]|

CSCI 5582 Fall 2006

Forward checking

Idea:

- Keep track of remaining legal values for unassigned
variables

- Terminate search when any variable has no legal values

wA NT a NSW v sA T
[CECICEL] ICECICEC LRI]|

CSCI 5582 Fall 2006

Forward checking

Idea:

- Keep track of remaining legal values for unassigned
variables

- Terminate search when any variable has no legal values

SN S S

[T

[(w] w®ooe(s EEOE] ®mEONE]

NsW v sA T

CSCI 5582 Fall 2006

Forward checking

Idea:
- Keep track of remaining legal values for unassigned
variables
- Terminate search when any variable has no legal values

Ho—4-o—4-h—4-%
|-v:l|-:-|-:-|-":wl|-=l|-:l|-;-|
[(ew] S EEAE[EEN] [1|
[T [I]
[W[e [e—]

CSCI 5582 Fall 2006

Constraint propagation

Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for

all failures:
R

WA NT Q Nsw v SA T
ORI IC L ICE I I I)|
[(S] RN RN EEN] SN[EeN]
[— W[mEaw (1]

At this point all variables have possible values. But NT and
SA cannot both be blue! Backtracking should occur here, not
at the next step.

CSCI 5582 Fall 2006

Arc consistency

- Simplest form of propagation makes each arc
consistent

+ X>>Vis consistent iff
For every value x for X there is some allowed value y for Y

S SR &
(S A sEEE A

CSCI 5582 Fall 2006

10

Arc Consistency

- Simplest form of propagation makes each arc
consistent

+ X>>Vis consistent iff
for every value x of X there is some allowed y for ¥

Iél "TII;MNSWX]IV SAlll;II

CSCI 5582 Fall 2006

Arc consistency

Simplest form of propagation makes each arc consistent
X > VY is consistent iff
for every value x of X there is some allowed y

S SR &
(T A XXEE W

If X loses a value, neighbors of X need to be rechecked

CSCI 5582 Fall 2006

Arc consistency

Simplest form of propagation makes each arc consistent
X>VYis consistent iff
for every value x of X there is some allowed y

e

wa Nt a Nsw v sa T

[| [we XxEu] Xusn]
P— —

If X loses a value, neighbors of X need to be rechecked
Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment

CSCI 5582 Fall 2006

11

Informed Backtracking CSP
Search

* The previous discussion didn't use any
notion of heuristic.

+ There are two places heuristics can
help

- Which variable to assign next

- Which value to assign to a variable

CSCI 5582 Fall 2006

Minimum Remaining Values

* The variable with the min remaining
values is the most constrained
variable:

SSa S Sl

CSCI 5582 Fall 2006

Degree Heuristic

+ Tie-breaker among most constrained
variables (or at the start).

* Most constraining variable:

- choose the variable with the most
constraints on remaining variables

L Rt

CSCI 5582 Fall 2006

12

Least constraining value

+ Given a variable, choose the least
constraining value:
- The one that rules out the fewest values in the

remaining variables
‘ ‘ Allows 1 value for SA

<

+ Combining these heuristics makes 1000
N-queen puzzles feasible

CSCI 5582 Fall 2006

Admin/Break

+ Questions?

CSCI 5582 Fall 2006

Iterative Improvement

+ CSPs permit a complete-state
framework

- Sometimes it's better to look at
these problems as optimization
problems.

* Where you want to optimize
(minimize) the number of constraints
violated (to zero would be good)

CSCI 5582 Fall 2006

13

How?

* Randomly assign values to all the
variables in the problem (from their
domains)

+ Iteratively fix the variables (reassign
values) that are conflicted.

+ Continue until there are no conflicts
or no progress

CSCI 5582 Fall 2006

Min Conflict Heuristic

+ Randomly choose a variable from
among the problematic ones.

+ Reassign its value to be the one that
results in the fewest conflicts overall

+ Continue until there are no conflicts

CSCI 5582 Fall 2006

Min Conflict Example

+States: 4 Queens, 1 per column
+Operators: Move queen in its column
+Goal test: No attacks

+Evaluation metric: Total number of attacks

G o
A= e =N

CSCI 5582 Fall 2006

0

14

Min Conflict Performance

- Amazing factoid: Min Conflict often
has astounding performance.

* For example, it's been shown to solve
arbitrary size (in the millions)

N-Queens problems in constant time.

+ This appears to hold for arbitrary
CSPs with the caveat...

CSCI 5582 Fall 2006

Min Conflict Performance

+ Except in a certain
critical range of
the ratio -
constraints to "
variables.

CSCI 5582 Fall 2006

Search Review

* Backtracking search
+ Optimization search
+ Constraint sat search

CSCI 5582 Fall 2006

Next Time

+ On to game playing
+ Read Chapter 6

CSCI 5582 Fall 2006

16

