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Abstract 

Sketching is a powerful modality for thinking through, and 
communicating about, mechanical designs.  Qualitative 
mechanics reasoning has been applied to sketched input 
before but not without succumbing to limitations of domain-
based recognition or requiring complex annotation and 
additional explicit knowledge from the user. This paper 
presents solutions to three problems in integrating 
qualitative mechanics reasoning with a sketch understanding 
platform: identifying objects and forces, discovering regions 
of interaction between them, and understanding the effects 
of these interactions.  We show how the spatial knowledge 
available in a conceptually labeled sketch is sufficient to 
solve the first two problems and enables the use of 
qualitative mechanics to solve the third.  Examples from an 
implemented system are used for illustration.  This system is 
the first step in a plan to create a sketch understanding 
system capable of providing corrective feedback for 
sketched engineering designs. 

Introduction 

Sketching is a valuable way to work through ideas and 
communicate them to others.  This is especially true in 
conceptual design, when the feasibility of basic ideas is 
under consideration.  Qualitative reasoning seems a natural 
fit for such tasks, since precise details are typically 
unavailable during this stage of design.  However, existing 
sketch understanding systems do not currently provide 
much support for these tasks.  Some existing systems rely 
on animation for feedback.  In (Alvarado & Davis 2007), 
ink recognition is used to set up input for a mechanics 
simulator, much the way that Quickset (Cohen et al 1997) 
was used to set up scenarios for a military simulator.  
Unfortunately, it is not clear how useful such animated 
output is for design tasks: If a student’s design doesn’t 
work, all of the knowledge about why something failed is 
hidden within the procedures of the off-the-shelf physics 
engine.  In contrast, qualitative causal models can be used 
to provide explanations, both to designers and especially to 
engineering students learning to design.  The SketchIt 
approach of Stahovich et al (1998) provides qualitative 
reasoning about sketches of mechanical systems that seems 
to be more useful in such tasks.  However, SketchIt 
required the human user to identify surfaces of interest and 
describe the range of their interaction manually. This is 

tedious for experienced designers and not feasible for 
novice designers.   

This paper describes how we are using a combination of 
qualitative mechanics and open-domain sketch 
understanding to enable software to reason about forces, 
mechanical constraint, and motion from hand-drawn 
sketches.  We begin with our motivating context, coaching 
entering engineering students in how to use sketches to 
communicate.  We then summarize CogSketch, the sketch 
understanding system we are using as a platform, and the 
qualitative mechanics theories we are building upon.  We 
describe how we are embedding qualitative mechanics 
reasoning into sketch-based representations.  We identify 
and present solutions for three problems in carrying out 
this integration: identifying objects and forces, discovering 
regions of interaction between them, and understanding the 
effects of these interactions.   We describe some examples 
of our system’s reasoning, and close with related and 
future work. 

Helping Students Learn to Communicate 

Communication is an important skill for engineering 
students.  At Northwestern, 1

st
 and 2

nd
 year engineering 

students take Engineering Design and Communications, 
which teaches both skills in an integrated manner.  
Students working in teams of three or four tackle problems 
for real clients.  Examples include patients at the 
Rehabilitation Institute in Chicago, who need new tools to 
help them achieve everyday tasks, like chopping 
vegetables or trimming their nails, despite physical 
handicaps.  Students build prototypes of their designs to 
explore particular issues, with regular feedback from 
potential users.  Conversations with instructors revealed 
that one significant problem they had was helping students 
learn to use their sketches to communicate ideas, both 
within the team and to clients.  We are creating a sketch-
based system to address this problem. 

The idea of the Design Buddy, as we are calling it, is to 
be a “crash test dummy” for students to practice explaining 
their designs.  They will sketch their ideas, explain the 
parts, what they are made of, their intended behaviors, and 
the intended functional roles of the parts.  The system will 
reason through the possible behaviors itself, based on its 
understanding of qualitative mechanics, materials, and 



everyday actions.  It will compare its predictions of 
behaviors with the student’s intended behaviors, and ask 
the student questions about discrepancies.  These may 
include the student not mentioning some critical aspect of 
the behavior in their explanation, or predicting a behavior 
that the system does not think is possible.  This is a very 
challenging task, for three reasons: (1) The qualitative 
mechanics reasoning must be very general and robust.  The 
design projects change constantly, and a wide range of 
problems arise.  (2) The interface must be both sufficiently 
natural to not be a distraction, and must incidentally help 
the student learn to explain things in terms that practicing 
engineers would use.  (3) The coaching software must have 
enough strategies to provide students with effective help in 
learning how to think about their particular design and the 
design process itself.  This paper focuses on a particular 
aspect of the problem (1), namely, doing robust qualitative 
mechanics reasoning in a sketch-based environment. 

Background 

We briefly review the relevant aspects of CogSketch, 
our sketch understanding system, and prior work on 
qualitative mechanics.   

CogSketch 

The platform we are using is CogSketch, a publicly 
available sketch understanding system built on the 
nuSketch architecture (Forbus et al. 2004).  CogSketch is 
an open-domain system.  Most sketch understanding 
systems equate understanding ink with classifying it as a 
symbol drawn from a fixed vocabulary of items.  By 
contrast, nuSketch systems treat recognition as a catalyst, 
not a necessity.  Pieces of ink (called glyphs) can be 
labeled by the user with concepts drawn from a large 
underlying knowledge base

1
.  CogSketch automatically 

computes a number of visual relationships between glyphs, 
such as topological relationships (using RCC8 (Cohn, 
1996)) and positional relationships (e.g., above, left, etc.).  
CogSketch can also analyze the ink within a glyph, 
identifying straight-line segments within the ink, corners, 
and so forth.   

Annotation glyphs are used to provide additional 
information about other glyphs.  Examples of annotation 
glyphs include applied forces, axes of rotation, and centers 
of mass.  Arrows are automatically recognized when 
drawing annotation glyphs, so that, for example, the 
orientation and position of application of force can be 
automatically computed. 

                                                 
1
 We use the contents of OpenCyc, containing over 58,000 

concepts, plus our own group’s extensions for qualitative 

reasoning and analogy. 

Qualitative Mechanics 

Our model of qualitative mechanics is based on work done 
by Nielsen (1989) and Kim (1993).  Nielsen’s work 
represents direction and orientation in terms of qualitative 
vectors (q-vectors).  For a 2-d space, there are 8 
translational q-vectors (right, up, left, down and one for 
each quadrant in between) and two rotational q-vectors 
(clockwise and counter-clockwise). All forces/torques and 
movements are expressed in these directions. 
 Objects are represented as sets of surfaces.  Each surface 
has a parent object, a direction outward from the object 
(surface normal) and a direction towards the center of 
rotation of the object.  Representations for translational and 
rotational freedom and constraint are used to state if/when 
an object can move or rotate.  Forces and motion are 
transmitted from object to object through their surface 
contacts, with the net force and net motion determining the 
final motion of the object in a given state.   
 Nielsen’s representations supported envisionment of a 
variety of mechanical systems, including clocks (Forbus et 
al 1991).  Kim’s work adds several more representations to 
Nielsen’s, including notions of bounded stuff and flow 
fields.  This enabled Kim’s system to reason about non-
rigid bodies.  The end result was a system which could 
understand lift pumps, laminar flow over surfaces, and 
automobile engines.  However, neither of these systems 
dealt with hand-drawn inputs.  Kim’s system assumed 
predicate calculus input representations.  Nielsen’s system 
could accept as input scanned images of parts, and 
automatically simplify the configuration space it computed 
to handle noise.  For example, it was able to change 
resolution to see a gear train as having only one degree of 
freedom, despite noise in the scanned input.  However, 
scanned photographs are far more accurate than hand-
drawn sketches, making hand-drawn sketches an even 
harder problem.  Adapting these qualitative mechanics 
ideas to work with hand-drawn sketches is the challenge 
this paper addresses. 

In this paper, we restrict ourselves to a subset of 
qualitative mechanics, namely rigid-body mechanics 
involving 2D polygonal bodies.  This is an important first 
step, because it allows for a wide variety of test cases while 
requiring only a subset of the qualitative mechanics. 

Interpreting Rigid-Body Sketches 

In this section we begin with an overview of the three main 
problems we encountered when integrating qualitative 
mechanics with a sketch understanding system.  We 
explain our solutions to these problems through our 
system.  This includes an overview of the sketching 
process, an explanation of how the sketch is translated into 
a qualitative representation, and how inference is used to 
answer questions about the sketched system.   



Issues with Integrating Sketched Input 

The three main problems we encounter when interpreting 
rigid-body sketches are: identifying objects and forces, 
discovering regions of interaction between them, and 
understanding the effects of these interactions.  The first 
problem has often been approached before using 
recognition.  However, in a completely open domain (even 
limited to two-dimensional polygons) this is not an option.  
Rather, we must make do with other clues that a human 
would understand from looking at a sketch.  This includes 
the knowledge that arrows are not objects themselves but 
rather information that describes or affects the objects in 
the sketch. 
 Identifying how objects in a sketch interact has been 
approached by annotations—for instance, specifying 
objects be drawn with terminals connecting them.  In a 2-d 
rigid-body system the “terminals” are surface contacts.  At 
first this appears trivial, but as demonstrated in Figure 1 
work must be done to disambiguate the exact nature of the 
interaction in a surface contact.  As Nielsen (1988) 
showed, the decomposition of a surface into qualitatively 
distinct regions depends upon mechanical constraints 
beyond just the surface shape. 
 
  
 
 
 
 
 
 
 
 
 
 

 
 

 
 The problem of understanding the effects of these 
interactions is more easily solved if the representation 
generated by the first two steps provides the appropriate 
qualitative decomposition of surfaces.  Next we explain 
how we help users generate sketches, how we construct the 
decompositions of surfaces, and how qualitative mechanics 
is applied to these representations to answer questions 
about the sketched mechanism. 

The Sketch 

The user draws the forces and objects of their mechanism 
as CogSketch glyphs.  They label the glyphs with concepts 
from its knowledge base.  Our system looks for four labels 
of glyphs in particular:  
 RigidPhysicalObject 

Because we are working in a rigid-body domain, this 
category identifies all objects of interest. 

 FixedPhysicalObject 
This category represents objects that are completely 

constrained from moving or rotating (e.g. the surface 
of the earth, walls). 

 ForceArrow 
Force arrows are used to indicate external forces 
acting on the system.  This includes global forces such 
as gravity. 

 RotOrigin 
An annotation glyph, marking the point around which 
its parent object is free to rotate.  An object with a 
RotOrigin is prevented from translating in all 
directions.  

 From a user interface perspective this might seem like a 
lot of required labeling.  However, our system makes some 
simplifying assumptions. First, we take advantage of 
CogSketch’s arrow recognition and assume any two or 
three stroke arrow glyph is a ForceArrow.  Any annotation 
glyph that is not an arrow is assumed to be a RotOrigin for 
its parent glyph.  Finally, all remaining glyphs are assumed 
by default to be RigidPhysicalObject.  Thus the only 
specific labeling required of the user is the annotation 
glyph distinction and labeling fixed objects as 
FixedPhysicalObject. 
 After they are done drawing their sketch, the user can 
perform any of the following queries: 

 Will object x move? 
 Will object x rotate? 
 What forces are on object x? 
 Is the sketched system stable? (Will any object 

move?) 
Performing a query begins the translation process. 

 

Translation to QM Representation 

When prompted with a query, the system begins 
interpreting the sketch.  It is here we solve the first two of 
the three problems addressed in this paper: identification of 
objects, forces, and their properties, and discovering 
regions of interaction.   
 
Identifying Objects Forces, and their Properties. The 
first step is to know what objects and forces are depicted in 
the sketch, and determine their specific properties.  For 

 
Figure 2: Blocks in a raw sketch (top left) are 

decomposed into idealized edges (bottom right), 

simplifying surface contact detection. 

 
Figure 1: Slightly different positions of contact allow 

very different motions. 

 



forces, these properties include direction and the objects 
they directly affect.  For each object this includes 
identifying the surfaces of that object, and determining 
whether the object is fixed, fixed-axis, or free to move.  If 
the object is fixed-axis then its center of rotation must be 
located. 
 First we check the labeling for each glyph in the sketch 
to see if they are a rigid object and/or a fixed rigid physical 
object. This gives us the fixed property.  Then, each glyph 
representing a rigid object is decomposed into edges 
(Figure 2), and each edge becomes reified as one or more 
surfaces in our predicate representation.  Every surface 
also has a normal vector pointing outward from the object 
and a q-vector towards the object’s axis of rotation. The 
system is limited to processing polygons, so every edge 
will be a line segment.  Thus we can infer that each edge 
will have only one normal but may have multiple vectors 
towards the axis of rotation.  Since the edge is a line 
segment there will be up to five surfaces per edge.  The 
cases of one, two, and three edges are demonstrated in 
Figure 3. 

 
 If the axis of rotation is not given in the sketch, we 
assume a uniform density and choose the center of area of 
the shape as the axis of rotation.  While multiple axes of 
rotation may exist over the course of a mechanism’s 
operation, our system currently only analyzes one instant 
of time.  Thus, we choose the axis active at the current 
moment indicated by the sketch and ignore the others. 
 Having finished with objects, we move on to forces. The 
force represented by each force arrow in the sketch is 
reified as either a force or a torque. If the force is global 
then a force is reified with a qvector matching the direction 
of the arrow.  If the force arrow is on a specific surface 
then whether it creates a force or torque depends on the 
OriginDir of that surface.  If the arrow is the inverse of its 
surface normal then a force is applied, otherwise a torque 
is applied in the appropriate direction.  In Figure 3 
applying a leftward force arrow to the top-right surface 
would create a counter-clockwise torque.  Applying the 
same force arrow to the surface just below that would 
create a leftward force. 

 If the force arrow is an annotation glyph, a force or 
torque is added for each object that glyph annotates.  If it is 
not an annotation glyph, the force is added for all objects in 
the sketch.  This allows for global forces such as gravity to 
be input easily.   
 
Discovering Regions of Interaction.  This problem entails 
finding all surface contact relationships.  This is done by 
first identifying all rigid objects which may be in contact.  
This step is straightforward since CogSketch automatically 
computes topological relations for each pair of glyphs in 
the sketch.  For each pair of intersecting or connected 
objects, their edges are checked pairwise for contact.  If 
two edge are nearly parallel, in close proximity to each 
other, and overlap by a significant amount (that is, not 
merely in a line one after another), they are considered in 
contact.  If the edges contain multiple surfaces, the overlap 
is calculated and surface contact is only reified for the two 
surfaces which contain share the midpoint of the overlap.    
 Once all of the surfaces, surface contacts, and forces 
have been identified, the system is ready to make the 
inferences required to answer the user’s query. 

Answering User Queries 

After the qualitative representation is complete, the system 
begins finding the answer to the user’s query.  We now are 
at the problem of understanding the effects of the 
interacting regions.  The user query is passed to our 
backchainer, whose rules are an implementation of QM 
theory.  These rules are written as Horn clauses in which 
the first statement is the consequent and the conjunction of 
the remaining statements is the antecedent.  Some of the 
rules are listed here: 
 
Constraining translation for fixed objects: 
(<== (transConstraint ?obj ?dir) 

     (isa? obj FixedPhysicalObject)) 

 
Determining motion constraint in a particular half-plane: 
(<==(sufficientlyConstrained ?obj ?dir) 

   (transConstraint ?obj ?dir1) 

   (transConstraint ?obj ?dir2) 

   (transConstraint ?obj ?dir3) 

   (openHalfPlane ?dir ?dir1) 

   (openHalfPlane ?dir ?dir2) 

   (openHalfPlane ?dir ?dir3) 

   (different ?dir1 ?dir2 ?dir3)) 

An open half-plane is defined in Nielsen’s work as the set 
of qvectors within 90 degrees of a given direction, 
excluding those at exactly 90 degrees.  So for direction 
Left, the open half-plane would contain directions Quad1 
and Quad4 but not Up or Down.  The above rule defines 
“sufficiently constrained” in a direction if motion is 
constrained in all directions in that direction’s half-plane. 
 
 
 
 

 
Figure 3: Straight edges of objects can be divided 

into up to five qualitative surfaces, each with a 

different q-vector in the direction of the axis of 

rotation. 



Tranferring constraint through surface contacts: 
(<== (transConstraint ?obj1 ?dir) 

   (hasSurface ?obj1 ?s1) 

   (hasSurface ?obj2 ?s2) 

   (surfaceContact ?s1 ?s2) 

   (surfaceNormal ?s1 ?sn) 

   (sufficientlyConstrained ?obj2 ?sn) 

   (openHalfPlane ?sn ?dir)) 

Object 1 cannot move in direction dir if object 2 is 
constrained in all directions in that dir’s half-plane.  
Otherwise object 2 can move in one of those directions, 
allowing object 1 to move in dir. 
 
Freedom is the absence of constraints: 
(<== (transFreedom ?obj ?dir)                       

   (isa ?obj RigidOb) 

     (isa ?dir 2DQVector) 

     (evaluate ?x  

      (CardinalityFn  

     (TheClosedRetrievalSetOf ?dir    

        (transConstraint ?obj ?dir)))) 

     (equals ?x 0)) 

 
Force + Freedom causes motion: 
  (<== (transMotion ?obj ?dir) 

        (force ?obj ?dir) 

        (transFreedom ?obj ?dir)) 

The force predicate here is the net force on the object.  In 
the current version this must be specified by the user when 
the direction of the net force is ambiguous.  
 
Transfer of translation across surfaces: 
(<== (transMotion ?obj2 ?d2)         

   (hasSurface ?obj1 ?s1))) 

    (hasSurface ?obj2 ?s2))) 

   (surfaceContact ?s1 ?s2))) 

   (surfaceNormal ?s2 ?sn))) 

   (inverseVector ?sn ?invsn)) 

   (openHalfPlane ?invsn ?d1)) 

   (transMotion ?obj1 ?d1)) 

   (openHalfPlane ?invsn ?d2)) 

   (transFreedom ?obj2 ?d2))) 
This rule stipulates conditions in which object 2 will move 
because of contact with another moving object,  object 1.  
The openHalfPlane relation means that the two directions 
are within 90 degrees of each other.  This allows an object 
to transfer motion through multiple directions if necessary. 
 
Force applied to a surface via surface contact: 
(<== (forceApplied ?s ?sn ?obj1) 

   (force ?obj1 ?dir) 

   (hasSurface ?obj1 ?s1) 

   (surfaceContact ?s1 ?s) 

   (surfaceNormal ?s1 ?sn) 

   (openHalfPlane ?sn ?dir)) 

 
 
 

Force applied to a surface causing force on object: 
(<== (force ?obj ?dir) 

     (hasSurface ?obj ?s) 

     (forceApplied ?s ?dir ?c)) 

Forces are also translated through other objects.  In 
general, every force applied through a surface contact gets 
applied to the next object as a translational force if both of 
the following conditions hold:  

1) The object is free to translate. 
2) The inward normal of the contact surface points 

towards the object's axis of rotation. 
In the version presented here, it is up to the user to resolve 
ambiguities in the forces.  The work in progress includes 
rules that try to find the resultant vector of a set of forces, 
and resolve ambiguities by asking the user which forces 
are larger or by using the magnitude field of the force 
annotation in CogSketch. 
 Torque propagation is not yet implemented in the 
current version of the system but it will follow the same 
principles.  These and other qualitative mechanics 
principles are all defined as rules.  By backchaining 
through these rules, the system deduces what forces are 
acting on objects and whether they will move.   
 
 
 
 
 
 
 
 
 
 
 

Examples 

Here we present some examples that the system is 
currently able to handle.  In the following figures the 
system has already idealized and segmented the edges of 
the objects, making them appear straighter than a typical 
free-hand sketch and colored by edge. 
 

 
The example shown in Figure 4 is based on an equivalent 
one in Nielsen’s work.  The sketch contains a ramp with 
two blocks stacked one upon another and one arrow 
pointing downward, drawn off to the left.  The arrow is not 
an annotation glyph, and the ramp is labeled as a 
FixedPhysicalObject.  When the user asks for the motion 
of all the objects in this sketch, the system begins to build 
its QM representation.  First, each of the three non-arrow 
glyphs is decomposed into their respective edges, which 
become their surfaces. Since the force arrow is not 
annotating a specific glyph, its downward force is assumed 
to be affecting all glyphs in the sketch. 
 Next, the system searches for surface contacts by 
checking each pair of objects for contact or overlap.  Using 

 
Figure 4: Two free blocks stacked on a fixed ramp.  

The arrow on the right represents a global 
downward force affecting all three objects.  The 

result is the small triangular block moves down and 
right (quad 4) and the square block moves down. 

 



the topological relations calculated by CogSketch, the 
system finds overlap between the ramp and the triangular 
block and between the triangular block and the square.  For 
both pairs it performs a line-line proximity comparison 
between their surfaces to find the surface contacts.   
 
 
 
 
 
 
 
 

Tower remains immobile in the presence of a 

gravitational force. 
 
 
 
 
 
 
 

 
 With the surface contacts reified and the forces applied, 
the system begins backchaining to find any motion that 
each object possesses at the moment pictured.  The ramp is 
a FixedPhysicalObject so it is stationary.  The square 
block has a downward force on it, and because the 
triangular block is not completely constrained from 
moving in the downward half-plane, the square block will 
begin moving downward.  The triangular block has a 
downward force and is free to move in the down-right 
direction; consequently, it does.  Adding a stop block to the 
above example (see Figure 5) prevents the triangle from 
moving, and thus prevents the square block from moving.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Figure 6 shows more transfer of motion constraints.  The 
constraint is propagated upward from the fixed base to the 
topmost block.  If the user were to draw this and query for 
motion, the system would return no motion.  In this way, 
one can test a design for stability. 

Related Work 

Our approach of using shape edge decomposition, RCC8 
relations, line-line proximity and overlap calculation is a 
novel solution to the problem of discovering and analyzing 
surface interactions between rigid bodies.  Kurtoglu and 
Stahovich (2002) used line-line and other  proximity pairs 
in a system to identify the type of connection between two 
sketched objects, with the goal of classifying those objects 
in categories such as rigid body or electric motor.  Our 
system goes two steps further for rigid bodies, breaking 
them down into their individual surfaces and then 
determining exactly how the position and size of an 
overlap of two surfaces affects their motions. 
 Prior sketching systems for mechanical reasoning have 
relied on human input for the analysis of surface contacts.  
The QM theory on which our system is based had full 
propositional representations as its input.  (Nielsen 1989; 
Kim, 1993) Later systems such as SketchIT (Stahovich 
et.al. 1998) required the designer to mark the important 
surfaces and build state machines describing their 
interactions.  In the example in Figure 4 SketchIT would 
require the user to highlight the contact surfaces. 

Progress has also been made in the area of automatically 
recognizing the objects in sketches (Alvarado & Davis, 
2004; Kurtoglu & Stahovich, 2002).  By eliminating the 
need for extra human input we have moved closer to a 
sketch-understanding system that can reason deeply about 
hand-drawn sketches. 

Discussion and Future Work 

This work represents a first step towards fully embedding 

qualitative mechanics in systems that reason with hand-

drawn sketches.  This required tackling the problems of 

identifying objects, forces, and their properties; 

discovering the interactions between said objects and 

forces; and finally, computing the exact effects of these 

interactions.  The advances which enabled us to do this 

include using a combination of shape decomposition, 

RCC8 relations, and line-line proximity and overlap 

calculation, allowing us to identify the different surfaces of 

two-dimensional objects, their areas of contact, and 

compute the consequences of those interactions. 
 Our goal is to have a complete, robust qualitative 
mechanics reasoner that can operate over a wide range of 
hand-drawn sketches.  We see two key next steps.  First, 
handling curved surfaces is important for many kinds of 
designs.  This presents new challenges to segmentation.  
Second, the system currently only reasons about 
instantaneous force/motion transfers.  Reasoning about 
motion over time, including automatically deducing 
plausible changes in contacts (cf. Nielsen 1988), is also 
important.  Longer term, we plan to extend the system to 
handle 3D shapes, flexible bodies, laminar flow situations, 
and fluids as well as rigid bodies. 

 
Figure 6: A stable tower of blocks on a fixed 

platform. 

 

 
Figure 5: The two free blocks (Figure 4) are now 

constrained by an additional block, labeled as fixed. 
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