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Abstract 

We describe a method for constructing qualitative structural 
descriptions of hand-drawn sketches of 3D objects.  We use 
visual grouping and segmentation operations to extract 
edges and surfaces, and use line labeling with an extension 
of Malik’s (1987) junction catalog to identify three-
dimensional features in order to construct an orientation-
invariant symbolic representation. These symbolic 
representations can be used to identify corresponding 
surfaces and edges in two different sketches drawn in 
different perspectives of the same object.  The comparison 
process uses the Structure-Mapping Engine, with additional 
sketch-specific matching constraints. We evaluate our 
techniques with a sketch recognition task, using drawings of 
12 objects from an engineering design textbook.   

Introduction 

Representing and reasoning about human-drawn sketches 
presents an interesting problem for AI.  Sketches are a 
promising input modality for intelligent systems: people 
can often draw an object or spatial layout more easily than 
they can describe it.  However, every person’s drawing 
style is different, and most of us are not skilled artists.  
This makes accurate interpretation of sketches a difficult 
problem.  We have argued that one key to reasoning about 
sketches intelligently is the use of qualitative spatial 
representations (Forbus et al., 2001). The detailed, 
quantitative description of ink is laden with accidental 
information, whereas a qualitative representation of key 
features can concisely summarize the information that was 
meant to be conveyed. 
 Qualitative representations are particularly important for 
tasks where sketches are compared.  For example, a system 
comparing two users’ sketches of a bucket must contend 
with differences in width and orientation of the bucket’s 
sides, as well as the presence or absence of water. 
Qualitative representations of edges and relationships 
between edges can help a system identify commonalities in 
the sketches, such as the presence of an ellipse at the top, 
two straight edges along the sides, and a straight or curved 
edge at the bottom. 

 We use  CogSketch (Forbus et al., 2008), a publically 
available sketch understanding system

1
, to automatically 

derive qualitative spatial relations between objects in a 
sketch, as well as between edges within an object.  
Sketches are compared using the Structure-Mapping 
Engine (SME) (Falkenhainer, et al. 1986), a computational 
model of similarity and analogy. CogSketch and SME have 
been used together to accomplish several spatial reasoning 
tasks, including answering geometric Miller Analogy Test 
questions (Tomai et al., 2005), matching human 
performance on a subset of the Raven’s Progressive 
Matrices, a visually-based intelligence test (Lovett et al., 
2007b), and sketch recognition (Lovett et al., 2007a). In 
the sketch recognition task, the system was able to 
recognize sketches of 8 household objects, including a 
bucket and an oven, after being trained on only 2-6 
example sketches of each object.  In contrast, sketch 
recognition systems that rely on quantitative sketch 
representations often require at least an order of magnitude 
more training examples (e.g., Liwicki and Knipping, 2004; 
Sharon and van de Panne, 2006). 
 One significant limitation of the (Lovett et al., 2007a) 
system was that it required that all of the sketches of a 
given object be drawn from the same perspective.  Many of 
the qualitative relations used were orientation-dependent.   
Even a small rotation of a sketched object in 3D changes 
the relative positions of the edges and junctions and causes 
some to become occluded while others become visible, 
causing significant representation changes.   
 The key to correctly comparing sketches of objects 
drawn at different orientations is to identify and encode  
qualitative relations that remain constant across rotations in 
space. In this paper, we introduce our approach for 
constructing orientation-invariant representations of 3D 
objects.  Briefly, we begin by segmenting a sketch into 
edges and using closures among those edges to identify the 
surfaces of the object.  Edges are then classified via line 
labeling, using an extension of Malik’s (1987) junction 
catalog. The edge labels tell the system when an edge 
represents a corner between two surfaces and when it is an 
edge of one surface occluding the other. With this 
information, the system is able to construct a qualitative 
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representation of the spatial relations between edges and 
surfaces that remains relatively stable across rotations. 
 We start by briefly reviewing SME. The process of 
building qualitative sketch representations is explained 
next, followed by the sketch matching algorithm. We then 
evaluate the system via a recognition task run on a set of 
12 sketched objects from an engineering design textbook. 
Finally, we summarize related and future work.    

Comparison via Analogy 

Qualitative representations can be compared using the 
Structure-Mapping Engine (SME) (Falkenhainer et al. 
1986). SME is a cognitive model based on Gentner’s 
(1983) structure-mapping theory of analogy. SME takes as 
input two descriptions, a base and a target. Each 
description consists of a set of entities, attributes of 
entities, and relations. First-order relations directly relate 
two or more entities, while higher-order relations take 
other, lower-order relations as their arguments

2
. Given the 

two descriptions, SME finds one to three mappings 
between the base and target by aligning their common 
structure. Structural alignment is governed by the 
systematicity constraint, i.e., SME prefers mappings in 
which higher-order relations align.  
 Each mapping returned by SME contains: (1) a set of 
correspondences, or match hypotheses (mh’s) between 
elements (entities, attributes, and relations) in the base and 
elements in the target. (2) the structural evaluation score 
(SES), a measure of similarity. Mappings with greater 
systematicity, i.e., mappings in which higher-order 
relations are aligned, receive a higher SES. (3) candidate 
inferences, inferences carried over from the base to the 
target based upon their common structure. 

The Surface Extraction Algorithm 

Surfaces are identified in a sketch via a two-stage process 
(Figure 1). In the first stage, the rough sketch is segmented 
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arguments. 

into edges. In the second stage, edges are grouped together 
to form surfaces.    
 

Segmentation 

The representation system begins with a set of polylines, 
lists of points representing the lines sketched by the user.  
It does not assume that each polyline corresponds with one 
edge in the sketch. Rather, it begins by looking for 
connections between the polylines (Step 1). If two polyline 
endpoints are sufficiently close to each other, the polylines 
will be connected by a junction.  If one polyline’s endpoint 
is near the middle of another polyline, the second polyline 
will be split, and all three will be connected by a junction 
at the intersection point.  If two polylines intersect, they 
will be segmented into four connected polylines. The 
system searches for connections iteratively at multiple 
scales, beginning with a small distance threshold and 
increasing the threshold for endpoints that fail to connect 
to anything.  At the end of this process, any pairs of 
polylines that are connected by a junction containing only 
two polylines are joined together, since it is possible the 
user meant them to both be part of the same edge. The 
output of this process is a set of proto-edges, as well as 
junctions between proto-edges. 
 Proto-edges are then segmented to form the actual edges 
of the sketch (Step 2).  Possible segmentation points are 
identified by finding maximal derivates of the curvature of 
each proto-edge. We follow Lowe’s (1989) approach of 
parameterizing a proto-edge’s list of points to form x- and 
y-functions and convolving each function with a Gaussian 
and a derivative Gaussian to calculate the curvature at each 
point along the proto-edge.  This allows the system to 
modify the width of the Gaussian to look for changes in 
curvature at different scales, depending on the length of the 
proto-edge.  Once segmentation points are identified, they 
are evaluated by looking at the curvedness and relative 
orientation of the edge segments on either side of the point.   

 

Grouping 

Here connected edges are grouped together in order to 
identify the surfaces of the sketch.  All surfaces except the 
background possess an exterior, a closed cycle of edges 
that surrounds them.  However, not every cycle of edges 
corresponds to a surface. Our line labeling algorithm 
assumes that every edge represents a boundary between 
surfaces.  Therefore, only the minimal closures, the tightest 
possible cycles, correspond to surfaces in the sketch. 
 Our system simplifies the process of surface detection 
and line labeling by assuming that a given sketch 
represents only a single object.  It begins by finding the 
outer boundary of that object (Step 3).  This is done by 
shooting a ray from the center of the sketch outward and 
identifying the last edge hit by the ray, which must be an 
external edge.  The system then traces clockwise along the 
junctions between edges, always choosing the edge which 
is oriented the farthest in the clockwise direction, to 
determine the cycle of edges that make up the object’s 

Segmentation 

1) Identify junctions between polylines, segment 

polylines at junctions to form pseudo-edges. 

2) Segment pseudo-edges at discontinuities in 

curvature to form edges. 

Grouping 

3) Identify edge cycle that bounds the object. 

4) Identify surfaces within the object by finding 

minimal closures of edges. 

5) Repeat 3 & 4 for internal edges. 

Figure 1. The algorithm for finding surfaces 



outer boundary.  Next, the system traces both clockwise 
and counter-clockwise among the inner edges that connect 
to these external edges, in order to find both of the surfaces 
that meet along each edge (Step 4). 
 This method will find all surfaces for the set of edges 
that are connected to the outer boundary of the sketched 
object.  However, there may be other, internal sets of 
connected edges that do not connect to these edges.  These 
internal edges might represent a hole or protuberance on 
the object.  In order to find surfaces among the internal 
edges, the entire process is repeated, beginning with 
shooting out a ray to find an edge representing the exterior 
of the internal edges (Step 5).  Exterior internal edges are 
also marked for the larger surface in which the internal set 
of edges is found.   

Line Labelling 

Surface extraction returns a set of surfaces, along with the 
cycle of edges that bounds each surface. Line labeling is 
used to determine which of these edges are actually part of 
the surface and which edges are part of another surface that 
is occluding this surface. We use an extension of Malik’s 
(1987) line labeling algorithm that handles curved surfaces. 
This algorithm labels edges in a drawing as convex corners 
between surfaces, concave corners, occluding edges where 
one surface occludes another, and limb edges where a 
surfaces curves away from the viewer. A junction catalog 
specifies, for each type of junction, all possible 
combinations of labelings for the edges in it.  Constraint 
satisfaction is used to solve for all edge labels. 
 Malik’s (1987) algorithm and junction catalogue make 
several assumptions about the objects that are being 
interpreted. Unfortunately, the class of sketches we are 
examining, engineering design drawings, violate several of 
these assumptions. In the subsections that follow, we 
describe each of the assumptions that is violated and how 
we have adapted the junction catalog and labeling 
algorithm to deal with it. Figure 2 contains several example 
sketches. We will refer to specific junctions and surfaces 

within this figure by letter. Figure 3 shows the additions 
which were made to the junction catalogue. 
 

1) Trihedral surfaces 

The junction catalogue assumes that no more than three 
surfaces meet at any vertex. However, some of the design 
sketches considered contain a type of vertex made up of 
four surfaces, +-vertices. +-vertices are formed when two 
cuboids are adjacent but not quite aligned (see junction A 
in Figure 2). Though they are a meeting of four edges, they 
always appear in two-dimensional sketches as T-junctions 
(where two collinear edges are bisected by a third edge). 
We allow for these types of vertices by adding a new 
possible labeling for T-junctions, one in which instead of 
both collinear edges being occluding edges, one is an 
occluding edge and the other is a concave edge.  
 

2) Piecewise smooth surfaces 

Malik’s algorithm assumes that surfaces curve smoothly. 
However, our design sketches often contain surfaces with a 
discontinuity in their curvature, where they change from 
being straight to being curved (see surface B). This type of 
surface has two effects. First, curved-L-junctions, where a 
straight edge and a curved edge meet, may appear between 
edges that lie along the exterior of these types of surfaces. 
We expanded the set of labelings for curved-L-junction to 
include all the labeling allowed for L-junctions (junctions 
between two straight edges) as well as one additional 
labeling in which both edges are convex (e.g., junction C). 
Second, there is a new type of junction, the curved-away-
L-junction (junction D), in which the orientations of the 
straight edge and the curved edge are discontinuous at the 
point where they meet. This junction appears where a 
surface (such as B) meets another surface at the point 
where it changes from straight to curve. Its only possible 
labeling is convex for one edge and concave for the other. 
 

3) No curved holes 

The existing junction catalogues contain no labellings to 

Figure 2. Four of the 12 objects sketched in CogSketch 



deal with circular holes. This is a problem for design 
sketches because objects are often designed to fit together 
around a cylindrical axle, so the objects will contain holes. 
Often these holes are drawn as a simple ellipse (junction 
E). Other times, they appear as curved-T junctions 
(junction F). Because the edge circling around a hole can 
vary between convex and occluding, our system simply 
assigns all edges around curved holes a new label, hole. 
 In theory, an ellipse drawn by the user might indicate a 
sphere or a ring, as well as a hole. Our system relies on the 
assumption that the user is sketching only one object. 
Thus, any interior ellipse must be a hole. Similarly, any set 
of connected interior edges whose bounding edges are 
connected by only curved-T-junctions must be a hole. In 
fact, if a hole is not quite circular, it may also contain 
curved-L-junctions (see junction G). Thus, curved-L-
junctions that are located along the bounding edges of an 
interior set of edges are reclassified as interior-L-junctions, 
and their edges can only be labeled as hole edges. In this 
example, a set of connected edges that actually do connect 
to the exterior edges are considered interior because all 
connections to the exterior edges are through T-junctions 
(junctions H and I), indicating that this is probably a set of 
interior edges that have been occluded by exterior edges. 

 

4) No accidental viewpoints 

Finally, traditional line labeling methods assume that 
drawings contain no accidental viewpoints, i.e., there are 
no junctions that are distorted by being viewed from just 
the wrong viewpoint. However, the design sketches 
contain two types of distortions. First, a viewpoint may 
place two junctions on top of each other, such that they 
appear to be a single junction at which four or more edges 
meet (junction J). Our system utilizes the simple expedient 
of ignoring any junction with more than three edges during 
labeling.   Second, two connected edges that are not 
collinear in three-dimensional space may happen to line up 
in the sketch such that they appear to be collinear, causing 
a three-edge junction with them and a third edge to appear 
to be a T-junction (junction K). Our system initially looks 
for a normal sketch labeling and then, if this fails, looks for 
a labeling in which at most one T-junction in the sketch is 
ignored. If this fails, it increases the number of ignored T-
junctions. In principle, this approach could result in a 
significant loss of efficiency, but in practice we have found 
there is never more than one or two distorted T-junctions. 
 

Dealing with ambiguity 

One weakness of the line labeling approach is that it can 
produce multiple consistent line labellings for a given 
sketch. Fortunately, the ambiguity can be decreased 
significantly by assuming that all the exterior edges of the 

object are occluding the background surface. However, 
there will still sometimes be a few possible labelings for 
some edges. In such cases, the system simply assumes that 
the first labeling found is correct. Unusual junction labels, 
such as the new T-junction labeling, are considered last to 
decrease the likelihood that they will be included if a 
simpler globally consistent labeling is available. 

Qualitative Representation 

The representations generated by the system contain an 
entity for each edge and each surface found in the sketch. 
In addition, they contain three types of qualitative spatial 
relations between these entities: corners along a surface, 
corners along an edge, and parallel surface relations. 
Corners are relatively local, and thus are represented as 
only first- or second-order relations. Parallel surface 
relations are more global, relating large parts of a sketch.  
 
Corners along a surface 
Every surface except the background has a cycle of edges 
that bound it. The edge labels tell the system which of 
these edges actually lie along the surface, rather than 
occluding the surface. For each pair of adjacent edges 
along a surface, the system asserts a relation describing the 
corner between them. Typically, corners are classified as 
convex or concave, although several additional 
classifications are used for corners that fall along unusual 
junctions (e.g., corners where a flat surface and a curved 
surface meet). Second-order relations are asserted to 
describing adjacent pairs of corners along a surface. See 
Figure 4 for a simple example. 
   
Corners along an edge 
Each edge labeled either convex or concave is a corner 
between two surfaces. Basic, first-order relations are 
asserted to describe these corners. 

Pseudo-junction  | Curved-T-junction   |    Interior-L-junction             

Curved-L-junction | Curved-away-L-junction    |   T-junction 

Figure 3. Additions to the junction catalogue  (+ convex, - 

concave, ^ occluding, ^+ hole, unlabelled means unknown) 



 To simplify the process of representing holes, a single 
entity is constructed for a given hole, regardless of the 
number of surfaces actually found within the hole. Then, 
each of the edges along the hole is represented as a 
boundary between the surrounding surface and the hole. 
Second-order relations are included to represent pairs of 
adjacent edges that lie around a hole. However, none of the 
edges lying within the hole are represented. Thus, anything 
located along the inside of a hole or visible through the 
hole is ignored in the present representation scheme.  
 
Parallel surface relations 
The corner relations described thus far are fairly local. An 
object may contain a large number of similar-looking 
corners. A representation consisting only of a large number 
of similar, low-level relations causes problems for SME, 
because SME does not perform an exhaustive search for an 
optimal mapping. Thus larger-scale, higher-order relations 
are required to anchor the match. 
 We rely on a heuristic about parallel edges in drawings 
to infer higher-order structure. As Varley, Martin, and 
Suzuki (2005) observe, parallel lines in a drawing usually 
correspond to parallel edges in the three-dimensional 
object being drawn. Therefore, if in the sketch one planar 
surface has a corner A and another planar surface has a 
corner B such that the first edge of corner A is parallel to 
the first edge of corner B and the second edge of corner A 
is parallel to the second edge of corner B, then the two 
surfaces are almost certainly parallel in three dimensions. 
 The system asserts three types of parallel surface 
relations for surfaces that possess corners with pairs of 
parallel edges. The first is for cases when one of the pairs 
of edges is actually collinear. In this case, the evidence for 
the surfaces being parallel is greatest because collinear 
lines in a drawing nearly always correspond to collinear 
edges in three dimensions (Varley et al., 2005). The system 
asserts a higher-order relation stating that the colinearity of 
the two edges supports the two surfaces being parallel. 
 The second type of relation is for cases where the 
parallel surfaces are each connected to the same third 
surface by parallel edges. A higher-order relation is 
asserted stating that the fact that the two corners between 
the parallel surfaces and the third surface are parallel 
supports the belief that the two surfaces are parallel. 
 The third type is for all other cases where two surfaces 
have corners with pairs of parallel edges. This is the 
weakest evidence for parallel surfaces, so the system 
simply asserts a first-order parallel surface relation. 
 All of the parallel surface relations described thus far  
are symmetric relations. A symmetric relation is one in 
which the order of the arguments can be reversed. For 
example, the relation (parallelSurfaces A B) is identical 
to (parallelSurfaces B A). This representation makes no 
commitment about the relative position or orientation of 
the edges and surfaces being related. 
 People clearly use some orientation-specific information 
when comparing images, so we include orientation-specific 
higher-order relations to aid SME in finding the correct 

mapping. The system asserts an orientation-specific 
version of the parallel surface relation for collinear edges. 
Thus, while a mapping can be found between any pair of 
collinear edge relations, there will be a stronger mapping in 
cases where the relative position and orientation of the 
edges and surfaces is maintained. 

Comparing Shapes 

Given two sketches in CogSketch, our system generates 
qualitative representations of them as described above and 
uses SME to find a mapping between them. Given the 
nature of sketches, we add two additional constraints to the 
matching process.  A mapping is coherent if edges that are 
connected in the base sketch correspond to edges that are 
connected in the target sketch. In cases where two edge 
mh’s (match hypotheses between an edge in the base and 
an edge in the target) in a mapping are inconsistent, e.g., 
the two base edges are connected while the two target 
edges are unambiguously disconnected, both edge mh’s are 
removed from the mapping, along with any mh’s between 
relations that take those edges as arguments. In cases 
where an edge mh is inconsistent with a large number of 
other edge mh’s, the entire SME match will be rerun with 
the constraint that the faulty edge mh must be excluded 
from all mappings. This may allow SME to find a superior 
mapping that it failed to find on the first run because of 
being distracted by incoherent edge matches. 
 A mapping is complete if every edge mh that can be 
included in the mapping without violating mapping 
coherence is included. This completeness criterion is very 
useful when SME is being used to recognize when two 
sketches are of the same object.  Incomplete edge mh’s are 
identified by finding where both the base edge and the 
target edge connect to additional edges that have been left 
out of the mapping. Note that if, say, only the base edge 
connects to additional edges, there is no problem; it may be 
that the corresponding edges are occluded in the target. 
Completeness is implemented by forbidding incomplete 
edge mhs to appear in mappings, along with any mhs 
between relations that take those edges as arguments. 

Evaluation 

We evaluated our system using a set of 12 sketched objects 
taken from an exercise in an introductory engineering 

Figure 4. Typical corner relations 
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Edge-A     Edge-B       Edge-C 
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design textbook (Lueptow, 2007). In the exercise, sets of 
four objects were shown in each of three sketching 
perspectives (isometric, oblique, and orthographic), and 
students were asked to sketch the objects in the other two 
perspectives. These sketches were chosen because they 
were a beginning exercise, and hence not overly 
complicated, while still being representative of the kinds of 
3D sketches engineers would be required to make.  
 We tested the system’s ability to recognize oblique and 
isometric perspective sketches of the same object. The 
orientations of these two perspectives are about 45˚ 
different, resulting in a number of differences in the 
sketches.  See Figure 2 for examples of four objects; the 
top row are sketched at an oblique perspective, and the 
bottom row are sketched at an isometric perspective. 
 A design student was asked to draw all 12 objects in 
both an oblique and and an isometric perspective. Then, 
one of the experimenters sketched each of the objects in 
CogSketch, using the student’s sketches as a guide but 
making corrections where the student had made mistakes, 
such as forgetting to draw a hole in a surface.  
 Our system computed qualitative representations for all 

24 sketches. Because only one of the objects contained 

internal edges that were not part of a hole, those edges 

were left out of the representation. Each sketch was then 

compared to the other 23 sketches using SME. The 

measures of success were (a) whether the line labeling 

algorithm provided correct results on each sketch, and (b) 

whether a given sketch’s closest match was the other 

sketch of the same object, based on SME’s mapping score.  
 
Results 
The output of the line labeling algorithm yielded correct 
results on all edges for 22 of the 24 sketches.  The other 
two sketches showed minor mistakes; typically the correct 
labeling had also been found, but it was not the first 
labeling returned by the algorithm. 
 The recognition evaluation showed an overall success 
rate of 20/24, or 83%. That is, for 20 of the 24 sketches, 
the best mapping found by SME was with the other sketch 
of the same object.  Because there were 22 distractor 
sketches, chance performance would be 1/23, or 4%. 
 The four mistakes occurred due to the failure of the 
system to recognize either of the perspectives of two of the 
objects. The rightmost object in Figure 2 is one of these. 
These objects contained partially curved edges that proved 
difficult to segment consistently. Also, the other problem 
object was rotated enough to make a single surface in one 
perspective appear to be two surfaces in the other.   

Related Work  

Most work on sketch recognition focuses on recognizing 

objects drawn at the same orientation. Nonetheless, 

recognition systems with quantitative representation 

systems often require 20-50+ training examples per 

category (Liwicki & Knipping, 2005; Sharon & van de 

Panne, 2006), or can only be trained and evaluated on 

sketches by a single user (Sezgin & Davis, 2007).  

 Previous work on constructing three-dimensional 

representations of sketches has tended to focused on 

recovering frontal geometry (Varley et al., 2005; Kaplan & 

Cohen, 2006), i.e., the distance to each point along the 

visible surfaces. Because these distances change as 

surfaces rotate in space, it is unclear whether this type of 

representation would be useful in comparing two sketches 

of an object at different orientations.  

Discussion and Future Work 

In the evaluation, our system demonstrated that it was 
capable of constructing qualitative spatial representations 
sufficiently robust to recognize two sketches of an object 
drawn at different orientations, despite a large number of 
distracters. Of the 12 objects being represented, only 2 
caused problems for the system. We believe that these 
initial results are promising, and that they show it is 
possible, using qualitative representations, to accurately 
compare different-looking sketches of the same object, at 
least within the domain of engineering design. 
 However, the system possesses a major limitation. 
While it allows for a few junction distortions due to the 
viewpoint, it assumes the user has sketched the object 
nearly perfectly, allowing a globally consistent line 
labeling to be found.  This is fine for experts, but for naïve 
users, a more flexible line labeling strategy will be needed.  
The probabilistic line labeling algorithm developed by 
Varley et al. (2004) is one promising option. 

Being able to construct robust qualitative 3D 
representations from 2D sketches and identify them via 
comparison will facilitate using sketch understanding in a 
variety of applications. These include education in 
engineering, geoscience, and other highly spatial areas, 
plus support tools for creative conceptual design.  We hope 
to explore these in future work. 
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