=

é% java04.frm Page 171 Saturday, August 26, 2000 6:03 PM

Linked Lists CHAPTER
The simplest way to interrelate or link a set of elements is
to line them up in a single list. For, in this case, only a

single link is needed for each element to refer to its
successor.

4.1
4.2
4.3
4.4
4.5

4.6

NIKLAUS WIRTH
Algorithms + Data Structures = Programs

FUNDAMENTALS OF LINKED LISTS

METHODS FOR MANIPULATING NODES
MANIPULATING AN ENTIRE LINKED LIST

THE BAG ADT WITH A LINKED LIST

PROGRAMMING PROJECT:

THE SEQUENCE ADT WITH A LINKED LIST

ARRAYS VS. LINKED LISTS VS. DOUBLY LINKED LISTS
CHAPTER SUMMARY

SOLUTIONS TO SELF-TEST EXERCISES
PROGRAMMING PROJECTS

We begin this chapter with a concrete discussion of a new clinked lists are

structure, thdinked list which is used to implement a list of elements arrangused to

in some kind of order. The linked list structure uses memory that shrinks implement a list

grows as needed but in a different manner than arrays. The discussion of |of elements

lists includes the specification and implementation of a node class, which irarranged in

porates the fundamental notion of a single element of a linked list. some kind of
Once you understand the fundamentals, linked lists can be used as partorder

ADT, similar to the way that arrays have been used in previous ADTs. For

example, linked lists can be used to reimplement the bag and sequence ADTSs.

171

.
@ [@—

ﬁ%

%9 java04.frm Page 172 Saturday, August 26, 2000 6:03 PM

—& @

172 Chapter 4/ Linked Lists

By the end of the chapter you will understand linked lists well enough to use
them in various programming projects (such as the revised bag and sequence
ADTSs) and in the ADTs of future chapters. You will also know the advantages
and drawbacks of using linked lists versus arrays for these ADTSs.

4.1 FUNDAMENTALS OF LINKED LISTS

A linked list is a sequence of elements arranged one after another, with each
element connected to the next element by a “link.” A common programming
practice is to place each element together with the link to the next element,
resulting in a component callednade A node is represented pictorially as a

box with the element written inside the box and the link drawn as an arrow
pointing out of the box. Several typical nodes are drawn in Figure 4.1. For
example, the topmost node has the number 12 as its element. Most of the nodes
in the figure also have an arrow pointing out of the node. These arroimksor

12 are used to connect one node to another.
The links are represented as arrows because they do more than simply connect
two nodes. The links also place the nodes in a particular order. In Figure 4.1, the
/ five nodes form a chain from top to bottom. The first node is linked to the second
14 node; the second node is linked to the third node; and so on until we reach the
last node. We must do something special when we reach the last node, since the
last node is not linked to another node. In this special case, we will replace the
v link in this node with a note saying “end marker.”
-4

Declaring a Class for Nodes

Each node contains two pieces of information: an element (which is a number
/ for these example nodes) and an arrow. But\jrsdt are those arrows? Each
arrow points to another node, or you could say that each egfergto another

2 node. With this in mind, we can implement a Java class for a node using two
instance variables: an instance variable to hold the element, and a second
instance variable that is a reference to another node. In Java, the two instance

/ variables can be declared at the start of the class:

10 public class IntNode

end marker {
private int data; // The element stored in this node
private IntNode 1ink; // Reference to the next node in the list
FIGURE 4.1
A Linked List
Made of Nodes) - - .
Connected with We’'ll provide the methods later, in Sections 4.2 and 4.3. For now we want to

Links focus on the instance variablels,ta and1ink. The data is simply an integer
element, though we could have had some other kind of elements, perhaps dou-
ble numbers, or characters, or whatever.

.
4~ ~s

*

4‘9 java04.frm Page 173 Saturday, August 26, 2000 6:03 PM

Fundamentals of Linked Lists173

The second instance variable, callédk, is a reference to another node. For
example, the link variable in the first node is a reference to the second node. Our
drawings will represent each link reference as an arrow leading from one node to
another. In fact, we have previously used arrows to represent references to
objects in Chapters 2 and 3, so these links are nothing new.

Head Nodes, Tail Nodes

When a program builds and manipulates a linked list, the list is usually accessed
through references to one or more important nodes. The most common access is
through the list’s first node, which is called tiead of the list. Sometimes we
maintain a reference to the last node in a linked list. The last nodetél thé
the list. We could also maintain references to other nodes in a linked list.

Each reference to a node used in a program must be declared as a node vari-
able. For example, if we are maintaining a linked list with references to the head
and tail, then we would declare two node variables:

IntNode head;
IntNode tail;

The program can now proceed to create a linked list, always ensurimgahat
refers to the first node andi1 refers to the last node, as shown in Figure 4.2.

Building and Manipulating Linked Lists

Whenever a program builds and manipulates a linked list, the
nodes are accessed through one or more references to
nodes. Typically, a program includes a reference to the first
node (the head) and a reference to the last node (the tail).

FIGURE 4.2 Node Declarations in a Program with a Linked List ‘

A computation

. might create a
Declaration from the IntNode Class 23 Smga” linked list
public class IntNode 7 with three
{ nodes, as shown
private int data; / here. The head
private IntNode T1ink; head 14 anq ‘;allﬂ
variables
provide access
. . to two nodes
Declaring Two Nodes in a Program — y inside the list.
. ; B 42
IntNode head; tail
IntNode tail; ond marker

\

@ [o—

—& @

4‘9 java04.frm Page 174 Saturday, August 26, 2000 6:03 PM

174 Chapter 4 / Linked Lists

Y
10

null

FIGURE 4.3
Linked List with
the Null
Reference at
the Final Link

| J PITFALL

The Null Reference

Figure 4.3 illustrates a linked list with a reference to the head node and one new
feature. Look at the link part of the final node. Instead of a reference, we have
written the worchul11. The wordnul1 indicates theull reference, which is a
special Java constant. You can use the null reference for any reference variable
that has nothing to refer to. There are several common situations where the null
reference is used:

¢ In Java, when a reference variable is first declared and there is not yet an
object for it to refer to, it can be given an initial value of the null refer-
ence. Examples of this initial value are shown in Chapter 2 on page 50.

« The null reference is used for the link part of the final node of a linked list.

* When a linked list does not yet have any nodes, the null reference is used
for the the head and tail reference variables. Such a list is called the
empty list.

In a program, the null reference is written as the keywoid.

The Null Reference and Linked Lists

The null reference is a special Java value that can be used
for any reference variable that has nothing to refer to.

The null reference occurs in the link part of the final node of a
linked list.

A program that maintains a head and tail reference may set
these references to null, which indicates that the list is empty
(has no nodes).

Pitfall: Null Pointer Exceptions with Linked Lists

When a reference variable is null, it is a programming error to activate one of its
methods or to try to access one of its instance variables. For example, a program
may maintain a reference to the head node of a linked list, as shown here:

IntNode head;

Initially, the list is empty and head is the null reference. At this point, it is a program-
ming error to activate one of head’s methods. The error would occur as a
NulTPointerException.

The general rules: Never activate a method of the null reference. Never try to
access an instance variable of the null reference. In both cases, the result would be
aNulTPointerException.

4~ 4

\

@ [o—

%9 java04.frm Page 175 Saturday, August 26, 2000 6:03 PM

*

Methods for Manipulating Nodes175

Self-Test Exercises

1. Write the start of the class declaration for a node in a linked list. The data
in each node is a double number.

2. Suppose a program builds and manipulates a linked list. What two spe-
cial nodes would the program typically keep track of?

3. Describe two common uses for the null reference in the realm of linked
lists.

4. What happens if you try to activate a method of the null reference?

4.2 METHODS FOR MANIPULATING NODES

We're ready to write methods for thetNode class, which begins like this:

public class IntNode

{
private int data; // The element stored in this node
private IntNode Tink; // Reference to the next node in the list

There will be methods for creating, accessing, and modifying nodes, plus meth-
ods and other techniques for adding or removing nodes from a linked list. We
begin with a constructor that’s responsible for initializing the two instance vari-
ables of a new node.

Constructor for the Node Class

The node’s constructor has two arguments, which are the initial values for the
node’s data and link variables, as specified here:

o Constructor for the IntNode
public IntNode(int initialData, IntNode initialLink)
Initialize a node with a specified initial data and link to the next node. Note
that theinitialLink may be the null reference, which indicates that the
new node has nothing after it.

Parameters:
initialData — the initial data of this new node
initialLink — a reference to the node after this new node—the
reference may be null to indicate that there is no node after this
new node.

Postcondition:
This new node contains the specified data and link to the next node.

.
4~ ~s

i

%9 java04.frm Page 176 Saturday, August 26, 2000 6:03 PM

176 Chapter 4/ Linked Lists

getData,
getLink,
setData,
setLink

The constructor’'s implementation copies its two parameters to the instance vari-
ablesdata and1ink:

public IntNode(int initialData, IntNode initialLink)
{

data = initialData;
Tink initialLink;

}

As an example, the constructor can be used by a program to create the first node
of a linked list:

IntNode head;
head = new IntNode(42, null);

head
After these two statements, head refers tohtel 2
node of a small linked list that contains just one
node with the number 42. We’'ll look at the forma- 42

tion of longer linked lists after we see four other
basic node methods.

null

Getting and Setting the Data and Link of a Node

The node has an accessor method and a modification method for each of its two
instance variables, as specified here:

v getData
public int getData()
Accessor method to get the data from this node.

Returns:
the data from this node

o getLink
public IntNode getLink()
Accessor method to get a reference to the next node after this node.
Returns:
a reference to the node after this node (or the null reference if there is
nothing after this node)

o setData
public void setData(int newdata)
Modification method to set the data in this node.
Parameters:
newData — the new data to place in this node

Postcondition:
The data of this node has been sefethata.

4~ 4

\

@ [o—

%9 java04.frm Page 177 Saturday, August 26, 2000 6:03 PM

*

Methods for Manipulating Nodes177

o setLink
pubTlic void setLink(IntNode newLink)

Modification method to set the reference to the next node after this node.

Parameters:
newLink — a reference to the node that should appear after this node in
the linked list (or the null reference if there should be no node after
this node)

Postcondition:
The link to the node after this node has been seio nk. Any other
node (that used to be in this link) is no longer connected to this node.

The implementations of the four methods are each short. For example:

pubTic void setLink(IntNode newlLink)
{
Tink = newLink;

}

Public versus Private Instance Variables

In addition tosetLink, there are the three other short methods that we’'ll leave

for you to implement. You may wonder why bother having these short methods
at all. Wouldn't it be simpler and more efficient to just makea and1ink

public, and do away with the short methods altogether? Yes, public instance
variables probably are simpler, and in Java the direct access of an instance vari-
able is considerably more efficient than calling a method. On the other hand,
debugging can be easier with access and modification methods in place because
we can set breakpoints to see whenever an instance variable is accessed or mod-
ified. Also, private instance variables provide good information hiding so that
later changes to the class won't affect programs that use the class.

Anyway, the public-versus-private question should be addressed for many of
your classes, with the answer based on the intended use and required efficiency
together with software engineering principles such as information hiding. For the
classes in this text, we'll lean toward information hiding and avoid public
instance variables.

Adding a New Node at the Head of a Linked List

New nodes can be added at the head of a linked list. To accomplish this, the pro-
gram needs a reference to the head node of a list as shown here:

- 3110 20 30
> 11

head

@ [o—

4~ 4]

i

%9 java04.frm Page 178 Saturday, August 26, 2000 6:03 PM

178 Chapter 4/ Linked Lists

how to add a
new node at the
head of a linked
list

In this example, suppose that we want to add a new node to the front of this list,
with 5 as the data. Using the node constructor, we can write

head = new IntNode(5, head);

Let's step through the execution of this statement to see how the new node is
added at the front of the list. When the constructor is executed, a new node is
created with 5 as the data and with the link refering to the same nodedtat
refers to. Here’s what the picture looks like, with the link of the new node
shaded:

Tl 20 30

. L |
— null

head

The constructor returns a reference to the newly created node, and in the state-
ment we wrotehead = new IntNode(5, head) . You can read this statement

as saying “makaead refer to the newly created node.” Therefore, we end up
with this situation:

5

—

Tl 20 30
1>

— null

head

By the way, the technique works correctly even if we start with an empty list
(inwhich the head reference is null). In this case, the statement
head = new IntNode(5, head) creates the first node of the list. To see this,
suppose we start with a null head and execute the statement. The constructor
creates a new node with 5 as the data and with head as the link. Since the head
reference is null, the new node looks like this (with the link of the new node
shaded):

null

null

head

@ [o—

%9 java04.frm Page 179 Saturday, August 26, 2000 6:03 PM

i

Methods for Manipulating Nodes179

After the constructor returnead is assigned to refer to the new node, so the
final situation looks like this:

null

7

head

As you can see, the statemhead = new IntNode(5, head) has correctly
added the first node to a list. If we are maintaining a reference to the tail node,
then we would also set the tail to refer to this one node.

Adding a New Node at the Head of a Linked List

Suppose that head is the head reference of a linked list.
Then this statement adds a new node at the front of the list
with the specified new data:

head = new IntNode(newData, head);

This statement works correctly even if we start with an empty
list (in which case the head reference is null).

Removing a Node from the Head of a Linked List

Nodes can be removed from the head of the linked list. To accomplish this, we
need a reference to the head node of a list as shown here:

[R s X0 20 30
B e B e
null

head

To remove the first node, we simply move the head, so that it refers to the next
node. This is accomplished with one statement:

head = head.getLink();

The right side of the assignme head.getLink() , is a reference to the seww to remove a
ond node of the list. So, after the assignmiesdd refers to the second node, agode from the
shown at the top of the next page. head of a linked

list

.
4~ ~s

%9 java04.frm Page 180 Saturday, August 26, 2000 6:03 PM

—&| @

180 Chapter 4/ Linked Lists

10 20 30
—> 7 null

head — >

This picture is peculiar. It looks like we've still got a linked list with three nodes
containing 10, 20, and 30. But if we start at the head, there are only the two
nodes with 20 and 30. The node with 10 can no longer be accessed starting at
the head, so it is not really part of the linked list any more. In fact, if a situation
arises where a node can no longer be accessed from anywhere in a program,
then the Java runtime system recognizes that the node has strayed, and the mem-
ory used by that node will be reused for other things. This technique of rounding
up stray memory is callegarbage collection and it happens automatically for

Java programs. In other programming languages, the programmer is responsible
for identifying memory that is no longer used, and explicitly returning that
memory to the runtime system.

automatic What are the tradeoffs between automatic garbage collection and program-
garbage mer-controlled memory handling? Automatic garbage collection is slower when
collection has a program is executing, but the automatic approach is less prone to errors and it
some frees the programmer to concentrate on more important issues.

inefficiency, but Anyway, we'll remove a node from the front of a list with the statement
its lessprone o head = head.getLink(). This statement also works when the list has only
programming one node, and we want to remove this one node. For example, consider this list:

errors

1 10
null

head

In this situation, we can execthead = head.getLink() . TdexLink()
method returns the link of the head node—in other words, it returns null. So, the
null reference is assigned to the head, ending up with this situation:

10
null

null

head

Now, the head is null, which indicates that the list is empty. If we are maintain-
ing a reference to the tail, then we would also have to set the tail reference to
null. The automatic garbage collection will take care of reusing the memory
occupied by the one node.

.
4~ ~s

%9 java04.frm Page 181 Saturday, August 26, 2000 6:03 PM

i

Methods for Manipulating Nodes181

Removing a Node from the Head of a Linked List

Suppose that head is the head reference of a linked list.
Then this statement removes a node from the front of the list:

head = head.getLink();

This statement works correctly even when the list has just
one node (in which case the head reference becomes null).

Adding a New Node That Is Not at the Head

New nodes are not always placed at the head of a linked list. They may be added
in the middle or at the tail of a list. For example, suppose you want to add the
number 42 after the 20 in this list:

10 20 30 L
/ Add anew \
_ L 1
—> . nulll | element after |
~ the 20.
head — — N e

After the addition, the new, longer list has these four nodes:

10 20 30
L / null
head L 42 /f

Whenever a new node is not at the head, the process requires a reference to
the node that is justeforethe intended location of the new node. In our example,
we would require a reference to the node that contains 20, since we want to place
the new node after this node. This special node is called the “selected node"—
the new node will go just after the selected node. We'll use the ssllaetion
for a reference to the selected node. So to add an element after the 20, we would
first have to set upelection as shown here:

selection

N

10 20 30

null

head

@ [o—

%9 java04.frm Page 182 Saturday, August 26, 2000 6:03 PM

—&| @

182 Chapter 4/ Linked Lists

Once a program has calculated ection, the new node with data of 42 can
be added with a method of thetNode class, specified here:

addNodeAfter o addNodeAfter
public void addNodeAfter(int element)

Modification method to add a new node after this node.

Parameters:
element — the data to be placed in the new node

Postcondition:
A new node has been created and placed after this node. The data for the
new node ig1ement. Any other nodes that used to be after this node are
now after the new node.

Throws: outOfMemoryError
Indicates that there is insufficient memory for a mewNode.

For example, to add a new node with data 42 after the selected node, we can
activateselection.addNodeAfter(42) .
The implementation afdddNodeAfter requires just one line, shown here:

public void addNodeAfter(int element)
{

Tink = new IntNode(element, T1ink);

}

Let's see exactly what happens when we seddlpction as shown earlier
and then execuiselection.addNodeAfter(42) . The value of element is 42,
so we have the situation shown here:

selection

42

Ty

10 20 30 element
L 4

head

The method execute 1Tink = new IntNode(element, 1ink) , whesge-
ment is 42 andlink is from the selected node—in other wortigk is selec-
tion.Tink. On the right side of the statement, thetNode constructor is
executed, and a new node is created with 42 adatheeand with thelink of
the new node being the samesasection.1ink. The situation is shown at the
top of the next page, with the new node shaded.

.
4~ ~s

%9 java04.frm Page 183 Saturday, August 26, 2000 6:03 PM

i

Methods for Manipulating Nodes183

selection

10 20 30
o " ——Znull

head 42 /f

1

The constructor returns a reference to the newly created node, and in the assign-
ment statement we wrotlink = new IntNode(element, T1ink) . You can
read this statement as saying “change the link part of the selected node so that it
refers to the newly created node.” This change is made in the following
drawing, which highlights the link part of the selected node:

selection
10 20 30
L) null
head 42 /f
—

After adding the new node with 42, you can step through the complete linked
list, starting at the head node 10, then 20, then 42, and finally 30.

The approach we have used works correctly even if the selected node is the
tail of a list. In this case, the new node is added after the tail. If we were main-
taining a reference to the tail node, then we would have to update this reference
to refer to the newly added tail.

Adding a New Node That is Not at the Head

Suppose that selection is a reference to a node of a linked
list. Activating the following method adds a new node after
the cursor node with element as the new data:

selection.addNodeAfter(element) ;

The implementation of addNodeAfter needs only one
statement to accomplish its work:

Tink = new IntNode(element, T1ink);

@ [o—

4~ 4]

%9 java04.frm Page 184 Saturday, August 26, 2000 6:03 PM

—& @

184 Chapter 4/ Linked Lists

Removing a Node That Is Not at the Head

It is also possible to remove a node that is not at the head of a linked list. The
approach is similar to adding a node in the middle of a linked list. To remove a
midlist node, we must set up a reference to the node that lsefesethe node

that we are removing. For example, in order to remove the 42 from the follow-

ing list, we would need to set yplection as shown here:

selection

T

10 20 42 30
_ L ——> > ——

head

As you can seeselection does not actually refer to the node that we are
deleting (the 42); instead it refers to the node that is just before the condemned
node. This is because the link of fireviousnode must be reassigned, hence we
need a reference to this previous node. The removal method’s specification is
shown here:

removeNodeAfter o removeNodeAfter
public void removeNodeAfter()
Modification method to remove the node after this node.

Precondition:
This node must not be the tail node of the list.

Postcondition:
The node after this node has been removed from the linked list. If there
were further nodes after that one, they are still present on the list.

For example, to remove the 42 from the list drawn above, we would activate
selection.removeNodeAfter(). After the removal, the new list will look
like this (with the changed link highlighted):

selection

S

10 20 42 30

N S o —Znull
head \\\\\\J/////)V

@ [o—

%9 java04.frm Page 185 Saturday, August 26, 2000 6:03 PM

*

Methods for Manipulating Nodes185

At this point, the node containing 42 is no longer part of the linked list. The
list’s first node contains 10, the next node has 20, and following the links we
arrive at the third and last node containing 30. Java’s automatic garbage collec-
tion will reuse the memory of the removed node.

As you can see from the example, the implementatioremfveNodeAfter
must alter the link of the node that activated the method. How is the alteration car-
ried out? Let’s go back to our starting position, but we’ll put a bit more informa-
tion in the picture:

selection \
10 20 42 30
—+— T ”7/’ /’Ynuﬂ
head
/ /Thg a_rrow / This arrow \
\ islink \is 1ink.Tink/

—_ - — =

To work through this example, you need some patterns that can be used within
the method to refer to the various data and link parts of the nodes. Remember
that we activatedelection.removeNodeAfter(). So the node that activated

the method has 20 for its data, and its link is indicated by the caption “This
arrow isTink.” So we can certainly use these two names within the method:

data This is the data of the node that activated the method (20).

Tink This is the link of the node that activated the method. This
link refers to the node that we are removing.

Because the nanile nk refers to a node, we can also use the namas. data
andlink.1ink;

Tink.data This notation means “go to the node thatk refers to and
use thedata instance variable.” In our examplieink . data
is 42.

Tink.Tlink This notation means “go to the node thatk refers to and
use thelink instance variable.” In our exampligink . 1ink
is the reference to the node that contains 30.

In the implementation afemoveNodeAfter, we need to makeink refer to the
node that contains 30. So, using the notation just shown, we need to assign
Tink = Tink.link . The complete implementation is at the top of the next

page.

@ [o—

4~ 4]

%9 java04.frm Page 186 Saturday, August 26, 2000 6:03 PM

—&| @

186 Chapter 4/ Linked Lists

public void removeNodeAfter()

Tink = Tink.1link;
}

The notationlink.1ink does look strange, but just read it from left to right so
that it means “go to the node that link refers to and use the link instance vari-
able.” In our example, the final situation after assigi1ink = Tink.Tink is
just what we want, as shown here:

selection

S

10 20 42 30

>

] —Znull
head \/

The removeNodeAfter implementation works fine, even if we want to
remove the tail node. Here's an example where we hawessttion to refer
to the node that’s just before the tail of a small list:

selection

T

40 22 2 9
_ 1 ——> > ——

head

When we activataelection.removeNodeAfter(), the link of the selected
node will be assigned the value11 (which is obtained from the link of the
next node). The result is this picture:

selection

T

40 22 2 9
L > ——” ——>null null

head

The tail node has been removed from the list. If the program maintains a refer-
ence to the tail node, then that reference must be updated to refer to the new tail.

In all cases, Java’'s automatic garbage collection takes care of reusing the
memory of the removed node.

.
4~ ~s

—& @

4‘9 java04.frm Page 187 Saturday, August 26, 2000 6:03 PM

Methods for Manipulating Nodes187

Removing a Node That is Not at the Head

Suppose that selection is a reference to a node of a linked
list. Activating the following method removes the node after
the selected node:

selection.removeNodeAfter();

The implementation of removeNodeAfter needs only one
statement to accomplish its work:

Tink = Tink.1link;

Pitfall: Null Pointer Exceptions with NodeAft
p removenNode er PITFAN_

The removeNodeAfter method has a potential problem. What happens if the tail
node activates removeNodeAfter? This is a programming error because
removeNodeAfter would try to remove the node after the tail node, and there is no
such node. The precondition of removeNodeAfter explicitly states that it must not
be activated by the tail node. Still, what will happen in this case? For the tail node,
Tink is the null reference, so trying to access the instance variable Tink.11ink will
resultin a Nul1PointerException.

When we write the complete specification of the node methods, we will include a
note indicating the possibility of a Nu11PointerException in this method.

Self-Test Exercises

5. Suppose thatead is a head reference for a linked list of integers. Write a
few lines of code that will add a new node with the number 42 as the sec-
ond element of the list. (If the list was originally empty, then 42 should
be added as the first node instead of the second.)

6. Suppose thaiead is a head reference for a linked list of integers. Write a
few lines of code that will remove the second node of the list. (If the list
originally had only one node, then remove that node instead; if it had no
nodes, then leave the list empty.)

7. Examine the techniques for adding and removing a node at the head.
Why are these techniques implemented as static methods rather than
ordinaryIntNode methods?

8. Write some code that could appear in a main program. The code should
declare head and tail references for a linked list of integers, then add
nodes with the numbers 1 through 100 (in that order). Throughout the
program,head andtail should remain valid references to the head and
tail nodes.

4~ 4

\

@ [o—

4‘9 java04.frm Page 188 Saturday, August 26, 2000 6:03 PM

—& @

188 Chapter 4/ Linked Lists

4.3 MANIPULATING AN ENTIRE LINKED LIST

We can now write programs that use linked lists. Such a program declares some
references to nodes, such as a head and tail reference. The nodes are manipu-
lated with the methods and other techniques that we have already seen. But all
these methods and techniques deal with just one or two nodes at an isolated part
of the linked list. Many programs also need techniques for carrying out compu-
tations on an entire list, such as computing the number of nodes on a list. This
suggests that we should write a few more methods foldhRode class—
methods that carry out some computation on an entire linked list. For example,
we can provide a method with this heading:

public static int TistLength(IntNode head)

The TistLength method computes the number of nodes in a linked list. The
one parametehead, is a reference to the head node of the list. For example, the
last line of this code prints the length of a short list:

IntNode small; // Head reference for a small list

small = new IntNode(42, null);

small.addNodeAfter(17);
System.out.println(IntNode.listLength(small)); // Prints 2

By the way, th@1istLength return value isnt, so that the method can be used
only if a list has fewer thainteger.MAX_VALUE nodes. Beyond this length, the
1istLength method will return a wrong answer because of arithmetic overflow.
We’'ll make a note of the potential problem in tH&tLength specification.

Notice thaflistLength is a static method. It is not activated by any one node;
instead we activat IntNode.listLength . But why is itstatic method—
wouldn't it be easier to write an ordinary method that is activated by the head
node of the list? Yes, an ordinary method might be easier, but a static method is
better because a static method can be used even for an empty list. For example,
these two statements create an empty list and print the length of that list:

IntNode empty = null; // empty is null, representing an empty list
System.out.println(IntNode.listLength(empty)); // Prints O

An ordinary method could not be used to compute the length of the empty list,
because the head reference is null.

Manipulating an Entire Linked List

To carry out computations on an entire linked list, we will
write static methods in the IntNode class. Each such
method has one or more parameters that are references to
nodes in the list. Most of the methods will work correctly even
if the references are null (indicating an empty list).

@ [o—

4~ 4]

—& @

%9 java04.frm Page 189 Saturday, August 26, 2000 6:03 PM

Manipulating an Entire Linked List 189

Computing the Length of a Linked List

Here is the complete specification of thisstLength method that we've been
discussing:

- listLength listLength
public static int listLength(IntNode head)
Compute the number of nodes in a linked list.

Parameters:
head — the head reference for a linked list (which may be an empty list
with a null head)

Returns:
the number of nodes in the list with the given head

Note:
A wrong answer occurs for lists longer thart . MAX_VALUE, because
of arithmetic overflow.

The precondition indicates that the parametesd, is the head reference for a
linked list. If the list is not empty, theread refers to the first node of the list. If
the list is empty, thehead is the null reference (and the method returns zero,
since there are no nodes).

Our implementation uses a reference variable to step through the list, counting
the nodes one at a time. Here are the three steps of the pseudocode, using a ref-
erence variable nametirsor to step through the nodes of the list one at a time.
(We often use the name@rsor for such a variable, since “cursor’ means “some-
thing that runs through a structure.”)

1. Initialize a variable nameghswer to zero (this variable will keep track of
how many nodes we have seen so far).

2. Makecursor refer to each node of the list, starting at the head node. Each
time cursor moves, add one tnswer.

3. return answer.

Both cursor andanswer are local variables in the method.

The first step initializeanswer to zero, because we have not yet seen any
nodes. The implementation of Step 2 is a for-loop, following a pattern that you
should use whenevatl of the nodes of a linked list must be traverddte gen-
eral pattern looks like this:

for (cursor = head; cursor != null; cursor = cursor.link) how to traverse
{ all the nodes of
a linked list
Inside the body of the loop, you may
carry out whatever computation is
needed for a node in the list.

.
4~ ~s

%9 java04.frm Page 190 Saturday, August 26, 2000 6:03 PM

—&| @

190 Chapter 4/ Linked Lists

For the TistLength method, the “computation” inside the loop is simple
because we are just counting the nodes. Therefore, in our body we will just add
one toanswer, as shown here;:

for (cursor = head; cursor != null; cursor = cursor.link)
answer++;

Let's examine the loop on an example. Suppose that the linked list has three
nodes containing the numbers 10, 20, and 30. After the loop initializes (with
cursor = head), we have this situation:

— 0

CUF‘D answer

10 20 30
> 1 " |num

head

Notice thatcursor refers to the same node thatd refers to.

Sincecursor is notnu11, we enter the body of the loop. Each iteration incre-
ments answer and then executecursor = cursor.link . The effect of
cursor = cursor.link is to copy thdink part of the first node intoursor
itself, so thatursor ends up refering to the second node. In general, the state-
mentcursor = cursor.link movegursor to the next node. So, at the com-
pletion of the loop’s first iteration, the situation is this:

— 1

cursor answer
10 20 30

1 7 1 null

head

The loop continues. After the second iteratisswer is 2, andcursor refers
to the third node of the list, as shown here:

cursor answer

10 20 30
> > null

head

@ [o—

4~ 4]

*

4‘9 java04.frm Page 191 Saturday, August 26, 2000 6:03 PM

Manipulating an Entire Linked List 191

Each time we complete an iteration of the loap;sor refers to some location

in the list, anchnswer is the number of noddseforethis location. In our exam-

ple, we are about to enter the loop’s body for the third and last time. During the
last iterationanswer is incremented to 3, ardirsor becomesul1, as shown
here:

null 3

cursor answer
10 20 30

Ly L 1

null

1

head

The variablecursor has becomenu11 because the loop control statement
cursor = cursor.link copied thelink part of the third node intoursor.
Since thislink part isnul11, the value ircursor is nownul1.

At this point, the loop’s control tecursor != null isfalse. The loop ends,
and the method returns the answer 3. The complete implementation of the
TistLength method is shown in Figure 4.4.

S[CIUI2I=A W/l A Static Method to Compute the Length of a Linked List

Implementation
public static int TlistLength(IntNode head)

{
IntNode cursor;
int answer;
answer = 0;
for (cursor = head; cursor != null; cursor = cursor.link)
answer++;
N Step 2 of the
return answer; pseudocode
3

ﬁ%

\

@ [o—

—& @

%9 java04.frm Page 192 Saturday, August 26, 2000 6:03 PM

192 Chapter 4/ Linked Lists

A

TIP

Programming Tip: How to Traverse a Linked List

You should learn the important pattern for traversing a linked list, as used in the
TistLength method (Figure 4.4). The same pattern can be used whenever you
need to step through the nodes of a linked list one at a time.

The first part of the pattern concerns moving from one node to another. When-
ever we have a variable that refers to some node, and we want the variable to refer
to the next node, we must use the T1ink part of the node. Here is the reasoning that
we follow:

1. Suppose cursor refers to some node;
2. Then cursor. Tink refers to the next node (if there is one), as shown here:

The reference in the shaded

\ box is cursor.1ink, and it
cursor refers to the next node after

10 20 cursor.

> >

3. To move cursor to the next node, we use one of these assignment state-
ments:
cursor cursor.link;
or

cursor

cursor.getLink();

Use the first version, cursor = cursor.link, if you have access to the
Tink instance variable (inside one of the IntNode methods). Otherwise,
use the second version, cursor = cursor.getLink(). In both cases,
if there is no next node, then cursor.11ink will be nu11, and therefore our
assignment statement will set cursor to nulT.

The key is to know that the assignment statement cursor = cursor.link
moves cursor so that it refers to the next node. If there is no next node, then the
assignment statement sets cursor to null.

The second part of the pattern shows how to traverse all of the nodes of a linked
list, starting at the head node. The pattern of the loop looks like this:

for (cursor = head; cursor != null; cursor = cursor.link)

{ Inside the body of the loop, you may

carry out whatever computation is
needed for a node in the list.

}

You'll find yourself using this pattern continually in methods that manipulate linked
lists.

ﬁ%

\

4‘9 java04.frm Page 193 Saturday, August 26, 2000 6:03 PM

*

Manipulating an Entire Linked List 193

Pitfall: Forgetting to Test the Empty List

Methods that manipulate linked lists should always be tested to ensure that they
have the right behavior for the empty list. When head is nul11 (indicating the empty
list), our TistLength method should return 0. Testing this case shows that
TistLength does correctly return O for the empty list.

Searching for an Element in a Linked List

In Java, a method may return a reference to a node. Hence, when the job of a
subtask is to find a single node, it makes sense to implement the subtask as a
method that returns a reference to that node. Our next method follows this pat-
tern, returning a reference to a node that contains a specified element. The spec-
ification is given here:

o listSearch listSearch
public static IntNode listSearch(IntNode head, int target)
Search for a particular piece of data in a linked list.

Parameters:
head — the head reference for a linked list (which may be an empty list
with a null head) head ﬁ’
target — a piece of data to search for

Returns: 12

The return value is a reference to the first node that contains the
specified target. If there is no such node, the null reference is returne

As indicated by the return type DfitNode, the method returns a reference to a /
node in a linked list. The node is specified by a parameter neargdt, which 14
is the integer that appears in the sought-after node. For example, the activaf
IntNode.listSearch(head, -4) in Figure 4.5 will return a reference to the
shaded node.
Sometimes, the specified target does not appear in the list. In this case,
method returns the null reference. -4
The implementation ofistSearch is shown in Figure 4.6. Most of the work
is carried out with the usual traversal pattern, using a local variable catest
to step through the nodes one at a time:

for (cursor = head; cursor != null; cursor = cursor.link) 10
{ null
if (target == the data in the node thairsor refers to
return cursor; FIGURE 45
¥ Example for

. T1istS h
As the loop executesursor refers to the nodes of the list, one after another. Tstoearc

The test inside the loop determines whether we have found the sought-al
node, and if so, then a reference to the node is immediately returned with t

@ [o—

4~ 4]

4‘9 java04.frm Page 194 Saturday, August 26, 2000 6:03 PM

—& @

194 Chapter 4/ Linked Lists

S[CIVISISA Ml A Static Method to Search for a Target in a Linked List

Implementation
public static IntNode 1listSearch(IntNode head, int target)
{
IntNode cursor;
for (cursor = head; cursor != null; cursor = cursor.link)
if (target == cursor.data)
return cursor;
return null;
3
return statemenreturn cursor . When a return statement occurs like this,
inside a loop, the method returns without ado—the loop is not run to completion.
On the other hand, should the loop actually complete by eventually setting
cursor to nul11, then the sought-after node is not on the list. According to the
method’s postcondition, the method retusa®1 when the node is not on the list.
This is accomplished with one more return statemereturn null —at the
end of the method’s implementation.
Finding a Node by Its Position in a Linked List
Here’s another method that returns a reference to a node in a linked list:
listPosition v listPosition

public static IntNode 1listPosition(IntNode head, int position)
Find a node at a specified position in a linked list.

Parameters:

head — the head reference for a linked list (which may be an empty list
with a null head)

position —a node number

Precondition:
position > 0

Returns:
The return value is a reference to the node at the specified position in the
list. (The head node is position 1, the next node is position 2, and so on.)
If there is no such position (because the list is too short), then the null
reference is returned.

Throws: I11egalArgumentException
Indicates thaposition is not positive.

.
4~ ~s

—& @

%9 java04.frm Page 195 Saturday, August 26, 2000 6:03 PM

Manipulating an Entire Linked List 195

In this method, a node is specified by giving its position in the list, with the he
node at position 1, the next node at position 2, and so on. For example, with

linked list from Figure 4.7 IntNode.listPosition(head, 3) will return a head

reference to the shaded node. Notice that the first node is number 1, not num

ber

’

0 as in an array. The specified position might also be larger than the length

12

the list, in which case, the method returns the null reference.
The implementation ofistPosition is shown in Figure 4.8. It uses a vari-

ation of the list traversal technique that we have already seen. The variation

7

useful when we want to move to a particular node in a linked list and we kno
the ordinal position of the node (such as position number 1, position number

and so on). We start by setting a reference variableor, to the head node of
the list. A loop then moves thairsor forward the correct number of spots, as

shown here:

cursor = head;

for (i = 1; (i < position) & & (cursor != null); i++)
cursor = cursor.link;

Each iteration of the loop executicursor = cursor.link to move the

10

cursor forward one node. Normally, the loop stops wheeachegosition,
and cursor refers to the correct node. The loop can also stoquitor

becomesu11, indicating thatposition was larger than the number of nodes

null

on the list.

FIGURE 4.7

Example for

TistPosition

FIGURE 4.8 A Static Method to Find a Particular Position in a Linked List

Implementation

public static IntNode 1listPosition(IntNode head, int position)
{

IntNode cursor;
int i;

if (position <= 0)

throw new ITlegalArgumentException("position is not positive.");

cursor = head;
for (i = 0; (i < position) && (cursor != null); i++)
cursor = cursor.link;

return cursor;

\

@ [o—

%9 java04.frm Page 196 Saturday, August 26, 2000 6:03 PM

—&| @

196 Chapter 4/ Linked Lists

Copying a Linked List

Our next static method makes a copy of a linked list, returning a head reference
for the newly created copy. Here is the specification:

listCopy o listCopy
pubTlic static IntNode 1listCopy(IntNode source)
Copy a list.
Parameters:

source—the head reference for a linked list that will be copied (which
may be an empty list wheseurce is null)

Returns:
The method has made a copy of the linked list startinguate. The
return value is the head reference for the copy.

Throws: outOfMemoryError
Indicates that there is insufficient memory for the new list.

For example, suppose thaturce refers to the following list:

10 20 30
L " ——Z|null

source

The TistCopy method creates a completely separate copy of the three-node list.
The copy of the list has its own three nodes, which also contain the numbers 10,
20, and 30. The return value is a head reference for the new list, and the original
list remains intact.

The pseudocode begins by handling one special case—the case where the
original list is the empty list (so thadurce is null). In this case the method sim-
ply returns null, indicating that its answer is the empty list. So, the first step of
the pseudocode is:

1. if (source == null), then returmull.

After dealing with the special case, the method uses two local variables called
copyHead andcopyTail, which will be maintained as the head and tail refer-
ences for the new list. The pseudocode for creating this new list is given in the
next three steps:

2. Create a new node for the head node of the new list that we are creating.
Make bothcopyHead andcopyTail refer to this new node, which con-
tains the same data as the head node of the source list.

.
4~ ~s

%9 java04.frm Page 197 Saturday, August 26, 2000 6:03 PM

i

Manipulating an Entire Linked List 197

3. Makesource refer to the second node of the original list, then the third
node, then the fourth node, and so on until we have traversed all of the
original list. At each node thaburce refers to, add one new node to the
tail of the new list, and moweopyTail forward to the newly added node,
as follows:

copyTail.addNodeAfter(source.data);
copyTail = copyTail.Tlink;

4. After Step 3 completes, retuenpyHead (a reference to the head node of
the list that we created).

Step 3 of the pseudocode is completely implemented by this loop:

while (source.link != null)

{ // There are more nodes, so copy the next one.
source = source.link;
copyTail.addNodeAfter(source.data);
copyTail = copyTail.Tlink;

}

The while-loop starts by checkilsource.link != null to determine
whether there is another node to copy. If there is another node, then we enter the
body of the loop and moveource forward with the assignment statement
source = source.link. The second and third statements in the loop add a
node at the tail end of the newly created list and mopgTail forward.

As an example, consider again the three-node list with data 10, 20, and 30.
The first two steps of the pseudocode are carried out and then we enter the
body of the while-loop. We execute the first statement of the loop:
source = source.link. At this point, the variables look like this:

10 20 30
—” —Z|null source
> 10
copyHead null copyTail

Notice that we have already copied the first node of the linked list. During the
first iteration of the while-loop, we will copy the second node of the linked

.
4~ ~s

%9 java04.frm Page 198 Saturday, August 26, 2000 6:03 PM

—&| @

198 Chapter 4/ Linked Lists

list—the node that is now referred to byurce. The first part of copying the
node works by activating one of our other methadeNodeAfter, as shown
here:

copyTail.addNodeAfter(source.data);

This activation adds a new node to the end of the list that we are creating (i.e.
after the node referred to byopyTail), and the data in the new node is the
number 20 (i.e., the data frosnurce.data). Immediately after adding the new
node, the variables look like this:

10 20 30

_t—>»¥€ 1L
&/ o

o — \

1 10 20

— " nu1
copyHead copyTail

The last statement in the while-loop body mowesyTai1 forward to the new
tail of the new list, as shown here:

copyTail = copyTail.Tlink;
This is the usual way that we make a node reference “move to the next node,” as

we have seen in other methods suchiaxSearch. After movingcopyTail,
the variables look like this:

10 20 30

_t—>»¥€ L
w o

P

1> 10 20 \

— " nu1
copyHead copyTail

In this example, the body of the while-loop will execute one more time to copy
the third node to the new list. Then the loop will end, and the method returns the
new head referenceppyHead.

The complete implementation df stCopy is shown in Figure 4.9.

.
4~ ~s

%9 java04.frm Page 199 Saturday, August 26, 2000 6:03 PM

i

Manipulating an Entire Linked List 199

FIGURE 4.9 A Static Method to Copy a Linked List

Implementation

public static IntNode 1listCopy(IntNode source)
{

IntNode copyHead;
IntNode copyTail;

// Handle the special case of an empty list.
if (source == null)
return null;

// Make the first node for the newly created list.
copyHead = new IntNode(source.data, null);
copyTail = copyHead;

// Make the rest of the nodes for the newly created list.

while (source.link != null)

{
source = source.link;
copyTail.addNodeAfter(source.data);
copyTail = copyTail.Tlink;

}

// Return the head reference for the new list.
return copyHead;

Here’s an example of how theéstCopy method might be used in a program:

IntNode shortList;
IntNode copy;

shortList = new IntNode(10, null);
shortList.addNodeAfter(20);
shortList.addNodeAfter(20);

At this point,shortList is the head of a small list shown here:

10 20 20
|y _t—> P

null

P

shortList

@ [o—

4~ 4]

—&| @

%9 java04.frm Page 200 Saturday, August 26, 2000 6:03 PM

200 Chapter 4/ Linked Lists

We could now uséistCopy to make a second copy of this list:

copy = IntNode.listCopy(shortList);

At this point, we have two separate lists:

10 20 20
L " ——Z|null

shortlList

10 20 20
> 7] —1 Z|null

copy

why is listCopy a Keep in mind thalistCopy is a static method, so we must write the expression
static method? IntNode.listCopy(shortList) ratherthanshortList.listCopy(). This
may seem strange—why not makistCopy an ordinary method? The answer
is that an ordinary method could not copy the empty list (because the empty list
is represented by the null reference).

A Second Copy Method, Returning Both Head and Tail References

We're going to have a second way to copy a list, with a slightly different specifi-
cation, shown here:

listCopyWithTail o listCopyWithTail
public static IntNode[] TistCopyWithTail(IntNode source)
Copy a list, returning both a head and tail reference for the copy.

Parameters:
source — the head reference for a linked list that will be copied (which
may be an empty list wheseurce is null)

Returns:
The method has made a copy of the linked list startiaguate. The
return value is an array where g element is a head reference for the
copy and thg1] element is a tail reference for the copy.

Throws: outOfMemoryError
Indicates that there is insufficient memory for the new list.

4~ 4

\

@ [o—

4‘9 java04.frm Page 201 Saturday, August 26, 2000 6:03 PM

*

Manipulating an Entire Linked List 201

The1istCopyWithTail makes a copy of a list, but the return value is more than
a head reference for the copy. Instead, the return value is an array with two com-
ponents. The [0] component of the array contains the head reference for the new
list, and the [1] component contains the tail reference for the new list. The
TistCopyWithTail method is important because many algorithms must copy a
list and obtain access to both the head and tail nodes of the copy.

As an example, a program can create a small list, then create a copy with both
a head and tail reference for the copy:

IntNode shortList;
IntNode copyInfol[1;

shortList = new IntNode(10, null);
shortList.addNodeAfter(20);
shortList.addNodeAfter(20);

copyInfo = IntNode.TistCopyWithTail(source);

At this point,copyInfo[0] is the head reference for a copy of the short list, and
copyInfo[1] is the tail reference for the same list, as shown here:

10 20 20
|y _t—> P null

R

shortList
10 20 20
Y\\
L " ——Z|null
copyInfo[l
copyInfo[0] by [1]

The implementation ofistCopyWithTail is shown in the first part of Figure
4.10. It's nearly the same asstCopy, except there is an extra local variable
calledanswer, which is an array of twbntNode components. These two com-
ponents are set to the head and tail of the new list, and the method finishes with
the return statemer return answer

Programming Tip: A Method Can Return an Array

The return value from a method can be an array. This is useful if the method returns
more than one piece of information. For example, 1istCopyWithTail returns an
array with two components containing the head and tail references for a new list.

@ [o—

4~ 4]

%9 java04.frm Page 202 Saturday, August 26, 2000 6:03 PM

—& @

202 Chapter 4/ Linked Lists

SIeIUI= NIV A Second Static Method to Copy a Linked List

Implementation

public static IntNode[] TistCopyWithTail(IntNode source)
{

// Notice that the return value is an array of two IntNode components.

// The [0] component is the head reference for the new list and

// the [1] component is the tail reference for the new list.

// Also notice that the answer array is automatically initialized to contain
// two null values. Arrays with components that are references are always
// initialized this way.

IntNode copyHead;

IntNode copyTail;

IntNode[] answer = new IntNode[2];

// Handle the special case of an empty list.
if (source == null)
return answer; // The answer has two null references.

// Make the first node for the newly created list.
copyHead = new IntNode(source.data, null);
copyTail = copyHead;

// Make the rest of the nodes for the newly created list.

while (source.link != null)

{
source = source.link;
copyTail.addNodeAfter(source.data);
copyTail = copyTail.Tlink;

3

// Return the head and tail reference for the new list.
answer[0] = copyHead;

answer[1l] = copyTail;

return answer;

Copying Part of a Linked List

Sometimes a program needs to copy only part of a linked list rather than the
entire list. The task can be done by a static methogt;Part, which copies
part of a list, as specified next.

.
4~ ~s

%9 java04.frm Page 203 Saturday, August 26, 2000 6:03 PM

*

Manipulating an Entire Linked List 203

- listPart listPart
pubTlic static IntNode[] TistPart
(IntNode start, IntNode end)
Copy part of a list, providing a head and tail reference for the new copy.

Parameters:
start and end — references to two nodes of a linked list

Precondition:
start andend are non-null references to nodes on the same linked list,
with thestart node at or before thend node.

Returns:
The method has made a copy of part of a linked list, from the specified
start hode to the specifiethd node. The return value is an array where
the [0] component is a head reference for the copy andithe
component is a tail reference for the copy.

Throws: I11egalArgumentException
Indicates thattart andend do not satisfy the precondition.

Throws: OutOfMemoryError
Indicates that there is insufficient memory for the new list.

ThelistPart implementation is given as part of the compieieNode class in
Figure 4.11 on page 204. In all, there is one constructor, five ordinary methods,
and six static methods. The class is placed in a package edlledolo-
rado.nodes.

Using Linked Lists

Any program can use linked lists created from our nodes. Such a program must
have this import statement:

import edu.colorado.nodes.IntNode;

The program can then use the various methods to build and manipulate linkdes with
lists. In fact, theedu.colorado.nodes package includes many different kindglifferent kinds of
of nodesIntNode, DoubleNode, CharNode, etc. You can get these classes frofia
http://www.cs.colorado.edu/~main/edu/colorado/nodes. (There is also

a special kind of node that can handle many different kinds of data, but you'll

have to wait until Chapter 5 for that.)

For a programmer to use our nodes, the programmer must have some under-
standing of linked lists and our specific hodes. It might be better if we use the
node classes ourselves to build various collection classes. The different collec-
tion classes that we build can be used by any programmer, with no knowledge of
nodes and linked lists. This is what we will do in the rest of the chapter, providing
two ADTs that use the linked lists.

@ [o—

4~ 4]

4‘9 java04.frm Page 204 Saturday, August 26, 2000 6:03 PM

—& @

204 Chapter 4/ Linked Lists

FIGURE 4.11 Specification and Implementation of the IntNode Class

Class IntNode

O public class IntNode from the package edu.colorado.nodes
An IntNode provides a node for a linked list with integer data in each node. Lists can be of any
length, limited only by the amount of free memory on the heap. But beyond
Integer.MAX_VALUE, the answer fromistLength is incorrect because of arithmetic overflow.

Specification

» Constructor for the IntNode
public IntNode(int initialData, IntNode initialLink)
Initialize a node with a specified initial data and link to the next node. Note that the
initiallLink may be the null reference, which indicates that the new node has nothing after it.

Parameters:
initialData — the initial data of this new node
initiallLink — a reference to the node after this new node—this reference may be null to
indicate that there is no node after this new node.

Postcondition:
This new node contains the specified data and link to the next node.

o addNodeAfter
public void addNodeAfter(int element)
Modification method to add a new node after this node.

Parameters:
element — the data to be placed in the new node

Postcondition:
A new node has been created and placed after this node. The data for the new node is
element. Any other nodes that used to be after this node are now after the new node.

Throws: outOfMemoryError
Indicates that there is insufficient memory for a rmewNode.

o getData
public int getData()
Accessor method to get the data from this node.

Returns:
the data from this node

o getLink
public IntNode getLink()
Accessor method to get a reference to the next node after this node.
Returns:

a reference to the node after this node (or the null reference
if there is nothing after this node) (continued)

.
4~ ~s

%9 java04.frm Page 205 Saturday, August 26, 2000 6:03 PM

i

Manipulating an Entire Linked List 205

(FIGURE 4.11 continued)

o listCopy
pubTlic static IntNode TlistCopy(IntNode source)

Copy a list.

Parameters:
source — the head reference for a linked list that will be copied (which may be an empty list
wheresource is null)

Returns:
The method has made a copy of the linked list startisguate. The return value is the head
reference for the copy.

Throws: OutOfMemoryError
Indicates that there is insufficient memory for the new list.

o listCopyWithTail
pubTlic static IntNode[] TistCopyWithTail(IntNode source)

Copy a list, returning both a head and tail reference for the copy.

Parameters:
source — the head reference for a linked list that will be copied (which may be an empty list
wheresource is null)

Returns:
The method has made a copy of the linked list startisguate. The return value is an array
where the[o] element is a head reference for the copy andithelement is a tail reference
for the copy.

Throws: outOfMemoryError
Indicates that there is insufficient memory for the new list.

o listLength
public static int listLength(IntNode head)
Compute the number of nodes in a linked list.

Parameters:
head — the head reference for a linked list (which may be an empty list with a null head)

Returns:
the number of nodes in the list with the given head

Note:
A wrong answer occurs for lists longer thart . MAX_VALUE, because of arithmetic
overflow.

(continued)

.
4~ ~s

—&| @

%9 java04.frm Page 206 Saturday, August 26, 2000 6:03 PM

206 Chapter 4/ Linked Lists

(FIGURE 4.11 continued)

o listPart

public static IntNode[] TistPart(IntNode start, IntNode end)
Copy part of a list, providing a head and tail reference for the new copy.

Parameters:
start and end — references to two nodes of a linked list

Precondition:
start andend are non-null references to nodes on the same linked list, withdhe node
at or before thend node.

Returns:
The method has made a copy of part of a linked list, from the spegified node to the
specifiedend node. The return value is an array wheretiecomponent is a head reference
for the copy and thel] component is a tail reference for the copy.

Throws: I11egalArgumentException
Indicates thattart andend do not satisfy the precondition.

Throws: outOfMemoryError
Indicates that there is insufficient memory for the new list.

o listPosition

public static IntNode listPosition(IntNode head, int position)
Find a node at a specified position in a linked list.

Parameters:
head — the head reference for a linked list (which may be an empty list with a null head)
position — a node number

Precondition:
position > 0

Returns:
The return value is a reference to the node at the specified position in the list. (The head node
is position 1, the next node is position 2, and so on.) If there is no such position (because the
list is too short), then the null reference is returned.

Throws: I11egalArgumentException
Indicates thaposition is zero.

o listSearch

public static IntNode listSearch(IntNode head, int target)
Search for a particular piece of data in a linked list.

Parameters:
head — the head reference for a linked list (which may be an empty list with a null head)
target — a piece of data to search for

Returns:
The return value is a reference to the first node that contains the specified target. If there is

no such node, the null reference is returned.
(continued)

4~ 4

\

%9 java04.frm Page 207 Saturday, August 26, 2000 6:03 PM

i

Manipulating an Entire Linked List 207

(FIGURE 4.11 continued)

o removeNodeAfter
public void removeNodeAfter()
Modification method to remove the node after this node.

Precondition:
This node must not be the tail node of the list.

Postcondition:
The node after this node has been removed from the linked list. If there were further nodes
after that one, they are still present on the list.

Throws: Nul1PointerException
Indicates that this was the tail node of the list, so there is nothing after it to remove.

o setData
public void setData(int newdata)
Modification method to set the data in this node.

Parameters:
newData — the new data to place in this node

Postcondition:
The data of this node has been seieti@ata.

o setLink
public void setLink(IntNode newLink)
Modification method to set a reference to the next node after this node.

Parameters:
newLink — a reference to the node that should appear after this node in the linked list (or the
null reference if there should be no node after this node)

Postcondition:
The link to the node after this node has been seiutoink. Any other node (that used to be
in this link) is no longer connected to this node.

Implementation

// File: IntNode.java from the package edu.colorado.nodes
// Documentation is available from pages 204-207 or from the IntNode link in
// http://www.cs.colorado.edu/~main/docs/

package edu.colorado.nodes;

(continued)

.
4~ ~s

%9 java04.frm Page 208 Saturday, August 26, 2000 6:03 PM

—&| @

208 Chapter 4/ Linked Lists

(FIGURE 4.11 continued)

public class IntNode
{
// Invariant of the IntNode class:
// 1. The node's integer data is in the instance variable data.
// 2. For the final node of a list the link part is null.
// Otherwise, the link part is a reference to the next node of the list.
private int data;
private IntNode 1ink;

public IntNode(int initialData, IntNode initiallLink)

{
data = initialData;
Tink = initiallLink;
3
public void addNodeAfter(int element)
{
Tink = new IntNode(element, 1ink);
3
public int getData()
{
return data;
3
public IntNode getLink()
{
return 1link;
}

public static IntNode 1istCopy(IntNode source)
|| See the implementation in Figure 4.9 on page 199.

public static IntNode[] TistCopyWithTail(IntNode source)
|| See the implementation in Figure 4.10 on page 202.

public static int TistLength(IntNode head)
|| See the implementation in Figure 4.4 on page 191.

(continued)

%9 java04.frm Page 209 Saturday, August 26, 2000 6:03 PM

i

Manipulating an Entire Linked List 209

(FIGURE 4.11 continued)

public static IntNode[] TlistPart(IntNode start, IntNode end)
{

// Notice that the return value is an array of two IntNode components.

// The [0] component is the head reference for the new list and

// the [1] component is the tail reference for the new list.

IntNode copyHead;

IntNode copyTail;

IntNode[] answer = new IntNode[2];

// Check for illegal null at start or end.
if (start == null)

throw new IllegalArgumentException("start is null™);
if (end == null)

throw new ITlegalArgumentException("end is null");

// Make the first node for the newly created list.
copyHead = new IntNode(start.data, null);
copyTail = copyHead;

// Make the rest of the nodes for the newly created list.
while (start != end)
{
start = start.link;
if (start == null)
throw new I1legalArgumentException
("end node was not found on the 1ist");
copyTail.addNodeAfter(start.data);
copyTail = copyTail.Tlink;
}

// Return the head and tail reference for the new list.
answer[0] = copyHead;

answer[1l] = copyTail;

return answer;

}

public static IntNode 1listPosition(IntNode head, int position)
|| See the implementation in Figure 4.8 on page 195.

public static IntNode listSearch(IntNode head, int target)
|| See the implementation in Figure 4.6 on page 194.

(continued)

.
4~ ~s

%9 java04.frm Page 210 Saturday, August 26, 2000 6:03 PM

—& @

210 Chapter 4/ Linked Lists

(FIGURE 4.11 continued)

public void removeNodeAfter()

{
1ink = 1ink.1ink;
}
public void setData(int newData)
{
data = newData;
}
public void setLink(IntNode newLink)
{
Tink = newLink;
}

Self-Test Exercises

9. Look athttp://www.cs.colorado.edu/~main/edu/colorado/nodes.
How many different kinds of nodes are there? If you implemented one of
these nodes, what extra work would be required to implement another?

10. Suppose thabcate is a reference to a node in a linked list (and it is not
the null reference). Write an assignment statement that will Makee
move to the next node in the list. You should write two versions of the
assignment—one that can appear inTtheNode class itself, and another
that can appear outside of the class. What do your assignment statements do
if Tocate was already refering to the last node in the list?

11. Which of the node methods usav to allocate at least one new node?
Check your answer by looking at the documentation in Figure 4.11 on
page 204 (to see which methods can throwwet®fMemoryError).

12. Suppose thakead is a head reference for a linked list with just one node.
What will head be aftethead = head.getLink()?

13. What technique would you use if a method needs to return more than one
IntNode, such as a method that returns both a head and tail reference for
a list.

14. Suppose thatead is a head reference for a linked list. Also suppose that
douglass andadams are two othefntNode variables. Write one assign-
ment statement that will makieuglass refer to the first node in the list
that contains the number 42. Write a second assignment statement that
will make adams refer to the 42 node of the list. If these nodes don't
exist, then the assignments should set the variables to null.

.
4~ ~s

4‘9 java04.frm Page 211 Saturday, August 26, 2000 6:03 PM

*

The Bag ADT with a Linked List211

4.4 THE BAG ADT WITH A LINKED LIST

We're ready to write an ADT that is implemented with a linked list. We’'ll start
with the familiar bag ADT, which we have previously implemented with an
array (Section 3.2). At the end of this chapter we’ll compare the advantages and
disadvantages of these different implementations. But first, let's see how a
linked list is used in our second bag implementation.

Our Second Bag—Specification

The advantage of using a familiar ADT is that you already know most of the
specification. The specification, given in Figure 4.12, is nearly identical to our
previous bag. The major difference is that our new bag has no worries about
capacity: There is no initial capacity and no need fore@sureCapacity
method. This is because our planned implementation—storing the bag’s ele-
ments on a linked list—can easily grow and shrink by adding and removing
nodes from the linked list.

The new bag class will be call&édtLinkedBag, meaning that the underlying the new bag
elements are integers, the implementation will use a linked list, and the collectiess is called
itself is a bag. Th@ntLinkedBag will be placed in the same package that witLinkedBag
used in Chapter 3edu.colorado.collections, as shown in the specification
of Figure 4.12.

(S[e1V] =N WPEl Specification and Implementation of the IntLinkedBag Class

Class IntLinkedBag

O public class IntLinkedBag from the package edu.colorado.collections
An IntLinkedBag is a collection ofint numbers.

Limitations:
(1) Beyondint.MAX_VALUE elementscountOccurrences, size andgrab are wrong.
(2) Because of the slow linear algorithms of this class, large bags have poor performance.

Specification

o Constructor for the IntLinkedBag
public IntLinkedBag()
Initialize an empty bag.
Postcondition:

This bag is empty.

(continued)

.
4~ ~s

—&| @

%9 java04.frm Page 212 Saturday, August 26, 2000 6:03 PM

212 Chapter 4/ Linked Lists

(FIGURE 4.12 continued)
o add

public void add(int element)
Add a new element to this bag.
Parameters:
element — the new element that is being added
Postcondition:
A new copy of the element has been added to this bag.

Throws: outOfMemoryError
Indicates insufficient memory for adding a new element.

o addAll

public void addA11(IntLinkedBag addend)
Add the contents of another bag to this bag.
Parameters:
addend — a bag whose contents will be added to this bag
Precondition:
The parametegddend, is not null.
Postcondition:
The elements fromddend have been added to this bag.

Throws: Nul1PointerException
Indicates thatddend is null.

Throws: outOfMemoryError
Indicates insufficient memory to increase the size of this bag.

o clone

public Object clone()
Generate a copy of this bag.

Returns:
The return value is a copy of this bag. Subsequent changes to the copy will not affect the
original, nor vice versa. The return value must be typecastiotafinkedBag before it is
used.

Throws: outOfMemoryError
Indicates insufficient memory for creating the clone.

s countOccurrences

public int countOccurrences(int target)
Accessor method to count the number of occurrences of a particular element in this bag.

Parameters:
target — the element that needs to be counted
Returns:

the number of times thatrget occurs in this bag
(continued)

4~ 4

\

i

%9 java04.frm Page 213 Saturday, August 26, 2000 6:03 PM

The Bag ADT with a Linked List213

(FIGURE 4.12 continued)

o grab
public int grab()
Accessor method to retrieve a random element from this bag.

Precondition:
This bag is not empty.
Returns:
a randomly selected element from this bag

Throws: I11egalStateException
Indicates that the bag is empty.

o remove
public boolean remove(int target)
Remove one copy of a specified element from this bag.

Parameters:
target — the element to remove from the bag

Postcondition:
If target was found in this bag, then one copytafget has been removed and the method
returnstrue. Otherwise this bag remains unchanged and the method reilisrs

o size
public int size()
Accessor method to determine the number of elements in this bag.

Returns:
the number of elements in this bag

o union
public static IntLinkedBag union(IntLinkedBag bl, IntLinkedBag b2)
Create a new bag that contains all the elements from two other bags.
Parameters:

b1l — the first of two bags
b2 — the second of two bags

Precondition:
Neitherb1 norb2 is null.

Returns:
a new bag that is the uniontgf andb2

Throws: Nul1PointerException
Indicates that one of the arguments is null.

Throws: outOfMemoryError
Indicates insufficient memory for the new bag.

4~ 4

\

@ [o—

%9 java04.frm Page 214 Saturday, August 26, 2000 6:03 PM

—& @

214 Chapter 4/ Linked Lists

The grab Method

The new bag has one other minor change, which is specified as part of Figure
4.12. Just for fun, we've included a new method cadleghb, which returns a
randomly selected element from a bag. Later we’ll usgithie method in some
game-playing programs.

Our Second Bag—Class Declaration

Our plan has been laid. We will implement the new bag by storing the elements
on a linked list. The class will have two private instance variables: (1) a refer-
ence to the head of a linked list that contains the elements of the bag; and (2) an
int variable that keeps track of the length of the list. The second instance vari-
able isn't really needed since we could UisetLength to determine the length

of the list. But by keeping the length in an instance variable, the length can be
quickly determined by accessing the variable (a constant time operation). This is
in contrast to actually counting the length by traversing the list (a linear time
operation).

In any case, we can now write an outline for our implementation. The class
goes in th@ackage edu.colorado.collections, and we import the node class
from edu.colorado.nodes.IntNode. Then we declare our new bag class with
two instance variables as shown here:

package edu.colorado.collections;
import edu.colorado.nodes.IntNode;

class IntLinkedBag
{

private IntNode head; // Head reference for the list
private int manyNodes; // Number of nodes on the list

|| Method implementations will be placed here later.

To avoid confusion over how we are using our linked list, we now make an
explicit statement of the invariant for our second design of the bag ADT.

Invariant for the Second Bag ADT

1. The elements in the bag are stored on a linked list.

2. The head reference of the list is stored in the instance
variable head.

3. The total number of elements in the list is stored in the
instance variable manyNodes.

@ [o—

4~ 4]

%9 java04.frm Page 215 Saturday, August 26, 2000 6:03 PM

i

The Bag ADT with a Linked List215

The Second Bag—Implementation

With our invariant in mind, we can implement each of the methods, starting with
the constructor. The key to simple implementations is to use the node methods
whenever possible.

Constructor. The constructor setgad to be the null reference (indicating the
empty list) and set@anyNodes to zero. Actually, these two values (null and
zero) are the default values for the instance variables, so one possibility is to not
implement the constructor at all. When we implement no constructor, Java pro-
vides an automatic no-arguments constructor that initializes all instance vari-
ables to their default values. If we take this approach, then our implementation
should include a comment to indicate that we are using Java’s automatic no-
arguments constructor.

However, we will actually implement the constructor, as shown here:

pubTlic IntLinkedBag() constructor
{

head = null;

manyNodes = 0;

}

Having an actual implementation makes it easier to make future changes. Also,
without the implementation, we could not include a Javadoc comment to specify
exactly what the constructor does.

The clone Method. The clone method needs to create a copy of a bag. The
IntLinkedBag clone method will follow the pattern introduced in Chapter 2 on
page 78. Therefore, the start of ti®@ne method is the code shown here:

pubTlic Object clone() clone method
{ // Clone an IntLinkedBag.
IntLinkedBag answer;

try
{

}
catch (CloneNotSupportedException e)
{ // This exception should not occur. But if it does, it would
// probably indicate a programming error that made
// super.clone unavailable. The most common error would be
// forgetting the “Implements Cloneable” clause.
throw new RuntimeException
("This class does not implement Cloneable.");

answer = (IntLinkedBag) super.clone();

@ [o—

4~ 4]

%9 java04.frm Page 216 Saturday, August 26, 2000 6:03 PM

—& @

216 Chapter 4/ Linked Lists

This is the same as the start of tiene method for our Chapter 3 bag. As
with the Chapter 3 bag, this code uses dtyger.clone method to make
answer be an exact copy of the bag that activatedciume method. With
the Chapter 3 bag, we needed some extra statements at the endiohthe
method—otherwise the original bag and the clone would share the same
array.

Our new bag, using a linked list, runs into a similar problem. To see this prob-
lem, consider a bag that contains three elements, as shown here:

head 10 20 30
> P —1—

null

manyNodes

Now, suppose we activatelone() to create a copy of this bag. The clone
method executes the statemanswer = (IntLinkedBag) super.clone()
What doessuper.clone() do? It creates a ne@nhtLinkedBag object and
answer Will refer to this newIntLinkedBag. But the newIntLinkedBag has
instance variablesifswer .manyNodes andanswer .head) that are merely cop-
ied from the original. So, afttanswer = (IntLinkedBag) super.clone()
the situation looks like this (wher@anyNodes andhead are the instance vari-
ables from the original bag that activated ¢hene method):

3 head 10 20 30
|y +—> —>

/

} /

null

R

manyNodes

answer.head

answer.manyNodes

As you can seenswer.head refers to the original's head node. Subsequent
changes to the linked list will affect both the original and the clone. This is
incorrect behavior for a clone. To fix the problem, we need an additional state-
ment before the return of tlkdone method. The purpose of the statement is to
create a new linked list for the clonésad instance variable to refer to. Here’s
the statement:

answer.head = IntNode.listCopy(head);

This statement activates théstCopy method. The argumentead, is the head
reference from the linked list of the bag that we are copying. When the assign-

.

4~ 4

*

%9 java04.frm Page 217 Saturday, August 26, 2000 6:03 PM

The Bag ADT with a Linked List217

ment statement finisheanswer.head will refer to the head node of the new
list. Here’s the situation after the copying:

3 head 10 20 30

null

manyNodes

10 20 30
3 /

I -

answer.manyNodes answer.head

The new linked list fomnswer was created by copying the original linked list.
Subsequent changes daswer will not affect the original, nor will changes to
the original affectanswer. The completeclone method, including the extra

statement at the end, is shown in Figure 4.13.

FIGURE 4.13 Implementation of the Second Bag’'s c1one Method

Implementation
public Object clone()

{
{ // Clone an IntLinkedBag.
IntLinkedBag answer;
try
{
answer = (IntLinkedBag) super.clone();
}
catch (CloneNotSupportedException e)
{ // This exception should not occur. But if it does, it would probably indicate a
// programming error that made super.clone unavailable. The most common
// error would be forgetting the “Implements Cloneable”
// clause at the start of this class.
throw new RuntimeException)
("This class does not implement Cloneable.™); TNis step creates a new
} linked list for answer. The
new linked list is separate
answer.head = IntNode.listCopy(head); <— fromthe original array so
that subsequent changes to
return answer; one will not affect the other.
}

\

4‘9 java04.frm Page 218 Saturday, August 26, 2000 6:03 PM

—& @

218 Chapter 4/ Linked Lists

Programming Tip: Cloning a Class That Contains a Linked List

If the instance variables of a class contain a linked list, then the clone method
needs extra work before it returns. The extra work creates a new linked list for the
clone’s instance variable to refer to.

The remove Method. There are two approaches to implementingriéve
method. The first approach uses the nodes removal methods—changing the
head if the removed element is at the head of the list, and using the ordinary
removeNodeAfter to remove an element that is farther down the line. This first
approach is fine, although it does require a bit of thought because
removeNodeAfter requires a reference to the node that is lpeforethe ele-
ment that you want to remove. We could certainly find this “before” node, but
not by using the node’sistSearch method.

The second approach actually uséstSearch to obtain a reference to the
node that contains the element to be deleted. For example, suppose our target is
the number 42 in the bag shown here:

99 8 42 16
-1 7 I 1 1
null
head
4 42
manyNodes target

Our approach begins by setting a local variable nataedetNode to refer to

the node that contains our target. This is accomplished with the assignment
targetNode = listSearch(head, target). After the assignment, thear-
getNode is set this way:

5 99 8 42 16
| P L L
null
head
4 42
manyNodes target targetNode

Now we can remove the target from the list with two more steps. First, copy
the data from the head node to the target node, as shown at the top of the next

page.

.
4~ ~s

%9 java04.frm Page 219 Saturday, August 26, 2000 6:03 PM

*

The Bag ADT with a Linked List219

Copy an element

99 8 99 16
] L > o
null
head
4 42
manyNodes target targetNode

After this step, we have certainly removed the target, but we are left with two
99s. So, we proceed to a second step: Remove the head node (that is, one of the
copies 0f99). These steps are all implemented in th@ove method shown in

Figure 4.14. The only other steps in the implementation are a test to ensure that
the target is actually in the bag and subtracting one fiotpNodes.

SIe{UI{=ar NVl A Method to Remove an Element from the Second Version of the Bag

Implementation

public boolean remove(int target)

{
IntNode targetNode; // The node that contains the target
targetNode = IntNode.listSearch(head, target);
if (targetNode == null)
// The target was not found, so nothing is removed.
return false;
else
{ // The target was found at targetNode. So copy the head data to targetNode
// and then remove the extra copy of the head data.
targetNode.setData(head.getData());
head = head.getLink();
manyNodes--;
return true;
b
3

@ [o—

*

4‘9 java04.frm Page 220 Saturday, August 26, 2000 6:03 PM

220 Chapter 4/ Linked Lists

Programming Tip: How to Choose between Different Approaches

We had two possible approaches for the remove method. How do we select the
better approach? Normally, when two different approaches have equal efficiency,
we will choose the approach that makes better use of the node’s methods. This
saves us work and also reduces the chance of new errors from writing new code to
do an old job. In the case of remove we choose the second approach because it

made better use of 1istSearch.

The countOccurrences Method. Two possible approaches come to mind for
thecountOccurrences method. One of the approaches simply steps through the
linked list one node at a time, checking each piece of data to see whether it is the
sought-after target. We count the occurrences of the target and return the answer.
The second approach useastSearch to find the first occurrence of the target,
then usedistSearch again to find the next occurrence, and so on until we have
found all occurrences of the target. The second approach makes better use of the
node’s methods, so that is the approach we will take.
As an example of the second approach tocthentOccurrences method,
suppose we want to count the number of occurrences of 42 in the bag shown here:

99 42 8 4?2
— T L » > 1 »
null
head
4 4?2
manyNodes target

We'll use two local variablesinswer, which keeps track of the number of
occurrences that we have seen so farcandlor, which is a reference to a node
in the list. We initializeanswer to zero, and we usd stSearch to makecursor
refer to the first occurrence of the target (or tonb#&1 if there are no occur-

rences). After this initialization, we have this situation:

99 42 8 4?2
_ 1> — 5 — 5 —
null
head f
4 4?2 / 0
manyNodes target cursor answer

ﬁ%

@ [o—

Y

%9 java04.frm Page 221 Saturday, August 26, 2000 6:03 PM

i

The Bag ADT with a Linked List221

Next, we enter a loop. The loop stops whensor becomesu11, indicat-
ing that there are no more occurrences of the target. Each time through the loop
we do two steps: (1) Add one &aswer, and (2) Movecursor to refer to the
next occurrence of the target (or torhd1 if there are no more occurrences).
Can we use a node method to execute Step 2? At first, it might seem that the
node methods are of no use, siidetSearch finds thefirst occurrence of a
given target. But there is an approach that will UsetSearch together with
the cursor to find the next occurrence of the target. The approach begins
by moving cursor to the next node in the list, using the statement
cursor = cursor.getLink(). In our example, this results in the following:

99 42 8 42
_ 1 —> —1 3 —1 > —1 >
null
head
4 42 1
manyNodes target cursor answer

As you can seeursor now refers to a node in the middle of a linked list. But,
any time that a variable refers to a node in the middle of a linked list, we can
pretend that the node is the head of a smaller linked list. In our exanEer

refers to the head of a two-element list containing the numbers 8 and 42. There-
fore, we can useursor as an argument fbistSearch in the assignment state-
ment cursor = IntNode.listSearch(cursor, target) . This statement
movescursor to the next occurrence of the target. This occurrence could be at
the cursor’s current spot, or it could be farther down the line. In our example, the
next occurrence of 42 is farther down the lineswaor is moved as shown here:

99 42 8 4?2
—7 1 1 > — 1 >
null
head /
4 4?2 — 1
manyNodes target cursor answer

Eventually there will be no more occurrences of the targetcansbr be-
comesnull, ending the loop. At that point the method retutnswer. The
complete implementation @buntOccurrences is shown in Figure 4.15.

@ [o—

4~ 4]

@

4‘9 java04.frm Page 222 Saturday, August 26, 2000 6:03 PM

222 Chapter 4/ Linked Lists

FIGURE 4.15 Implementation of countOccurrences for the Second Version of the Bag

Implementation

public int countOccurrences(int target)

{

int answer;
IntNode cursor;

answer = 0;
cursor = IntNode.listSearch(head, target);
while (cursor != null)

{ // Each time that cursor is not null, we have another occurrence of target, so we
// add one to answer and then move cursor to the next occurrence of the target.

answer++;
cursor = cursor.getLink();
cursor = IntNode.listSearch(cursor, target);

}

return answer;

Finding the Next Occurrence of an Element

The situation: A variable named cursor refers to a node in a
linked list that contains a particular element called target.

The task: Make cursor refer to the next occurrence of
target (or nulT if there are no more occurrences).

The solution:
cursor = cursor.getLink();
cursor IntNode.listSearch(cursor, target);

4@

%9 java04.frm Page 223 Saturday, August 26, 2000 6:03 PM

*

The Bag ADT with a Linked List223

The grab Method. The bag has a neyrab method, specified here:

o grab
public int grab()
Accessor method to retrieve a random element from this bag.
Precondition:
This bag is not empty.
Returns:
a randomly selected element from this bag

Throws: I11egalStateException
Indicates that the bag is empty.

The implementation will start by generating a randiom value between 1 and

the size of the bag. The random value can then be used to select a node from the
bag, and we'll return the data from the selected node. So, the body of the
method will look something like this:

i = some randomnt value between 1 and the size of the bag;
cursor = listPosition(head, 1i);
return cursor.getData();

Of course the trick is to generate “some random value between 1 and the
size of the bag.” The Java class libraries can help. Wjthia. Tang.math is a
method that (sort of) generates random numbers, with this specification:

o Math.random
public static double random()
Generates a pseudorandom number in the range 0.0 to 1.0.

Returns:
a pseudorandom number in the range 0.0 and 1.0 (this return value may
be zero, but it's always less than 1.0)

The values returned ath. random are not truly random. They are generated by
a simple rule. But the numbeappearrandom and so the method is referred
to as apseudorandom number generator For most applications, a pseudo-
random number generator is a close enough approximation to a true random
number generator. In fact, a pseudorandom number generator has one advantage
over a true random number generator: The sequence of numbers it produces is
repeatable. If run twice with the same initial conditions, a pseudorandom num-
ber generator will produce exactly the same sequence of numbers. This is handy
when you are debugging programs that use these sequences. When an error is
discovered, the corrected program can be tested witlsahm sequence of
pseudorandom numbers that produced the original error.

But at this point we don't need a complete memoir on pseudorandom niath.random
bers. All we need is a way to use Magh. random to generate a number between

.
4~ ~s

4‘9 java04.frm Page 224 Saturday, August 26, 2000 6:03 PM

—& @

224 Chapter 4/ Linked Lists

1 and the size of the bag. The following assignment statement does the trick:

// Setitoarandom number from 1 to the size of the bag:
i = (int) (Math.random() * manyNodes) + 1;

Let's look at how the expression works. The metMath. random gives us a
number that's in the range 0.0 to 1.0. The value is actually in the “half-open
range” of [0 .. 1), which means that the number could be from zero up to, but
not including, 1. Therefore, the expressMath.random() * manyNodes is

in the range zero teanyNodes—or to be more precise, from zero up to, but not
including,manyNodes.

The operatiol (int) is an operation that truncates a double number, keeping
only the integer part. Therefor(int) (Math.random() * manyNodes) is an
int value that could be from zeroranyNodes-1. The expression cannot actu-
ally bemanyNodes. Since we want a number from lntanyNodes, we add one,
resulting ini = (int) (Math.random() * manyNodes) + 1 . This assign-
ment statement is used in the completeh implementation shown in Figure 4.16.

The Second Bag—Putting the Pieces Together

The remaining methods are straightforward. For examplesithe method just
returnsmanyNodes. All these methods are given in the complete implementation
of Figure 4.17. Take particular notice of how the bag®#A11 method is imple-
mented. The implementation makes a copy of the linked list for the bag that's
being added. This copy is then attached at the front of the linked list for the bag
that's being added to. The bagision method is implemented by using the
addA11 method.

FIGURE 4.16 Implementation of a Method to Grab a Random Element

Implementation

public int grab()

{
int i; // A random value between 1 and the size of the bag
IntNode cursor;
if (manyNodes == 0)

throw new ITlegalStateException('"Bag size is zero.");

i = (int) (Math.random() * manyNodes) + 1;
cursor = IntNode.listPositionChead, 1i);
return cursor.getData();

}

@ [o—

4~ 4]

%9 java04.frm Page 225 Saturday, August 26, 2000 6:03 PM

*

The Bag ADT with a Linked List225

FIGURE 4.17 Implementation of Our Second Bag Class

Implementation

// FILE: IntLinkedBag.java from the package edu.colorado.collections
// Documentation is available in Figure 4.12 on page 211 or from the IntLinkedBag link in
// http://www.cs.colorado.edu/~main/docs/

package edu.colorado.collections;
import edu.colorado.nodes.IntNode;

public class IntLinkedBag implements Cloneable
{
// INVARIANT for the Bag ADT:
// 1. The elements in the Bag are stored on a linked list.
// 2. The head reference of the list is in the instance variable head.
// 3. The total number of elements in the list is in the instance variable manyNodes.
private IntNode head;
private int manyNodes;

public IntLinkedBag()

{
head = null;
manyNodes = 0;
3
public void add(int element)
{
head = new IntNode(element, head);
manyNodes++;
}
public void addAl11(IntLinkedBag addend)
{
IntNode[] copylInfo;
if (addend == null)
throw new IllegalArgumentException("addend is null.™);
if (addend.manyNodes > 0)
{
copyInfo = IntNode.listCopyWithTail(addend.head);
copyInfo[l].setLinkChead); // Link the tail of the copy to my own head..
head = copyInfo[0]; // and set my own head to the head of the copy.
manyNodes += addend.manyNodes;
}
3 (continued)

.
4~ ~s

%9 java04.frm Page 226 Saturday, August 26, 2000 6:03 PM

—&| @

226 Chapter 4/ Linked Lists

(FIGURE 4.17 continued)

public Object clone()
|| See the implementation in Figure 4.13 on page 217.

public int countOccurrences(int target)
|| See the implementation in Figure 4.15 on page 222.

public int grab()
| See the implementation in Figure 4.16 on page 224.

public boolean remove(int target)
|| See the implementation in Figure 4.14 on page 219.

public int size()

{

return manyNodes;

}

public static IntLinkedBag union(IntLinkedBag bl, IntLinkedBag b2)
{
if (bl == null)
throw new ITlegalArgumentException("bl is null.");
if (b2 == null)
throw new ITlegalArgumentException("b2 is null.");

IntLinkedBag answer = new IntLinkedBag();
answer.addA11(bl);

answer.addA11(b2);
return answer;

%9 java04.frm Page 227 Saturday, August 26, 2000 6:03 PM

*

Programming Project: The Sequence ADT with a Linked L227

Self-Test Exercises

15. Suppose you want to use a bag where the elements are double numbers
instead of integers. How would you do this?

16. Write a few lines of code to declare a bag of integers and place the inte-
gers42 ands in the bag. Then grab a random integer from the bag, print-
ing it. Finally print the size of the bag.

17. In general, which is preferable: an implementation that uses the node
methods, or an implementation that manipulates a linked list directly?

18. Suppose thatis a reference to a node in a linked list of integers and that
p.getData() has a copy of an integer calledWrite two lines of code
that will movep to the next node that contains a copyldbr setp to
null if there is no such node). How can you combine your two state-
ments into just one?

19. Describe the steps takendsuntOccurrences if the target is not in the
bag.

20. Describe one of the boundary values for testingve.

21. Write an expression that will give a random integer betwg&@mand 10.

22. Do bigO time analyses of the bag’'s methods.

4.5 PROGRAMMING PROJECT: THE SEQUENCE ADT
WITH A LINKED LIST

In Section 3.3 on page 133 we gave a specification for a sequence ADT that was
implemented using an array. Now you can reimplement this ADT usinkeal

list as the data structure rather than an array. Start by rereading the ADT’s spec-
ification on page 138, then return here for some implementation suggestions.

The Revised Sequence ADT—Design Suggestions

Using a linked list to implement the sequence ADT seems natural. We'll keep
the elements stored on a linked list, in their sequence order. The “current” ele-
ment on the list can be maintained by an instance variable that refers to the node
that contains the current element. Whendh&rt method is activated, we set

this cursor to refer to the first node of the linked list. Whewrance is activated,

we move the cursor to the next node on the linked list.

@ [o—

4~ 4]

%9 java04.frm Page 228 Saturday, August 26, 2000 6:03 PM

—& @

228 Chapter 4/ Linked Lists

With this in mind, we propose five private instance variables for the new
sequence class:

» The first variablemanyNodes, keeps track of the number of nodes in the
list.

* head andtail—these are references to the head and tail nodes of the
linked list. If the list has no elements, then these references areuddth
The reason for the tail reference is tilelAfter method. Normally this
method adds a new element immediately after the current element. But if
there is no current element, thasdAfter places its new element at the
tail of the list, so it makes sense to maintain a connection with the list’'s
tail.

» cursor—refers to the node with the current elementn(or1 if there is
no current element).

e precursor—refers to the node before current element(dn if there is
no current element, or the current element is the first node). Can you fig-
ure out why we propose precursor? The answer is theldBefore
method, which normally adds a new element immedidtefgrethe cur-
rent element. But there is no node method to add a new node before a
specified node. We can only add new nodes after a specified node. There-
fore, theaddBefore method will work by adding the new elemexfiter
the precursor node—which is also jbsforethe cursor node.

The sequence class that you implement could have integer elements, or
double number elements, or several other possibilities. The choice of element
type will determine which kind of node you use for the linked list. If you
choose integer elements, then you will usfi.colorado.nodes.IntNode.

All the node classes, includingintNode, are available for you to view at
http://www.cs.colorado.edu/~main/edu/colorado/nodes

For this programming project, you should use double numbers for the ele-
ments and follow these guidelines:

* The name of the classbsublelLinkedSeq;
* You'll useDoubleNode for your node class;
e Put your class in a packagéu.colorado.collections;

» Follow the specification from Figure 4.18 on page 230. This specification
is also available at thi®ublelLinkedSeq link in
http//www.cs.colorado.edu/~main/docs/

Notice that the specification states a limitation theyondiInt.MAX_VALUE
elements thesize method does not work (though all other methods should be
okay).

.
4~ ~s

%9 java04.frm Page 229 Saturday, August 26, 2000 6:03 PM

i

Programming Project: The Sequence ADT with a Linked L229

Here’s an example of the five instance variables for a sequence with four ele-
ments and the current element at the third location:

42.1 7.9 56.1 22.2

— 7T > > >
null
head /
4
tail
manyNodes precursor cursor

Notice thatcursor andprecursor arereferenceso two nodes—one right after
the other.

Start your implementation by writing the invariant for the new sequengeat is the
ADT. You might even write the invariant in large letters on a sheet of paper emariant of the
pin it up in front of you as you work. Each of the methods counts on that invarist list ADT?
being true when the method begins. And each method is responsible for ensuring
that the invariant is true when the method finishes.

As you implement each modification method, you might use the following
matrix to increase your confidence that the method works correctly.

manyNodes head tail cursor precursor

An empty list

A nonempty list
with no current
element

Current element
at the head

Current element
at the tail

Current element
not at head or tail

Here’s how to use the matrix: Suppose you have just implemented one of the
modification methods such asldAfter. Go through the matrix one row at a
time, executing your method with pencil and paper. For example, with the first
row of the matrix you would trgddAfter to see its behavior for an empty list.

As you execute each method by hand, keep track of the five instance variables,
and put five check marks in the row to indicate that the final values correctly
satisfy the invariant.

.
4~ ~s

4‘9 java04.frm Page 230 Saturday, August 26, 2000 6:03 PM

—& @

230 Chapter 4/ Linked Lists

The Revised Sequence ADT—Clone Method

The sequence class haslane method to make a new copy of a sequence. The
sequence that you are copying activatexilome method, and we’ll call it the
“original sequence.” As with alilone methods, you should start with the pat-
tern from page 78. After activatingiper.clone, the extra work must make a
separate copy of the linked list for the clone, and correctly set the clone’s head,
tail, cursor, and precursor. We suggest that you handle the work with the follow-
ing three cases:

« If the original sequence has no current element, then simply copy the orig-
inal’s linked list with1istCopy. Then set bothrecursor andcursor to
null.

« If the current element of the original sequence is its first element, then
copy the original’s linked list withistCopy. Then seprecursor to null,
and setursor to refer to the head node of the newly created linked list.

< If the current element of the original sequence is after its first element,
then copy the original’s linked list in two pieces usligtPart: The first
piece goes from the head node to the precursor; the second piece goes
from the cursor to the tail. Put these two pieces together by making the
link part of the precursor node refer to the cursor node. The reason for
copying in two separate pieces is to easily set the precursor and cursor of
the newly created list.

[(S[e1V] =0 WKWl Specification for the Second Version of the DoubTeL1inkedSeq Class

Class DoubleLinkedSeq

O public class DoubleLinkedSeq from the package edu.colorado.collections
A DoubleLinkedSeq is a sequence of double numbers. The sequence can have a special “current
element,” which is specified and accessed through four methods that are not available in the
bag classqtart, getCurrent, advance, andisCurrent).
Limitations:
BeyondInt.MAX_VALUE elements, theize method does not work.

Specification

o Constructor for the DoubleLinkedSeq
pubTlic DoublelLinkedSeq()
Initialize an empty sequence.
Postcondition:
This sequence is empty.
(continued)

@ [o—

4~ 4]

%9 java04.frm Page 231 Saturday, August 26, 2000 6:03 PM

*

Programming Project: The Sequence ADT with a Linked L231

(FIGURE 4.18 continued)

o addAfter and addBefore
public void addAfter(double element)
public void addBefore(double element)

Adds a new element to this sequence, either before or after the current element.

Parameters:
element — the new element that is being added

Postcondition:
A new copy of the element has been added to this sequence. If there was a current element,
addAfter places the new element after the current elemeniddfore places the new
element before the current element. If there was no current elewtter places the new
element at the end of the sequenceaddefore places the new element at the front of the
sequence. The new element always becomes the new current element of the sequence.

Throws: OutOfMemoryError
Indicates insufficient memory for a new node.

o addAll
pubTlic void addA11(DoubleLinkedSeq addend)
Place the contents of another sequence at the end of this sequence.

Parameters:
addend — a sequence whose contents will be placed at the end of this sequence

Precondition:
The parametegddend, is not null.

Postcondition:
The elements froraddend have been placed at the end of this sequence. The current element
of this sequence remains where it was, ancdhbend is also unchanged.

Throws: Nul1PointerException
Indicates thatddend is null.

Throws: outOfMemoryError
Indicates insufficient memory to increase the size of the sequence.

o advance
public void advance()
Move forward, so that the current element is now the next element in the sequence.

Precondition:
isCurrent() returnstrue.

Postcondition:
If the current element was already the end element of the sequence (with nothing after it),
then there is no longer any current element. Otherwise, the new element is the element
immediately after the original current element.

Throws: I11egalStateException

Indicates that there is no current elemengds@ance may not be called.
(continued)

.
4~ ~s

—&| @

%9 java04.frm Page 232 Saturday, August 26, 2000 6:03 PM

232 Chapter 4/ Linked Lists

(FIGURE 4.18 continued)

o clone

public Object clone()

Generate a copy of this sequence.

Returns:
The return value is a copy of this sequence. Subsequent changes to the copy will not affect
the original, nor vice versa. The return value must be typecasbtod BLinkedSeq before
it is used.

Throws: outOfMemoryError
Indicates insufficient memory for creating the clone.

- concatenation
pubTlic static DoublelLinkedSeq concatenation
(DoubleLinkedSeq s1, DoublelLinkedSeq s2)
Create a new sequence that contains all the elements from one sequence followed by another.
Parameters:
s1 — the first of two sequences
s2 — the second of two sequences
Precondition:
Neithers1 nors2 is null.
Returns:
a new sequence that has the elemends @llowed bys2 (with no current element)
Throws: I11egalArgumentException
Indicates that one of the arguments is null.
Throws: outOfMemoryError
Indicates insufficient memory for the new sequence.

o getCurrent
public double getCurrent()
Accessor method to determine the current element of the sequence.
Precondition:
isCurrent() returnstrue.
Returns:
the current element of the sequence
Throws: I11egalStateException
Indicates that there is no current element.

o isCurrent
public boolean isCurrent()
Accessor method to determine whether this sequence has a specified current element that can
be retrieved with thgetCurrent method.
Returns:

true (there is a current element) fa1se (there is no current element at the moment)
(continued)

4~ 4

\

%9 java04.frm Page 233 Saturday, August 26, 2000 6:03 PM

*

Programming Project: The Sequence ADT with a Linked L33

(FIGURE 4.18 continued)

o removeCurrent

public void removeCurrent()

Remove the current element from this sequence.

Precondition:
isCurrent() returnstrue.

Postcondition:
The current element has been removed from the sequence, and the following element (if
there is one) is now the new current element. If there was no following element, then there
iS now no current element.

Throws: I11egalStateException
Indicates that there is no current element;&@veCurrent may not be called.

0 Size
public int size()

Accessor method to determine the number of elements in this sequence.

Returns:
the number of elements in this sequence

o start
public void start()
Set the current element at the front of the sequence.

Postcondition:

The front element of this sequence is now the current element (but if the sequence has no
elements at all, then there is no current element).

Self-Test Exercises

23. Suppose a sequence contains your three favorite numbers, and the cur-
rent element is the first element. Draw the instance variables of this
sequence using our implementation.

24. Write a new method to remove a specified element from a sequence of
double numbers. The method has one parameter (the element to remove).
After the removal, the current element should be the element after the
removed element (if there is one).

25. Which of the sequence methods usentiieoperator to allocate at least
one new node?

26. Which of the sequence methods isgb1eNode. TistPart?

@ [o—

4~ 4]

*

%9 java04.frm Page 234 Saturday, August 26, 2000 6:03 PM

234 Chapter 4/ Linked Lists

head)

null

10

null

FIGURE 4.19
Doubly Linked
List

4.6 ARRAYSVS. LINKED LISTS VS. DOUBLY LINKED LISTS

Many ADTs can be implemented with either arrays or linked lists. Certainly the
bag and the sequence ADT could each be implemented with either approach.

Which approach is better? There is no absolute answer. But there are certain
operations that are better performed by arrays and others where linked lists are
preferable. This section provides some guidelines.

Arrays Are Better at Random Access. The termrandom accessrefers to
examining or changing an arbitrary element that is specified by its position in a
list. For exampleWhat is the 4% element in the lig& Or another example:
Change the element at position 1066 to dffese are constant time operations
for an array. But, in a linked list, a search for iAi@lement must begin at the
head and will tak€(i) time. Sometimes there are ways to speed up the process,
but even improvements remain linear time in the worst case.

If an ADT makes significant use of random access operations, then an array
is better than a linked list.

Linked Lists Are Better at Additions/Removals at a Cursor. Our sequence
ADT maintains acursor that refers to a “current element.” Typically, a cursor
moves through a list one element at a time without jumping around to random
locations. If all operations occur at the cursor, then a linked list is preferable to
an array. In particular, additions and removals at a cursor generally are linear time
for an array (since elements that are after the cursorathibst shifted up or back
to a new index in the array). But these operations are constant time operations for
a linked list. Also remember that effective additions and removals in a linked list
generally require maintaining both a cursor apdegursor(which refers to the
node before the cursor).

If an ADT’s operations take place at a cursor, then a linked list is better than
an array.

Doubly Linked Lists Are Better for a Two-way Cursor. Sometimes list opera-
tions require a cursor that can move forward and backward through a list—a
kind of two-way cursor. This situation calls for doubly linked list, which is

like an ordinary linked list, except that each node contains two references: one
linking to the next node and one linking to the previous node. An example of a
doubly linked list of integers is shown in Figure 4.19 (in the margin). A possible
start of a declaration for a doubly linked list of elements is the following:

public class DIntNode
private int data;

private DIntNode backlink;
private DIntNode forelink;

Thebacklink refers to the previous node, and flaeel1ink refers to the next
node in the list.

@ [o—

4~ 4]

%9 java04.frm Page 235 Saturday, August 26, 2000 6:03 PM

*

Arrays vs. Linked Lists vs. Doubly Linked list835

If an ADT’s operations take place at a two-way cursor, then a doubly linked
list is the best implementation.

Resizing Can Be Inefficient for an Array. A collection class that uses an
array generally provides a method to allow a programmer to adjust the capacity
as needed. But changing the capacity of an array can be inefficient. The new
memory must be allocated and initialized, and the elements are then copied from
the old memory to the new memory. If a program can predict the necessary
capacity ahead of time, then capacity is not a big problem, since the object can
be given sufficient capacity from the outset. But sometimes the eventual capacity
is unknown and a program must continually adjust the capacity. In this situation,
a linked list has advantages. When a linked list grows, it grows one node at a
time, and there is no need to copy elements from old memory to new memory.

If an ADT is frequently adjusting its capacity, then a linked list may be better
than an array.

Making the Decision

Your decision on what kind of implementation to use is based on your know-

ledge of which operations occur in the ADT, which operations you expect to be

performed most often, and whether you expect your arrays to require frequent
capacity changes. Figure 4.20 summarizes these considerations.

Self-Test Exercises

27. What underlying data structure is quickest for random access?

28. What underlying data structure is quickest for additions/removals at a
cursor?

29. What underlying data structure is best if a cursor must move both for-
ward and backward?

30. What is the typical worst-case time analysis for changing the capacity of
a collection class that is implemented with an array?

FIGURE 4.20 Guidelines for Choosing between an Array and a Linked List

Frequent random access operations Use an array

Operations occur at a cursor Use a linked list

Operations occur at a two-way cursor Use a doubly linked list

Frequent capacity changes A linked list avoids resizing inefficiency

.
4~ ~s

—& @

4‘9 java04.frm Page 236 Saturday, August 26, 2000 6:03 PM

236 Chapter 4/ Linked Lists

CHAPTER SUMMARY

A linked listconsists of nodes; eanbdecontains some data and a link to
the next node in the list. The link part of the final hode contains the null
reference.

Typically, a linked list is accessed throughead referenc¢hat refers to
the head nodg(i.e., the first node). Sometimes a linked list is accessed
elsewhere, such as through thi referencethat refers to the last node.

You should be familiar with the methods of our node class, which pro-
vides fundamental operations to manipulate linked lists. These operations
follow basic patterns that every programmer uses.

Our linked lists can be used to implement ADTs. Such an ADT will have
one or more private instance variables that are references to nodes in a
linked list. The methods of the ADT will use the node methods to manip-
ulate the linked list.

You have seen two ADTs implemented with linked lists: a bag and a
sequence. You will see more in the chapters that follow.

ADTs often can be implemented in many different ways, such as by using
an array or using a linked list. In general, arrays are bettemdbm
accesslinked lists are better at additions/removals etigor

A doubly linked listhas nodes with two references: one to the next node
and one to the previous node. Doubly linked lists are a good choice for
supporting a cursor that moves forward and backward.

Solutions to Self-Test Exercises

1. public class DoubleNode 5. Using techniques from Section 4.2:

double data;

DoubleNode T1ink;

2. The head node and the tail node.

3. The null reference is used for the link part of

if (head == null)

head = new IntNode(42, null);
else

head.addNodeAfter(42);

6. Using techniques from Section 4.2:
if (head !'= null)

the final node of a linked list; it is also used { if (head.getLink() == nul1)
for the head and tail references of a list that head = null;
doesn'’t yet have any nodes. else

head.removeNodeAfter();

4, A NullPointerException is thrown. }

@ [o—

i

%9 java04.frm Page 237 Saturday, August 26, 2000 6:03 PM

7.

10.

11.

12.
13.

They cannot be implemented as ordinary 14
methods of theIntNode class because they
must change the head reference (making it
refer to a new node).

15

. IntNode head;

IntNode tail;

int 1i;

head = new IntNode(l, null); 16
tail = head;

for (i = 2; i <= 100; i++)

{

tail.addNodeAfter(i);
tail = tail.getLink();
3

There are eight different nodes for the eight
primitive data types (boolean, int, long, byte, 4,
short, double, float, and char). These are
called BooleanNode, IntNode, and so on.

There is one more class simply callegte,

which will be discussed in Chapter 5. The data
type in theNode class is Java'sbject type.

So there are nine different nodes in all.

If you implement one of these nine node 18.

types, implementing another one takes little
work—just change the type of the data and the
type of any method parameters that refer to
the data.

Within theIntNode class you may write: 19.

locate = Tocate.link;
Elsewhere you must write:
locate = locate.getLink();
If Tocate is already referring to the last node

before the assignment statement, then the 20.

assignment will setocate to null.

Thenew operator is used in the methodsd- 21.
NodeAfter, 1listCopy, 1listCopyWithTail, 22
andlistPart.

It will be the null reference.

ThelistCopyWithTail method does exactly
this by returning an array with twintNode
components.

Solutions to Self-Test Exercise37

. douglass =
IntNode.listSearch(Chead, 42);
adams =
IntNode.listPosition(head, 42);

. Use DoubleNode instead ofIntNode. There
are a few other changes, such as changing
some parameters frommt to double.

. We could write this code:
IntLinkedBag exercise =
new IntLinkedBag();
exercise.add(42);
exercise.add(8);
System.out.printin
(exercise.grab());
System.out.printin
(exercise.size());

. Generally we will choose the approach that
makes the best use of the node methods. This
saves us work and also reduces the chance of
new errors from writing new code to do an old
job. The preference would change if the
other approach offered better efficiency.

The two lines of code that we have in mind:
p = p.getLink();
p = listSearch(p, d);

These two lines are the same as the single line:
p = listSearch(p.getLink(), d);

When the target is not in the bag, the first
assignment statement torsor will set it to
null. This means that the body of the loop will
not execute at all, and the method returns the
answer zero.

Test the case where you are removing the last
element from the bag.

(int) (Math.random() * 21) - 10

. All the methods are constant time except for
remove, grab, countOccurrences, and
clone (all of which are linear); thaddA11
method (which i€O(n), wheren is the size of
the addend); and thervion method (which is
O(m+n), wherem and n are the sizes of the
two bags).

\

@ [o—

%9 java04.frm Page 238 Saturday, August 26, 2000 6:03 PM

—& @

238 Chapter 4/ Linked Lists

23. manyNodes is 3, and these are the other 25. The twoadd methods both allocate dynamic

instance variables: memory, as daddA11, clone, andconcate-
nation.
42 4 2
B —1 1 3 26. The clone method should usgistPart, as
nutl described on page 230.

head A
27. Arrays are quickest for random access.
]

tail 28. Linked lists are quickest for additions/remov-
precursor cursor als at a cursor.

24. First check that the element occurs somewhere 29. A doubly linked list.
in the sequence. If it doesn't, then return with
no work. If the element is in the sequence, 30. At leastO(n), wheren is the size of the array

then set the current element to be equal to this prior to changing the size. If the new array is
element, and activate the ordinary remove initialized, then there is als®@(m) work,
method. wherem s the size of the new array.

ﬂ PROGRAMMING PROJECTS

1 For this project, you will use the bag of inte- 3 Write a method with three parameters. The
gers from Section 4.4. The bag includes first parameter is a head reference for a

the grab method from Figure 4.16 on linked list of integers, and the next two para-
page 224. Use this class in an applet that has threeneters are integers andy. The method should
components: write a line toSystem.out, containing all integers
in the list that are between the first occurrence of
1. Abutton and the first occurrence gf

2. A small text field
3. Alarge text area

4 Write a method with one parameter that is a
Each time the button is clicked, the applet should head reference for a linked list of integers.
read an integer from the text field, and put this inte- The methodcreatesa new list that has the
ger in a bag. Then a random integer is grabbed fromsame elements as the original list, but in the reverse
the bag and a message is printed in the text area—erder. The method returns a head reference for the
something like “My favorite number is now...." new list.

Write a method that has two linked list head
2 Write a new static method for the node class. 5 references as parameters. Assume that

The method has one parameter which is a linked lists contain integer data, and on
headnodefor a linked list of integers. The each list, every element is less than the next element
method computes a new linked list, which is the on the same list. The method should create a new
same as the original list, but in which all repetitions linked list that contains all the elements on both lists,
are removed. The method'’s return value is a headand the new linked list should also be ordered (so
reference for the new list. that every element is less than the next element on

@ [o—

4~ 4]

%9 java04.frm Page 239 Saturday, August 26, 2000 6:03 PM

—& @

Programming Projects 239

the list). The new linked list should not eliminate du- Your method will implement the following algo-
plicate element§.e., if the same element appears on rithm (which is often calledelectionsort): The al-
both input lists, then two copies are placed in the gorithm removes nodes one at a time from the
newly constructed linked list). The method should original list and adds the nodes to a second list until
return a head reference for the newly constructedall the nodes have been moved to the second list.
linked list. The second list will then be sorted.

6 Write a method that starts with a single
linked list of integers and a special value

called the splitting value. The elementsof

the list are in no particular order. The method di-

vides the nodes into two linked lists: one containing

all the nodes that contain an element less than the

splitting value and one that contains all the other
nodes. If the original linked list had any repeated in-
tegers (i.e., any two or more nodes with the same el-
ement in them), then the new linked list that has this

// Pseudocode for selection sort
while (the first list still has some nodes)

{
1. Find the node with the largest element

of all the nodes in the first list.
2. Remove this node from the first list.
3. Add this node at the head of the second
list.
3

Note that your method will move entire nodes, not

element should have the same number of nodes thajyst elements, to the second list. Thus, the first list
repeat this element. It does not matter whether youyil| get shorter and shorter until it is an empty list.
preserve the original linked list or destroy it in the your method should not need to use e opera-
process of building the two new lists, but your com- tor since it is just moving nodes from one list to an-

ments should document what happens to the original
linked list. The method returns two head refer-

ences—one for each of the linked lists that were
created.

other (not creating new nodes).

8 Implement a new method for the bag class
from Section 4.4. The new method allows

7 Write a method that takes a linked list of

integersstoredare sortedinto the order
smallest to largest, with the smallest integer in the
node at the head of the list. Your method should pre-
serve repetitions of integers. If the original list had
any integers occurring more than once, then the
changed list will have the same number of each in-
teger. For concreteness you will use lists of integers,

you to subtractthe contentsof onebag

integers and rearranges the nodes so that thérom another. For example, suppose thias seven

copies of the number 3 agdhas two copies of the
number 3. Then after activating subtract(y),
the bagx will have five remaining copies of the
number 3.

but your method should still work if you replace the

9 Implement the&sequence class from Section

integer type with any other type for which the less-

45. You may wish to provide some

than operation is defined. Use the following specifi-
cation:

IntNode TistSort(IntNode head)

// Postcondition: The return value is a head
// reference of a linked list with exactly the
// same entries as the original list (including
// repetitions if any), but the entries

// in this list are sorted from smallest to

// largest. The original linked list is no longer
// available.

ﬁ%

additional useful methodsuchas: (1) a
method to add a new element at the front of the se-
guence; (2) a method to remove the element at the
front of the sequence; (3) a method to add a new el-
ement at the end of the sequence; (4) a method that
makes the last element of the sequence become the
current element; (5) a method that returns frede-
ment of the sequence (starting with tH& & the
front); (6) a method that makes tiedlement be-
come the current element.

ﬁ%

\

%9 java04.frm Page 240 Saturday, August 26, 2000 6:03 PM

—&| @

240 Chapter 4/ Linked Lists

10 You can represent an integer with any num- 11 Revise one of the collection classes from
ber of digits by storing the integer as a Chapter 3, so that it uses a linked list. Some
linked list of digits. A more efficient repre- choicesare: (a) the set (Project6 on page
sentation will store a larger integer in each node. 168); (b) the sorted sequence (Project 7 on
Design and implement an ADT for unbounded page 169).

whole numbers in which a number is implemented

as alinked list of integers. Each node will hold an in-

teger less than or equal 9. The number repre-

sented is the concatenation of the numbers in the

nodes. For example, if there are four nodes with the Revise the Chapter 3 polynomial class from
four integer23, 7, 999, ando, then this represents 12 Project 8 on page 169, so that the coeffi-
the number 23,007,999,000. Note that the numberin cients are stored in a linked list and there is
a node is always considered to be three digits long.no maximum degree. Include an operation to allow
If it is not three dlgItS Iong, then Ieadlng Zeros are you to mu|t|p|y two po|yn0mia|s in the usual way.
added to make it three digits long. Include methods For example:

for the usual integer operators to work with your

new class. (3x%+7) * (2x+4) = (6x3+12x% + 14x + 28)

@ [o—

