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Preface

Unlike most textbooks on theory of computation these notes try to build as What is different
much as possible on knowledge that juniors or seniors in computer science tend
to have. For example, the introduction of undecidability issues in the first chap-
ter starts with examples of programs that read and process other programs that
are familiar to the students: Unix utilities like grep, cat, or diff. As another
example, the proof of Cook’s Theorem (NP-completeness of Boolean satisfiabil-
ity) [Coo71] is done in terms of “compilation”: instead of the usual approach of
turning a nondeterministic Turing machine into a Boolean expression, we com-
pile a nondeterministic C++ program into machine language, and the resulting
“circuit satisfiability” problem into the problem of determining satisfiability of
Boolean expressions.

All material is presented without unnecessary notational clutter. To get
to strong results quickly, the text starts with the “machine model” students
already know as plain “programs.”

When a proof requires a substantial new concept, the concept is first pre-
sented in isolation. For example, before we prove that all problems in P can
be transformed into Sat, we show transformations for a few concrete exam-
ples. This allows the students to understand the concept of transformation into
Boolean expressions before we present the generic argument that covers a whole
class of such transformations. Pedagogically this makes sense even though the
examples get superseded quickly by the more general result.

Students should know the basic concepts from a course on algorithms, including Prerequisites
the different types of algorithms (greedy, divide-and-conquer, etc.) and they
should have some understanding of algorithm design and analysis and of basic
concepts of discrete mathematics such as relations, functions, and Boolean op-
erations. Introductions to such concepts can of course be found in many books,
e.g., [Sch96] or [Dea96].

These notes are not meant for self-study. The concepts are often too subtle, Don’t try this at home
and these notes are generally too terse for that. They are meant to be read by
students in conjunction with classroom discussion.

Karl Winklmann
Carolyn Schauble

Boulder, August 5, 2002
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Chapter 1

Computability

We write programs in order to solve problems. But if a problem is ”too hard”
and our program is ”too simple,” this won’t work. The sophistication of our
program needs to match the intrinsic difficulty of the problem.

Can this be made precise? Theory of computation attempts just that. We
will study classes of programs, trying to characterize the classes of problems
they solve. The approach is mathematical: we try to prove theorems.

In this first chapter we do not place any restrictions on the programs; later
we will restrict the kinds of data structures the programs use.

Maybe surprisingly, even without any restrictions on the programs we will
be able to prove in this first chapter that many problems cannot be solved.

The central piece of mathematics in this first chapter is a proof technique
called “proof by contradiction.” The central piece of computer science is the
notion that the input to a program can be a program.

1.1 Strings, Properties, Programs

Programs often operate on other programs. Examples of such “tools” are edi-
tors, compilers, interpreters, debuggers, utilities such as — to pick some Unix
examples — diff, lint, rcs, grep, cat, more and lots of others. Some such
programs determine properties of programs they are operating on. For example,
a compiler among other things determines whether or not the source code of
a program contains any syntax errors. Figure 1.1 shows a much more modest
example. The program “oddlength.cpp” determines whether or not its input
consists of an odd number of characters. If we ran the program in Figure 1.1
on some text file, e.g. by issuing the two commands:

CC -o oddlength oddlength.cpp
oddlength < phonelist

the response would be one of two words, Yes or No (assuming that the program

7
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void main( void )

{

if (oddlength())

cout << "Yes";

else

cout << "No";

}

boolean oddlength( void )

{

boolean toggle = FALSE;

while (getchar() != EOF)

{

toggle = !toggle;

}

return( toggle );

}

Figure 1.1: A program “oddlength.cpp” that determines whether or not its
input consists of an odd number of characters

was stored in oddlength.cpp and that there was indeed a text file phonelist
and that this all is taking place on a system on which these commands make
sense1). We could of course run this program on the source texts of programs,
even on its own source text:

CC -o oddlength oddlength.cpp
oddlength < oddlength.cpp

The response in this case would be No because it so happens that the source
code of this program consists of an even number of characters.

Mathematically speaking, writing this program was a “constructive” proof
of the following theorem. To show that there was a program as claimed by the
theorem we constructed one.

Theorem 1 There is a program that outputs Yes or No depending on whether
or not its input contains an odd number of characters. (Equivalently, there is
a boolean function that returns TRUE or FALSE depending on whether or not its
input2 contains an odd number of characters.)

In theory of computation the word “decidable” is used to describe this sit-
uation, as in

1For our examples of programs we assume a Unix environment and a programming language
like C or C++. To avoid clutter we leave out the usual “#include” and “#define” statements
and assume that TRUE and FALSE have been defined to behave the way you would expect them
to.

2The “input” to a function is that part of the standard input to the program that has not
been read yet at the time the function gets called.
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void main( void )

{

char c;

c = getchar();

while (c != EOF)

{

while (c == ’X’); // loop forever if an ’X’ is found

c = getchar();

}

}

Figure 1.2: A program “x.cpp” that loops on some inputs

Theorem 1 (new wording) Membership in the set LODDLENGTH = {x : |x| is
odd} is decidable.

The notion of a “property” is the same as the notion of a “set”: x having Properties vs. sets
property Π is the same as x being in the set {z : z has property Π}. This
suggests yet another rewording of Theorem 1 which uses standard terminology
of theory of computation. If we use the name Oddlength for the property of
consisting of an odd number of characters then the theorem reads as follows.

Theorem 1 (yet another wording) Oddlength is decidable.

Concern about whether or not a program contains an odd number of characters More interesting
properties of programsis not usually uppermost on programmers’ minds. An example of a property of

much greater concern is whether or not a program might not always terminate.
Let’s say a program has property Looping if there exists an input on which the
program will not terminate. Two examples of programs with property Looping
are shown in Figures 1.2 and 1.3. In terms of sets, having property Looping
means being a member of the set LLOOPING = {x : x is a syntactically correct
program and there is an input y such that x, when run on y, will not terminate}.

Instead of being concerned with whether or not there is some input (among
the infinitely many possible inputs) on which a given program loops, let us
simplify matters and worry about only one input per program. Let’s make that
one input the (source code of the) program itself. Let Selflooping be the
property that a program will not terminate when run with its own source text
as input. In terms of sets, Selflooping means being a member of the set
LSELFLOOPING = {x : x is a syntactically correct program and, when run on x,
will not terminate}.

The programs in Figures 1.2 and 1.3 both have this property. The program
in Figure 1.1 does not.

The bad news about Selflooping is spelled out in the following theorem.

Theorem 2 Selflooping is not decidable.
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void main( void )

{

while (TRUE);

}

Figure 1.3: Another program, “useless.cpp,” that loops on some (in fact, all)
inputs

What this means is that there is no way to write a program which will print
"Yes" if the input it reads is a program that has the property Selflooping,
and will print "No" otherwise. Surprising, maybe, but true and not even very
hard to prove, as we will do a little later, in Section 1.3, which starts on page 12.

The definitions of Looping and Selflooping use the notion of a “syntacticallyStrings vs. programs
correct program.” The choice of programming language does not matter for
any of our discussions. Our results are not about peculiarities of somebody’s
favorite programming language, they are about fundamental aspects of any form
of computation. In fact, to mention syntax at all is a red herring. We could do
all our programming in a language, let’s call it C−−, in which every string is a
program. If the string is a C or C++ program, we compile it with our trusty
old C or C++ compiler. If not, we compile it into the same object code as the
program “main () {}.” Then every string is a program and “running x on y”
now makes sense for any strings x and y. It means that we store the string x in
a file named, say, x.cmm, and the string y in a file named, say, y, and then we
use our new C−− compiler and do

CC-- -o x x.cmm
x < y

So let’s assume from now on that we are programming in “C−−,” and thus
avoid having to mention “syntactically correct” all the time.

One convenient extension to this language is to regard Unix shell constructs
like

grep Boulder | sort

as programs. This program can be run on some input by

cat phonebook | grep Boulder | sort
grep Boulder phonebook | sort

or by

( grep Boulder | sort ) < phonebook
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1.2 A Proof By Contradiction

Before we prove our first undecidability result here is an example that illustrates
the technique of proving something “by contradiction.”

Proving a theorem by contradiction starts with the assumption that the
theorem is not true. From this assumption we derive something that we know
is not true. The conclusion then is that the assumption must have been false,
the theorem true. The “something” that we know is not true often takes the
form of “A and not A.”

Theorem 3
√

2 is irrational.

(A rational number is one that is equal to the quotient of two integers. An
irrational number is one that is not rational.)

Proof (Pythagoreans, 5th century B.C.) 3 For the sake of deriving a con-
tradiction, assume that

√
2 is rational.

Then √
2 =

p

q
(1.1)

for two integers p and q which have no factors in common: they are “relatively
prime.” Squaring both sides of (1.1) yields

2 =
p2

q2
(1.2)

and therefore
2× q2 = p2 (1.3)

This shows that p2 contains a factor of 2. But p2 cannot have a factor of 2
unless p did. Therefore p itself must contain a factor of 2, which gives p2 at
least two factors of 2:

p2 = 2× 2× r (1.4)

for some integer r. Combining (1.3) and (1.4) yields

2× q2 = 2× 2× r (1.5)

which simplifies to
q2 = 2× r (1.6)

which shows that q also contains a factor of 2, contradicting the fact that p and
q were relatively prime.

Next we apply this proof technique to get our first undecidability result.
3according to Kline, Mathematical Thought from Ancient to Modern Times, New York,

1972, pp.32-33
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void main( void )

{

if (selflooping())

; // stop, don’t loop

else

while (TRUE); // do loop forever

}

boolean selflooping( void ) // returns TRUE if the input

{ // is a program which, when

// run with its own source code

... // as input, does not terminate;

// FALSE otherwise

}

Figure 1.4: A program “diagonal.cpp” that would exist if Selflooping were
decidable

1.3 A Proof of Undecidability

Proof of Theorem 2 For the sake of deriving a contradiction, assume that
there is a programs that decides if its input has property Selflooping. If such
a program existed we could re-write it as a function boolean selflooping()
that decides whether or not its input has property Selflooping. We could
then write the program diagonal4 shown in Figure 1.4.

Does the program in Figure 1.4 itself have property Selflooping?

Claim 1 It does not.

Proof of Claim 1 Assume it did. Then, when running the program with its
own source code as input, the function selflooping would return TRUE to the
main program, making it terminate and hence not have property Selflooping,
a contradiction.

Claim 2 It does.

Proof of Claim 2 Assume it did not. Then, when running the program with
its own source code as input, the function selflooping would return FALSE
to the main program, sending it into an infinite loop and hence have property
Selflooping, a contradiction.

These two claims form a contradiction, proving our initial assumption wrong;
there cannot be a program that decides if its input has property Selflooping.

4Why diagonal is a fitting name for this program will become clear in the next section.
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digits →
numbers

↓ 1
10

1
100

1
103

1
104

1
105

1
106

1
107

1
108 · · ·

d = 0 . 1 1 9 1 1 9 9 9 · · ·

r1 = 0 . 6 2 8 4 1 1 0 4 · · ·
r2 = 0 . 0 8 8 4 1 1 3 8 · · ·
r3 = 0 . 8 4 1 1 0 8 4 1 · · ·
r4 = 0 . 1 0 0 0 0 1 0 0 · · ·
r5 = 0 . 0 9 9 9 9 0 9 9 · · ·
r6 = 0 . 0 4 6 2 6 1 4 6 · · ·
r7 = 0 . 1 1 0 0 2 1 1 0 · · ·
r8 = 0 . 4 4 9 4 3 4 4 1 · · ·
...

Figure 1.5: The diagonal in the proof of Theorem 4

1.4 Diagonalization

The proof of Theorem 2 was a special kind of proof by contradiction called a
“diagonalization proof.” To understand that aspect of the proof, let’s look at a
classical theorem with a diagonalization proof.

Theorem 4 (Cantor, 1873) The real numbers are not countable.

(A set is countable if there is a function from the natural numbers onto the
set. In other words, there is a sequence r1, r2, r3, r4, r5, . . . that contains all
members of the set.)

Proof (Cantor, 1890/1891) 5 Assume the real numbers are countable.
Then there is a sequence that contains all reals and a subsequence r1, r2,

r3, . . . that contains all reals from the interval (0, 1]. Consider the infinite matrix
that contains in row i a decimal expansion of ri, one digit per column. (See
Figure 1.5 for an illustration.) Consider the number d whose ith digit is 9 if the
matrix entry in row i and column i is 1, and whose ith digit is 1 otherwise.

The number d thus defined differs from every number in the sequence r1,
r2, r3, . . ., contradicting the assumption that all reals from [0, 1) were in the
sequence.6

5Cantor gave a different first proof in 1873, according to Kline, p.997.
6There is a subtlety in this proof stemming from the fact that two different decimal ex-

pansions can represent the same number: 0.10000 . . . = 0.09999 . . .. Why is this of concern?
And why is the proof ok anyway?
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programs (used as inputs) →
programs

↓ p1 p2 p3 p4 p5 p6 p7 p8 · · ·

diagonal : 1 1 0 1 1 0 0 0 · · ·

p1 : 0 0 0 0 1 1 0 0 · · ·
p2 : 0 0 0 0 1 1 0 0 · · ·
p3 : 0 0 1 1 0 0 0 1 · · ·
p4 : 1 0 0 0 0 1 0 0 · · ·
p5 : 0 0 0 0 0 0 0 0 · · ·
p6 : 0 0 0 0 0 1 0 0 · · ·
p7 : 1 1 0 0 0 1 1 0 · · ·
p8 : 0 0 0 0 0 0 0 1 · · ·
...

Figure 1.6: The diagonal in the proof of Theorem 2

How does this proof of Cantor’s Theorem relate to our proof of Theorem 2?
Programs are finite strings and hence countable. Let p1, p2, p3, . . . be a sequence
of all programs. (Unlike a sequence of all reals, such a sequence does exist since
programs are finite strings.) Consider the infinite boolean matrix which has
a 0 in row i and column j if program i, when run with the source code of
program j as input, does not terminate; and a 1 if it does. (See Figure 1.6 for
an illustration.)

The program diagonal.cpp of Figure 1.4, which we assumed to exist at the
start of the proof of Theorem 2, then differs from each program in the sequence,
contradicting the fact that all programs were in the sequence. The reason is
that if program pi does terminate on input pi, then diagonal.cpp does not
terminate on input pi, and vice versa.

It is remarkable that without diagonalization, nobody would know how to proveOther proof techniques?
Theorem 2 nor any of the other undecidability results in this chapter.

This monopoly of one proof technique will cause problems in the study of
computational complexity in Chapter 4, which injects a concern about efficiency
into the discussion. Diagonalization does not work nearly as well in that context.
Without any other technique available, we will not be able to prove some very
basic conjectures.

Every computational problem, whether unsolvable in theory or not, is open toHeuristics
a heuristic approach. The theory presented here does not address the feasibility
of heuristic methods. It does suggest that heuristics would be the way to go if
one wanted to create software tools to solve in some practically useful sense any
of the problems which this theory shows “unsolvable.”
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Digressing for a moment from our focus on what programs can and cannot do, Self-reference in other
domainsprograms that process programs are not the only example of self-referencing

causing trouble, and far from the oldest one. Here are a few others.
An example known to Greek philosophers over 2000 years ago is the self-

referencing statement that says “This statement is a lie.” This may look like a
pretty silly statement to consider, but it is true that the variant that says “This
is a theorem for which there is no proof,” underlies what many regard as the
most important theorem of 20th-century mathematics, Gödel’s Incompleteness
Theorem. More on that in Section 1.8 on page 25.

A (seemingly) non-mathematical example arises when you try to compile a
“Catalog of all catalogs,” which is not a problem yet, but what about a “Catalog
of all those catalogs that do not contain a reference to themselves?” Does it
contain a reference to itself? If we call catalogs that contain a reference to
themselves “self-promoting,” the trouble stems from trying to compile a “catalog
of all non-self-promoting catalogs.” Note the similarity to considering a program
that halts on all those programs that are “selflooping.”

1.5 Transformations

Selflooping is not the only undecidable property of programs. To prove
other properties undecidable, we will exploit the observation that they have
strong connections to Selflooping, connections such that the undecidability
of Selflooping “rubs off” on them. Specifically, we will show that there are
“transformations” of Selflooping into other problems.

Before we apply the concept of transformations to our study of
(un)decidability, let’s look at some examples of transformations in other set-
tings.

Consider the Unix command

sort

It can be used like

sort < phonebook

to sort the lines of a text file. “sort” solves a certain problem, called Sorting,
a problem that is so common and important that whole chapters of books have
been written about it (and a solution comes with every computer system you
might want to buy).

But what if the problem you want to solve is not Sorting, but the problem
of Sorting-Those-Lines-That-Contain-the-Word-“Boulder”, stltctwb
for short? You could write a program “stltctwb” to solve stltctwb and use
it like

stltctwb < phonebook
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But probably you would rather do

cat phonebook | grep Boulder | sort

This is an example of a transformation. The command “grep Boulder”
transforms the stltctwb problem into the Sorting problem. The command
“grep Boulder | sort” solves the stltctwb problem. (The “cat phonebook
| ” merely provides the input.)

The general pattern is that if “b” is a program that solves problem B, and

a to b | b

solves problem A, then

a to b

is called a transformation of problem A into problem B.
The reason for doing such transformations is that they are a way to solve

problems. If we had to formulate a theorem about the matter it would read as
follows. (Let’s make it an “Observation.” That way we don’t have to spell out
a proof.)

Observation 1 If there is a program that transforms problem A into problem
B and there is a program that solves problem B, then there is a program that
solves problem A.

Since at the moment we are more interested in proving that things cannot
be done than in proving that things can be done, the following rephrasing of
the above observation will be more useful to us.

A problem is solvable if there exists a program for solving it.

Observation 2 If there is a program that transforms problem A into problem
B and problem A is unsolvable, then problem B is unsolvable as well.

In good English, “problems” get “solved” and “questions” get “decided.” Fol-“Solvable” or
“decidable?” lowing this usage, we speak of “solvable and unsolvable problems” and “de-

cidable and undecidable questions.” For the substance of our discussion this
distinction is of no consequence. For example, solving the Selflooping prob-
lem for a program x is the same as deciding whether or programs have the
property Selflooping. In either case, the prefix “un-” means that there is no
program to do the job.

For another example of a transformation, consider the following two problems.Transforming binary
addition into Boolean

satisfiability (Sat)
Let Binary Addition be the problem of deciding, given a string like

1 0 + 1 1 = 0 1 1 (1.7)
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whether or not it is a correct equation between binary numbers. (This one
isn’t.) Let’s restrict the problem to strings of the form

x2 x1 + y2 y1 = z3 z2 z1 (1.8)

with each xi, yi, and zi being 0 or 1. Let’s call this restricted version 2-Add.
Let Boolean Satisfiability (Sat) be the problem of deciding, given a Boolean

expression, whether or not there is an assignment of truth values to the variables
in the expression which makes the whole expression true.

A transformation of 2-Add to Sat is a function t such that for all strings
α,

α represents a correct addition of two binary numbers
⇔

t(α) is a satisfiable Boolean expression.

How can we construct such a transformation? Consider the Boolean circuit in
Figure 1.7. It adds up two 2-bit binary numbers. Instead of drawing the picture
we can describe this circuit equally precisely by the Boolean expression

(( x1 ⊕ y1 ) ⇔ z1 ) ∧
(( x1 ∧ y1 ) ⇔ c2 ) ∧
(( x2 ⊕ y2 ) ⇔ z′2 ) ∧
(( x2 ∧ y2 ) ⇔ c′3 ) ∧
(( c2 ⊕ z′2 ) ⇔ z2 ) ∧
(( c2 ∧ z′2 ) ⇔ c′′3 ) ∧
(( c′3 ∨ c′′3 ) ⇔ z3 )

This suggests transformation of 2-Add to Sat that maps the string (1.7) to
the expression

(( 0 ⊕ 1 ) ⇔ 1 ) ∧
(( 0 ∧ 1 ) ⇔ c2 ) ∧
(( 1 ⊕ 1 ) ⇔ z′2 ) ∧
(( 1 ∧ 1 ) ⇔ c′3 ) ∧
(( c2 ⊕ z′2 ) ⇔ 1 ) ∧
(( c2 ∧ z′2 ) ⇔ c′′3 ) ∧
(( c′3 ∨ c′′3 ) ⇔ 0 )

which, appropriately, is not satisfiable. There are four variables to choose values
for, c2, z′2, c′3, and c′′3 , but no choice of values for them will make the whole
expression true. Note that every single one of the seven “conjuncts” can be
made true with some assignment of truth values to c2, z′2, c′3, and c′′3 , but not
all seven can be made true with one and the same assignment. In terms of the
circuit this means that if the inputs and outputs are fixed to reflect the values
given in (1.7), at least one gate in the circuit has to end up with inconsistent
values on its input and output wires, or at least one wire has to have different
values at its two ends. The circuit is “not satisfiable.”
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Figure 1.7: A circuit for adding two 2-bit binary numbers
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a

b

c

d

e

f

Figure 1.8: A graph of activities and conflicts

Note that transformations do not always go from a harder problem to an
easier one.7 In fact, the opposite is closer to the truth. The destination problem
can be easier than the source problem only to the extent of the computational
effort expended in carrying out the transformation. But the destination problem
can be much harder than the source problem. For example, you can transform
Oddlength to Looping, but not Looping to Oddlength.

Graphs like the one shown in Figure 1.8 can be used to represent scheduling Transforming Graph
3-Colorability into Satproblems. Each node represents an activity, e.g. a meeting of some group, and

an edge between two nodes means that the two activities must not be scheduled
at the same time, e.g. because there is a person who needs to attend both.

Since activities a, b, and e are all conflicting with each other, there is no way
to schedule all the activities into fewer than three time slots. Are three slots
enough? Instead of activities being scheduled into time slots, graph theorists
talk about “nodes” being “colored.” The question then becomes, are three
different colors enough to color all the nodes, without adjacent nodes getting
the same color? This problem is known as “Graph 3-Colorability,” or “3-
Color” for short.

The idea behind the transformation is to make the variable aGREEN (aRED,
aBLUE) true if and only if the vertex a gets colored green (red, blue). The
statement that a and b get different colors can then be made in the “language
of Boolean expressions” as

(aGREEN ∧ bGREEN) ∧ (aRED ∧ bRED ) ∧ (aBLUE ∧ bBLUE ) (1.9)

We need to make one such statement for each of the nine edges in the graph. The
7“Harder” and “easier” mean “needing more and less of a computational resource.” Most

often the resource we care about is computing time. “Harder” and “easier” do not mean
harder or easier to program. Programming effort is not addressed by this theory.
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conjunction of these nine statements does not yet complete the transformation
because it could always be satisfied by making all the variables false, a choice
that corresponds to avoiding color conflicts by not coloring the nodes at all. We
can complete the transformation by insisting that each node get exactly one
color assigned to it. For node a this can be done by the expression

(aGREEN ∧ aRED ∧ aBLUE ) ∨ (aGREEN ∧ aRED ∧ aBLUE ) ∨ (aGREEN ∧ aRED ∧ aBLUE )
(1.10)

In general, to carry out the transformation for any graph G = G(V, E), we
just have to make a statement like (1.10) for every node of the graph and a
statement like (1.9) for every edge, i.e., we have to write this expression EG:

∧

x∈V

((xGREEN∧xRED ∧xBLUE )∨(xGREEN∧xRED ∧xBLUE )∨(xGREEN∧xRED ∧xBLUE ))

∧

∧

(x,y)∈E

((xGREEN ∧ yGREEN) ∧ (xRED ∧ yRED ) ∧ (xBLUE ∧ yBLUE ))

This expression EG is satisfiable if and only if the graph G is 3-colorable.

To make Observation 2 useful for proving undecidability results, we need to findEditing programs
transformations from one property of programs into another.

Lemma 1 There is a program edit which, given as input a program x, creates
as output a program y with the following two properties.

1. y never reads any input; and

2. y, on any input (which it ignores — see previous item), runs like x would
on input x.

Proof We can achieve this transformation “by hand” in a session with our fa-
vorite text editor. As an example, if we start with x being the program “x.cpp”
from Figure 1.2 we could create the program in Figure 1.10. We can even do
this in a way where the editing commands do not depend on the program x that
is being editing. Therefore we could take a copy of the editor and hard-code
those commands into it (or, preferably and equivalently, put the commands into
a “script file” or a “macro” for our editor8).

8Better yet, we can simplify this editing task greatly by making y the one-line program “(
x < x.cpp ),” which has all the right properties. To see that it ignores its input, do “( x <

x.cpp ) < input.”
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void main( void )

{

x_on_x_no_input();

}

void x_on_x_no_input( void ) // runs like x, but

{ // instead of reading

... // input it ‘‘reads’’

} // from a string constant

Figure 1.9: The result of editing program x

1.6 The Undecidability of All I/0-Properties

Recall that Looping is the property that there exists an input on which the
program will not terminate.

Theorem 5 Looping is undecidable.

Proof The program edit of Lemma 1 transforms Selflooping into Loop-
ing. By Observation 2 this proves Looping undecidable.

What other properties of programs are often of interest? The prime consider-
ation usually is whether or not a program “works correctly.” The exact meaning
of this depends on what you wanted the program to do. If you were working on
an early homework assignment in Programming 101, “working correctly” may
have meant printing the numbers 1, 2, 3, . . . , 10.

Let One to Ten be the problem of deciding whether or not a program
prints the numbers 1, 2, 3, . . . , 10.

Theorem 6 One to Ten is undecidable.

Proof Figure 1.11 illustrates a transformation of Selflooping into the nega-
tion of property One to Ten.

Note that unlike the function x on x no input in the previous proof, the
function x on x no input no output suppresses whatever output the program
x might have generated when run on its own source code as input. This is
necessary because otherwise the transformation would not work in the case of
programs x that print the numbers 1, 2, 3, . . . , 10.

Since the negation of One to Ten is undecidable, so is the property One
to Ten.

How many more undecidability results can we derive this way?
Figure 1.13 shows an example of an “input-output table” IOx of a program

x. For every input, the table shows the output that the program produces. If
the program loops forever on some input and keeps producing output, the entry
in the right-hand column is an infinite string.



22 CHAPTER 1. COMPUTABILITY

#define EOF NULL // NULL is the proper end marker since

// we are ‘‘reading’’ from a string.

void main( void )

{

x_on_x_no_input();

}

char mygetchar( void )

{

static int i = 0;

static char* inputstring =

// start of input string //////////////////////////////

"\

\n\

void main( void )\n\

{\n\

char c;\n\

\n\

c = getchar();\n\

while (c != EOF)\n\

{\n\

while (c == ’X’); // loop forever if an ’X’ is found\n\

c = getchar();\n\

}\n\

};\n\

";

// end of input string ////////////////////////////////

return( inputstring[i++] );

}

void x_on_x_no_input( void )

{

char c;

c = mygetchar();

while (c != EOF)

{

while (c == ’X’); // loop forever if an ’X’ is found

c = mygetchar();

}

}

Figure 1.10: The result of editing the program “x.cpp” of Figure 1.2
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void main( void )

{

x_on_x_no_input_no_output();

one_to_ten();

}

void x_on_x_no_input_no_output( void )

{ // runs like x, but

// instead of reading

... // input it ‘‘reads’’

// from a string constant,

// and it does not

} // generate any output

void one_to_ten( void )

{

int i;

for (i = 1; i <= 10; i++)

cout << i << endl;

}

Figure 1.11: Illustrating the proof of Theorem 6

void main( void )

{

x_on_x_no_input_no_output();

notPI();

}

void x_on_x_no_input_no_output( void )

{

...

}

void notPI( void ) // runs like a program

{ // that does not have

... // property PI

}

Figure 1.12: The result of the editing step rice on input x



24 CHAPTER 1. COMPUTABILITY

Inputs Outputs
λ Empty input file.
0 Okay.
1
00 Yes.
01 Yes. Yes. Yes. ...
10 No.
11
000 Yes. No. Yes. No. Yes. No. · · ·
001 Segmentation fault.
010 Core dumped.
...

...

Figure 1.13: The “input-output function” of a lousy program

These tables are not anything we would want to store nor do we want to
“compute” them in any sense. They merely serve to define what an “input-
output property” is. Informally speaking, a property of programs is an input-
output property if the information that is necessary to determine whether or not
a program x has the property is always present in the program’s input-output
table IOx. For example, the property of making a recursive function call on some
input, let’s call it Recursive, is not an input-output property. Even if you knew
the whole input-output table such as the one in Figure 1.13, you would still not
know whether the program was recursive. The property of running in linear time
is not an input-output property, nor is the property of always producing some
output within execution of the first one million statements, nor the property of
being a syntactically correct C program. Examples of input-output properties
include

• the property of generating the same output for all inputs,

• the property of not looping on any inputs of length less that 1000,

• the property of printing the words Core dumped on some input.

More formally, a property Π of programs is an input-output property if the
following is true:

For any two programs a and b, if IOa = IOb then either both a
and b have property Π, or neither does.

A property of programs is trivial if either all programs have it, or if none do.
Thus a property of programs is nontrivial if there is at least one program that
has the property and one that doesn’t.9

9There are only two trivial properties of programs. One is the property of being a program
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Theorem 7 (Rice’s Theorem) No nontrivial input-output property of pro-
grams is decidable.

Proof Let Π be a nontrivial input-output property of programs. There are
two possibilities. Either the program

main () { while (TRUE); } (1.11)

has the property Π or it doesn’t. Let’s first prove the theorem for properties Π
which this program (1.11) does have.

Let notPI be a function that runs like a program that does not have property
Π. Consider the program that is outlined in Figure 1.12. It can be created from
x by a program, call it rice, much like the program in Figure 1.9 was created
from x by the program edit of Lemma 1.

The function rice transforms Selflooping into Π, which proves Π unde-
cidable.

What if the infinite-loop program in (1.11) does not have property Π? In
that case we prove Rice’s Theorem for the negation of Π — by the argument in
the first part of this proof — and then observe that if the negation of a property
is undecidable, so is the property itself.

1.7 The Unsolvability of the Halting Problem

The following result is probably the best-known undecidability result.

Theorem 8 (Unsolvability of the Halting Problem) There is no program
that meets the following specification. When given two inputs, a program x and a
string y, print “Yes” if x, when run on y, terminates, and print “No” otherwise.

Proof Assume Halting is decidable. I.e. assume there is a program halting
which takes two file names, x and y, as arguments and prints Yes if x, when
run on y, halts, and prints No otherwise. Then Selflooping can be solved by
running halting with the two arguments being the same, and then reversing
the answer, i.e., changing Yes to No and vice versa.

1.8 Gödel’s Incompleteness Theorem

Once more digressing a bit from our focus on programs and their power, it is
worth pointing out that our proof techniques easily let us prove what is certainly
the most famous theorem in mathematical logic and one of the most famous in

— all programs have that property. The other is the property of not being a program — no
program has that property. In terms of sets, these are the set of all programs and the empty
set.
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all of mathematics. The result was published in 1931 by Kurt Gödel and put
an end to the notion that if only we could find the right axioms and proof rules,
we could prove in principle all true conjectures. Put another way, it put an end
to the notion that mathematics could somehow be perfectly “automated.”

Theorem 9 (Gödel’s Incompleteness Theorem, 1931)10 For any system
of formal proofs that includes at least the usual axioms about natural numbers,
there are theorems that are true but do not have a proof in that system.

Proof If every true statement had a proof, Selflooping would be decidable,
by the following algorithm.

For any given program x the algorithm generates all strings in some system-
atic order until it finds either a proof that x has property Selflooping or a
proof that x does not have property Selflooping.

It is crucial for the above argument that verification of formal proofs can be
automated, i.e., done by a program. It is not the verification of formal proofs
that is impossible. What is impossible is the design of an axiom system that is
strong enough to provide proofs for all true conjectures.

Does this mean that once we choose a set of axioms and proof rules, our
mathematical results will forever be limited to what can be proven from those
axioms and rules? Not at all. The following lemma is an example.

Lemma 2 For any system of formal proofs, the program in Figure 1.14 does
have property Selflooping but there is no formal proof of that fact within the
system.

Proof The program in Figure 1.14 is a modification of the program we used to
prove Selflooping undecidable. Now we prove Selflooping “unprovable.”
When given its own source as input, the program searches systematically for a
proof that it does loop and if it finds one it terminates. Thus the existence of
such a proof leads to a contradiction. Since no such proof exists the program
keeps looking forever and thus does in fact have property Selflooping.

Note that there is no contradiction between the fact that there is no proof of
this program having property Selflooping within the given axiom system and
the fact that we just proved that the program has property Selflooping. It
is just that our (informal) proof cannot be formalized within the given system.

What if we enlarged the system, for example by adding one new axiom that
says that this program has property Selflooping? Then we could prove that
fact (with a one-line proof no less). This is correct but note that the program
had the axiom system “hard coded” in it. So if we change the system we get a
new program and the lemma is again true — for the new program.

10Kurt Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme I, Monatshefte für Mathematik und Physik, 38, 1931, 173–98.
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void main( void )

{

// systematically generates all proofs

... // in the proof system under consideration

// and stops if and when it finds a proof

// that its input has property SELFLOOPING

}

Figure 1.14: Illustrating the proof of Lemma 2

Exercises

Ex. 1.1. The rational numbers are countable (as argued in class). Why does Diagonalization
the diagonalization proof that shows that the real numbers are not countable
not work for the rational numbers?

Ex. 1.2. Is it decidable if a program has a “memory leak?”

Ex. 1.3. Is it decidable if a program will try to “de-reference a null pointer?”

Ex. 1.4. Let Selfrecursive be the property of programs that they make
a recursive function call when running on their own source code as input. De-
scribe a diagonalization proof that Selfrecursive is not decidable.

Ex. 1.5. Somebody who has not taken this course cannot believe that there
is no way to write a program that finds out, given a program p and input x,
whether or not p when run on input x goes into an infinite loop. That person
hands you a floppy with the source code of a program that they claim does in
fact carry out that analysis.

Can you produce a program p and input x on which their program fails?

Ex. 1.6. Describe a transformation from Selflooping to the property of Transformations
not reading any input.

Ex. 1.7. The function edit that is used in the proof of Theorem 5 transforms
Selflooping not only to Looping but also to other properties. Give three
such properties.

Ex. 1.8. Consider the following problem. Given a graph, is there a set of edges
so that each node is an endpoint of exactly one of the edges in that set. (Such
a set of edges is called a ”complete matching”.) Describe a transformation of
this problem to the satisfiability problem for Boolean expressions. You may do
this by showing (and explaining, if it’s complicated) the expression for one of
the above graphs.
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Ex. 1.9. If G is a graph that you are trying to find a 3-coloring for, if t(G) is
the Boolean expression the graph gets translated into by our transformation of
3-Color into Sat, and, finally, if someone handed you an assignment of truth
values to the variables of t(G) that satisfied the expression, describe how you
can translate that assignment of truth values back to a 3-coloring of the graph.

Ex. 1.10. Consider trying to transform 3-Color into Sat but using, in place
of

(aGREEN ∧ aRED ∧ aBLUE ) ∨ (aGREEN ∧ aRED ∧ aBLUE ) ∨ (aGREEN ∧ aRED ∧ aBLUE )

the expression
xGREEN ∨ xRED ∨ xBLUE .

(a) Would this still be a transformation of 3-Color into Sat? Explain why,
or why not.

(b) Could we still translate a satisfying assignment of truth values back into
a 3-coloring of the graph? Explain how, or why not.

Ex. 1.11. (a) Transform Selflooping into the property of halting on those
inputs that contain the word Halt, and looping on all others. (b) What does
this prove?

Ex. 1.12. (a) Transform Oddlength into Selflooping. (b) What does this
prove?

Ex. 1.13. Give three undecidable properties of programs that are not input-I/0-Properties
output properties and that were not mentioned in the notes. Give three others
that are nontrivial I/O properties, hence undecidable, but were not mentioned
in class.

Ex. 1.14. We needed to suppress the output in the x on x no input no output
function used in the proof of Rice’s Theorem. Which line of the proof could oth-
erwise be wrong?

Ex. 1.15. Is Selflooping an input-output property?

Ex. 1.16. Formulate and prove a theorem about the impossibility of programMore Undecidability
Results optimization.

Ex. 1.17. “Autograders” are programs that check other programs for cor-
rectness. For example, an instructor in a programming course might give a
programming assignment and announce that your programs will be graded by
a program she wrote.

10If having a choice is not acceptable in a real “algorithm,” we can always program the
algorithm to prefer red over green over blue.
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What does theory of computing have to say about this? Choose one of the
three answers below and elaborate in no more than two or three short sentences.

1. “Autograding” is not possible.

2. “Autograding” is possible.

3. It depends on the programming assignment.

Ex. 1.18. Which of the following five properties of programs are decidable?
Which are IO-properties?

1. Containing comments.

2. Containing only correct comments.

3. Being a correct parser for C (i.e., a program which outputs ”Yes” if the
input is a syntactically correct C program, and ”No” otherwise).

4. Being a correct compiler for C (i.e., a program which, when the input is a
C program, outputs an equivalent machine-language version of the input.
”Equivalent” means having the same IO table.).

5. The output not depending on the input.
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Chapter 2

Finite-State Machines

In contrast to the preceding chapter, where we did not place any restrictions
on the kinds of programs we were considering, in this chapter we restrict the
programs under consideration very severely. We consider only programs whose
storage requirements do not grow with their inputs. This rules out dynamically
growing arrays or linked structures, as well as recursion beyond a limited depth.

The central piece of mathematics for this chapter is the notion of an “equiv-
alence relation.” It will allow us to arrive at a complete characterization of
what these restricted programs can do. Applying mathematical induction will
provide us with a second complete characterization.

2.1 State Transition Diagrams

Consider the program oddlength from Figure 1.1 on page 8. Let’s use a de- The program oddlength,
once more, in a picturebugger on it and set a breakpoint just before the getchar() statement. When

the program stops for the first time at that breakpoint, we can examine the
values of its lone variable. The value of toggle is FALSE at that time and the
“instruction pointer” is of course just in front of that getchar() statement.
Let’s refer to this situation as state A.

If we resume execution and provide an input character, then at the next
break the value of toggle will be TRUE and the instruction pointer will of course
again be just in front of that getchar(). This is another “state” the program
can be in. Let’s call it state B.

Let’s give the program another input character. The next time our debugger
lets us look at things the program is back in state A. As long as we keep feeding
it input characters, it bounces back and forth between state A and state B.

What does the program do when an EOF happens to come around? From
state A the program will output No, from state B Yes.

Figure 2.1 summarizes all of this, in a picture. The double circle means that
an EOF produces a Yes, the single circle, a No. Σ is the set of all possible input

31
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BA

Σ

Σ

Figure 2.1: The program oddlength as a finite-state machine

characters, the input alphabet. Labeling a transition with Σ means that any
input character will cause that transition to be made.

A picture such as the one in Figure 2.1 describes a finite-state machine or aTerminology
finite-state automaton. States drawn as double circles are accepting states, single
circles are rejecting states. Input characters cause transitions between states.
Arrows that go from state to state and are labeled with input characters indicate
which input characters cause what transitions. For every state and every input
character there must be an arrow starting at that state and labeled by the input
character. The initial state, or start state, is indicated by an unlabeled arrow.1

An input string that makes the machine end up in an accepting (rejecting)
state is said to be accepted (rejected) by the machine. If M is a finite-state
machine M then LM = {x : x is accepted by M} is the language accepted by
M .

Let LMATCH be the language of all binary strings that start and end with a 0 orAnother Example
start and end with a 1. Thus LMATCH = {0, 1, 00, 11, 000, 010, 101, 111, 0000,
0010, . . .} or, more formally,

LMATCH = {c, cxc : x ∈ {0, 1}?, c ∈ {0, 1}}. (2.1)

Can we construct a finite-state machine for this language? To have a chance
to make the right decision between accepting and rejecting a string when its last
character has been read, it is necessary to remember what the first character
and the last character were. How can a finite-state machine “remember” or
“know” this information? The only thing a finite-state machine “knows” at any
one time is which state it is in. We need four states for the four combinations
of values for those two characters (assuming, again, that we are dealing only
with inputs consisting entirely of 0s and 1s). None of those four states would
be appropriate for the machine to be in at the start, when no characters have
been read yet. A fifth state will serve as start state.

1Purists would call the picture the “transition diagram” of the machine, and define the
machine itself to be the mathematical structure that the picture represents. This structure
consists of a set of states, a function from states and input symbols to states, a start state,
and a set of accepting states.
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1

1

1

0

1
1

0

0

0

0

Figure 2.2: A finite-state machine that accepts Lmatch

Now that we know what each state means, putting in the right transitions
is straightforward. Figure 2.2 shows the finished product.

(Note that we could have arrived at the same machine by starting with the
program match in Figure 2.3 and translating it into a finite-state machine by
the same process that we used earlier with the program oddlength.)

Consider the language LEQ-4 of all nonempty bitstrings of length 4 or less which A third example
contain the same number of 0s as 1s. Thus LEQ-4 = {01, 10, 0011, 0101, 0110,
1001, 1010, 1100}.

What does a finite-state machine need to remember about its input to handle
this language? We could make it remember exactly what the input was, up to
length 4. This results in a finite-state machine with the structure of a binary tree
of depth 4. See Figure 2.4. Such a binary tree structure corresponds to a “table
lookup” in a more conventional language. It works for any finite language.

The preceding example proves

Theorem 10 Every finite language is accepted by a finite-state machine.

The finite-state machine of Figure 2.4 is not as small as it could be. For example, Minimizing Finite-State
Machinesif we “merged” the states H, P, Q, and FF — just draw a line surrounding them

and regard the enclosed area as a new single state —, we would have reduced the
size of this machine by three states (without changing the language it accepts).

Why was this merger possible? Because from any of these four states, only
rejecting states can be reached. Being in any one of these four states, no matter
what the rest of the input, the outcome of the computation is always the same,
viz. rejecting the input string.
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void main( void )

{

if (match())

cout << "Yes";

else

cout << "No";

}

boolean match( void )

{

char first, next, last;

first = last = next = getchar();

while (next != EOF)

{

last = next;

next = getchar();

}

return ((first == last) && (first != EOF)):

}

Figure 2.3: Another “finite-state” program, match

Can J and K be merged? No, because a subsequent input 1 leads to an
accepting state from J but a rejecting state from K.

What about A and D? They both have only rejecting states as their immedi-
ate successors. This is not a sufficient reason to allow a merger, though. What
if the subsequent input is 01? Out of A the string 01 drives the machine into
state E — a fact usually written as δ(A, 01) = E — and out of D the string 01
drives the machine into state δ(D, 01) = Q. One of E and Q is rejecting, the
other accepting. This prevents us from merging A and D.

When is a merger of two states p and q feasible? When it is true that for
all input strings s, the two states δ(p, s) and δ(q, s) are either both accepting or
both rejecting. (Note that s could be the empty string, which prevents a merger
of an accepting with a rejecting state.) This condition can be rephrased to talk
about when a merger is not feasible, viz. if there is an input string s such that
of the two states δ(p, s) and δ(q, s) one is rejecting and one is accepting. Let’s
call such a string s “a reason why p and q cannot be merged.” For example, the
string 011 is a reason why states B and C in Figure 2.4 cannot be merged. The
shortest reasons for this are the strings 0 and 1. A reason why states D and E
cannot be merged is the string 11. The shortest reason for this is the empty
string.

Figure 2.5 is an illustration for the following observation, which is the basis
for an algorithm for finding all the states that can be merged.

Observation 3 If c is a character and s a string, and cs is a shortest reason
why p and q cannot be merged, then s is a shortest reason why δ(p, c) and δ(q, c)
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A

B C

E

OLKJIH

D F G

FF

EEDDBBAA CCP Q R S T U V W X Y Z

0 0 0 0

0 0

0 0 0 0 0 0 0 01 1 1 1

0,1

. . .

NM

1 1 1

0 1

0,1
0,10,1

0,1

1 1 1 1

11

1

Figure 2.4: A finite-state machine for LEq-4
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p q

S S

c c

Figure 2.5: Illustrating Observation 3

cannot be merged.

Observation 3 implies that the algorithm is Figure 2.6 is correct.
When carrying out this algorithms by hand, it is convenient to keep track

of clusters of states.2 Two states p and q are in the same cluster if (p, q) ∈
MergablePairs. As we find reasons for not merging states, i.e., as we find the
condition of the if-statement to be true, we break up the clusters. If p and q
are two states that cannot be merged and the shortest reason for that is a string
of length k > 0, then p and q will remain together through the first k− 1 passes
through the repeat-loop and get separated in the kth pass.

For example, consider the finite-state machine in Figure 2.7. It accepts
“identifiers with one subscript” such as A[2], TEMP[I], LINE1[W3], X034[1001].
Figure 2.8 shows how the clusters of states develop during execution of the
minimization algorithm. States a and b get separated in the third pass, which is
consistent with the fact that the shortest strings that are reasons not to merge
a and b are of length 3, for example “[0].”

Other examples are the finite-state machines in Figures 2.9 and 2.4. On the
finite-state machine of Figure 2.9 the algorithm ends after one pass through the
loop, resulting in the machine shown in Figure 2.10. The binary-tree-shaped
machine of Figure 2.4 takes three passes, resulting in the machine shown in
Figure 2.11.

2Note: This works because the binary relation MergablePairs is always an equivalence
relation.
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MergablePairs = ( States × States )
− ( AcceptingStates × RejectingStates )

repeat
OldMergablePairs = MergablePairs

for all (p, q) ∈ MergablePairs
for all input characters c

if ( (δ(p, c), δ(q, c)) 6∈ OldMergablePairs )
MergablePairs = MergablePairs − (p, q)

until
MergablePairs = OldMergablePairs

Figure 2.6: An algorithm for finding all mergable states in a finite-state machine
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Figure 2.7: A finite-state machine for accepting identifiers with one subscript
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Figure 2.8: Minimizing the finite-state machine of Figure 2.7



2.1. STATE TRANSITION DIAGRAMS 39
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Figure 2.9: A finite-state machine for checking parity
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Figure 2.10: A minimal finite-state machine for checking parity
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Figure 2.11: A minimal finite-state machine for LEq-4
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All coins

Figure 2.12: Equivalence classes of coins

2.2 The Myhill-Nerode Theorem

Equivalence Relations, Partitions

We start with a brief introduction of equivalence relations and partitions because
these are central to the discussion of finite-state machines.

Informally, two objects are equivalent if distinguishing between them is of
no interest. At the checkout counter of a supermarket, when you are getting 25
cents back, one quarter looks as good as the next. But the difference between a
dime and a quarter is of interest. The set of all quarters is what mathematicians
call an “equivalence class.” The set of all dimes is another such class, as is the set
of all pennies, and so on. The set of all coins gets carved up, or “partitioned,”
into disjoint subsets, as illustrated in Figure 2.12. Each subset is called an
“equivalence class.” Collectively, they form a “partition” of the set of all coins:
every coin belongs to one and only one subset. There are finitely many such
subsets in this example (6 to be precise).

Given a partition, there is a unique equivalence relation that goes with it: the Partitions ≡ Equivalence
Relationsrelation of belonging to the same subset.

And given an equivalence relation, there is a unique partition that goes
with it. Draw the graph of the relation. It consists of disconnected complete
subgraphs whose node sets form the sets of the partition.3

3Note: This is easier to visualize when the set of nodes is finite, but works also for infinite
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All coins

pennies
quarters

dollars

halfdollars

nickels

dimes

quarters
1891 "D"

in mint
condition

Figure 2.13: A refinement of a partition

Just exactly what distinctions are of interest may vary. To someone who isRefinements
collecting rare coins, one quarter is not always going to look as good as the
next, but one quarter that was minted in 1891 and has a D on it and is in
mint condition looks as good as the next such quarter. Our original equivalence
class of all quarters gets subdivided, capturing the finer distinctions that are of
interest to a coin collector. The picture of Figure 2.12 gets more boundary lines
added to it. See Figure 2.13.

What differences between program do we normally ignore? It depends on whatEquivalence Relations
Among Programs we are interested in doing with the programs. If all we want to do is put a

printout of their source under the short leg of a wobbly table, programs with
equally many pages of source code are equivalent.

A very natural notion of equivalence between programs came up in Chap-
ter 1: IOa = IOb. A further refinement could take running time into account:
IOa = IOb and ta = tb (“t” for time). A further refinement could in addition
include memory usage: IOa = IOb and ta = tb and sa = sb (“s” for space).
(Both t and s are functions of the input.) The refinements need not stop here.
We might insist that the two programs compile to the same object code. If all we
want to do with the program is run it, we won’t care about further refinements.
What else would we want to do with a program but run it? We might want to
modify it. Then two programs, one with comments and one without, are not
going to be equivalent to us even if they are indistinguishable at run time. So
there is a sequence of half a dozen or so successive refinements of notions of

and even uncountably infinite sets.
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program equivalence, each of which is the right one for some circumstances.
Next we will apply the concept of partitions and equivalence relations to

finite-state machines.

Let Parity be the set consisting of all binary strings with an even number of A Game
1s. For example, 10100011 ∈ Parity, 100 6∈ Parity. Consider the following
game, played by Bob and Alice.

1. Bob writes down a string x without showing it to Alice.

2. Alice asks a question Q about the string x. The question must be such
that there are only finitely many different possible answers. E.g., “What
is x?” is out, but “What are the last three digits of x?” is allowed.

3. Bob gives a truthful answer AQ(x) and writes down a string y for Alice
to see. (Alice still has not seen x.)

4. If Alice at this point has sufficient information to know whether or not
xy ∈ Parity, she wins. If not, she loses.

Can Alice be sure to win this game? For example, if her question was “What
is the last bit of x?” she might lose the game because an answer “1” and a
subsequent choice of y = 1 would not allow her to know if xy ∈ Parity since x
might have been 1 or 11. What would be a better question?

Alice asks “Is the number of 1s in x even?”. She is sure to win.
Tired of losing Bob suggests they play the same game with a different lan-

guage: More-0s-Than-1s, the set of bitstrings that contain more 0s than 1s.
Alice asks “How many more 0s than 1s does x have?”. Bob points out that

the question is against the rules. Alice instead asks “Does x have more 0s than
1s?”. Bob answers “Yes.”. Alice realizes that x could be any one of 0, 00, 000,
0000, . . . and concedes defeat.

Theorem 11 Alice can’t win the More-0s-Than-1s-game.

Proof Whatever finite-answer question Q Alice asks, the answer will be the
same for some different strings among the infinite collection {0, 00, 000, 0000,
. . . }. Let 0i4 and 0j be two strings such that 0 ≤ i < j and AQ(0i) = AQ(0j).
The Bob can write down x = 0i or x = 0j , answer Alice’s question, and then
write y = 1i. Since 0i1i 6∈ More-0s-Than-1s and 0j1i ∈ More-0s-Than-1s,
Alice cannot know whether or not x1i ∈ More-0s-Than-1s — she loses.

What does this game have to do with finite-state machines? It provides
a complete characterization of the languages that are accepted by finite-state
machines . . .

4Note: 0i means a string consisting of i 0s.
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Theorem 12 Consider Bob and Alice playing their game with a language L.5

The following two statements are equivalent.

1. Alice can be sure to win.

2. L is accepted by some finite-state machine.

In fact, the connection between the game and finite-state machines is even
stronger.

Theorem 13 Consider Bob and Alice playing their game with the language L.
The following two statements are equivalent.

1. There is a question that lets Alice win and that can always be answered
with one of k different answers.

2. There is a finite-state machine with k states that accepts L.

To see that (2) implies (1) is the easier of the two parts of the proof. Alice
draws a picture of a k-state machine for L and asks which state the machine is
in after reading x. When Bob writes down y, Alice runs M to see whether or
not it ends up in an accepting state.

The key to proving that (1) implies (2) is to understand why some questions
that Alice might ask will make her win the game while others won’t.

Why was it that in the Parity game asking whether the last bit of x was a 1The Relation ≡L

did not ensure a win? Because there were two different choices for x, x1 = 1
and x2 = 11, which draw the same answer, but for which there exists a string y
with (x1y ∈ Parity) 6⇔ (x2y ∈ Parity). In this sense the two strings x1 = 1
and x2 = 11 were “not equivalent” and Alice’s question made her lose because
it failed to distinguish between two nonequivalent strings. Such nonequivalence
of two strings is usually written as x1 6≡parity x2.

Conversely, two strings x1 and x2 are equivalent, x1 ≡parity x2, if for all
strings y, (x1y ∈ Parity) ⇔ (x2y ∈ Parity).

Definition 1 Let L be any language. Two strings x and x′ are equivalent with
respect to L, x ≡L x′, if for all strings y, (xy ∈ L) ⇔ (x′y ∈ L).

Consider the question Q that made Alice win the Divisible-by-8-game: “WhatThe Relation ≡Q

are the last three digits of x, or, if x has fewer than three digits, what is x?”.

Definition 2 Let Q be any question about strings. Two strings x and x′ are
equivalent with respect to Q, x ≡Q x′, if they draw the same answer, i.e.,
AQ(x) = AQ(x′).

The relation ≡Q “partitions” all strings into disjoint subset. This partition
“induced by ≡Q” is illustrated in Figure 2.14.
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Figure 2.14: The partition induced by Alice’s question

The subsets of the partition induced by ≡Q then become the state of a
finite-state machine. This is illustrated in Figure 2.15. The start state is the
state containing the empty string. States containing strings in the language are
accepting states. There is a transition labeled 1 from the state that contains 0
to the state that contains 01. Generally, there is a transition labeled c from the
state containing s to the state containing sc.

Could it happen that this construction results in more than one transition
with the same label out of one state? In this example, we got lucky — Alice
asked a very nice question —, and this won’t happen. In general it might,
though. As an example, Alice might have asked the question, “If x is empty,
say so; if x is nonempty but contains only 0s, say so; otherwise, what are the
last three digits of x, or, if x has fewer than three digits, what is x?”. Kind
of messy, but better than the original question in the sense that it takes fewer
different answers. The problem is that the two strings 0 and 00 draw the same
answer, but 01 and 001 don’t. Figure 2.16 shows where this causes a problem in
the construction of a finite-state machine. The resolution is easy. We arbitrarily
choose one of the conflicting transitions and throw away the other(s). Why is
this safe? Because ≡Q is a “refinement” of ≡L and it is safe to ignore distinctions
between strings that are equivalent under ≡L.

It seems that the finite-state machine in Figure 2.15 is not minimal. We could The best question
run our minimization algorithm on it, but let’s instead try to work on “mini-

5Note: A “language” in this theory means a set of strings.
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Figure 2.15: The finite-state machine constructed from Alice’s question
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Figure 2.16: A conflict in the construction of a finite-state machine
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mizing” the question Q from which the machine was constructed. Minimizing
a question for us means minimizing the number of different answers.

The reason why this construction worked was that ≡Q was a refinement of
≡L. This feature of the question Q we need to keep. But what is the refinement
of ≡L that has the fewest subsets? ≡L itself. So the best question is “Which
subset of the partition that is induced by ≡L does x belong to?”. This is easier
to phrase in terms not of the subsets but in terms of “representative” strings
from the subsets: “What’s a shortest string y with x ≡L y?”.

Let’s apply this idea to the Divisible-by-8 problem. There are four equiv-
alence classes:

0, 00, 000, 0000, 1000, . . . ,
λ, 100, 0100, 1100, . . . ,
10, 010, 110, 0010, 0110, 1010, 1110, . . . , and
1, 01, 11, 001, 011, 101, 111, 0001, 0011, 0101, 0111, 1001, 1010, 1101, 1111, . . . .

The four answers to our best question are λ, 0, 10, and 1. The resulting finite-
state machine has four states and is minimal.

Let’s take stock of the equivalence relations (or partitions) that play a role
in finite-state machines and the languages accepted by such machines.

As mentioned already, every language, i.e., set of strings, L defines (“induces”) The Relations ≡L, ≡Q,
≡Man equivalence relation ≡L between strings:

(x ≡L y) def⇐⇒ (for all strings z, (xz ∈ L) ⇔ (yz ∈ L)). (2.2)

Every question Q about strings defines an equivalence relation ≡Q between
strings:

(x ≡Q y) def⇐⇒ (AQ(x) = AQ(y)). (2.3)

And every finite-state machine M defines an equivalence relation ≡M be-
tween strings:

(x ≡M y) def⇐⇒ (δM (s0, x) = δM (s0, y)). (2.4)

s0 denotes the start state of M . Note that the number of states of M is the
number of subsets into which ≡M partitions the set of all strings.

As mentioned earlier, for Alice to win the game, her question Q must
distinguish between strings x and y for which there exists a string z with
(xz ∈ L) 6⇔ (yz ∈ L). In other words, she must make sure that

(x 6≡L y) ⇒ (x 6≡Q y) (2.5)

i.e., ≡Q must be a refinement of ≡L. If we regard binary relations as sets of
pairs, then (2.5) can be written as

((x, y) 6∈ ≡L) ⇒ ((x, y) 6∈ ≡Q) (2.6)

or, for the notationally daring,
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Figure 2.17: Illustrating the uniqueness of a minimal machine

≡Q ⊆ ≡L (2.7)

Instead of talking about Alice and her question, we can talk about a finite-
state machine and its states.6 For the machine M to accept all strings in L
and reject all strings that are not in L — a state of affairs usually written as
L(M) = L —, M must “distinguish” between strings x and y for which there
exists a strings z with (xz ∈ L) 6⇔ (yz ∈ L). In other words,

(x 6≡L y) ⇒ (x 6≡M y) (2.8)

i.e., ≡M must be a refinement of ≡L. Again, if we regard binary relations as
sets of pairs, then (2.8) can be written as

≡M ⊆ ≡L (2.9)

Every machine M with L(M) = L must satisfy (2.9); a smallest machine
M0 will satisfy

≡M0 = ≡L (2.10)

How much freedom do we have in constructing a smallest machine for L, givenUniqueness
6The analogy becomes clear if you think of a finite-state machine as asking at every step

the question “What state does the input read so far put me in?”.
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that we have to observe (2.10)? None of any substance. The number of states
is given, of course. Sure, we can choose arbitrary names for the states. But
(2.10) says that the states have to partition the inputs in exactly one way. Each
state must correspond to one set from that partition. Figure 2.17 illustrates
this for the language Divisible-by-8. This then determines all the transitions,
it determines which states are accepting, which are rejecting, and which is the
start state. Thus, other than choosing different names for the states and laying
out the picture differently on the page, there is no choice. This is expressed in
the following theorem.

Theorem 14 All minimal finite-state machines for the same language L are
isomorphic.

Unlike our earlier construction of a finite-state machine from a (non-minimal)
winning question of Alice’s, this construction will never result in two transitions
with the same label from the same state. If that were to happen, it would mean
that there are two strings x and y and a character c with x ≡L y and xc 6≡L yc.
Since xc 6≡L yc there is a string s with (xcs ∈ L) 6⇔ (ycs ∈ L) and therefore a
string z (= cs) with (xz ∈ L) 6⇔ (yz ∈ L), contradicting x ≡L y.

Figure 2.17 could have been obtained from Figure 2.14 by erasing those lines
that are induced by ≡Q but not by ≡L. This is what our minimization algorithm
would have done when run on the machine of Figure 2.15.

Summarizing, we have the following theorem.

Theorem 15 (Myhill-Nerode) Let L be a language. Then the following two
statements are equivalent.

1. ≡L partitions all strings into finitely many classes.

2. L is accepted by a finite-state machine.

Furthermore, every minimal finite-state machine for L is isomorphic to the
machine constructed as follows. The states are the subsets of the partition in-
duced by ≡L. The start state is the set that contains λ. A state A is accepting
if A ⊆ L. There is a transition from state A to state B labeled c if and only if
there is a string x with x ∈ A and xc ∈ B.

Regular Expressions (Kleene’s Theorem)

The above Myhill-Nerode Theorem provides a complete characterization of
properties that can be determined with finite-state machines. A totally dif-
ferent characterization is based on “regular expressions,” which you may know
as search patterns in text editors.

Regular languages and expressions are defined inductively as follows.

Definition 3 (Regular languages) 1. The empty set ∅ is regular.

2. Any set containing one character is regular.
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3. If A and B are regular then so are A ∪B, AB, and A?.

[The union, concatenation and Kleene star operations are defined as usual:

A ∪B = {x : x ∈ A or x ∈ B},

AB = {xy : x ∈ A and y ∈ B},
and

A? = {x1x2 · · ·xk : k ≥ 0 and xi ∈ A for all i}
.]

Observation 4 Finite languages are regular.

Definition 4 (Regular expressions) 1. The symbol ∅ is a regular expres-
sion and L(∅) = ∅.

2. Any single character c is a regular expression and L(c) = {c}.
3. If α and β are regular expressions then so are α ∪ β, αβ, and α?, and

L(α ∪ β) = L(α) ∪ L(β), L(αβ) = L(α)L(β), and L(α?) = (L(α))?.

Observation 5 A language L is regular if and only if there is a regular expres-
sion E with L = L(E).

The important result in this section is the following.

Theorem 16 (Kleene’s Theorem) The following two statements are equiv-
alent.

1. L is regular.

2. L is accepted by some finite-state machine.

Proof Both parts of this proof are inductive constructions.
To construct regular expressions from finite-state machines we number the

states and carry out an inductive construction, with the induction being over
this numbering of the states. This is a nontrivial example of a proof by induction
and a nice illustration of the fact that inductive proofs often become easier once
you decide to prove a stronger result than you really wanted.

To construct finite-state machines from regular expressions we do an “in-
duction over the structure” of the expression. This is a nice example of the
fact that induction, while strictly speaking a technique that is tied to natural
numbers, can be thought of as extending to other sets as well.

Here are the details.
(2) ⇒ (1) To construct a regular expression from a given finite-state machine

M , first number the states of the machine 1, . . . , q, with state 1 being the start
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Figure 2.18: Illustrating the notion of a string making a machine “pass through”
states

state. Define Lk
ij to be the set of all strings which make the machine go from

state i into state j without ever “passing through” any state numbered higher
than k. For example, if the machine of Figure 2.18 happens to be in state 1 then
the string ba will make it first go to state 2 and then to state 3. In this sequence
1 → 2 → 3 we say that the machine “went through” state 2. It did not “go
through” states 1 or 3, which are only the starting point and the endpoint in
the sequence. Since it did not go through any state numbered higher than 2 we
have ba ∈ L2

13. Other examples are babb ∈ L2
32 and a ∈ L0

23, in fact {a} = L0
23.

In this example, the language accepted by the machine is L3
13. In general, the

language accepted by a finite-state machine M is

L(M) =
⋃

f

Lq
1f (2.11)

where the union is taken over all accepting states of M . What’s left to show is
that these languages Lk

ij are always regular. This we show by induction on k.
For k = 0, L0

ij is finite. It contains those characters that label a transition
from state i to state j. If i = j the empty string gets added to the set.

For k > 0,
Lk

ij = (Lk−1
ik (Lk−1

kk )?Lk−1
kj ) ∪ Lk−1

ij . (2.12)

This equation amounts to saying that there can be two ways to get from state
i to state j without going through states numbered higher than k. Either we
go through k, or we don’t, corresponding to the subexpression before the union
and the subexpression after the union. Figure 2.19 illustrates this. Figure 2.20
shows some of the steps in the construction of a regular expression from the
finite-state machine of Figure 2.18. We simplify the subexpressions as we go.
Expression Ek

ij describes language Lk
ij : “L(Ek

ij) = Lk
ij .” Some parentheses are

omitted. λ is short for ∅?, hence L(λ) = {λ}, by the definition of the ?-operation.
(We wouldn’t want to miss a chance to be obscure, would we?)
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Figure 2.19: The pattern of induction for constructing the regular expressions
Lk

ij in Kleene’s Theorem

(1) ⇒ (2) To construct finite-state machines from regular expressions we
use what is called “induction on the structure of the expression” or “structural
induction.” This means that finite-state machines are first constructed for small
subexpressions, then combined to form machines for larger subexpressions and
ultimately for the whole expression.

For example, if we want to convert the expression

E = (abb) ∪ (b(aa)?bab)

a machine M(aa)? for the subexpression (aa)? is shown in figure 2.21.
For simplicity let’s adopt the convention that if a transition goes to a reject-

ing state from which the machine cannot escape anymore then we won’t draw
the transition, nor that “dead” state. This simplifies the picture for M(aa)? , see
Figure 2.22. A machine Mb is easier yet, see Figure 2.23. We can combine Mb

and M(aa)? to get Mb(aa)? , shown in Figure 2.24. Adding parts that correspond
to subexpressions abb and bab completes the construction, see Figure 2.25. This
seems easy enough, but what if the expression had been just slightly different,
with an extra b in front:

E′ = (babb) ∪ (b(aa)?bab)

Then our construction would have gotten us this machine ME′ in Figure 2.26.
This machine ME′ has a flaw: there are two transitions labeled b out of the

start state. When we run such a machine what will it do? What should it do,
presented with such an ambiguity? Can we define the “semantics,” i.e., can
we define how such a machine is to run, in such a way that the machine ME′

accepts the very same strings that the expression E′ describes?
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E0
11 = λ ∪ a E0

12 = b E0
13 = ∅

E0
21 = ∅ E0

22 = λ ∪ b E0
23 = a

E0
31 = b E0

32 = a E0
33 = λ

E1
32 = (E0

31(E
0
11)

?E0
12) ∪ E0

32 = (b(λ ∪ a)?b) ∪ a = ba?b ∪ a

E1
11 = a? E1

12 = a?b E1
13 = ∅

E1
21 = ∅ E1

22 = λ ∪ b E1
23 = a

E1
31 = ba? E1

32 = ba?b ∪ a E1
33 = λ

E2
13 = (E1

12(E
1
22)

?E1
23) ∪ E1

13 = (a?b(b?)?a) ∪ ∅ = a?bb?a

E2
11 = a? E2

12 = a?b+ E2
13 = a?bb?a

E2
21 = ∅ E2

22 = b? E2
23 = b?a

E2
31 = ba? E2

32 = ba?b+ E2
33 = (ba?b ∪ a)b?a

E3
11 = (E2

13(E
2
33)

?E2
31) ∪ E2

11 = (a?bb?a((ba?b ∪ a)b?a)?ba?) ∪ a?

Figure 2.20: Converting the finite-state machine from Figure 2.18 into a regular
expression
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Figure 2.21: The machine M(aa)?
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Figure 2.22: The machine M(aa)? , a simplified drawing
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Figure 2.23: The machine Mb
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Figure 2.24: The machine Mb(aa)?
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Figure 2.26: The machine ME′
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Figure 2.27: The machine ME′′

After reading an initial b, should ME′ be in state 2 or in state 7? We want to
accept both babb and baabab. Being in state 7 after the first b give us a chance
to accept babb; and being in state 2 gives us a chance to accept baabab. This
suggests that the right way to run this machine is to have it be in both states 2
and 7 after reading the first b.

With this way of running the machine, which states would it be in after
reading an a as the second character? In states 3 and 8. After reading a b as
the third character, it can only be in state 9. 7 After reading another b — for
a total input string of babb — ME′ is in state 10 and accepts the input.

There is one more issue that this example does not address. What if some
such machine ends up in a set of states some of which are accepting and some
are rejecting? The expression

E′′ = (bba) ∪ (b(aa)?bab)

provides an example. Our construction will result in the machine ME′′ of Fig-
ure 2.27. After reading bba, the machine is in state 5, which is rejecting, and in
state 9, which is accepting. Since bba is a string described by E′′, it should be
accepted by ME′′ . That settles the issue: a string is accepted if at least one of
the states it puts the machine in is an accepting state.

Our conventions about running these machines and knowing when a string
is accepted are the “semantics of nondeterministic finite-state machines.” These

7This could be up to some discussion depending on how we view our convention of not
drawing a “dead” state, i.e., a rejecting state from which the machine cannot escape. If we
take the view that the state is there — we just don’t draw it — then at this point we should
say that the machine would be in state 9 and that invisible state, say 11. This is clumsy. It is
more elegant — although ultimately of no important consequence — to say that the machine
is only in state 9.
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Figure 2.28: Converting ME′ into a deterministic machine

conventions can be applied to more powerful programs as well (and we will do
so in a later chapter on computational complexity, where the concept of nonde-
terminism will play a crucial role in defining a class of computational problems).
“Nondeterministic C,” for example, could be C with the extra feature of a non-
deterministic branch:

( nondet-branch; x = 0; x = 1; )

The way to think about the execution of such nondeterministic programs is that
there is more than one path of execution. Tracing the execution results in a
tree and a program is said to accept its input if at least one of the paths leads
to acceptance.

Can we convert this new kind of machine into a standard (deterministic)
finite-state machine? This task amounts to a search of the “execution tree,”
which we do in a breadth-first approach. Figure 2.28 gives an example, convert-
ing the machine ME′ into a deterministic one. The states of the deterministic
machine are the sets of states of ME′ . (Many of these sets of states may not
be reachable from the start state and can be discarded.) In the deterministic
machine, the state reached from a state A via a transition c, δ(A, c), is the set
of those states b of ME′ to which there is a c-transition (in ME′) from some
state a ∈ A.

The algorithm for constructing a nondeterministic machine from a regular
expression is easier to describe if we allow yet another form of nondetermin-
istic behavior: making a “spontaneous” transition, i.e., a transition that does
not consume an input character. The standard term is a “λ-transition.” The
inductive algorithm for constructing a (nondeterministic) finite-state machine
ME from an arbitrary regular expression E then works as shown in Figure 2.29.
An example that uses all the parts of this algorithm is the machine shown in
Figure 2.30.
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1. M∅ is the following machine:

2. For any single character c, Mc is the following machine:

c

3. If α and β are regular expressions then Mα∪β, Mαβ, and
Mα? are constructed from Mα and Mβ as shown below.

λ

α

βM

M

λ

Constructing Mα∪β from Mα and Mβ

M α

λ

M β

λ

Constructing Mαβ from Mα and Mβ

αM

λ

λ

λ

Constructing Mα? from Mα

Figure 2.29: An algorithm for converting regular expressions to finite-state ma-
chines
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Figure 2.30: The machine M(aa)?∪(a(bb)?)

a

a

b
b

b

a

a

Figure 2.31: A deterministic version of M(aa)?∪(a(bb)?)

Nondeterministic machine with λ-transitions can be turned into determin-
istic ones with the same set-of-states approach used earlier. For example, the
machine in Figure 2.30 turns into the machine in Figure 2.31.

This concludes the proof of Kleene’s Theorem.

Given that finite-state machines and regular expressions are equivalent concepts, Finite-State Machines or
Regular Expressions?we can choose to approach some problem in terms of one or the other. Some

questions are easier to deal with in terms of finite-state machines, others in
terms of regular expressions. Here are some examples, all of them variations of
the question of which languages are regular:

Question 1. Is the set of binary numbers that are divisible by 2 regular?
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0

0

1

Figure 2.32: A piece of a finite-state machine

This is easy in either domain. The right regular expression is (0 ∪ 1)?0.

Question 2. Is the set of binary numbers that are divisible by 3 regular?

The answer is yes, but it seems nearly impossible to build a suitable regular
expression. After all, what is the common pattern of 11, 110, 10000000010,
1001? Yet it is not all that hard to build a finite-state machine for this language,
with the right approach anyway. The Myhill-Nerode Theorem tells us that we
would have to figure out exactly what it is that we want to keep track of as the
input gets processed.

If we know that the input so far was a number that was divisible by 3,
then we know that after reading one more 0, the number is again divisible by
3. (This is so because reading that 0 amounted to multiplying the previous
number by 2.) What if a 1 had been read instead? This would have amounted
to multiplying the previous number by 2 and adding 1. The resulting number,
when divided by 3, would yield a remainder of 1. This translates into a piece
of a finite-state machine shown in Figure 2.32. The complete machine is shown
in Figure 2.33. The four equivalence classes of ≡L (and hence the states of the
minimal machine for L) are {λ} and the three sets of binary numbers which,
when divided by three, yield a remainder of 0, 1, and 2. These remainders are
used as the labels of the three states.

Question 3. Are regular languages closed under union? I.e., if A and B are
regular, is their union A ∪B regular as well?

The answer is yes. It follows from the definition of regular sets and expres-
sions. In terms of finite-state machines, this requires an argument involving
nondeterministic machine (as used in the proof of Kleene’s Theorem).

Question 4. Are regular languages closed under complement? I.e., if A is
regular, is A = {x : x /∈ A} regular as well?

This is most easily dealt with in terms of finite-state machines. If M is a
finite-state machine for A then a finite-state machine for A can be obtained by
turning accepting states into rejecting ones, and vice versa. There is no equally
simple argument in terms of regular expressions.
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Figure 2.33: A finite-state machine for binary numbers divisible by 3

Question 5. Are regular languages closed under set difference? I.e., if A and
B are regular, is their difference A− B = {x : x ∈ A and x /∈ B} regular
as well?

There is a construction based on finite-state machine that proves this closure
result and is interesting in its own right.

Question 6. Is the set of syntactically correct C programs regular?

It is not, and the only proof method presented so far is to argue that there
are infinitely many equivalence classes induced by ≡L. Here is an infinite list of
nonequivalent strings:

main () { int x; x = (
main () { int x; x = ((
main () { int x; x = (((
main () { int x; x = ((((
main () { int x; x = (((((
...

This shows that parsing programs, which is a necessary part of compiling
them, cannot be done with an amount of memory that does not depend on the
input that is being parsed. As we will see in the next chapter, it takes a “stack”
to parse.
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2.3 The Pumping Lemma for Regular Languages

“Pumping” is a second technique to prove nonregularity. It is interesting in its
own right, although no more powerful than the analysis of ≡L that we have
discussed already in Sections ??. Pumping is important if for no other reason
then because unlike the analysis of ≡L in Myhill-Nerode, pumping arguments
also work for the more powerful programs we will consider in the next chapter.

Lemma 3 Pumping Lemma for Regular Languages. If L is a regular
language then there is a constant k such that for every string w in L of length
k or more the following is true.

There are three strings, u, v, x, such that

1. w = uvx, and

2. for all i ≥ 0, uvix ∈ L, and

3. |v| > 0.

Let’s use this Lemma to prove that the language L = {anbn : n ≥ 1} is not
regular.

Assuming it was. Then the Lemma applies. Let k be the constant said to
exist in the Lemma. Consider the string w = akbk. The length of w is k or
more (in fact, 2k), hence statements (1) — (3) from the Lemma apply, implying
that it is possible to split w into three parts, w = uvx, such that |v| > 0 and
uv2x ∈ L. But this is not true. No matter what three-way split of w one tries,
uv2x is never of the form of equal numbers of a’s and b’s.

(One can come up with a more detailed argument for this. The challenge is
to cover all ways in which the strings could get divided up into three pieces. An
added challenge is to come up with a concise argument. Here is an attempt:

The substring v cannot contain more than one type of character because
otherwise v2 contains characters in an order not permitted in L. Hence at most
one type of character take part in the “pumping” from uvx to uv2x, which
therefore does not contain equal numbers of both characters anymore.)

This contradiction shows that L is not regular.

The Pumping Lemma can be stated as follows.Why is this so messy?

L regular

=⇒
There is a constant k such that

for all strings w ∈ L with |w| ≥ k
there are strings u, v, x with w = uvx and |v| > 0 such that

for all i ≥ 0, uvix ∈ L.
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The above statement is of the form “L regular ⇒ B,” where B is that
complicated statement with four alternating quantifiers. Since we are trying to
prove that some languages are not regular, a more useful version of the statement
is “L not regular ⇐ ¬B.” Spelled out in detail, this version reads

L not regular

⇐=

For all constants k
there is a string w ∈ L with |w| ≥ k such that

for all strings u, v, x with w = uvx and |v| > 0
there is an i ≥ 0 with uvix 6∈ L.

Thus, we can prove that some language L is not regular by proving the above
four-line statement ¬B : “For all . . . 6∈ L”. This is what we did in the previous
example. Here is another one.

Let’s take the language that consists of strings like Another Example

1234+111=1345
10000+10000=20000

1020304+505=1020809
11111+22222=33333

The language consists of strings of the form α + β = γ that represent a correct
equation between decimal integers.

This language L is not regular, a fact we prove by proving the statement
“¬B” above.

How do we prove something “for all constants k”? By starting out the
proof by saying “Let k be an arbitrary constant” and carrying the k along as a
parameter of the argument.

What’s next? We need to show that there exists a string w with certain
properties. To show this, all we need to do is exhibit one such string. In this
example, let’s pick w to be the string

1 · · · 1︸ ︷︷ ︸
k

+ 2 · · · 2︸ ︷︷ ︸
k

= 3 · · · 3︸ ︷︷ ︸
k

(Note how the k plays its role.) What’s the next step? We have to show that
for all strings u, v, x which represent a three-way breakup of w (“w = uvx” )
and which don’t have the second piece empty ( “|v| > 0” ), there is a constant
i with uvix 6∈ L. This is the hard part of the proof because we somehow have
to provide an argument that covers all possible such three-way breakups of w.
It can be done, by dealing with an exhaustive set of cases. Here is such an
exhaustive set of cases for this example.

Case 1. v contains the =. Then uv0x 6∈ L if for no other reason then because
it does not have an = in it.
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Case 2. v does not contain the =. Then v lies entirely on one side of the = and
pumping (with any i 6= 1) changes that side of the equation but not the
other, thus creating a string outside of L.

Exercises

Ex. 2.1. Draw the smallest finite-state machine M for the language of all
bitstrings that contain the substring 011.

Ex. 2.2. Draw the smallest finite-state machine M for the language of all
bitstrings that contain the substring 011. (Make sure you provide a 0 and a 1
transition out of every state.)

Ex. 2.3. Carry out the minimization algorithm of Figure 2.6 for the finite-Minimizing finite-state
machines state machine shown below. (Show the development of the “clusters” of states

just like Figure 2.8 did.)

Ex. 2.4. Draw a finite-state machine on which the minimization algorithm
runs through more than 10 passes.

Ex. 2.5. Let L be the language of all bitstrings that contain a run of threeThe Myhill-Nerode
Theorem consecutive 0s. Is it true that 01 ≡L 001? Explain.

Ex. 2.6.

1. If L is the language of all bitstrings that start with a 1 and end with a 0,
then 01 ≡L 00.

2. If L is the language of all bitstrings of length 8, then 0001 ≡L 0011.

3. Let L be the language of all bitstrings x such that x contains at least one
0. (For example, 01 ∈ L, 1111 6∈ L.) How many equivalence classes does
≡L induce?

4. Let L be the language of all bitstrings x such that x contains at least one
0 and at least one 1. (For example, 01 ∈ L, 1111 6∈ L, 00 6∈ L.) How many
equivalence classes does ≡L induce?

Ex. 2.7. Let L be the language of binary strings whose third bit from the
end is a 1. Give one string from each of the equivalence classes induced by ≡L.

Ex. 2.8. Same for the language of bitstrings whose first two bits are equal to
its last two bits.
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Ex. 2.9. Give one representative of each equivalence class of ≡L for L = {x : x
contains the substring 000}.

Ex. 2.10. Consider the following language L over the alphabet Σ = {a, b, $}:

L = {x$y : x, y ∈ {a, b}+ and x does not start with the same letter as y}

For every equivalence class of ≡L, give one shortest string from the class.

Ex. 2.11. Is it true that x ≡L y implies xz ≡L yz? Is it true that xz ≡L yz
implies x ≡L y? When your answer is no, give a counterexample.

Ex. 2.12. Are the two relations ≡L and ≡L̄ (that’s L̄, the complement of
L) always the same, for any given L? Either argue that they are, or show an
example were they aren’t?

Ex. 2.13. (b) Do the partitions that go with ≡L and with ≡Lrev (that’s
Lrev = {xrev : x ∈ L}) always have the same equivalence classes? Either argue
that they always do, or show an example were they don’t? (xrev is x written
backwards.)

Ex. 2.14. Which of the following languages is regular? (Just circle “Yes” or
“No” for each language. Do not give explanations.)

1. The language described by (ab(a?)?(b? ∪ (aab)?))

2. Strings containing the word while

3. Strings containing two opening parentheses with no closing parenthesis in
between the two, e.g. “(a)b)c(d(e(f”

4. Strings containing more opening parentheses than closing ones,
e.g. “())(((”

5. Strings containing all their opening parentheses before all their closing
ones, e.g. “((x(y-/)”

6. Strings of even length whose first half and second half both start with the
same letter, e.g. “abcabaeeee”

Ex. 2.15. Consider two finite-state machines that accept languages A and B
and consider their cross-product machine. As discussed in class, one can always
choose the accepting states of the cross-product machine such that it accepts
A ∩B.

Can one always choose the accepting states of the cross-product machine
such that it accepts . . .
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1. A ∪B ?

2. A−B ? (That’s {x : x ∈ A and x /∈ B}.)
3. AB ? (That’s A concatenated with B: {xy : x ∈ A and y ∈ B}.)
4. Strings in A ∪B of length five or more?

5. A ?

Ex. 2.16. Derive an asymptotic bound on the length of the expression con-Regular Expressions
structed from a finite-state machine in the proof of Kleene’s Theorem. Assume
we are dealing with bitstrings only.

Ex. 2.17. Consider the problem of taking an arbitrary nondeterministicNondeterministic
Machines finite-state machine that accepts some language A and modifying the machine

to accept the complement of A instead (i.e., all the strings that are not in A).
Does the following approach work: Make all rejecting states of the nonde-

terministic machine into accepting states and all accepting states into rejecting
states?

Briefly explain your answer.

Ex. 2.18. For any k ≥ 0 let Lk be the language of bitstrings whose first k
bits equal their last k bits. How many states does a deterministic finite-state
machine for Lk need? Same for a nondeterministic machine. How long is a
regular expression for Lk?

Ex. 2.19. Give three properties that are decidable for finite-state machines
but undecidable for arbitrary programs.

Ex. 2.20. Which of the languages in Figure ?? are regular?

Ex. 2.21. Consider creating the cross-product machine of two given ma-Cross-Product
Construction chines and choosing the accepting states such that the new machine accepts the

intersection of the languages of the two old machines.
(a) Give an example where the cross-product machine is minimal.
(b) If the cross-product machine is minimal, does that imply that the two

“factors” in the product had to be minimal? Give an argument or a counterex-
ample.

Ex. 2.22. For any program p define Lp to be the set of input strings on whichMiscellaneous
the program prints the word “Yes” and terminates. Is it decidable whether or
not a program p has a regular language Lp? Briefly justify your answer.

Ex. 2.23. Let Fsm-Equivalence be the problem of deciding, given two finite-
state machines P and Q, whether or not L(P ) = L(Q). Let Fsm-Emptiness
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be the problem of deciding, given a finite-state machine M , whether or not
L(M) = ∅. Describe how a cross-product construction can be used to transform
Fsm-Equivalence into Fsm-Emptiness.

Ex. 2.24. Construct a finite-state machine for the language {x : x ∈ {0, 1}?

and x /∈ {000, 001}?}. First construct a nondeterministic machine that is as
small as possible, then apply the subset construction, then minimization.

Ex. 2.25. For two of the nonregular languages in Figure ?? use the pumping
lemma to prove that they are not regular.

Ex. 2.26. Prove that every infinite regular language contains a string whose
length is not a prime number.

Ex. 2.27. Prove that the set of strings that are finite prefixes of this infinite
string
-0-1-10-11-100-101-110-111-1000-1001-1010-1011- · · ·
is not regular.

Ex. 2.28. Formulate a stronger version of the pumping lemma, one that says
not only that pumping occurs somewhere in a long enough string but that it
occurs within every long enough substring. Use this stronger version to prove
two languages from 8 Figure ?? not regular which cannot be proven not regular
with the original weaker version.

8To do: This is not in the sample solutions yet.
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Chapter 3

Context-Free Languages

3.1 Context-Free Grammars

As we saw at the end of the previous chapter, one feature of programming
languages that makes them nonregular is the arbitrary nesting of parenthesis
in expressions. Regular expressions cannot be used to define what syntactically
correct expressions look like. “Context-free grammars” can.

An example of a context-free grammar is this:

E → E + E

E → E × E

E → ( E )
E → x

E → y

The way this grammar — call it G1 — is used is to start with the symbol on
left of the arrow in the first line, E. This is the “start symbol” — the string of
length 1 we start out with. We then grow that string by repeatedly replacing
what’s on the left-hand side of an arrow with what’s on the right-hand side.
The best way to keep track is a tree:

69
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E

E

y X ( x + y )

E

x +

E

E EEE

There are choices of which replacements to make. The choices made above
resulted in a tree whose leaves, read from left to right, read x+y× (x+y). The
grammar G1 is said to “derive” that string: x + y × (x + y) ∈ L(G1). The tree
is a “derivation tree” for the string.

Derivation trees are also called “parse trees.” They are used in compilers
to know how to translate a given expression, or a whole program, into machine
language, and in interpreters to know how to evaluate an expression, or interpret
a whole program.

Our sample grammar does not serve that purpose well, though. This is
because it allows a second derivation tree for the same string:

E

X ( x + y )

E E

E

+

E

x

E

E

E

y

Such a grammar is said to be “ambiguous.” The two parse trees for the string
x + y× (x + y) lead to two different evaluations of the expression. If we plug in
x = 1 and y = 5, the first tree leads to a value of 36 for the expression, whereas
the second one leads to a value of 31. Of the two trees, only the first one matches
our conventions about the precedence of arithmetic operations. The first one is
“right,” the second one is “wrong.” The problem is, this grammar G1, while it
does perfectly well describe the language in question, does not help us define the
one and only “correct” way to parse each string in the language. The following
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grammar G2 does do that:

E → E + T

E → T

T → T × F

T → F

F → ( E )
F → x

F → y

This grammar only allows one derivation tree, the “right” one, for any arithmetic
expressions involving +, ×, parentheses, and the variables x and y. The tree
for the expression x + y × (x + y) is:

T

E

F

E

x + y X ( x + y )

F F

E

T TT

FF

T

E

3.2 Parsing

Recursive-Descent Parsing

A grammar like G2 above is easily turned into a parser, i.e., a program that
determines whether or not a given input string is in the language and does so
(necessarily) by building a parse tree, implicitly or explicitly. See Figure 3.1.
The program is nondeterministic, though — certainly a flaw we do not want to
tolerate for very long.

In what sense does this program “parse” expressions?
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main ( )

{

E();

if (getchar() == EOF)

ACCEPT;

else

REJECT;

}

E ( )

{

nondet-branch:

{E(); terminal(’+’); T();}

{T();}

}

T ( )

{

nondet-branch:

{T(); terminal(’*’); F();}

{F();}

}

F ( )

{

nondet-branch:

{terminal(’(’); E(); terminal(’)’);}

{terminal(’x’);}

{terminal(’y’);}

}

terminal( char c )

{

if (getchar() != c)

REJECT;

}

Figure 3.1: A nondeterministic recursive-descent parser
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Being a nondeterministic program, the program as a whole is said to accept
an input string if there is at least one path of execution that accepts it. Consider
again the string x+y× (x+y). The one path of execution that results in accep-
tance is the one where the first execution of E in turn calls E, terminal(’+’),
and T. These calls correspond to the children of the root of the derivation tree.
If we chart the calling pattern of the accepting execution we end up drawing
the parse tree. The accepting computation looks like a preorder traversal of the
parse tree of the input string.

The above construction shows how to turn any context-free grammar into
a program that is like the finite programs of Chapter 2 except that it uses
two additional features: recursion and nondeterminism. Such programs are
often called “pushdown machines” or “pushdown automata (pda’s).” They are
equivalent to finite-state machines augmented by a stack to implement recursion.
Thus the above example generalizes to the following theorem.

Theorem 17 For every context-free grammar G there is a pushdown machine
M with L(M) = L(G).

The converse is also true, providing a complete characterization of context-free
languages in terms of a type of program.

Theorem 18 For every pushdown machine M there is a context-free grammar
G with L(M) = L(G).

(We don’t prove this here.)

Deterministic Parsing

Intrinsically Nondeterministic Context-Free Languages

With regular languages and finite-state machines it was always possible to re-
move the nondeterminism from the machines. The trick was to replace states
by sets of states. This worked because the power set (set of subsets) of a finite
set was again a finite set. This approach does not work for pushdown machines
because a set of stacks, or even just two stacks, cannot be implemented with a
single stack. Without giving any proof of this, here is an example of a grammar
that derives an intrinsically nondeterministic language. The language is very
simple, all bitstrings of odd length whose middle character is a 1.

S → B S B | 1
B → 0 | 1

To parse this language with a pushdown machine, nondeterminism is needed.
We do not prove this here, but the intuition is that the parser must keep building
up a stack of recursive calls for the first half of the input string and climb out of
the recursion during the second half. The problem is, with information limited
by a constant amount, it is not possible to know when the second half starts.
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A “Predictive” Recursive-Descent Parser

(The example is after Aho and Ullman, Principles of Compiler Design, 1978,
p.176ff.)
While a deterministic recursive-descent parser does not exist for all context-
free languages, some languages are simple enough to yield to such an approach.
For example, the grammar for arithmetic expressions used earlier can be trans-
formed, without changing the language, into the following:

E → TE′

E′ → +TE′ | λ

T → FT ′

T ′ → ×FT ′ | λ

F → ( E )
F → x

F → y

The work done by the first two productions version, which was to generate
intermediate strings of the form

T + T + · · ·+ T

is done by the first two productions of the new version. The new grammar
leads to a parser in which the decision which of the nondeterministic paths has
a chance of leading to acceptance of the input can be made on the basis of
looking at the next character of the input. This is so because whenever the
grammar has several right-hand sides for the same left-hand symbol, the right-
hand sides differ in their first character. The resulting deterministic parser in
shown in Figure 3.2.

A General Parsing Algorithm

Instead of using nondeterminism, which is impractical even when implemented
by a deterministic tree-traversal, one can use a “dynamic programming” ap-
proach to parse any context-free language. Dynamic programming is a type
of algorithm somewhat resembling “divide-and-conquer,” which inductively (or
recursively, depending on the implementation) builds up information about sub-
problems. It typically has O(n3) time complexity.

There are two steps to using this technique. First, we change the grammar
into “Chomsky Normal Form,” then we apply the actual dynamic programming
algorithm.

Every context-free grammar can be converted into an equivalent one in whichChomsky Normal Form
each production is of one of the two forms
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main ( )

{

E();

if (getchar() == EOF)

ACCEPT;

else

REJECT;

}

E ( ) { T(); E’(); }

E’ ( )

{

if (NEXTCHAR == ’+’)

{terminal(’+’); T(); E’();}

else

// do nothing, just return

}

T ( ) { F(); T’(); }

T’ ( )

{

if (NEXTCHAR == ’*’)

{terminal(’*’); F(); T’();}

else

// do nothing, just return

}

F ( )

{

switch (NEXTCHAR)

{

case ’(’: {terminal(’(’); E(); terminal(’)’);}

break;

case ’x’: terminal(’x’);

break;

case ’y’: terminal(’y’);

break;

default: REJECT;

}

}

...

Figure 3.2: A deterministic recursive-descent parser
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A → BC

A → a

where A, B, C are syntactic variables, not necessarily different ones, and a is
a terminal symbol. This form of a context-free grammar is called “Chomsky
Normal Form.” To see how this conversion can be done consider this production:

A → BCdEfG (3.1)

The production 3.1 can equivalently be replaced by the set of productions

A → BCDEFG (3.2)
D → d

F → f

and the production 3.2 can then be replaced by the set of productions

A → BC ′

C ′ → CD′

D′ → DE′

E′ → EF ′

F ′ → FG

(The example below is from Hopcroft and Ullman, Introduction to Automata
Theory, Languages, and Computation, 1979, pp. 140-1.)

Figure 3.3 shows an example. The “length = 2, starting position = 3” fieldCYK Parsing: An
Example of “Dynamic

Programming”
contains all those variables of the grammar from which one can derive the sub-
string of length 2 that starts at position 3. (The string is ab. The variables are
S and C.) The rows of the table get filled in from top (length=1) to bottom
(length=5). The whole string is in the language if the start symbol of the gram-
mar shows up in the bottom field. Filling in a field makes use of the contents
of fields filled in earlier, in a pattern indicated by the two arrows in the Figure.

The algorithm is easily modified to yield a parse tree, or even sets of parse
trees.

3.3 The Pumping Lemma for Context-Free Gram-
mars

The grammar
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S → AB | BC
A → BA | a
B → CC | b
C → AB | a

54321

abaab

5

4

3

2

1

starting
position

length

S, A, C

φ

φ

S, A

B A, C

B

B

S, A, C

B

S, C

A, C B

S, A

A, C

Figure 3.3: An example of “CYK” parsing
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S → 0 S 1 | 0 1

generates the language

L4 = {0n1n|n ≥ 1}.
(0n means a string of n 0s.)

Similar grammars generate

L5 = {0n1n0m1m|n,m ≥ 1},

L6 = {anbmcn|n,m ≥ 1},

L7 = {anbmcmdn|n,m ≥ 1}.
If we think of 0, a, and b as opening parentheses and 1, c, and d as closing
parentheses, then these language all are examples of balanced parentheses.1

More complicated languages arise if we try to have equal numbers of not just
two but three or more different characters, as for example in

L8 = {anbncn : n ≥ 1},
and if we match numbers of characters beyond a nesting pattern, as for example
in

L9 = {anbmcndm : n,m ≥ 1}.
If you try to write context-free grammars for L8 and L9, you sooner or later

get frustrated trying to achieve the specified equalities between the exponents
(i.e., the numbers of repetitions of characters) in the definitions of these lan-
guages. In fact,

Theorem 19 L8 and L9 are not context-free.

The languages L8 and L9 are of no practical interest. But after we develop a
proof technique for showing that these languages are not context-free we will be
able to use that technique to show that some aspects of programming languages
are not context-free either.

The proof of Theorem 19 uses a “cutting-and-pasting” argument on the parse
trees of context-free grammars. It is the most common argument for proving
languages not to be context-free. The heart of the argument is that every
context-free language has a certain “closure” property: The fact that certain
strings are in the language forces other strings to be in the language as well. A

1L7 is an example of nesting of different types of parentheses. Replace a and d by opening
and closing parentheses and b and c by opening and closing square brackets. Then L7 becomes
{(n[m]m)n|n, m ≥ 1}.
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>=   n  leaves

>=  log   n
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u v y z

A

A

x

repetitionb

Figure 3.4: Illustrating the proof of Theorem 19

language that does not have the closure property cannot be context-free. The
details of that closure property are developed next.

If a language L is context-free there is, by definition, a context-free grammar
G that generates L, L = L(G). Let b be the maximum length of right-hand
sides of productions of G. In other words, b is a bound on the maximum number
of children for nodes in parse trees of G. Then a parse tree with n leaves must
be of height at least logb n, where height is defined to be 0 for a tree consisting
of a single node. This means that a tree with n leaves must have a path from
the root to a leaf with at least logb n − 1 interior nodes. What if n is so large
that logb n− 1 exceeds the number of different left-hand sides of productions in
G? (These are also called “syntactic variables.”) Then some syntactic variable
must show up at least twice along that path. Figure 3.4 illustrates this.

Pick such a variable, call it A, and pick two occurrences of A along one
path. These two occurrences of A split the string w that the tree derives into
five parts, labeled u, v, x, y, z in Figure 3.4. (The substring vxy is derived
from the first of the two occurrences of the variable A, the substring x from the
second occurrence.)

Knowing that we can derive x from A, the tree shown in the top half of
Figure 3.5 is also a parse tree in this grammar. It derives the string uxz. There
are other trees we can construct. For example, as illustrated in the bottom half
of Figure 3.5, the second occurrence of A can be made to derive vxy, resulting
in a tree that derives the string uvvxyyz. No need to stop there. We can build
trees that derive uvvvxyyyz, uvvvvxyyyyz, in fact any string uvixyiz for any
i ≥ 2.

For i = 0, 1, the string uvixyiz becomes uxz and uvxyz, respectively. This
lets us summarize the effect of all this cutting-and-pasting of trees as the fol-
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A

x
zu
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u z
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A
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v y

Figure 3.5: Deriving uxz and uvvxyyz
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lowing

Lemma 4 (Pumping Lemma for Context-Free Languages, Version 1)
If L is an context-free language then there is a constant k such that for every
string w in L of length k or more the following is true.

There are five strings, u, v, x, y, z, such that

1. w = uvxyz, and

2. for all i ≥ 0, uvixyiz ∈ L, and

3. |vy| > 0.2

This lemma is strong enough to let us prove that the language L8 = {anbncn :
n ≥ 1} from Theorem 19 is not context-free. (We will need to add one more
refinement before we can handle L9.)

Proof that L8 is not context-free. Assuming it was. Then Lemma 4 ap-
plies. Let k be the constant said to exist in Lemma 4. Consider the string
w = akbkck. The length of w is k or more (in fact, 3k), hence statements (1) —
(3) from the Lemma apply, implying that it is possible to split w into five parts,
w = uvxyz, such that |vy| > 0 and uv2xy2z ∈ L8. But this is not true. No
matter what five-way split of w one tries, uv2xy2z is never of the form of equal
numbers of a’s, b’s, and c’s following each other.3 This contradiction shows that
L8 is not context-free.

The Pumping Lemma can be stated as follows. Why is this so messy?

L context-free

=⇒
There is a constant k such that

for all strings w ∈ L with |w| ≥ k
there are strings u, v, x, y, z with w = uvxyz and |vy| > 0 such that

for all i ≥ 0, uvixyiz ∈ L.
2This last part of the statement we did not prove. The proof is left as an exercise. The

statement is saying that not both of v and y are empty.
3One can come up with a more detailed argument for this. The challenge is to cover all

ways in which the strings could get divided up into five pieces. An added challenge is to come
up with a concise argument. Here is an attempt:

The substring v cannot contain more than one type of character because otherwise v2

contains characters in an order not permitted in L8. The same is true for y. Hence at most
two types of characters take part in the “pumping” from uvxyz to uv2xy2z, which therefore
does not contain equal numbers of all three characters anymore.



82 CHAPTER 3. CONTEXT-FREE LANGUAGES

What makes such a statement hard to digest are the alternations of “for all”
with “there is/are,” akin to the nesting of loops in a program.4

The above statement is of the form “L context-free ⇒ B,” where B is that
complicated statement with four alternating quantifiers. Since we are trying
to prove that some languages are not context-free, a more useful version of the
statement is “L not context-free⇐ ¬B.” Spelled out in detail, this version reads

L not context-free

⇐=

For all constants k
there is a string w ∈ L with |w| ≥ k such that

for all strings u, v, x, y, z with w = uvxyz and |vy| > 0
there is an i ≥ 0 with uvixyiz 6∈ L.

Thus, we can prove that some language L is not context-free by proving the
above four-line statement ¬B : “For all . . . 6∈ L”. This is what we did in the
previous example. Here is another one.

Let’s take the language that consists of strings likeAnother Example

1234+111=1345
10000+10000=20000

1020304+505=1020809
11111+22222=33333

The language consists of strings of the form α + β = γ that represent a correct
equation between decimal integers.

This language L is not context-free, a fact we prove by proving the statement
“¬B” above.

How do we prove something “for all constants k”? By starting out the
proof by saying “Let k be an arbitrary constant” and carrying the k along as a
parameter of the argument.

What’s next? We need to show that there exists a string w with certain
properties. To show this, all we need to do is exhibit one such string. In this
example, let’s pick w to be the string

1 · · · 1︸ ︷︷ ︸
k

+2 · · · 2︸ ︷︷ ︸
k

= 3 · · · 3︸ ︷︷ ︸
k

4This this called an “alternation of quantifiers.” There are formal results that say that
adding a level of alternation makes statements harder in the sense that even if we had a
program that could determine the truth of statements with q alternations of quantifiers, this
would not enable us to build a program that determines truth of statements with q + 1
quantifiers. (The concept of transformations is rearing its ugly head.) Look for the subject
of “the arithmetic hierarchy” in textbooks on recursive function theory if you want to read
about this.
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(Note how the k plays its role.) What’s the next step? We have to show that for
all strings u, v, x, y, z which represent a five-way breakup of w (“w = uvxyz”
) and which don’t have the second and fourth piece both empty ( “|vy| > 0”
), there is a constant i with uvixyiz 6∈ L. This is the hard part of the proof
because we somehow have to provide an argument that covers all possible such
five-way breakups of w. It is tedious, but it can be done, by dealing with an
exhaustive set of cases. Here is such an exhaustive set of cases for this example.

Case 1. Either v or y or both contain the + and/or the =. Then uv0xy0z 6∈ L
if for no other reason then because it does not have a + and an = in it.

Case 2. Neither v nor y contain the + or the =.

Case 2.1. Both v and y lie on the same side of the =. Then pumping
(with any i 6= 1) changes that side of the equation but not the other,
thus creating a string outside of L.

Case 2.2. v lies entirely on the left side of the equation and y lies entirely
on the right side.

Case 2.2.1. One of v and y is empty. Then pumping changes one
side of the equation but not the other, creating a string outside
L.

Case 2.2.2. Neither v nor y is empty.
Case 2.2.2.1. v lies within the first number of the equation. Then

uv2xy2z is of the form

1 · · · 1︸ ︷︷ ︸
>k

+2 · · · 2︸ ︷︷ ︸
k

= 3 · · · 3︸ ︷︷ ︸
>k

which is not a correct equation.
Case 2.2.2.2. v lies within the second number of the equation.

This case is analog to Case 2.2.2.1. uv2xy2z is of the form

1 · · · 1︸ ︷︷ ︸
k

+2 · · · 2︸ ︷︷ ︸
>k

= 3 · · · 3︸ ︷︷ ︸
>k

which is not a correct equation.

Going back to the language L9 = {anbmcndm : n,m > 0}, if we tried to con- An example that does
not workstruct a proof that it is not context-free by constructing an exhaustive set of

cases just like in the previous example, we would sooner or later realize that
there is a case (or two) that does not work.

This is the case where v consists of a number of a’s and y consists of the
same number of c’s. (The other case is the analogous situation with b’s and d’s.)

The proof attempt fails.5 It takes a stronger version of the Pumping Lemma
to prove that this language is not context-free.

5This is nothing but bad news. Failing to prove that L is not context-free does not prove
that it is context-free either. It proves nothing.
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In the proof of the Pumping Lemma, instead of merely arguing that there isA Stronger Version of
the Pumping Lemma a repetition of some syntactic variable along a path from the root to a leaf,

we could instead argue that such a repetition can always be found “close to” a
leaf. This then implies a limit on how long the string vxy can be. Here are the
details.

If a grammar has s different syntactic variables and no right-side of a pro-
duction is longer than b, then a repetition of a syntactic variable occurs within
s + 1 steps along the path from a leaf to the root and the subtree under the
second occurrence of the variable (second meaning the one further away from
the leaf) has at most k′ = bs+1 leaves. This number is a constant that depends
only on the grammar. (Draw a picture.) This improvement in the proof of the
Pumping Lemma makes it easier to prove that a language L is context-free. We
only have to show that

For all constants k
there is a string w ∈ L with |w| ≥ k such that

for all strings u, v, x, y, z with w = uvxyz and |vy| > 0 and |vxy| ≤ k
there is an i ≥ 0 with uvixyiz 6∈ L.

(There is a little subtlety in this statement in that the old constant k and the
new constant k′ were combined into a single constant, which is the maximum
of the two and called again k.)

The only difference to the old version is the additional condition that “|vxy| ≤Now it works
k.” This is very helpful, though, because it means that cases in which “|vxy| >
k” need not be considered. This takes care of the failed cases in the unsuccessful
proof attempt above, because for v to consist of a’s only and y of c’s only (or
b’s and d’s, respectively) the string vxy would have had to stretch over all the
b’s (or the c’s) and hence be longer than k.

3.4 A Characterization of Context-Free Languages

As alluded to in the title of this current chapter, context-free grammars “place
parentheses.” When writing grammars for languages like {aibicjdj : i, j ≥ 0}, it
helps to recognize the pattern of “parentheses” in the language: Every “opening”
a is matched by a “closing” b, and all of this is then followed by opening cs
matched by closing ds. The type of production that is at the core of a grammar
for such matching characters is

T → a T b

which results in a path of T s in a derivation tree with matching as and bs being
generated on the left and right of the path. A complete grammar for the above
language is
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S → T T ′

T → a T b | λ

T ′ → c T ′ d | λ

On the other hand, a non-nested pattern of matching characters as in {aibjcidj :
i, j ≥ 0} is beyond the power of context-free grammars (as can be shown with
a pumping argument).

It is easy to see that any depth of nesting with any set of parentheses-like
characters is within the reach of context-free grammars. The grammar

S → S S | λ

S → ( S )
S → [ S ]
S → { S }
S → a | b

generates all properly nested strings of three types of parentheses with letters
a and b interspersed. Three types of parentheses is not the limit, nor are two
characters, of course. If we use (i and )i to denote parentheses of type i, 1 ≤ i ≤
n, and let T = {a1, . . . , am} be any finite set of characters, then the grammar

S → S S | λ

S → (1 S )1
...

S → (n S )n

S → a1 | · · · | am

generates all properly nested strings of these n types of parentheses with letters
a1 . . . am interspersed. Let’s call this language PARn(T ). Furthermore, for
every set A of characters and every language L, let EraseA(L) be the set of all
strings in L from with all occurrences of characters in A have been deleted.

Theorem 20 Every context-free language is equal to

EraseA(R ∩ PARn(T ))

for some sets A and T of characters, some regular language R, and some integer
n ≥ 0.

What this theorem says is that every context-free language can be built
by starting with a context-free grammar that produces essentially nothing but
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nested parentheses, and intersecting this language with a regular language and
finally throwing away all occurrences of certain characters. The only context-
free step in this construction is the initial generation of PARn(T ). This supports
the contention that the only aspect of a context-free language that could pos-
sibly require a context-free grammar is some form of placement of parentheses
and conversely, any placement of matching characters that does not follow the
nesting pattern of parentheses is bound to be beyond the power of context-free
grammars. [A proof of the above theorem can be found in Davis and Weyuker.]

Exercises

Ex. 3.1. Which of the following languages are context-free?

1. L = {anbm : n,m ≥ 1 and both even }
2. L = {anbmcq : n,m, q ≥ 1 and at least two of the three numbers are equal
}

3. L = {anbmcq : n, m, q ≥ 1 and at least two of the three numbers are
different }

Ex. 3.2. In the dynamic programming algorithm for parsing, if all the entries
in the top row are ∅, does this imply that the string is not in the language?
What if one of them is ∅? What if all the entries in the second row are ∅? The
third row? Fourth?

Ex. 3.3. Is it decidable if a context-free language, given by a context-free
grammar

1. . . . contains a string of length less than 100?

2. . . . contains a string of length more than 100?

3. . . . is finite?

Ex. 3.4. Is it decidable if the set of all outputs of a program forms a context-
free language? Explain briefly.

Ex. 3.5. Consider the language L = {α#β : α, β ∈ {0, 1}∗, α and β have thePumping Lemma
same length, and the bitwise and between α and β is not all zeroes }. Examples
of strings in L are 01#11, 010000#111111, 010101#101011.

Prove that L is not context-free.

Ex. 3.6. Which of the following languages are context-free?
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1. L10 = {aibjajbi : i, j ≥ 0}
2. L11 = {aibjaibj : i, j ≥ 0}
3. L12 = {α1#α2# · · ·#αp$β1#β2# · · ·#βq : p, q ≥ 0,

αi, βi ∈ {0, 1}?, and {α1, α2, · · · , αp} ⊇ {β1, β2, · · · , βq}}
(L12 captures the properties of some programming languages that vari-
ables need to be declared before they are used.) Prove your answer either
by giving a grammar or by providing an argument that the language is
not context-free.

Ex. 3.7. Even if A and B are both context-free, A ∩ B may not be. Prove
this by giving an example of two context-free languages whose intersection is
not context-free.

Ex. 3.8. The proof of the Pumping Lemma did not show that the pumped
strings v and y could not both be empty. This might happen when the grammar
has what is known as “unit productions” — productions that merely replace one
variable by another. (An example of a unit production is E → T in one of our
grammars for arithmetic expressions.)

(a) The mere presence of unit productions does not yet make it possible for
both v and y to be empty. For example, our grammar for arithmetic expressions
(the version with variables E, F , and T ) has unit productions but does not have
derivation trees with v and y both empty. Something else must be true about
the unit productions. What is that?

(b) There are two ways to correct this deficiency in the proof. One is to
show that unit productions can be removed can be removed from any grammar
without changing the language — this involves suitable changes to the other
productions. The other is to rephrase the proof of the Pumping Lemma to work
around the fact that some nodes of a parse tree might only have one child. The
latter approach entails a redefined notion of “height” of a parse tree. Usually,
the height of a tree is defined to be 1 plus the maximum height of its subtrees.
What would be a suitable modification of this definition?

Ex. 3.9. Any finite-state machine for a language L can be turned into a
context-free grammar for L. If the machine has a transition labeled c from state
A to state B, then the grammar has a production A → cB.

(a) Carry out this translation from machine to grammar for the machine
that accepted binary numbers divisible by 3.

(b) What other productions need to be added to the grammar to make sure
it derives the same strings that the machine accepts? (Give an answer for the
specific example and also for the general case.)
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Ex. 3.10. Following up on the previous exercise, if every regular language is
context-free (as proven by that exercise), then the Pumping Lemma applies to
every regular language. The special form of the grammars obtained from finite-
state machines suggest a simplification to the statement of such a Pumping
Lemma.

(a) Spell out such a simplified version.
(b) Use it to prove that L13 = {anbn|n > 0} is not regular.



Chapter 4

Time Complexity

4.1 The State of Knowledge Before NP-Completeness

Up to and through the 1960s, algorithm designs such as greedy algorithms,
local optimization, divide-and-conquer, and dynamic programming were applied
successfully to many problems. But there were also plenty of problems which
defied all attempts at solving them with reasonably fast algorithms1. Here are
four examples of such “intractable” problems.

Satisfiability, introduced in Chapter 1, can be phrased in terms of Boolean Satisfiability
expressions or in terms of circuits. In terms of Boolean expressions, the problem
is to find out, given an expression E, whether or not there is an assignment of
Boolean values to the variables of E that makes E true. In terms of circuits,
the problem is to find out, given a circuit C, whether or not there is an assign-
ment of Boolean values to the wires in the circuit that “satisfies” all the gates.
“Satisfying a gate” means assigning consistent values to its input and output
wires. For example, assigning true to both inputs of an and-gate and false to
its output would not be consistent, nor would be assigning true to one input
wire, false to the other, and true to the output wire.

Boolean expressions or circuits — one can easily translate circuits into ex-
pressions and vice versa — turn out to be a rather flexible “language” for ex-
pressing constraints on solutions in many situations.

Graph 3-Colorability (3-Color) problem also was introduced in Chapter 1. Graph 3-Colorability
(3-Color)It is really a scheduling problem, trying to fit a set of activities, some of which

cannot take place at the same time, into three time slots. This situation is
captured by a graph with the activities being the nodes and with conflicting
activities being connected by an edge. Then the problem becomes, given a

1On the question of what is “reasonably fast,” there is general agreement that the expo-
nential running of exhaustive search is not “reasonably fast.” Below that, let’s say that any
algorithm whose running time is bounded by a polynomial in the input length is “reasonably
fast.”

89
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graph, to find out if it is possible2 to color each node with one of the three
colors without ever giving the same color to the two endpoints of an edge.

Vertex Cover is another problem defined on graphs. The challenge is toVertex Cover
“cover” the graph in the following sense. You can choose a node and thereby
“cover” all the edges connected to that node. The problem is to cover all the
edges of the graph choosing the smallest number of nodes. For example, the
graph in Figure 4.1 can be covered with 4 nodes, but not with 3. In the decision
version of this problem you are given a graph G and a number n, and the Yes/No
question to decide is whether or not the graph G can be covered with n nodes.

Think of a graph as a map of cities that are connected by roads. In the Hamil-Hamiltonian Path
tonian Path problem the challenge is to find a tour from a given start node to
a given end node that visits each city exactly once. This is a special case of the
so-called Traveling Salesman Problem (tsp) where each edge has a length
and the challenge is to find a tour of minimal length that visits each city.

It is instructive to try to apply some of our algorithm design ideas to some ofHow Algorithm Designs
Can Fail: One Example these intractable problems. As one example, let us try to solve Sat with a

divide-and-conquer approach.
Dividing a Boolean expression is easy. Consider the parse tree of the ex-

pression and divide it into the left and right subtree. Figure 4.3 provides an
illustration.

A simple-minded notion of “conquering” a subtree would be to find out
whether or not it is satisfiable. But this information about a subtrees is not
enough to find out whether or not the whole expression is satisfiable. For exam-
ple, if both subtrees are satisfiable and are connected with an and operation,
the whole expression may still not be satisfiable. It could be that in order to
satisfy the left subtree it is necessary to make a variable, say x, true, but in
order to satisfy the right subtree it is necessary to make the same variable x
false.

This suggests a more sophisticated divide-and-conquer. Instead of just find-
ing out whether or not a subtree is satisfiable, let’s find the set of assignments
of true and false to its variables that satisfy it. In fact, we only need to keep
track of the assignments to those variables that also occur in the other “half” of
the expression. Then to compute the set of assignments that satisfy the whole
expression, we can intersect (in the case of an and) the sets of assignments that
satisfy the two parts.

Have we succeeded in devising a divide-and-conquer solution to Boolean
satisfiability? We need to fill in some details, such as how to handle operations
other than and, but, yes, it would work. It would not work very fast, though,
because the sets of assignments can get large, in fact exponentially large in terms
of the number of variables. So we have a exponential-time divide-and-conquer

2With all these problems, there is the “decision version” — “Is it possible . . . ?” — and
the full version — “Is it possible and if so, how . . . ?”.
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Figure 4.1: Illustrating the Vertex Cover problem

Figure 4.2: Illustrating the Hamiltonian Circuit problem
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y = F
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( x . . . y . . . x . . . z ) ( . . . y . . . x . . . w )

Figure 4.3: Trying to solve Sat with a divide-and-conquer approach



4.2. NP 93

algorithm for Sat. But if we were willing to tolerate exponential running times
(which we are not), we could have done a simple exhaustive search in the first
place.

What to do? We could try to compute and store those sets more efficiently.
To make a long story short, nobody has succeeded in trying to do that. Up to
this date, there is no polynomial-time algorithm for Sat, and in fact there is
evidence that none might exist. The same is true for the other three problems
(3-Color, Vertex Cover, Hamiltonian Circuit) and dozens or hundreds3

of similar “combinatorial optimization” problems. This leads us to developments
of the early 1970s.

4.2 NP

Sat, 3-Color and all the other problems are in fact easy to solve, in poly- Nondeterminism
nomial time — if we “cheat.” The technical term for this form of cheating is
“nondeterministic time.”

For an example, consider 3-Color. A nondeterministic program, as de-
scribed earlier, may contain a statement like

nondet {x[i] = BLUE; x[i] = RED; x[i] = GREEN;}

Execution of such a statement causes a three-way branch in the execution se-
quence, resulting in an execution tree. If this statement is inside a loop that
runs i from 1 to n, there is successive branching that builds up a tree with 3n

nodes at the end of this loop. Each node at that level in the execution tree
corresponds to one assignment of colors to the nodes of the graph. Figure 4.4
shows the shape of such a tree.

Following this loop, we can have a deterministic function that tests if the
assignment of colors is a correct 3-coloring. If so, it prints “Yes,” if not, it prints
“No.”

Now is the time to “cheat,” in two ways. First, we define the output of the
whole tree to be “Yes” if there exists a path at the end of which the program
prints “Yes” (and “No” if the program prints “No” at the end of all paths).
Second, we define the time spent on this computation to be the height of the
tree. This is the notion of nondeterministic time.

With this notion of programs and time, not only 3-Color becomes easy
to solve in polynomial time, but so do Sat, Vertex Cover, Hamiltonian
Circuit and in fact just about any combinatorial optimization problem that
you can think of. After all, this nondeterministic time allows us to conduct
what amounts to an exhaustive search without paying for it.

Definition 5 The class of problems that can be solved in nondeterministic poly-
nomial time is called NP.

3depending on whether one counts related problems as separate ones
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Figure 4.4: The shape of an execution tree for 3-Color
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Observation 6 Sat, 3-Color, Vertex Cover, Hamiltonian Circuit ∈
NP.4

4.3 The NP-completeness of Satisfiability

The big step forward in the early 1970s was to realize that many of these in-
tractable problems were related to each other. For example, as we have seen in
Chapter 1, 3-Color can be transformed into Sat. Since we are now concerned
about running time, it matters how fast that transformation can be carried out,
but it is not difficult to verify that

Observation 7 There is a polynomial-time5transformation of 3-Color into
Sat.

As a consequence,

Observation 8 If we could find a polynomial-time algorithm for 3-Sat, we
would also have a polynomial-time algorithm for 3-Color.

This last Observation makes 3-Sat the more ambitious of the two prob-
lems to solve (or, more precisely, no less ambitious than 3-Color). Moreover,
what the Observation says about 3-Color is also true for Vertex Cover and
Hamiltonian Circuit and in fact for all problems in NP:

Theorem 21 (Cook, [Coo71]) For every decision problem L ∈NP, there is a
polynomial-time transformation of L into Sat.

The proof of Cook’s Theorem needs to be an argument that for any problem
in NP there is a polynomial-time transformation into Sat.

In Chapter 1, we did transformations of two different problems into Sat. One
was Graph 3-Coloring, the other a problem of addition of binary integers.
Transforming specific problems into Sat is usually not that hard. The challenge
with Cook’s Theorem is that we need to argue that there exists a transformation
of a problem into Sat without even knowing exactly what that problem is. All
we know is that the problem is in NP. As it turns out, there aren’t a lot of
messy technical details to this proof, just the right use of familiar concepts like
compilation and circuits.

What happens when a Boolean circuit executes can be captured by a boolean Circuit Satisfiability
and Satisfiability of
Boolean Expressions

expression. The value of a wire w of a circuit at time t becomes the value of a
variable wt in the expression, and the operation of a gate in the circuit at time
t becomes a boolean operation that defines the correct operation of the gate.

4Here we are talking about the “decision versions” of the problems, the versions that ask
for a “Yes/No” answer.

5honestly, i.e., deterministically, polynomial-time
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Figure 4.5: A simple computer, just before executing a program with an input
file

Thus, at the risk of being repetitive, Satisfiability of Boolean expressions
is the problem, given a Boolean expression which may contain constants, of
deciding whether or not it is possible to assign values to the variables such that
the value of the whole expression becomes true.

Circuit Satisfiability is the problem, given a circuit with some constant
values given to some wires at some points in time, of deciding whether or not
it is possible to assign values to all the wires at all times such that all gates
operate correctly at all times.

If you issue a sequence of two commands like

cc my.c
a.out < infile

then the situation just before the execution of the compiled program is illus-
trated in Figure 4.5. The program is stored as some pattern of 0s and 1s on
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some of the wires, and we might as well assume that the input file has been
copied from disk and is also stored on some set of wires.6

What happens when you issue the statement “Compilation” into a
circuit

cc my.c
a.out < infile

to this circuit? The “compiling” process creates the machine-level version of
the program my.c and stores it by setting some of the wires of the circuit to
specific values.

What are we accomplishing with all of this? A transformation. Let’s say
the program my.c is such that it always produces a 0 or a 1 as an answer (or a
“Yes” or “No”). Then the question

Does my.c on input infile produce a “Yes”?

is equivalent to a satisfiability question about our circuit. What question? With
certain wires initially set to 0s and 1s to represent the program and the input
file, and with the “output wire” set to 1 when the computation terminates, is
that whole circuit satisfiable?

This transformation of a question about a program and input file into a sat-
isfiability question — a transformation of software and data into hardware —
is most of the proof of Cook’s Theorem. In fact, what we have proven so far is
that every problem in “P,” i.e., every problem that can really (i.e., deterministi-
cally) be solved in polynomial time, can be transformed (by a polynomial-time
transformation) into Circuit Satisfiability. That result is worthless, but
our proof works equally well if we now allow nondeterminism in the program
my.c.

What happens to the preceding “compilation” process if the program my.c is Enter Nondeterminism
nondeterministic? What if my.c had a statement

nondet {x = TRUE; x = FALSE;}

How would we compile this into our circuit? Much like an if-statement

if ...
x = TRUE;

else
x = FALSE;

except that we let the “choice” between the two options depend on a wire that
is not the output of any gate. This is a wire which in the circuit satisfiability
problem that is being constructed is simply not assigned a value. All we need is

6Otherwise we would need to draw a disk and turn our neat “circuit” satisfiability problem
into a “circuit–and–disk” satisfiability problem.
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one such wire. Then compiling a two-way nondeterministic branch is just like
an if-statement with the choice being determined by the value of that wire at
the time of the execution of the statement.

4.4 More “NP-Complete” Problems

Definition 6 A problem in NP which has the property that every problem in
NP can be transformed into it by a polynomial-time transformation, is called
NP-complete.

Cook’s Theorem states that Sat is NP-complete. In 1972, Richard Karp
([Kar72]) showed that other problems were NP-complete as well. Vertex
Cover was one of them.

Theorem 22 Vertex Cover is NP-complete.

Proof It is easy to see that Vertex Cover can be solved by the exhaustive
search approach that costs only “nondeterministic polynomial time” — Vertex
Cover is in NP.

To show that Vertex Cover is NP-complete we describe a polynomial
transformation from Satisfiability into Vertex Cover. Since there is a
polynomial-time transformation from any problem in NP to Satisfiability
this then implies that there is (a two-step) polynomial-time transformation from
any problem in NP to Vertex Cover.

This transformation is made easier if we transform only a special form of
Satisfiability known as “Satisfiability of boolean expressions in 3-conjunctive
normal form,” or 3-Sat for short. Expressions of this form look like this:

(x ∨ ¬y ∨ z) ∧ (w ∨ z ∨ w) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (z ∨ ¬w ∨ ¬z)

They are conjunctions (ands) of disjunctions (ors) of three “literals” — vari-
ables or negated variables. (There is no requirement that literals in a clause have
to be different.) Each 3-literal disjunction is called a “clause” of the expression.

For such a transformation of 3-Sat to Vertex Cover to prove that Ver-
tex Cover is NP-complete we have to show that 3-Sat is NP-complete. We
do this by slightly modifying our original proof showing that Satisfiability
was NP-complete.

That proof showed that Satisfiability of circuits was NP-complete. Turn-
ing circuits into boolean expressions results in one “clause” per gate, with all
those clauses anded together. If we could turn each clause into 3-conjunctive
normal form, we would have shown 3-Sat to be NP-complete.

To simplify matters we could build those circuits out of just one type of gate.
Let’s choose nand-gates. (nor-gates would have been the other possibility.)
Each gate then turns into a clause of the form
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(x ∨ ¬y ∨ z) ∧ (x ∨ z ∨ w) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ w ∨ ¬z)

x

~x ~y

x w ~x ~z ~z

w ~w~zx y z

x z

w~yz~y

12

Figure 4.6: Translating 3-Sat into Vertex Cover

(¬(xt ∧ yt) ⇔ zt+1)

which we could split into

(¬(xt ∧ yt) ⇒ zt+1) ∧ (zt+1 ⇒ ¬(xt ∧ yt))

and further rewrite into

((xt ∧ yt) ∨ zt+1) ∧ (¬zt+1 ∨ ¬(xt ∧ yt))

One more rewriting get us close to the right form:

(xt ∨ zt+1) ∧ (yt ∨ zt+1) ∧ (¬zt+1 ∨ ¬xt ∨ ¬yt)

The rewriting into 3-Sat is complete if we repeat a literal in those clauses that
are short of having three literals:

(xt ∨ zt+1 ∨ zt+1) ∧ (yt ∨ zt+1 ∨ zt+1) ∧ (¬zt+1 ∨ ¬xt ∨ ¬yt)

This proves

Lemma 5 3-Sat is NP-complete.

What’s left to do in order to show that Vertex Cover is NP-complete is to
transform 3-Sat into Vertex Cover. As an example, consider the expression

(x ∨ ¬y ∨ z) ∧ (x ∨ z ∨ w) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ w ∨ ¬z)
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The translation algorithm is as follows. (See Figure 4.6 for an illustration.)
For each variable in the expression there is an edge in the graph with one of its
endpoints labeled by that variable and the other by the negation of the variable.
(These “variable edges” are at the top of the graph in Figure 4.6.) For each
clause in the expression there is a “triangle” in the graph with its edges labeled
by the three literals in the clause. (These “clause triangles” are at the bottom of
the graph in Figure 4.6.) Now edges get drawn between the variable edges and
the clause triangles, but only between nodes that have the same label. Finally,
for this to be a “Yes/No” Vertex Cover problem, there needs to be a number
— the number of nodes about which we ask whether or not there is a vertex
cover of that size. This number is equal to the number of different variables
in the expression plus twice the number of clauses in the expression. In the
example, this number is 12.

To explore the connection between a cover of this size for the graph and
a satisfying assignment of truth values for the expression, let’s build up some
intuition about the matter by trying first to find a vertex cover for the graph.
How would we go about that?

One might be tempted to think about some algorithm for this. That’s not
a good idea, since no sub-exponential algorithms are known — and it is conjec-
tured that none exist. So just “eyeball” the given example. It is probably small
enough to do that with success.

Heuristics may help. For example, to cover a triangle, any two of its three
corners suffice, but a single corner does not. So we might as well set aside two
of our 12 choices of nodes for each of the triangles. And to cover a variable
edge, either one of its endpoints suffices. So we set aside one of our 12 choices
for each variable edge. No matter how we choose nodes within these set-aside
allocations, the variable edges and the clause triangles will all be covered. The
challenge is to make the remaining choices such that the edges than run between
variable edges and clause triangles get covered as well.

Consider the (w,¬w) variable edge. w covers the only edge that ¬w covers
and then some. Thus there is no disadvantage in choosing w. This has further
ramifications. The (w,w) edge down to the rightmost triangle is now covered
and there is no disadvantage in choosing the other two corners of that triangle
for covering it. The same applies to the second triangle from the left.

We are doing well so far. Two triangles are covered (which as said before
is automatic) and, importantly, all the edges between those two triangles and
variable edges are covered as well. Here is the secret for success: We have to
choose endpoints of the variable edges such that for each triangle at least one
of three edges from the triangle corners up to the variable edges is covered from
above. (One can already smell the connection to the 3-Sat problem: To satisfy
the expression, we have to choose values for the variables such that for each
clause at least one of its literals is true.)

Choosing the ¬y endpoint of the (y,¬y) edge then lets us take care of the
remaining two triangles.

What happened to the (x,¬x) and the (z,¬z) edges? They are not covered
yet, and they are the only edges that are not covered yet. But we have spent
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only 10 of our 12 node choices so far and can choose either endpoint of those
two edges.

Back to the question of how such a solution to the vertex cover problem
implies that the expression is satisfiable. Choosing w over ¬w initially in the
graph corresponds to making the variable w in the expression true. (The reason
why this was a no-loss choice in the graph translates, on the expression side, into
the observation that ¬w does not occur in any clause.) Choosing the ¬y over
the y node in the graph corresponds to making the variable y in the expression
false and satisfies the remaining clauses. Being free to choose either endpoint of
the (x,¬x) and the (z,¬z) edges to complete the cover of the graph corresponds
to the fact that the expression is already satisfied no matter what we assign to
x and z.

A similar discussion illustrates how a satisfying assignment to the variables
of the expression translates into a cover of the right size for the graph. Making
a variable x true (false) in the expression translates into choosing the x (¬x)
endpoint of the (x,¬x) variable edge of the graph. The rest of the cover then
falls into place without any difficult choices.

4.5 The “Holy Grail”: P = NP?

In order not to lose sight of the big picture over all these technical details,
let’s summarize the results of this chapter and contrast them with the results
of Chapter 1. In both chapters we deal with proving problems to be difficult.
In Chapter 1, we ignored the importance of time and considered as “difficult”
problems that could not be solved by any program running in a finite amount of
time. In the current chapter, the notion of difficulty of a problem is that there
is no program that solves the problem in polynomial time. Figures 4.7 and 4.8
illustrate the results in both of these two settings.

In both settings, there are problems that are known to be “easy” — solvable
(Oddlength, Binary Addition, Satisfiability) or solvable in polynomial
time (Oddlength, Binary Addition).

In both settings there are transformations that turn one problem into an-
other. In both settings these transformations “propagate difficulty” — if A can
easily be transformed into B and A is difficult, then B is difficult as well. In
Chapter 1, for “difficulty,” i.e., unsolvability, to propagate, the transformations
merely had to be computable7. In the current chapter, for “difficulty,” i.e., the
lack of a polynomial-time solution, to propagate, the transformations had to be
computable in polynomial time.

So far, so similar. But there is one huge difference. In Chapter 1, we did
have a method to prove that one of the problems (Selflooping) was indeed
difficult. That method was diagonalization. With this starting point of one
problem provably difficult, the transformations take over and prove all sorts of
other problems to be difficult as well.

7All the examples were actually computable in polynomial time.



102 CHAPTER 4. TIME COMPLEXITY

unsolvable problem

transformation propagating unsolvability
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Figure 4.7: Results from Chapter 1
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transformation propagating probable intractibility
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Figure 4.8: Results from the current chapter
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In the current chapter, there is no such starting point. We do not have a
proof that Sat, or Vertex Cover, or 3-Color, or Hamiltonian Circuit,
do indeed require more than polynomial running time to be solved.

So what’s missing in the current chapter is a proof technique — some way to
show that, say, Sat cannot be solved in polynomial time. Such a result would
show that P 6= NP. Conversely, finding a polynomial-time algorithm for Sat
because of the NP-completeness of Sat would imply that P = NP.8

The question of whether or not there are polynomial-time algorithms for Sat,Why is P ?= NP So Hard
to Resolve? Vertex Cover, or — equivalently — any other NP-complete problem has been

the main unresolved problem in theory of computation for twenty years. While
most people conjecture that there are no such polynomial-time algorithms, in
other words P 6= NP, there is no proof. What then makes this question so hard?

One reason for the difficulty is that there are models of computation that areThe sensitivity of the
question very close to the standard model — very close to the kind of programs you

write all the time — in which P = NP and, in a different model, P 6= NP. In
other words, a slight change in our concept of what a computer is (or, because
the distinction between hardware and software is of no consequence here, in the
definition of what a program is) changes the answer to the P ?= NP question.

Why is this a reason that resolving the P ?= NP question might be hard?
Because it implies that any proof technique that can resolve the P ?= NP question
must be sensitive to those slight changes. It must work in the standard model
of computation but must not work in a closely related model. Worse yet, of the
two obvious approaches for trying to resolve P ?= NP question — one approach
for showing equality, the other for showing inequality — neither is sensitive to
those slight changes in the model of computation.

What are these “slight changes” in the model? In terms of hardware, the changeCo-processors
is to plug in a “co-processor” — a circuit, or chip, which takes some input
and produces some output. The most common co-processor in practice may
be a “numerical co-processor” — a chip that takes as input two floating-point
numbers and produces, say, their product. The co-processors we are interested
in here take as input one bitstring and produce one bit as output. Each such
co-processor can be thought of as implementing a set of strings. For each string
it responds with a “Yes” or a “No.” Figure 4.9 illustrates this. In terms of
software, this amounts to stipulating that there is a new boolean function built
into our programming language which takes a bitstring as argument and that
we do not count the execution time of that function as part of our programs’
execution time.

What happens to our computer (or programming language) once we add
this new feature? Programs that do not access that co-processor (do not call
that new function) run like they always did. What about programs that do

8Current betting is overwhelmingly against this resolution of the question.
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Figure 4.9: A co-processor
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access the new feature? What they do depends on exactly which model of a
co-processor we plugged in, i.e., which set it implements.

As long as that new co-processor only does things we could have done by
programming our own boolean function it is not very interesting. But what
if somehow, mysteriously, we had come across a co-processor that does in one
single step something that we might otherwise not be able to do at all with a
program or at least not as fast?

We can consider co-processors of any kind of power, e.g. even a co-processor thatCo-processors that are
“out of this world” solves Halting in a single leaping bound: a co-processor which, once you have

fed it a bitstring that describes a program and input, responds with a “Yes,” if
that program on that input would terminate, and with a “No” otherwise.

Does such a co-processor exist? Definitely not on this planet, but that need
not keep us from considering what such a new — very powerful — machine
could do.9

Another co-processor of interest might be one that solves Satisfiability in
a single step.

For any co-processor A, let PA be the class of problems that a machine withPA and NPA

co-processor A can solve in polynomial time. For any co-processor A that is
worth talking about, PA is bigger than P. This is certainly true if A = Halting
and probably true if A = Sat.

Similarly, let NPA be the class of problems that a machine with co-processor
A can solve in nondeterministic polynomial time. NPA can be bigger than NP.
This is certainly true if A = Halting and probably true if A = Sat.

Theorem 23 (Baker, Gill, Solovay 1976) 1. There is a co-processor10 A
such that

PA = NPA.

2. There is a co-processor B such that

PB 6= NPB .

(A proof can be found in Hopcroft and Ullman. A co-processor A for which
PA = NPA is the one that answers questions of the form, “Is it true that

there is a u such that for all v . . . there is a z such that E(u, v, . . . y, z) ?”

where E is a boolean expression. This kind of problem — “quantified Boolean
expressions” — is a generalization of Sat, which has only one “quantifier.”
(“There is a set of values that makes the expression true.”))

Think of the result of Baker et al as saying that in one set of circumstancesProof techniques can be
“too powerful” 9This is a form of transformation. We are asking what problems we could solve if we had

a way to solve Halting.
10A set of bitstrings, really. The commonly used term is actually “oracle.”
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(“on planet A”) P = NP and in a different set of circumstances (“on planet
B”) P 6= NP. Why do we on planet Earth care? Because if we want to prove
that P 6= NP, we have no chance unless we come up with a proof technique
that does not work on planet A. Or, if space travel does not seem the right
subject to drag into this discussion, we have no chance unless we come up with
a proof technique that will collapse – will not be applicable, will not work —
once we plug in co-processor A. Any technique that is so robust that it even
works in the presence of any co-processor is “too powerful” to prove P 6= NP.
Similarly, any technique that is so robust that it even works in the presence of
any co-processor, especially co-processor B from the theorem, is “too powerful”
to prove P = NP.

Are we talking about some far-out or nonexisting proof techniques? Not
at all. If we want to prove that Sat cannot be solved in polynomial time,
what would be a natural first technique to try? What technique do we have
to show that something cannot be done? The one and only method we have is
diagonalization. How could we try to use it for proving that something takes,
say, exponential time to solve?

Consider the following “exponential-time” version of Halting. Given a pro- Time-limited
diagonalizationgram P and an input x, decide whether or not P halts within 2|x| steps. This

is clearly a decidable problem — just run the program for that long and see. Is
there a faster way to decide it? No, by a diagonalization proof that is practically
identical to the one we used to prove that the (unlimited) halting problem was
undecidable. The central argument in such a proof is just like our argument in
Chapter 1 that Selflooping was not decidable. There the argument was that
if Selflooping was decidable then we could write a program that took itself
as input, decided what its input (that is, itself) will do (loop or not) and based
on that decision do the opposite. Now, with time playing a role, the argument
is that if it was possible to decide in substantially less than 2n steps that a pro-
gram was going to halt within that many steps then we could write a program
that took itself as input, decided what its input (that is, itself) will do (run for
more than 2n steps or not) and based on that decision do the opposite.

This is of course very exciting. We have a way to prove that something
takes exponential time! All that’s left to do in order to prove that P 6= NP is to
transform this Exponential-Time Halting problem to Sat.11 Are we likely
to succeed? Not if this approach would also work “on other planets,” i.e., in the
presence of co-processors. Well, does it? Does an argument like

“if it was possible to decide in substantially less than 2n steps that
a program was going to halt within that many steps then we could
write a program that took itself as input, decided what its input
(that is, itself) will do (run for more than 2n steps or not) and
based on that decision do the opposite”

11with a polynomial-time transformation, but that should not worry us as we have yet to
come up with any transformation that was not polynomial-time
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still work when there is a co-processor present? Unfortunately, the answer is
yes. There is nothing wrong with the same argument on machines that have a
co-processor:

“if it was possible on a machine with co-processor A to decide in
substantially less than 2n steps that a program was going to halt
within that many steps then we could write a program to run on a
machine with co-processor A that took itself as input, decided what
its input (that is, itself) will do (run for more than 2n steps or not)
and based on that decision do the opposite”

Thus this diagonalization technique is doomed. It is “too good.”

One reason why a conjecture can be hard, actually impossible, to prove is thatWell, then maybe, just
maybe, P = NP ? the conjecture might not be true. We have used this insight before. If we

had a hard time coming up with a context-free grammar for some language, a
reasonable alternative was to consider the possibility that the language was not
context-free and to try to prove that instead.

Whatever the reason for entertaining the conjecture that P = NP, we should
be aware that “extra-terrestrial” arguments similar to the ones presented above
show that P = NP is not likely to be provable with “the obvious” kind of
approach.

What is the “obvious” kind of approach? What is the problem?
The problem here would be to find a way to solve Sat and its equivalent

problems with a deterministic polynomial-time algorithm. How could we even
approach this problem? By trying to devise some very clever way of searching
nondeterministic execution trees of polynomial height but exponential size in
(deterministic) polynomial time.

But if we succeeded in such an efficient deterministic “simulation” of non-
determinism, why should such a simulation not work just because a machine
might have a co-processor? Why should this not work “on planet B.” If it does,
of course, the technique is again “too good.”

That’s where the matter stands. We are not able to settle the question ofNow what?
whether or not P = NP and variations of existing proof techniques are not
likely to help. We are able to build and program computers but we cannot
claim to understand the nature of computation.

Exercises

Ex. 4.1. Is it true that if a circuit is satisfiable then there is more than one
way to satisfy it? Explain briefly.

Ex. 4.2. Is it true that if a graph is 3-Colorable then there is more than one
way to 3-Color it? Explain briefly.
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Ex. 4.3. Consider the following attempt at transforming 3-Sat to 2-Sat.
Replace each clause

(A ∨B ∨ C)

where A, B, C are, as usual, variables or negated variables, by

(A ∨B) ∧ (B ∨ C) ∧ (A ∨ C)

What is wrong with this “transformation”?

Ex. 4.4. For each of the five statements below, state whether it is TRUE or
FALSE. Don’t explain your answer.

1. If A and B are two problems in NP, A is NP-complete, and there is a
polynomial-time transformation from A to B then B is NP-complete as
well.

2. If A and B are two problems in NP, A is NP-complete, and there is a
polynomial-time transformation from B to A then B is NP-complete as
well.

3. If A and B are two NP-complete problems then there is a polynomial-time
transformation from A to B and also a polynomial-time transformation
from B to A.

4. If A is a problem that cannot be solved in polynomial time and there is a
polynomial-time transformation from A to B then B cannot be solved in
polynomial time either.

5. Any problem A that can be transformed into Circuit Satisfiability by
a polynomial-time transformation is NP-complete.

Ex. 4.5. Which of the following statements are true?
(“Polynomial-time” is understood to mean “deterministic polynomial-time.”)

1. No polynomial-time algorithm for Vertex Cover is known.

2. No polynomial-time algorithm for Graph 3-Coloring is known.

3. No polynomial-time algorithm for Graph 2-Coloring is known.

4. If a polynomial-time algorithm exists for sat then polynomial-time algo-
rithms exist for all problems in NP.

5. There is a polynomial-time transformation from 3-Sat to Vertex Cover.

6. There is a polynomial-time transformation from Vertex Cover to 3-
Sat.
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7. If a polynomial-time algorithm exists for Vertex Cover then polynomial-
time algorithms exist for all problems in NP.

8. If A and B are two problems in NP, if we know that B is NP-complete,
and we know that there is a polynomial-time transformation of A into B,
then we know that A is NP-complete as well.

9. Vertex Cover is known to be NP-complete.

Ex. 4.6. Describe a transformation from hamiltonian path to hamiltonian
circuit.

For reference and/or clarification note that ...

1. hamiltonian path is the problem of deciding, given a graph G and two
nodes a and b in G, whether or not there exists a path from a to b that
touches each node in the graph exactly once.

2. hamiltonian circuit is the problem of deciding, given a graph G, whether
or not there exists a loop that touches each node in the graph exactly once.

3. To solve this problem, you need to show how to construct, given a graph
G and two nodes a and b in G, a new graph G′ such that there is a
Hamiltonian Path in G from a to b if and only if G′ has a Hamiltonian
Circuit.

Ex. 4.7. Given a polynomial-time solution to the decision version of Satisfi-
ability, i.e. given a Boolean function that tells you whether or not a circuit you
pass to it is satisfiable, how could you program a polynomial-time solution to
the full version of the problem? (The full version of the problem means that if
a satisfying assignment exists you have to find one, not just say that one exists.)

Ex. 4.8. (a) Apply the transformation shown in class from 3Sat to Vertex
Cover to this expression:

(x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ w)

(b) If in a Boolean expression in 3-Cnf the same variable shows up unnegated
in all clauses, what property of the graph does that translate into (again, in the
transformation discussed in class)?

(c) Still about the same transformation, if there are 10 solutions to the vertex
cover problem, does this imply that there are 10 ways to satisfy the expression?
Explain briefly.

Ex. 4.9. Describe a transformation of 4-Sat into Vertex Cover. (You can
do this by an example if you like.)
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