| Name: |  |
|-------|--|
|       |  |

**1.** (10 Points) Consider the following 3 color graph coloring problem. Explain the MinConflict procedure by simulating its performance given the starting state in the diagram.



**2.** (5 Points) Precisely describe what it means when we say that a propositional logic knowledge-base entails a particular proposition.

**3.** (5 Points) Precisely describe what it means when we say that a propositional logic knowledge-base does not entail some particular proposition.

**4.** (10 Points) Consider the following Wumpus situation. The agent has traveled all the way to [1,4] where it finally detects a breeze. Show exactly what (and how) a logical agent can conclude about the presence of a pit in location [2,4]. Assume all the normal rules of the game apply.

| 1,4 B | 2,4 |  |
|-------|-----|--|
| 1,3   | 2,3 |  |
| 1,2   | 2,2 |  |
| 1,1   | 2,1 |  |

- **5.** (25 Points) Consider the following Belief Net problem. **Lung cancer** can cause **shortness of breath**; it can also reveal itself as a **spot** on a chest x-ray.
  - **a)** Construct a belief net that captures these facts and show the tables that you would need.
  - **b)** Given a patient with **shortness of breath** show how you would use the network to assess the probability of **lung cancer** in this patient.
  - c) How would you assess the probability of a **spot** on an x-ray given **shortness of breath?**

**6.** (10 Points) The following question refers to the accompanying table. Given this data, construct a reasonable 2-dl decision list.

| Training | Label: | F1    | F2    | F3        |
|----------|--------|-------|-------|-----------|
| Instance |        | Size  | Color | Price     |
| 1        | Yes    | Large | Red   | Expensive |
| 2        | Yes    | Small | Green | Expensive |
| 3        | Yes    | Large | Red   | Cheap     |
| 4        | Yes    | Small | Blue  | Expensive |
| 5        | Yes    | Large | Red   | Expensive |
| 6        | Yes    | Small | Blue  | Cheap     |
| 7        | No     | Large | Green | Cheap     |
| 8        | No     | Large | Blue  | Expensive |
| 9        | No     | Small | Red   | Cheap     |
| 10       | No     | Small | Red   | Cheap     |

- **7.** (15 Points) At the core of most probabilistic language processing systems is the ability to assign a probability to a sequence of words.
  - a) Explain how this is normally done.
  - **b)** Describe two problems that are normally encountered with the basic method you described in part a) and give approaches to solving them.