
Integrating Open-Domain Sketch Understanding with Qualitative Two-

Dimensional Rigid-Body Mechanics

Jon W. Wetzel and Kenneth D. Forbus

Qualitative Reasoning Group, Northwestern University

2145 Sheridan Road, Evanston, IL 60208-0834 USA

{jw, forbus}@northwestern.edu

Abstract

Sketching is a powerful modality for thinking through, and
communicating about, mechanical designs. Qualitative
mechanics reasoning has been applied to sketched input
before but not without succumbing to limitations of domain-
based recognition or requiring complex annotation and
additional explicit knowledge from the user. This paper
presents solutions to three problems in integrating
qualitative mechanics reasoning with a sketch understanding
platform: identifying objects and forces, discovering regions
of interaction between them, and understanding the effects
of these interactions. We show how the spatial knowledge
available in a conceptually labeled sketch is sufficient to
solve the first two problems and enables the use of
qualitative mechanics to solve the third. Examples from an
implemented system are used for illustration. This system is
the first step in a plan to create a sketch understanding
system capable of providing corrective feedback for
sketched engineering designs.

Introduction

Sketching is a valuable way to work through ideas and
communicate them to others. This is especially true in
conceptual design, when the feasibility of basic ideas is
under consideration. Qualitative reasoning seems a natural
fit for such tasks, since precise details are typically
unavailable during this stage of design. However, existing
sketch understanding systems do not currently provide
much support for these tasks. Some existing systems rely
on animation for feedback. In (Alvarado & Davis 2007),
ink recognition is used to set up input for a mechanics
simulator, much the way that Quickset (Cohen et al 1997)
was used to set up scenarios for a military simulator.
Unfortunately, it is not clear how useful such animated
output is for design tasks: If a student’s design doesn’t
work, all of the knowledge about why something failed is
hidden within the procedures of the off-the-shelf physics
engine. In contrast, qualitative causal models can be used
to provide explanations, both to designers and especially to
engineering students learning to design. The SketchIt
approach of Stahovich et al (1998) provides qualitative
reasoning about sketches of mechanical systems that seems
to be more useful in such tasks. However, SketchIt
required the human user to identify surfaces of interest and
describe the range of their interaction manually. This is

tedious for experienced designers and not feasible for
novice designers.

This paper describes how we are using a combination of
qualitative mechanics and open-domain sketch
understanding to enable software to reason about forces,
mechanical constraint, and motion from hand-drawn
sketches. We begin with our motivating context, coaching
entering engineering students in how to use sketches to
communicate. We then summarize CogSketch, the sketch
understanding system we are using as a platform, and the
qualitative mechanics theories we are building upon. We
describe how we are embedding qualitative mechanics
reasoning into sketch-based representations. We identify
and present solutions for three problems in carrying out
this integration: identifying objects and forces, discovering
regions of interaction between them, and understanding the
effects of these interactions. We describe some examples
of our system’s reasoning, and close with related and
future work.

Helping Students Learn to Communicate

Communication is an important skill for engineering
students. At Northwestern, 1

st
 and 2

nd
 year engineering

students take Engineering Design and Communications,
which teaches both skills in an integrated manner.
Students working in teams of three or four tackle problems
for real clients. Examples include patients at the
Rehabilitation Institute in Chicago, who need new tools to
help them achieve everyday tasks, like chopping
vegetables or trimming their nails, despite physical
handicaps. Students build prototypes of their designs to
explore particular issues, with regular feedback from
potential users. Conversations with instructors revealed
that one significant problem they had was helping students
learn to use their sketches to communicate ideas, both
within the team and to clients. We are creating a sketch-
based system to address this problem.

The idea of the Design Buddy, as we are calling it, is to
be a “crash test dummy” for students to practice explaining
their designs. They will sketch their ideas, explain the
parts, what they are made of, their intended behaviors, and
the intended functional roles of the parts. The system will
reason through the possible behaviors itself, based on its
understanding of qualitative mechanics, materials, and

everyday actions. It will compare its predictions of
behaviors with the student’s intended behaviors, and ask
the student questions about discrepancies. These may
include the student not mentioning some critical aspect of
the behavior in their explanation, or predicting a behavior
that the system does not think is possible. This is a very
challenging task, for three reasons: (1) The qualitative
mechanics reasoning must be very general and robust. The
design projects change constantly, and a wide range of
problems arise. (2) The interface must be both sufficiently
natural to not be a distraction, and must incidentally help
the student learn to explain things in terms that practicing
engineers would use. (3) The coaching software must have
enough strategies to provide students with effective help in
learning how to think about their particular design and the
design process itself. This paper focuses on a particular
aspect of the problem (1), namely, doing robust qualitative
mechanics reasoning in a sketch-based environment.

Background

We briefly review the relevant aspects of CogSketch,
our sketch understanding system, and prior work on
qualitative mechanics.

CogSketch

The platform we are using is CogSketch, a publicly
available sketch understanding system built on the
nuSketch architecture (Forbus et al. 2004). CogSketch is
an open-domain system. Most sketch understanding
systems equate understanding ink with classifying it as a
symbol drawn from a fixed vocabulary of items. By
contrast, nuSketch systems treat recognition as a catalyst,
not a necessity. Pieces of ink (called glyphs) can be
labeled by the user with concepts drawn from a large
underlying knowledge base

1
. CogSketch automatically

computes a number of visual relationships between glyphs,
such as topological relationships (using RCC8 (Cohn,
1996)) and positional relationships (e.g., above, left, etc.).
CogSketch can also analyze the ink within a glyph,
identifying straight-line segments within the ink, corners,
and so forth.

Annotation glyphs are used to provide additional
information about other glyphs. Examples of annotation
glyphs include applied forces, axes of rotation, and centers
of mass. Arrows are automatically recognized when
drawing annotation glyphs, so that, for example, the
orientation and position of application of force can be
automatically computed.

1
 We use the contents of OpenCyc, containing over 58,000

concepts, plus our own group’s extensions for qualitative

reasoning and analogy.

Qualitative Mechanics

Our model of qualitative mechanics is based on work done
by Nielsen (1989) and Kim (1993). Nielsen’s work
represents direction and orientation in terms of qualitative
vectors (q-vectors). For a 2-d space, there are 8
translational q-vectors (right, up, left, down and one for
each quadrant in between) and two rotational q-vectors
(clockwise and counter-clockwise). All forces/torques and
movements are expressed in these directions.
 Objects are represented as sets of surfaces. Each surface
has a parent object, a direction outward from the object
(surface normal) and a direction towards the center of
rotation of the object. Representations for translational and
rotational freedom and constraint are used to state if/when
an object can move or rotate. Forces and motion are
transmitted from object to object through their surface
contacts, with the net force and net motion determining the
final motion of the object in a given state.
 Nielsen’s representations supported envisionment of a
variety of mechanical systems, including clocks (Forbus et
al 1991). Kim’s work adds several more representations to
Nielsen’s, including notions of bounded stuff and flow
fields. This enabled Kim’s system to reason about non-
rigid bodies. The end result was a system which could
understand lift pumps, laminar flow over surfaces, and
automobile engines. However, neither of these systems
dealt with hand-drawn inputs. Kim’s system assumed
predicate calculus input representations. Nielsen’s system
could accept as input scanned images of parts, and
automatically simplify the configuration space it computed
to handle noise. For example, it was able to change
resolution to see a gear train as having only one degree of
freedom, despite noise in the scanned input. However,
scanned photographs are far more accurate than hand-
drawn sketches, making hand-drawn sketches an even
harder problem. Adapting these qualitative mechanics
ideas to work with hand-drawn sketches is the challenge
this paper addresses.

In this paper, we restrict ourselves to a subset of
qualitative mechanics, namely rigid-body mechanics
involving 2D polygonal bodies. This is an important first
step, because it allows for a wide variety of test cases while
requiring only a subset of the qualitative mechanics.

Interpreting Rigid-Body Sketches

In this section we begin with an overview of the three main
problems we encountered when integrating qualitative
mechanics with a sketch understanding system. We
explain our solutions to these problems through our
system. This includes an overview of the sketching
process, an explanation of how the sketch is translated into
a qualitative representation, and how inference is used to
answer questions about the sketched system.

Issues with Integrating Sketched Input

The three main problems we encounter when interpreting
rigid-body sketches are: identifying objects and forces,
discovering regions of interaction between them, and
understanding the effects of these interactions. The first
problem has often been approached before using
recognition. However, in a completely open domain (even
limited to two-dimensional polygons) this is not an option.
Rather, we must make do with other clues that a human
would understand from looking at a sketch. This includes
the knowledge that arrows are not objects themselves but
rather information that describes or affects the objects in
the sketch.
 Identifying how objects in a sketch interact has been
approached by annotations—for instance, specifying
objects be drawn with terminals connecting them. In a 2-d
rigid-body system the “terminals” are surface contacts. At
first this appears trivial, but as demonstrated in Figure 1
work must be done to disambiguate the exact nature of the
interaction in a surface contact. As Nielsen (1988)
showed, the decomposition of a surface into qualitatively
distinct regions depends upon mechanical constraints
beyond just the surface shape.

 The problem of understanding the effects of these
interactions is more easily solved if the representation
generated by the first two steps provides the appropriate
qualitative decomposition of surfaces. Next we explain
how we help users generate sketches, how we construct the
decompositions of surfaces, and how qualitative mechanics
is applied to these representations to answer questions
about the sketched mechanism.

The Sketch

The user draws the forces and objects of their mechanism
as CogSketch glyphs. They label the glyphs with concepts
from its knowledge base. Our system looks for four labels
of glyphs in particular:
 RigidPhysicalObject

Because we are working in a rigid-body domain, this
category identifies all objects of interest.

 FixedPhysicalObject
This category represents objects that are completely

constrained from moving or rotating (e.g. the surface
of the earth, walls).

 ForceArrow
Force arrows are used to indicate external forces
acting on the system. This includes global forces such
as gravity.

 RotOrigin
An annotation glyph, marking the point around which
its parent object is free to rotate. An object with a
RotOrigin is prevented from translating in all
directions.

 From a user interface perspective this might seem like a
lot of required labeling. However, our system makes some
simplifying assumptions. First, we take advantage of
CogSketch’s arrow recognition and assume any two or
three stroke arrow glyph is a ForceArrow. Any annotation
glyph that is not an arrow is assumed to be a RotOrigin for
its parent glyph. Finally, all remaining glyphs are assumed
by default to be RigidPhysicalObject. Thus the only
specific labeling required of the user is the annotation
glyph distinction and labeling fixed objects as
FixedPhysicalObject.
 After they are done drawing their sketch, the user can
perform any of the following queries:

 Will object x move?
 Will object x rotate?
 What forces are on object x?
 Is the sketched system stable? (Will any object

move?)
Performing a query begins the translation process.

Translation to QM Representation

When prompted with a query, the system begins
interpreting the sketch. It is here we solve the first two of
the three problems addressed in this paper: identification of
objects, forces, and their properties, and discovering
regions of interaction.

Identifying Objects Forces, and their Properties. The
first step is to know what objects and forces are depicted in
the sketch, and determine their specific properties. For

Figure 2: Blocks in a raw sketch (top left) are

decomposed into idealized edges (bottom right),

simplifying surface contact detection.

Figure 1: Slightly different positions of contact allow

very different motions.

forces, these properties include direction and the objects
they directly affect. For each object this includes
identifying the surfaces of that object, and determining
whether the object is fixed, fixed-axis, or free to move. If
the object is fixed-axis then its center of rotation must be
located.
 First we check the labeling for each glyph in the sketch
to see if they are a rigid object and/or a fixed rigid physical
object. This gives us the fixed property. Then, each glyph
representing a rigid object is decomposed into edges
(Figure 2), and each edge becomes reified as one or more
surfaces in our predicate representation. Every surface
also has a normal vector pointing outward from the object
and a q-vector towards the object’s axis of rotation. The
system is limited to processing polygons, so every edge
will be a line segment. Thus we can infer that each edge
will have only one normal but may have multiple vectors
towards the axis of rotation. Since the edge is a line
segment there will be up to five surfaces per edge. The
cases of one, two, and three edges are demonstrated in
Figure 3.

 If the axis of rotation is not given in the sketch, we
assume a uniform density and choose the center of area of
the shape as the axis of rotation. While multiple axes of
rotation may exist over the course of a mechanism’s
operation, our system currently only analyzes one instant
of time. Thus, we choose the axis active at the current
moment indicated by the sketch and ignore the others.
 Having finished with objects, we move on to forces. The
force represented by each force arrow in the sketch is
reified as either a force or a torque. If the force is global
then a force is reified with a qvector matching the direction
of the arrow. If the force arrow is on a specific surface
then whether it creates a force or torque depends on the
OriginDir of that surface. If the arrow is the inverse of its
surface normal then a force is applied, otherwise a torque
is applied in the appropriate direction. In Figure 3
applying a leftward force arrow to the top-right surface
would create a counter-clockwise torque. Applying the
same force arrow to the surface just below that would
create a leftward force.

 If the force arrow is an annotation glyph, a force or
torque is added for each object that glyph annotates. If it is
not an annotation glyph, the force is added for all objects in
the sketch. This allows for global forces such as gravity to
be input easily.

Discovering Regions of Interaction. This problem entails
finding all surface contact relationships. This is done by
first identifying all rigid objects which may be in contact.
This step is straightforward since CogSketch automatically
computes topological relations for each pair of glyphs in
the sketch. For each pair of intersecting or connected
objects, their edges are checked pairwise for contact. If
two edge are nearly parallel, in close proximity to each
other, and overlap by a significant amount (that is, not
merely in a line one after another), they are considered in
contact. If the edges contain multiple surfaces, the overlap
is calculated and surface contact is only reified for the two
surfaces which contain share the midpoint of the overlap.
 Once all of the surfaces, surface contacts, and forces
have been identified, the system is ready to make the
inferences required to answer the user’s query.

Answering User Queries

After the qualitative representation is complete, the system
begins finding the answer to the user’s query. We now are
at the problem of understanding the effects of the
interacting regions. The user query is passed to our
backchainer, whose rules are an implementation of QM
theory. These rules are written as Horn clauses in which
the first statement is the consequent and the conjunction of
the remaining statements is the antecedent. Some of the
rules are listed here:

Constraining translation for fixed objects:
(<== (transConstraint ?obj ?dir)

 (isa? obj FixedPhysicalObject))

Determining motion constraint in a particular half-plane:
(<==(sufficientlyConstrained ?obj ?dir)

 (transConstraint ?obj ?dir1)

 (transConstraint ?obj ?dir2)

 (transConstraint ?obj ?dir3)

 (openHalfPlane ?dir ?dir1)

 (openHalfPlane ?dir ?dir2)

 (openHalfPlane ?dir ?dir3)

 (different ?dir1 ?dir2 ?dir3))

An open half-plane is defined in Nielsen’s work as the set
of qvectors within 90 degrees of a given direction,
excluding those at exactly 90 degrees. So for direction
Left, the open half-plane would contain directions Quad1
and Quad4 but not Up or Down. The above rule defines
“sufficiently constrained” in a direction if motion is
constrained in all directions in that direction’s half-plane.

Figure 3: Straight edges of objects can be divided

into up to five qualitative surfaces, each with a

different q-vector in the direction of the axis of

rotation.

Tranferring constraint through surface contacts:
(<== (transConstraint ?obj1 ?dir)

 (hasSurface ?obj1 ?s1)

 (hasSurface ?obj2 ?s2)

 (surfaceContact ?s1 ?s2)

 (surfaceNormal ?s1 ?sn)

 (sufficientlyConstrained ?obj2 ?sn)

 (openHalfPlane ?sn ?dir))

Object 1 cannot move in direction dir if object 2 is
constrained in all directions in that dir’s half-plane.
Otherwise object 2 can move in one of those directions,
allowing object 1 to move in dir.

Freedom is the absence of constraints:
(<== (transFreedom ?obj ?dir)

 (isa ?obj RigidOb)

 (isa ?dir 2DQVector)

 (evaluate ?x

 (CardinalityFn

 (TheClosedRetrievalSetOf ?dir

 (transConstraint ?obj ?dir))))

 (equals ?x 0))

Force + Freedom causes motion:
 (<== (transMotion ?obj ?dir)

 (force ?obj ?dir)

 (transFreedom ?obj ?dir))

The force predicate here is the net force on the object. In
the current version this must be specified by the user when
the direction of the net force is ambiguous.

Transfer of translation across surfaces:
(<== (transMotion ?obj2 ?d2)

 (hasSurface ?obj1 ?s1)))

 (hasSurface ?obj2 ?s2)))

 (surfaceContact ?s1 ?s2)))

 (surfaceNormal ?s2 ?sn)))

 (inverseVector ?sn ?invsn))

 (openHalfPlane ?invsn ?d1))

 (transMotion ?obj1 ?d1))

 (openHalfPlane ?invsn ?d2))

 (transFreedom ?obj2 ?d2)))
This rule stipulates conditions in which object 2 will move
because of contact with another moving object, object 1.
The openHalfPlane relation means that the two directions
are within 90 degrees of each other. This allows an object
to transfer motion through multiple directions if necessary.

Force applied to a surface via surface contact:
(<== (forceApplied ?s ?sn ?obj1)

 (force ?obj1 ?dir)

 (hasSurface ?obj1 ?s1)

 (surfaceContact ?s1 ?s)

 (surfaceNormal ?s1 ?sn)

 (openHalfPlane ?sn ?dir))

Force applied to a surface causing force on object:
(<== (force ?obj ?dir)

 (hasSurface ?obj ?s)

 (forceApplied ?s ?dir ?c))

Forces are also translated through other objects. In
general, every force applied through a surface contact gets
applied to the next object as a translational force if both of
the following conditions hold:

1) The object is free to translate.
2) The inward normal of the contact surface points

towards the object's axis of rotation.
In the version presented here, it is up to the user to resolve
ambiguities in the forces. The work in progress includes
rules that try to find the resultant vector of a set of forces,
and resolve ambiguities by asking the user which forces
are larger or by using the magnitude field of the force
annotation in CogSketch.
 Torque propagation is not yet implemented in the
current version of the system but it will follow the same
principles. These and other qualitative mechanics
principles are all defined as rules. By backchaining
through these rules, the system deduces what forces are
acting on objects and whether they will move.

Examples

Here we present some examples that the system is
currently able to handle. In the following figures the
system has already idealized and segmented the edges of
the objects, making them appear straighter than a typical
free-hand sketch and colored by edge.

The example shown in Figure 4 is based on an equivalent
one in Nielsen’s work. The sketch contains a ramp with
two blocks stacked one upon another and one arrow
pointing downward, drawn off to the left. The arrow is not
an annotation glyph, and the ramp is labeled as a
FixedPhysicalObject. When the user asks for the motion
of all the objects in this sketch, the system begins to build
its QM representation. First, each of the three non-arrow
glyphs is decomposed into their respective edges, which
become their surfaces. Since the force arrow is not
annotating a specific glyph, its downward force is assumed
to be affecting all glyphs in the sketch.
 Next, the system searches for surface contacts by
checking each pair of objects for contact or overlap. Using

Figure 4: Two free blocks stacked on a fixed ramp.

The arrow on the right represents a global
downward force affecting all three objects. The

result is the small triangular block moves down and
right (quad 4) and the square block moves down.

the topological relations calculated by CogSketch, the
system finds overlap between the ramp and the triangular
block and between the triangular block and the square. For
both pairs it performs a line-line proximity comparison
between their surfaces to find the surface contacts.

Tower remains immobile in the presence of a

gravitational force.

 With the surface contacts reified and the forces applied,
the system begins backchaining to find any motion that
each object possesses at the moment pictured. The ramp is
a FixedPhysicalObject so it is stationary. The square
block has a downward force on it, and because the
triangular block is not completely constrained from
moving in the downward half-plane, the square block will
begin moving downward. The triangular block has a
downward force and is free to move in the down-right
direction; consequently, it does. Adding a stop block to the
above example (see Figure 5) prevents the triangle from
moving, and thus prevents the square block from moving.

 Figure 6 shows more transfer of motion constraints. The
constraint is propagated upward from the fixed base to the
topmost block. If the user were to draw this and query for
motion, the system would return no motion. In this way,
one can test a design for stability.

Related Work

Our approach of using shape edge decomposition, RCC8
relations, line-line proximity and overlap calculation is a
novel solution to the problem of discovering and analyzing
surface interactions between rigid bodies. Kurtoglu and
Stahovich (2002) used line-line and other proximity pairs
in a system to identify the type of connection between two
sketched objects, with the goal of classifying those objects
in categories such as rigid body or electric motor. Our
system goes two steps further for rigid bodies, breaking
them down into their individual surfaces and then
determining exactly how the position and size of an
overlap of two surfaces affects their motions.
 Prior sketching systems for mechanical reasoning have
relied on human input for the analysis of surface contacts.
The QM theory on which our system is based had full
propositional representations as its input. (Nielsen 1989;
Kim, 1993) Later systems such as SketchIT (Stahovich
et.al. 1998) required the designer to mark the important
surfaces and build state machines describing their
interactions. In the example in Figure 4 SketchIT would
require the user to highlight the contact surfaces.

Progress has also been made in the area of automatically
recognizing the objects in sketches (Alvarado & Davis,
2004; Kurtoglu & Stahovich, 2002). By eliminating the
need for extra human input we have moved closer to a
sketch-understanding system that can reason deeply about
hand-drawn sketches.

Discussion and Future Work

This work represents a first step towards fully embedding

qualitative mechanics in systems that reason with hand-

drawn sketches. This required tackling the problems of

identifying objects, forces, and their properties;

discovering the interactions between said objects and

forces; and finally, computing the exact effects of these

interactions. The advances which enabled us to do this

include using a combination of shape decomposition,

RCC8 relations, and line-line proximity and overlap

calculation, allowing us to identify the different surfaces of

two-dimensional objects, their areas of contact, and

compute the consequences of those interactions.
 Our goal is to have a complete, robust qualitative
mechanics reasoner that can operate over a wide range of
hand-drawn sketches. We see two key next steps. First,
handling curved surfaces is important for many kinds of
designs. This presents new challenges to segmentation.
Second, the system currently only reasons about
instantaneous force/motion transfers. Reasoning about
motion over time, including automatically deducing
plausible changes in contacts (cf. Nielsen 1988), is also
important. Longer term, we plan to extend the system to
handle 3D shapes, flexible bodies, laminar flow situations,
and fluids as well as rigid bodies.

Figure 6: A stable tower of blocks on a fixed

platform.

Figure 5: The two free blocks (Figure 4) are now

constrained by an additional block, labeled as fixed.

Acknowledgements

This work was supported by NSF SLC Grant SBE-

0541957, the Spatial Intelligence and Learning Center

(SILC).

References

Alvarado, C., Davis R. 2004. Multi-domain sketch
understanding. Massachusetts Institute of Technology,
Cambridge, MA.

Alvarado, C., Davis R. 2007. Resolving ambiguities to

create a natural computer-based sketching environment.
In International Conference on Computer Graphics and
Interactive Techniques ACM SIGGRAPH 2007 courses.
San Diego, California.

Cohen, P., Johnston, M., McGee, D., Oviatt, S., Pittman, J.,

Smith, I., Chen, L. and Clow, J. 1997. QuickSet:

Multimodal interaction for distributed application. In

Proceedings of the Fifth Annual International

Multimodal Conference, 31-40. Seattle, WA.

Cohn, A. 1996. Calculi for Qualitative Spatial Reasoning.

In Calmet J., Campbell J. A., Pfalzgraph J., Verlag S.
(Eds.), Artificial Intelligence and Symbolic
Mathematical Computation, LNCS 1138, 124-143.

Forbus, K., Nielsen, P., and Faltings, B. 1991. Qualitative

spatial reasoning: The CLOCK project. In Artificial
Intelligence, 51(1-3).

Forbus, K., Lockwood, K., Klenk, M., Tomai, E., and

Usher, J. (2004). Open-domain sketch understanding:

The nuSketch approach. Proceedings of the AAAI Fall

Symposium on Making Pen-based Interaction Intelligent

and Natural, October, Washington, D.C.

Kim, H. (1993). Qualitative reasoning about fluids and

mechanics. Ph.D. dissertation and ILS Technical Report,

Northwestern University. Evanston, IL.

Nielsen, P.E. (1988). A qualitative approach to rigid body

mechanics. (Tech. Rep. No. UIUCDCS-R-88-1469;

UILU-ENG-88-1775). Urbana, Illinois: University of

Illinois at Urbana-Champaign, Department of Computer

Science.

Stahovich T.F., Davis R., Shrobe H. 1998. Generating

multiple new designs from a sketch. In Artificial

Intelligence 104 (1998) 211–264.

Kurtoglu T., Stahovich T.F., 2002. Interpreting Schematic

Sketches Using Physical Reasoning, In AAAI Spring

Symposium on Sketch Understanding, AAAI Technical

Report SS-02-08, 78-85.

