September 4, 2008

1. Preliminaries

a. Define an (r-i)-reaction.
b. The set of all (r, i)-reactions over a background set S . This includes only those reactions, a, in which $R_{a} \cap I_{a}=\varnothing$. The notation is $\operatorname{rac}(\mathrm{S}, \mathrm{r}, \mathrm{i})$.
c. Set of all m-element subsets of S is denoted by $\operatorname{subset}(\mathrm{S}, \mathrm{m})$.
d. $e n_{A}(\mathrm{~T})$ is the set of all reactions in A that are enabled by T .

2. Probability That a Reaction Is Enabled

This section develops formulae for the probability that a random reaction is enabled for a random state. In particular, we develop closed formulae for various forms of the following definition:

Definition 1. Let r, i, n and m be integers with $n \geq r+i \geq 2$ and $n \geq m \geq r$. The notation $\operatorname{prob}_{\text {enabled }}(r, i, n, m)$ denotes the probability that a random (r, i)-reaction over an n-element background set is enabled by a random m-element subset of the background set.

Example 1. Let $r=3, i=1, n=100$ and $m=50$.
For any fixed 100 -element background set S, there are $15,684,900$ combinations of a three-element reactant set, R, and a singleton inhibitor, I (with R and I disjoint). For any given 50 -element subset $T \subseteq S$, exactly 980,000 of those combinations result in an enabled reaction (in which $R \subseteq T$ and $I \cap T=\varnothing$).

Therefore $\operatorname{prob}_{\text {enabled }}(3,1,100,50)$ is $980,000 / 15,684,900$ (approximately 0.06248) .

We next develop a closed formula for the special case of $\operatorname{prob}_{\text {enabled }}(3,1, n, m)$. Later, the formula is generalized for any r and i, and a limit version of the formula is shown for any fraction $s \in[0 . .1]$ to be:

$$
\lim _{n \rightarrow \infty} \operatorname{prob}_{\text {enabled }}(r, i, n,\lceil s n\rceil)=(1-s)^{i} s^{r}
$$

2.1. Probability That a (3,1)-Reaction Is Enabled

Let a be some (3,1)-reaction over a background set S of n elements (with n ≥ 4). Recall that our definition requires a 's one inhibitor is not also in its three-element reactant set (since otherwise, it has no chance of ever being enabled).

What is the probability that a is enabled by a random m-element subset $T \subseteq S$? We assume that $n \geq m \geq 3$. For a to be enabled, its one inhibitor must not appear in T, and this non-appearance has a probability of:

$$
\frac{n-m}{n}
$$

We also require that the reactant set of a is a subset of T; given that the inhibitor is not in T, this probability (that $R_{a} \subseteq T$) is:

$$
\frac{m}{n-1} \times \frac{m-1}{n-2} \times \frac{m-2}{n-3}
$$

The first factor in this product is the probability that the first reactant of R_{a} is among the m reactants of T. Each of these reactants of T comes from the background set minus the one inhibitor of a (which was given as not in T). Similarly, the next two factors are the probability that the second and third reactants of R_{a} are in T (given that the earlier reactants were also in T).

Multiplying all the terms together and simplifying gives:

Theorem 1. Let n and m be integers with $n \geq 4$ and $n \geq m \geq 3$. Then:

$$
\operatorname{prob}_{\text {enabled }}(3,1, n, m)=\frac{n-m}{n} \times \frac{m}{n-1} \times \frac{m-1}{n-2} \times \frac{m-2}{n-3}
$$

As n grows large and we hold m at a fixed proportion of n (with $m=\lceil t n\rceil$ for some fixed t), the first term in the formula of Theorem 1 approaches ($1-t$) and the last three terms each approach t. So, we also have a limit version of the result:

Theorem 2. Let $t \in[0 . .1]$ be a constant. Then:

$$
\lim _{n \rightarrow \infty} \operatorname{prob}_{\text {enabled }}(n,\lceil t n\rceil, 3,1)=(1-t) t^{3}
$$

Example 2. Consider the case where the background set S grows larger and larger and we allow a subset T to be continually maintained at $t=3 / 4$ the size of S. As the size of S goes to infinity, the probability that a random (3,1)-reaction is enabled by T goes to $(1-0.75) \times 0.75^{3}$, which is a bit more than 10%.

2.2. Probability That an (r,i)-Reaction Is Enabled

This section generalizes the results of the previous section to the case of an (r, i)-reaction. For this, we consider a to be an (r, i)-reaction over a background set of n elements with $n \geq r+i$. As always, the reactant set of a is disjoint from its inhibitor state.

For this more general case, what is the probability that a is enabled by an m-element subset T (with $n \geq m \geq r$). For this to occur, none of a 's inhibitors may appear in T, and this combined non-appearance has a probability of:

$$
\begin{equation*}
\frac{n-m}{n} \times \frac{n-1-m}{n-1} \times \ldots \times \frac{n-(i-1)-m}{n-(i-1)} \tag{*}
\end{equation*}
$$

Using factorials, this simplifies to:

$$
\frac{(n-m)!(n-i)!}{(n-m-i)!n!}
$$

Given that none of the inhibitors are in T, we can express the probability that all of the r reactants are in T as:

$$
\begin{equation*}
\frac{m}{n-i} \times \frac{m-1}{n-1-i} \times \ldots \times \frac{m-(r-1)}{n-(r-1)-i} \tag{**}
\end{equation*}
$$

Once again, this simplifies with factorials:

$$
\frac{m!(n-r-i)!}{(m-r)!(n-i)!}
$$

Multiplying the two parts of the probability together and canceling terms gives the first result of this section:

Theorem 3. Let n, m, r and i be natural numbers with $n \geq r+i$ and $n \geq m \geq r$. Then:

$$
\operatorname{prob}_{\text {enabled }}(r, i, n, m)=\frac{(n-m)!m!(n-r-i)!}{(n-m-i)!n!(m-r)!}
$$

In the special case of $(3,1)$-reactions, this simplifies to Theorem 1 from the previous section.

We'd like to find a limit version of the formula for the case where n approaches infinity and m stays at a fixed proportion of n. Using a fixed $t \in[0 . .1]$ and setting $m=\lceil t n\rceil$, we can see that each of the i terms of the above Formula $\left({ }^{*}\right)$ approaches $(1-t)$ as n goes to infinity. In addition, each of the r terms of Formula (${ }^{(* *)}$ approaches t as n goes to infinity. Therefore:

Theorem 4. Let $t \in[0 . .1]$ be a real number. Also let r and i be natural numbers. Then:

$$
\lim _{n \rightarrow \infty} \operatorname{prob}_{\text {enabled }}(r, i, n,\lceil t n\rceil)=(1-t)^{i} t^{\mathrm{r}}
$$

Example 3. Consider the case where the background set S grows larger and larger and we allow a subset T to be continually maintained at $t=3 / 4$ the size of S. As the size of S goes to infinity, the probability that a random (5, 2)-reaction is enabled by T goes to $(1-0.75)^{2} \times 0.75^{5}$, which is a bit less than 1.5%.

3. The Size of a Result State

Throughout this section, let r, i, and n be integers, let $t \in[0 . .1]$, and let $b \in[0 . . \infty)$. We assume that $n \geq r+i \geq 0$. Also:

- Let S be a background set of n reactants.
- Let B be a set of $(r, i, 1)$-reactions over S; the number of reactions in B is proportional to n via the equation $|B|=b n$.
- Let the state $T \subseteq S$ be a subset of reactants; the size of T is also proportional to n via the equation $|T|=t n$.
- Define U to be the result set $\operatorname{res}_{B}(T)$.

We will examine a particular case where b and t are related in a way that makes the expected size of U close to that of T.

To begin, note that when n is large, a random (r,i,1)-reaction has a probability of being enabled by T of about $(1-t)^{i} t^{\mathrm{r}}$ (from Theorem 4). Therefore, from the entire set A (containing tn reactions), we expect about $b n(1-t)^{i} t^{r}$ reactions to be enabled. So, let's consider the case where $\left|\mathrm{en}_{B}(\mathrm{~T})\right|$ is exactly $b n(1-t)^{i} t^{\mathrm{r}}$ (which is equal to $n k$).

We want to determine the expected size of U. For this, consider any reactant $u \in S$. What is the probability that u is not in U? If so, then it must not be the result of the first enabled reaction in $\mathrm{en}_{A}(\mathrm{~T})$, which occurs with a probability of

$$
\frac{\mid \text { reactions }_{\bar{u}}(S, r, i, 1) \mid}{|\operatorname{reactions}(S, r, i, 1)|}
$$

Given that u is not the product of the first enabled reaction, then the probability that it is also not the result of the second enabled reaction is:

$$
\left.\left.\frac{\mid \text { reactions }_{\bar{u}}(S, r, i, 1) \mid-1}{\mid r e a c t i o n s}(S, r, i, 1) \right\rvert\,-1\right)
$$

Continuing this argument, the probability that u is not the result of any of the enabled reactions is obtained by the multiplicative product:

$$
\prod_{i=1}^{i=b n(1-t)^{i} t^{r}} \frac{\mid \text { reactions }_{\bar{u}}(S, r, i, 1) \mid-i+1}{|\operatorname{reactions}(S, r, i, 1)|-i+1}
$$

For a large n , each of these factors approaches $\frac{n-1}{n}$, so the probability that u is not the result of any of the enabled reactions is near $\left(\frac{n-1}{n}\right)^{b n(1-t)^{i} t^{r}}$. Once again, for a large n , this formula approaches $\left(\frac{1}{e}\right)^{b(1-t)^{i} t^{r}}$. This is the formula that we will use as an approximation for the probability that a reaction u is not in the result state, $\operatorname{resB}(\mathrm{T})$. Therefore, the probability that a reaction u is in the result state is $1-\left(\frac{1}{e}\right)^{b(1-t)^{i} t^{r}}$, and this formula also gives the proportion of reactants that we expect to find in the result state. This gives the principle result of this section:

Theorem 5. Let r, i, and n be integers, let $t \in[0 . .1]$, and let $b \in[0 . . \infty)$. We assume that $n \geq r+i \geq 0$. Also:

- Let S be a background set of n reactants.
- Let B be a set of $(r, i, 1)$-reactions over S; the number of reactions in B is proportional to n via the equation $|B|=b n$.
- Let the state $T \subseteq S$ be a subset of reactants; the size of T is also proportional to n via the equation $|T|=t n$.
- Define U to be the result set $\operatorname{res}_{B}(T)$.

The expected size of U is approximated by $n\left(1-\left(\frac{1}{e}\right)^{b(1-t)^{i} t^{r}}\right)$.
4. Simulations and Cycles

Consider a reaction system (S, B) and a state $T \subseteq S$. This section parameterizes these items so that the expected size of the next state, $\operatorname{res}_{B}(T)$, is near the size of T. When this occurs, we expect the conditions to be favorable for non-trivial cycles in the reaction system, and we later examine this prognosis via random simulations of reaction systems.

More to come...

