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This supplement to “Quantum Telepathy Saves the World”
1
 recasts the representation of 

quantum states and programs in terms of linear algebra.  It is intended for students who have 

studied linear algebra and tensor products.  

 

In the quantum telepathy paper, Alice, Bob and Charlie create a quantum computer with three 

qubits, each of which can have the value of κ or γ.  The start state of the machine is: 

2
1 |κκκ〉  +  

2
1 |γγγ〉 

 

In this way of writing the states, each term has an amplitude (the number
2

1   in this example) 

and a triplet of qubit values |κκκ〉).  The amplitudes can be any complex number, and there are 

eight possible base states (2
3
 since each of the three components of the base state has two 

possible values, κ or γ). 

 

Using the start state written above, the probabilities work out to: 

 
50% chance of  |κκκ〉   
0% chance of |κκγ〉   
0% chance of  |κγκ〉   
0% chance of  |κγγ〉   
0% chance of  |γκκ〉   
0% chance of  |γκγ〉   
0% chance of  |γγκ〉   
50% chance of  |γγγ〉   

 

These are the probabilities of finding particular states when the qubits are examined.  Prior to 

the examination, the qubits are not in any particular state.  In quantum mechanics, it is the act 

of examining the qubits that causes them to enter a particular state.   

 

In the linear algebra formation, a quantum state of a three-qubit quantum computer is 

represented as a column vector of eight complex coefficients.  Each coefficient is the 

amplitude of one of the eight triplets, as illustrated in this example: 
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The advantage of this representation is that each quantum program can be represented as an 

8×8 linear transformation.
2
  For example, Alice’s smooth stone program is the matrix: 

 

AliceSMOOTH =  
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If Alice happens to get a smooth stone, then she would apply this matrix to the current state 

via a matrix multiplication.  For example, consider the start state: 

 

                                                 
2
 In order to be physically realizable, quantum physicists require the matrix M to be a unitary transformation, 

which means that the matrix product of M with its own adjoint is the identity matrix. 



 

S = 
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If the quantum computer is in this start state, and Alice runs her smooth program, the resulting 

state after the program runs is the column vector on the far right in this matrix equation:  

 

 

AliceBLUE(S) = 
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Tensor products of matrixes provide us with a final piece of convenience.  We start by 

defining just two 2×2 matrixes: 

 

SMOOTH = 
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Now, suppose that Alice and Bob get red stones, while Charlie’s is blue.  Using two tensor 

products, we can combine two copies of the JAGGED matrix (for Alice and Bob) with one 

copy of the SMOOTH matrix (for Charlie): 

 

JAGGED ⊗ JAGGED ⊗ SMOOTH =  
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If we want to figure out the possible outcomes with this combination of stones, we multiple 

the JAGGED ⊗ JAGGED ⊗ SMOOTH matrix times the start state and the result is: 

 

               (JAGGED ⊗ JAGGED ⊗ SMOOTH)
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With this final state, there is a 25% chance of finding each of four triplets:  

 
0% chance of  |κκκ〉   
25% chance of |κκγ〉   
25% chance of  |κγκ〉   
0% chance of  |κγγ〉   
25% chance of  |γκκ〉   
0% chance of  |γκγ〉   
0% chance of  |γγκ〉   
25% chance of  |γγγ〉   
 

Each of the failing triplets (those with an odd number of kappas) has zero probability because 
of destructive interference, so Alice, Bob and Charlie always pass the test in this particular    
1-smooth case.  You can work out the matrixes for yourself to see that each of the other 
possible cases also guarantees a win. 
 


