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Abstract 
We present models of various elements of a plant that 
involves the transportation of lumped material. An 
application context is provided by a project on diagnosing 
disturbances in food packaging plants and, more 
specifically, bottling plants. While there exist models of 
flow of homogeneous matters, such as liquid material in a 
hydraulic system, based on simultaneous equations of 
Kirchhoff/Ohm type, in our project we need to cope with 
non-negligible transportation time of objects and capture 
phenomena like the tailback of units (if transportation is 
blocked) or the propagation of gaps in the flow of units. 
Because the application context requires compositionality of 
the model, i.e. local, context-free models of the individual 
transportation elements, we are also facing the problem that 
whether or not a single element produces an output flow (or 
accepts an input flow) cannot be determined solely by the 
model of this element, but only through modeling the 
interaction with the subsequent element, which may block 
the output (or the previous one not providing the input). 
This issue is addressed by modeling the potential of an 
existing flow distinctly from the actual occurrence of a flow, 
an idea which also can enhance models of continuous flow. 

1. Introduction 

Modeling the flow of some matter in a system is quite 
widespread in model-based systems, e.g. in model-based 
diagnosis of hydraulic or pneumatic systems. At least 
under certain simplifying assumptions, mathematical first 
principles models exist, and it appears to be 
straightforward to abstract them into adequate input to a 
model-based problem solver.  
Typically, such models assume that the flowing matter is 
continuous and homogeneous and does not have to be 
modeled as an object or in its detailed structure. And they 
usually incorporate the analogies to Kirchhoff’s and Ohm’s 
Laws, which leads to simultaneous equations that imply 
instantaneous propagation of pressure and disregard time 
needed by the matter to be transported through the system. 
There are classes of application domains that involve a 
flow of objects through a plant and, hence, suggest the use 
of some flow model, but require dropping some of the 
simplifying assumptions mentioned. One instance of this 
class is given by food packaging plants, which are subject 
to a diagnosis project we are carrying out, and, more 

specifically, by bottling plants, which we will use as an 
example in this paper. Such plants involve streams of 
objects of different types, bottles, crates, and pallets being 
the most prominent ones. On the one hand, modeling the 
transportation of individual objects is prohibitive or 
useless. On other hand, the abovementioned flow models 
of a homogeneous matter fail to capture essential features, 
such as gaps in the flow or the creation of a tailback by 
some blockage and its propagation through the plant in 
finite time. Furthermore, an inflow and outflow of a single 
transportation element of a line cannot definitely be 
predicted by a local model of this element, because they 
depend also on the supply of the previous element and the 
intake capacity of the following one, resp. As a 
consequence, we had to develop a model that  

• includes transportation times,  
• covers interrupted flows, 

• handles the exchange of flows between neighboring 
elements appropriately. 

The paper focuses on presenting a base model addressing 
the requirements (section 3), its validation through 
simulation (section 4) and a qualitative diagnosis model 
obtained from it (section 5). The diagnosis engine will be 
presented in a separate paper. 
The following section presents an application context of 
this work, namely bottling plants 

2. An Application Domain: Bottling Plants 

Food packaging at industrial scale is carried out in high 
output packaging lines consisting of specific machines and 
conveyors. There are different machines for specific 
packaging tasks, such as primary packaging of food or 
beverages (e. g. with foil packs, pouches, or containers), 
secondary packaging (boxes, multipacks, crates, etc.), and 
tertiary packaging (e. g. pallets or displays). Additionally, 
machines for de-palletizing and unpacking of returnable 
bottles, cleaning, inspection and sorting out improper 
objects may be involved. Plant constellations are 
configured using one machine of a specific type or several 
ones in parallel. Machines of different types are connected 
by conveyors. Because of the high speeds and output rates 
(up to 100.000 packages per hour), machines and 



conveyors are failure-sensitive with an availability degree 
of 92-98 percent. 
As a specific example for packaging plants, our project 
considers bottling plants for beverages (e.g. the one shown 
in Fig 1).  
In order to fill beverages into returnable bottles, the 
material flows of pallets, crates, and bottles (plus labels, 
glue, etc.) need to be coordinated. This leads to complex 
line configurations comprised of machines that remove 
crates from pallets and bottles from crates, process, inspect, 
or sort objects, and package different types of objects (Fig. 
2 shows an abstract, but typical example). 
To prevent oxygen intake ore microbiological 
contaminations of the beverage, the filling process should 
not be interrupted. Therefore transportation by consecutive 
machines needs to be decoupled. Otherwise, each 
individual failure would inevitably cause downtime of the 
entire plant: In particular, this would stop the filling 
process and decrease the efficiency of the entire 
production. To prevent this, the conveyors of bottling 
plants are designed as transporting buffers like the abstract 
bottle conveyor shown in Fig. 3. 
Transporting buffers perform two tasks. One is to carry the 
objects from one machine to the next one. The other is to 
store objects in order to be able to compensate for a 
downtime of the upstream machine and to prevent the 
immediate propagation of a tailback in case of a downtime 
of the downstream machine. In addition, the machines 
located upstream and downstream w.r.t. the filling machine 
work with higher output rates than the filler. This enables 
full upstream buffers and receptive downstream buffers to 
compensate for short downtimes of single machines.  
These design principles help achieving a continuous 
operation of the filling machine. However, in practice, they 

cannot guarantee avoidance of unwanted idle time of the 
filler, and (unplanned) downtime of the plant can lie in the 
range of 10-30 percent. 
Machine failures of significant duration, gaps caused by a 
large number of objects being sorted out, stoppages caused 
by toppled or jammed objects, or just mistakes of the 
operators result in downtime of the filling machine and 
decrease the availability of the entire plant. Because of the 
interlaced flows of the various object types, time offsets, 
and the large scale of the plants, the reasons for such plant 
downtimes can be difficult to identify by the plant 
operators, particularly since their number has been 
progressively reduced over the past years. In consequence, 
bottle filling and packaging industries is highly interested 
in an automated diagnosis tool for their plants. 
There are a number of requirements and challenges to 
automated diagnosis raised by this application task. A 
fundamental economical condition is the fact that many of 
the potential end users, e.g. breweries, are small or medium 
enterprises, which could not afford spending many 
resources on the establishment or adaptation of a tailored 
diagnosis system for their plant. Another practical 
requirement is to cheaply accommodate frequent changes 
in the structure of the line, due to rearrangement or 
addition of machines. Both issues suggest a model-based 
solution to diagnosis (see [Struss 08]), which allows 
performing adaptation by simply (re-)specifying the plant 
structure.  
Additional arguments for such a solution stem from the 
facts that usually a plant is a combination of machines 
from various manufacturers with different instrumentation 
and available data and that there may be temporarily 
missing data due to technical problems. This requires a 
flexible solution that derives the best diagnosis from 
whatever data is available (in contrast, for instance, to 
decision trees based on a fixed set of observables).  
Heterogeneity and changes of the set of machines also 
establishes a requirement on the model: firstly, it has to be 
machine-centered and compositional; secondly, it has to 
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Figure 2. Generic structure of a bottling plant for returnable 
bottles 

 

Figure 1. Conveyors of a bottling plant for returnables 

 

Figure 3. A three step transporting buffer for bottles 



be stated at a level of abstraction that covers types of 
machines, independently of specificities and the 
manufacturer. 
Besides these fundamental characteristics, the model has to 
be capable of properly predicting the propagation of gaps 
in the stream of objects (potentially causing a lack in 
supply to subsequent machines) and tailbacks caused by 
blockages, as well the propagation of special features and 
deficiencies of the transported objects, which may be 
caused by improper performance of one machine (e.g. 
improper cleaning) and may affect the (mis-)behavior of 
another element downstream (e.g. an inspection machine).  
The available data is inherently incomplete and imprecise. 
Even balance equations do not necessarily hold, because 
bottles may have been removed by an operator (for 
inspection or because they blocked the flow) or simply 
have fallen off the belt.  

3. Models of Transportation Elements 

3.1 Previous Work 
The only similar work we are aware of (except for discrete-
event-simulation models used for validation of the control, 
which do not lend themselves easily to model-based 
diagnosis) is in the domain of transport of paper in a 
copier. [Gupta-Struss 95] presents a process-oriented 
model, and [Fromherz et al. 03] develop a component-
oriented model for control generation. Both models are 
compositional, but focus on the motion of individual 
sheets, rather than the more abstract perspective of flow of 
objects.  

3.2 Modeling Assumptions 
We first list the most important assumptions underlying the 
transportation models presented here, which are fulfilled in 
our project domain (under normal conditions), but should 
also apply to a much broader class of problems. 

• The transported objects are rigid bodies with fixed spatial 
extensions and are not significantly deformed through 
transportation.  

• They are transported with a fixed orientation (like crates), 
or the orientation does not affect transportation times 
significantly (e.g. due to a symmetric cross-section, as 
for bottles). 

• There is no interaction among the objects or between 
objects and the components that has a significant impact 
on the transportation process (such as bouncing). 

• Objects can move only in the direction of the motion of 
the transportation means (or not at all), although not 
necessarily with the same speed. 

3.3 A Model of a Transportation Element with 
Buffer 
In order to present the essentials of the modeling approach, 
we consider some sort of archetype of model, which can be 

specialized or extended to accommodate other kinds of 
machines. This is a machine that 

• has one input and one output with vin, vout being the 
respective speeds of the means for transportation (e.g. 
belts), 

• possibly transforms or modifies one kind of object (as, 
for instance, cleaning of bottles), but does not 
amalgamate several objects to form a new one, 

• has a buffer with a (constant) capacity C. 
The process of buffering the objects can be fairly random, 
as illustrated by the bottle conveyor in Figure 3, where 
bottles may gather in bulks. However, it is assumed, that 
(under normal behavior) no object is prevented from 
approaching the output unless it is blocked by other objects 
ahead, waiting for output. For instance, within the bottle 
conveyor, its shape and several parallel belts with different 
speeds ensure that bottles are not left in some corner, but 
pushed towards the “ ideal”  fastest belt, if there is space.  
The intuition behind the model can be best described in 
terms of three fundamental concepts and five “behavior 
rules” , each of which is first introduced informally and 
then turned into equations. As stated before, one of the 
problems to be solved stems from the fact that a local 
machine model in isolation cannot determine whether an 
actual flow occurs at its input and output. But it can and 
has to express the limits on the machine’s potential to take 
in or output objects. This is reflected by 

Concept 1 The potential input and output flow, in.qpot 
and out.qpot, represent the maximal flow the machine can 
accept or generate, dependent on its internal state. 

The actual flows are represented by two different 
variables, in.qact and out.qact. The first restriction is 
determined by 

Rule 1 The potential input flow is given by the input 
speed of the transportation element, unless the buffer is 
full. In this case, it cannot be higher than the actual output 
flow. 

In the mathematical model (see Fig. 4), this rule is 
formalized by equation 1, where d denotes the diameter of 
the object cross-section and B is the filling degree of the 
buffer (in terms of number of objects).  It involves the 
assumption that an actual outflow generates the potential 
for intake instantaneously, which is not true in practice 
and, hence, another reason for expressing tolerance 
intervals with values and time. Note that we take all speeds 
and flows as positive, as their sign is determined by their 
association with the intrinsic direction of the transportation 
element. Computing B is straightforward: 

Rule 2 The change in the total number of buffered objects 
is determined by the actual input and output flows.   

The respective equation 2 indicates that B will be 
computed by integrating the difference of the actual flows. 
Setting up the model fragments for the potential output 
flow is based on the second key idea:  



Concept 2 Bout denotes the number of buffered output 
objects at time t, i.e. the number of objects that can 
possibly be subject to output at this time.  

Before we clarify this crucial concept, we use its intuitive 
understanding and the third concept for formulating the 
rule for the potential output flow. 

Concept 3 The minimal transportation time, td, is the 
time an object needs to get directly from the input to the 
output, i.e. if it is not delayed by other objects that are 
piling up. 

In case of the bottle conveyor, this means that the bottle 
stays on the fastest (innermost) belt. 

Rule 3 The potential output flow is determined solely by 
the output speed, if there is more than one buffered output 
object. Otherwise, it cannot be higher than the actual input 
flow at the time reduced by the minimal transportation 
time.  

One should be aware that in the second case, each single 
object may (potentially) leave the output with the speed 
vout.  However, if the input flow at the time when it entered 
was lower, there will be a gap occurring after the output of 
the object, which makes the (average) flow lower than vout. 
As a special case, the potential output flow becomes zero, 
if the actual input flow was zero at the respective time. 
Again, the respective equation 3 in Figure 4 formalizes 
this. Computing Bout also involves the minimal 
transportation time td. If an object entered the 
transportation element later than time t - td, it cannot 
possibly reach the output at time t and, hence, cannot 
become part of the buffered output objects. If it entered 
earlier, it may or may not have already left the output 
before t, depended on how the actual output flow reduced 
Bout. This consideration is captured by 

Rule 4 The change in the number of buffered output 
objects at time t is determined by the actual input flow at 
time t - td diminished by the actual outflow at time t. 

Hence, also Bout is obtained by integration according to 
equation 4, which completes the model of the 
transportation element with buffer. Note, that Bout is not 
necessarily the number of objects that form a contiguous 
pile in front of the output. It could be less, because the last 
objects that joined the pile entered later than t - td. 

3.4 Interaction of Transportation Elements 
What remains to be done is determining the actual flows 
from the potential flows of connected machines. This 
interaction is captured by a model of a generic connector 
used for connecting all types of transportation elements. 
The respective rule and equation 5 (Fig. 4) are 
straightforward: 

Rule 5 The actual output flow of a machine is limited by 
both its own potential output flow and the potential input 
flow of the following machine (and equal to the actual 
input flow of this machine). 

3.5 Other Features and Transportation Elements 
The buffer model leaves options for different use and 
specialization. Due to lack of space, we can only sketch 
some important cases, many of which are fairly 
straightforward. For instance, vin and vout could be different 
as for the entire bottle conveyor shown in Figure 3. In this 
case, the minimal transportation time td needs to be 
calculated or estimated based on varying speeds along the 
“ ideal path”. Alternatively, the same conveyor can be 
considered as an aggregation of several buffers in series 
each with one unique speed on its fastest belt, which eases 
the computation of td. Note that the speeds are subject to 
control and may vary dynamically. Therefore, in case of a 
unique speed, td is determined by the equation 

( )�
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Transportation Element with Buffer 
State variables 
B(t)  # objects in buffer 
Bout(t)        # objects buffered for immediate output 
vin(t)         velocity of  input transportation means 
vout(t)         velocity of  output transportation means 
td(t)    minimal transportation time  

Parameters 
d0 diameter of transported object (in transportation plain) 
C  Capacity (as number of objects) 

Interface variables 
in.qpot(t)        potential inflow [objects/s] 
out.qpot(t)    potential outflow [objects/s] 
in.qact(t)      actual inflow [objects/s] 
out.qact(t)  actual outflow [objects/s] 
Equations 
(1) in.qpot(t) = vin(t) / d0         if B(t)<C  
  in.qpot(t) = min (vin(t) /d0, out.qact(t))    if B(t)=C 
(2) dB/dt = in.qact(t) - out.qact(t)  
(3) out.qpot(t)= vout(t) /d0         if Bout(t)�  1 
  out.qpot(t)= min (in.qact(t - td) , vout(t) /d0)   else 
(4) dBout(t) /dt = in.qact(t - td) - out.qact(t)  

Connector between Transportation Elements  
Interface variables 
TEn+1.in.qpot(t)     potential inflow of upstream element TEn+1 
TEn.out.qpot(t)    potential outflow of downstream element TEn 
TEn+1.in.qact(t)    actual inflow of upstream element TEn+1 
TEn.out.qact(t) actual outflow of downstream element TEn 

Equations 
(5) TEn.out.qact(t) = min (TEn+1.in.qpot(t) , TEn.out.qpot(t)) 
   TEn.out.qact(t) = TEn+1.in.qact(t)  

Figure 4. Equations of buffer and connector 



where l is the length of the “ ideal path”  and v(t) its time-
varying speed. 
Gates may sit at the input or output of transportation 
elements and are controlled in a binary manner in order to 
block the flow entirely i f necessary. This is captured by 
multiplying the respective speed with a factor of (1 – 
stategate), if stategate is 1 for a closed gate and 0 otherwise.  
While the bottle conveyor has no fixed relation between 
the speed of the belts and the motion of the bottles, which 
may slide, other machines, such as the filler, transport 
objects by locking them to certain sockets. This is obtained 
as a specialization of the buffer model with a unique speed 
and the capacity given by the number of sockets that can be 
occupied by objects while processing them. 
Some elements, such as the bottle cleaning unit, may have 
n inputs of the same type of objects). To accommodate this 
feature in the model, we simply have to replace the actual 
input flow by the sum of several individual input flows. 
Elements having several outputs (for objects of the same 
type) usually require some modeling of the mechanism that 
distributes the objects among the various outputs, e.g. 
evenly (i f possible) or according to some criteria. An 
example for the latter case is given by inspection machines 
ejecting objects that fail to pass some test. 
Another class of machines produces an output by 
combining objects of different kinds, as for instance the 
packaging of 20 bottles in a crate. The ratio of the number 
of different objects participating in this combination is 
usually not arbitrary, but exactly specified. This ratio links 
the various potential and actual inflows and the outflow, 
which is then limited by the “slowest”  input flow (relative 
to the ratio of the respective object type).  
The counterpart to this very generic combination element 
is the separation element, with unpackers being a 
subclass, in which the slowest actual outflow of a 
decomposition result limits the potential inflow of the 
composite object. 

This set of fairly generic model types turns out to cover the 
variety of machines in a bottling plant and, more generally, 
also in the food packaging plants that we encountered. 

4. Validation of the Base Model 

In order to validate the component models described above 
we implemented them as numerical simulation models in 
MATLAB/SIMULINK® [MathWorks 08] and compared 
the simulated behavior (using the solver \ode4" (Runge-
Kutta) with a fixed-step size of one second) with the one of 
real plants. 
Every component was modeled using the equations 
introduced above and tested in isolation to check whether it 
was adequate of and stated in a context-independent 
manner, which is a prerequisite for compositionality. In a 
second step, a model of a complete plant was configured 
using the validated components. 
In testing the individual components, values of single 
parameters and variables were varied, and the response of 
the simulated behavior was monitored. For example, the 
predicted changes in the buffered material B of a 
component for different values of the input speed vin and 
the output speed vout are shown in Figure 5. It depicts that 
the buffer fills as long as the input speed is higher than the 
output speed (assuming a sufficient supply), whereas with 
the input speed reduced to its minimum 0.1 and the output 
speed being still high, the amount of buffered objects 
decreases. 
Because of the minimal transportation time, td, of the 
component, the buffer is not completely emptied, as long 
as there is input available. Furthermore, only the objects 
represented by the variable Bout determine the existence of 
an output flow. Another real characteristic behavior can be 
reproduced when increasing the input speed while 
maintaining the output speed constant. Although vin is still 

 

Figure 5. Plots showing the changes of the buffer (lower) in response to variation of input and output speeds (upper) 



higher than vout, the buffer filling degree remains constant 
after a certain time, because it is limited by the maximum 
capacity of the component.  
Similar results were achieved by testing the other 
component type models, providing evidence that the 
models capture the features relevant to the diagnostic task 
and do not violate context-independence. 
The second challenge was validation by comparing the 
simulated behavior of a plant model with the behavior of a 
real plant. Several test cases were constructed, based on 
real-world downtimes scenarios of the bottling plant whose 
topology is shown in Fig. 6.  
The simulated plant consists of a primary flow of bottles 
and a secondary object flow of crates. In one test case, the 
downtime propagation of a failure of the crate washer was 
simulated and analyzed. This failure interrupts both object 
flows. After some delay, missing input occurs at the crate 
packer. Also the unpacker stops at some point, due to its 
output being blocked. The details of the propagation of 
failure depend on the capacities and filling degrees of the 
various buffers connecting the machines. For instance, if 
the crate magazine is empty and all other buffers are filled 
with a sufficient degree, the lack of crates will rapidly 
reach the crate packer. This causes a blockage of the 
labeling machine and the bottle filler (because the packer is 
not able to process the bottles) before the lack of bottles in 
the primary flow (caused by the inoperable unpacker) 
reaches the filling machine. In contrast, if the crate 
magazine is completely full, the crate packer keeps 
working for some time, and the filling machine will be 
stopped due to a lack of bottles. 
Even for this complex scenario, the simulation model 
reproduces the behavior of the real world plant. Similarly, 
the characteristics of fault propagation occurring in real 
plants were predicted for other relevant scenarios. 

5. Abstraction to Qualitative Diagnosis 
Models 

Using the model presented above directly for diagnosis is 
not appropriate. Firstly, as for all numerical models, its 
accuracy is only a pretended one in many respects, e.g. in 
assuming conservation laws to hold and in ignoring the 
imprecision in the available data, e.g. when flows are 
determined via counters or the speed of belts. Secondly, the 
diagnostic task requires the analysis of qualitative, rather 
than arbitrarily small numerical deviations from the 
nominal behavior and, hence, needs to be addressed by an 
appropriate level of abstraction in the model. 
The level of model abstraction depends on the intended 
goal of the diagnosis: we first focused on “hard”  failures 
(stop of the filling machine, that is) caused by hard faults 
(blockage of another machine), which can be based on 
distinguishing zero from non-zero flow only. For capturing 
“soft”  faults (deviating behaviors) that lead, perhaps in 
combination, to a hard failure or a non-optimal behavior, a 
different model is required. 

5.1 Sign-based Absolute Model 
The total interruption of the flow requires distinctions 
between zero and non-zero flows only.  Sign abstraction of 
the numerical model yields the qualitative constraints on 
the variables shown in Fig. 7 (we omit equations (2) and 
(4), which are difficult or impossible to exploit because 
neither B(t) nor Bout(t) can be observed properly) together with 
the respective finite relations. (Remember that flows and speeds 
cannot be negative). 
The abstraction of combination elements (such as the crate 
packer) outlined in section 3.5 will include the application 
of the three model fragments of Fig. 7 to all individual 
inflows as well as a constraint simply stating the qualitative 
equality of all inflows (the ratio of the flows drops out, 
because it is a positive number): 
 [in1.qpot(t)] = [in2.qpot(t)] = … = [ink.qpot(t)]. 
This captures, for instance, the fact that one lacking input 
will stop all other inputs, as well. The dual applies to 
separation elements. 
This model has been validated using the diagnosis tool 
RAZ’R [Raz’ r 08] on several scenarios, including the one 
described at the end of section 4, which involves a fault in 
the washer. (Because the current version of RAZ’R does 
not support the required temporal indexing of the 
predictions, the temporal information was stripped off and 
cyclic prediction was prevented in order to avoid spurious 
inconsistencies due to different values occurring at 
different times). The model is consistent with a lack of 
crates for the packer, which propagates backwards to a 
potential stop of the unpacker, which in turn may be caused 
by the inoperability of the washer. 
We briefly demonstrate that the inferential power of the 
model suffices for handling the considered class of faults 
and failures despite its simplicity: assume that a 
transportation element TEn with a single speed, vin(t) = 

 

Figure 6. The structure of one of the test plants 



vout(t), produces an output, i.e. [TEn.out.qact(t)] = +,  but has 
no inflow, [TEn.in.qact(t)] = 0. Then the constraints yield: 

 [TEn.out.qact(t)] = + (5) �    [TEn.out.qpot(t)] = + 

  (3) �     [TEn.vout(t)] = [TEn.vin(t)] =+ 

 [TEn.out.qact(t)] = +  ∧  [TEn.vin(t)] = + 

  (1) �     [TEn.in.qpot(t)] = + 

 [TEn.in.qpot(t)] = +  ∧  [TEn.in.qact(t)] = 0 

  (5) �     [TEn-1.out.qpot(t)] = 0 

If TEn-1 is operational, which implies [TEn-1.vout(t)] = +, 
then  

 [TEn-1.out.qpot(t)] = 0  ∧ [TEn-1.vout(t)] = +  

  (3) �     [TEn-1.in.qact(t - td)] = 0 . 

This means, even without information about the buffers, 
the lack is propagated backwards across the models of 

correct elements (but will be consistent with a “block”  
mode, for instance) as expected.  

5.3 Qualitative Deviation Model 
The base model can also be used as the starting point for an 
abstraction that allows analyzing more subtle problems: the 
filling machines may not always be forced to stop 
operation, but, perhaps, run at reduced speed due to 
insufficient supply. For this purpose, the base model can be 
transformed into one that captures the propagation of 
deviations from some reference along the lines of [Struss 
04]). A deviation of a variable x is defined as  

 ∆ x = [xact – xref],  

i.e. the difference between the actual and some reference 
value, which may remain unspecified. Usually, the latter 
represents some optimal or nominal value. This definition 
plus the sign-based abstraction for deviation variables and 

Transportation Element with Buffer 
(1) ∆ in.qpot(t) = ∆ vin(t)  ∨ ∆ in.qpot(t) = ∆ out.qact(t) 
  
   ∆ in.qpot(t)  ∆ vin(t)  ∆ out.qact(t) 
       0     0       *    
       -     -       *  
       +     +       *   
       0     *       0  
       -     *       -  
      +      *      + 

(3) ∆ out.qpot(t) = ∆ vout(t) ∨ ∆ out.qpot(t) = ∆ in.qact(t - td) 

 
   ∆ out.qpot(t)  ∆ vout(t)  ∆ in.qact(t - td) 
       0     0       *    
       -     -       *  
       +     +       *   
       0     *       0  
       -     *       -  
      +      *      + 
 

Connector between Transportation Elements  
(5) ∆ TEn.out.qact(t) = ∆ TEn+1.in.qpot(t)  
  ∨  ∆ TEn.out.qact(t) = ∆ TEn.out.qpot(t) 
 
 ∆ TEn.out.qact(t) ∆ TEn+1.in.qpot(t) ∆ TEn.out.qpot(t) 
       0       0         *    
       -       -         *  
       +       +         *   
       0       *          0  
       -       *          -  
      +        *            + 

Figure 8. Qualitative deviation models of buffer and 
connector. ∆ x = [xact – xref]  is the qualitative deviation of a 
variable from a reference value (e.g. nominal or “ healthy”  

value). “ * ”  in a row represents “ no restriction”  and, hence, 
the entire row multiple tuples. 

Transportation Element with Buffer 
(1) [in.qpot(t)] = [vin(t)]         if C-B(t) > 0 
  [in.qpot(t)] = min ([vin(t)] , [out.qact(t)])  if C-B(t) = 0 
 
   [in.qpot(t)] [vin(t)] [out.qact(t)] [C-B(t)] 
       0   0     *       + 
       +   +     *       + 
       +   +     +       0 
       0   0     +       0 
       0   +     0       0 

(3) [out.qpot(t)] = [[vout(t)]           if Bout(t)-1� 0 
  [out.qpot(t)] = min ([in.qact(t - td)] ,[ vout(t)]) if Bout(t)-1<0 
 
   [out.qpot(t)] [ vout(t)] [in.qact(t - td)] [Bout(t)-1] 
       0    0     *       0 
       0    0      *       + 
       +    +      *       0 
       +    +      *       + 
       0    0      +      - 
         0    +      0      - 
       +    +      +      - 
 

Connector between Transportation Elements  
(5) [TEn.out.qact(t)] =  
          min ([TEn+1.in.qpot(t)] , [TEn.out.qpot(t)]) 
   [TEn.out.qact(t)] = [TEn+1.in.qact(t)]  
 
   [TEn.out.qact(t)]

  [TEn+1.in.qpot(t)] [TEn.out.qpot(t)] 
      0        0      + 
         0        +       0 
         +        +       + 
 
Figure 7. Sign-based qualitative models of buffer and 
connector. [x]  denotes the sign of x. “ * ”  in a row represents 
“ no restriction”  and, hence, the entire row multiple tuples 



dropping B(t) and Bout(t) transforms the base model into 
the deviation model of Fig. 8. Both the domain abstraction 
to signs and the projection that eliminates the buffer 
variables establish a true abstraction of the original model.  
Besides the analysis of reasons for suboptimal 
performance, such a model may be useful or even 
necessary for the diagnosis of filler stoppages, as well. The 
reason is that the filler may be stopped not because its 
inflow is zero for a long time interval, but because the 
available inflow is less than the flow requested by its 
speed, i.e. vin(t) /d0, and, hence, there is a gap in the supply 
and the filler is not supplied with a bottle for each socket, 
as required. 
This model has not yet been validated in the diagnostic 
setting. However, we provide again some evidence for its 
inferential power. The “soft version” of the previous 
example states that the output and the speed of TEn do not 
deviate, but its inflow is too low. We obtain 

 ∆ TEn.out.qact(t) = 0  ∧ ∆ TEn.vin(t) = 0 

  (1) �     ∆ TEn.in.qpot(t) = 0 

 ∆ TEn.in.qpot(t) = 0  ∧  ∆ TEn-1.out.qact(t) = - 

  (5) �     ∆ TEn-1.out.qpot(t) = - 

 ∆ TEn-1.out.qpot(t) = -  ∧  ∆ TEn-1.vout(t) = 0 

  (3) �     ∆ TEn-1.in.qact(t - td) = - , 

i.e. again, the deviation is propagated upstream.  

6. Summary and Outlook 

The validation has provided evidence that the models 
really capture the essential features of plant behavior we 
are interested in from a diagnostic perspective. However, 
we do not only have to cope with inaccurate values of 
quantities, such as flows, speeds etc. due to the actual 
process and the available measurements. Also the temporal 
inferences are not crisp. For instance, from zero output 
flow of a normally behaving machine during some time 
interval i1, an earlier time interval i0 can be inferred, in 
which zero input flow must have occurred. This means, in 
contrast to other temporal propagation schemes, the 
prediction cannot state that the flow was zero during the 
entire interval i0, but only that there exists a subinterval 
i’ 0 ⊆ i0 with zero flow, which has to be taken into account 
in the consistency check. Furthermore, propagation will 
lead to progressively larger time intervals, which prompts 
for an approach that uses observations interleaved with 
prediction to narrow down the intervals.  
There are also different types of diagnostic tasks, such as 
our current focus, off-line post-mortem diagnosis (through 
analysis of stored data), on-line post-mortem diagnosis, 
and predictive diagnosis. 
Finally, the project aims at a contribution to improving the 
general conditions through standardization of the data 
acquisition. Partners of the consortium are the originators 

of an existing standard that has now been widely accepted 
for bottling plants. This has now been extended on the one 
hand regarding data relevant to diagnosis and on the other 
hand generalizing it for food packaging plants. This will 
significantly improve the conditions for effective and 
easily adaptable diagnostic solutions. 
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