

Building and Comparing Qualitative Descriptions of

Three-Dimensional Design Sketches

Andrew Lovett Morteza Dehghani Kenneth Forbus
{andrew-lovett@, morteza@cs., forbus@}northwestern.edu

Qualitative Reasoning Group, Northwestern University

Abstract

We describe a method for constructing qualitative structural
descriptions of hand-drawn sketches of 3D objects. We use
visual grouping and segmentation operations to extract
edges and surfaces, and use line labeling with an extension
of Malik’s (1987) junction catalog to identify three-
dimensional features in order to construct an orientation-
invariant symbolic representation. These symbolic
representations can be used to identify corresponding
surfaces and edges in two different sketches drawn in
different perspectives of the same object. The comparison
process uses the Structure-Mapping Engine, with additional
sketch-specific matching constraints. We evaluate our
techniques with a sketch recognition task, using drawings of
12 objects from an engineering design textbook.

Introduction

Representing and reasoning about human-drawn sketches
presents an interesting problem for AI. Sketches are a
promising input modality for intelligent systems: people
can often draw an object or spatial layout more easily than
they can describe it. However, every person’s drawing
style is different, and most of us are not skilled artists.
This makes accurate interpretation of sketches a difficult
problem. We have argued that one key to reasoning about
sketches intelligently is the use of qualitative spatial
representations (Forbus et al., 2001). The detailed,
quantitative description of ink is laden with accidental
information, whereas a qualitative representation of key
features can concisely summarize the information that was
meant to be conveyed.
 Qualitative representations are particularly important for
tasks where sketches are compared. For example, a system
comparing two users’ sketches of a bucket must contend
with differences in width and orientation of the bucket’s
sides, as well as the presence or absence of water.
Qualitative representations of edges and relationships
between edges can help a system identify commonalities in
the sketches, such as the presence of an ellipse at the top,
two straight edges along the sides, and a straight or curved
edge at the bottom.

 We use CogSketch (Forbus et al., 2008), a publically
available sketch understanding system

1
, to automatically

derive qualitative spatial relations between objects in a
sketch, as well as between edges within an object.
Sketches are compared using the Structure-Mapping
Engine (SME) (Falkenhainer, et al. 1986), a computational
model of similarity and analogy. CogSketch and SME have
been used together to accomplish several spatial reasoning
tasks, including answering geometric Miller Analogy Test
questions (Tomai et al., 2005), matching human
performance on a subset of the Raven’s Progressive
Matrices, a visually-based intelligence test (Lovett et al.,
2007b), and sketch recognition (Lovett et al., 2007a). In
the sketch recognition task, the system was able to
recognize sketches of 8 household objects, including a
bucket and an oven, after being trained on only 2-6
example sketches of each object. In contrast, sketch
recognition systems that rely on quantitative sketch
representations often require at least an order of magnitude
more training examples (e.g., Liwicki and Knipping, 2004;
Sharon and van de Panne, 2006).
 One significant limitation of the (Lovett et al., 2007a)
system was that it required that all of the sketches of a
given object be drawn from the same perspective. Many of
the qualitative relations used were orientation-dependent.
Even a small rotation of a sketched object in 3D changes
the relative positions of the edges and junctions and causes
some to become occluded while others become visible,
causing significant representation changes.
 The key to correctly comparing sketches of objects
drawn at different orientations is to identify and encode
qualitative relations that remain constant across rotations in
space. In this paper, we introduce our approach for
constructing orientation-invariant representations of 3D
objects. Briefly, we begin by segmenting a sketch into
edges and using closures among those edges to identify the
surfaces of the object. Edges are then classified via line
labeling, using an extension of Malik’s (1987) junction
catalog. The edge labels tell the system when an edge
represents a corner between two surfaces and when it is an
edge of one surface occluding the other. With this
information, the system is able to construct a qualitative

1

http://www.spatialintelligence.org/projects/cogsketch_inde

x.html

representation of the spatial relations between edges and
surfaces that remains relatively stable across rotations.
 We start by briefly reviewing SME. The process of
building qualitative sketch representations is explained
next, followed by the sketch matching algorithm. We then
evaluate the system via a recognition task run on a set of
12 sketched objects from an engineering design textbook.
Finally, we summarize related and future work.

Comparison via Analogy

Qualitative representations can be compared using the
Structure-Mapping Engine (SME) (Falkenhainer et al.
1986). SME is a cognitive model based on Gentner’s
(1983) structure-mapping theory of analogy. SME takes as
input two descriptions, a base and a target. Each
description consists of a set of entities, attributes of
entities, and relations. First-order relations directly relate
two or more entities, while higher-order relations take
other, lower-order relations as their arguments

2
. Given the

two descriptions, SME finds one to three mappings
between the base and target by aligning their common
structure. Structural alignment is governed by the
systematicity constraint, i.e., SME prefers mappings in
which higher-order relations align.
 Each mapping returned by SME contains: (1) a set of
correspondences, or match hypotheses (mh’s) between
elements (entities, attributes, and relations) in the base and
elements in the target. (2) the structural evaluation score
(SES), a measure of similarity. Mappings with greater
systematicity, i.e., mappings in which higher-order
relations are aligned, receive a higher SES. (3) candidate
inferences, inferences carried over from the base to the
target based upon their common structure.

The Surface Extraction Algorithm

Surfaces are identified in a sketch via a two-stage process
(Figure 1). In the first stage, the rough sketch is segmented

2
 The notion of order in structure-mapping differs from traditional

logic: it concerns depth of structure. Entities have order zero; the

order of a statement is one plus the maximum order of its

arguments.

into edges. In the second stage, edges are grouped together
to form surfaces.

Segmentation

The representation system begins with a set of polylines,
lists of points representing the lines sketched by the user.
It does not assume that each polyline corresponds with one
edge in the sketch. Rather, it begins by looking for
connections between the polylines (Step 1). If two polyline
endpoints are sufficiently close to each other, the polylines
will be connected by a junction. If one polyline’s endpoint
is near the middle of another polyline, the second polyline
will be split, and all three will be connected by a junction
at the intersection point. If two polylines intersect, they
will be segmented into four connected polylines. The
system searches for connections iteratively at multiple
scales, beginning with a small distance threshold and
increasing the threshold for endpoints that fail to connect
to anything. At the end of this process, any pairs of
polylines that are connected by a junction containing only
two polylines are joined together, since it is possible the
user meant them to both be part of the same edge. The
output of this process is a set of proto-edges, as well as
junctions between proto-edges.
 Proto-edges are then segmented to form the actual edges
of the sketch (Step 2). Possible segmentation points are
identified by finding maximal derivates of the curvature of
each proto-edge. We follow Lowe’s (1989) approach of
parameterizing a proto-edge’s list of points to form x- and
y-functions and convolving each function with a Gaussian
and a derivative Gaussian to calculate the curvature at each
point along the proto-edge. This allows the system to
modify the width of the Gaussian to look for changes in
curvature at different scales, depending on the length of the
proto-edge. Once segmentation points are identified, they
are evaluated by looking at the curvedness and relative
orientation of the edge segments on either side of the point.

Grouping

Here connected edges are grouped together in order to
identify the surfaces of the sketch. All surfaces except the
background possess an exterior, a closed cycle of edges
that surrounds them. However, not every cycle of edges
corresponds to a surface. Our line labeling algorithm
assumes that every edge represents a boundary between
surfaces. Therefore, only the minimal closures, the tightest
possible cycles, correspond to surfaces in the sketch.
 Our system simplifies the process of surface detection
and line labeling by assuming that a given sketch
represents only a single object. It begins by finding the
outer boundary of that object (Step 3). This is done by
shooting a ray from the center of the sketch outward and
identifying the last edge hit by the ray, which must be an
external edge. The system then traces clockwise along the
junctions between edges, always choosing the edge which
is oriented the farthest in the clockwise direction, to
determine the cycle of edges that make up the object’s

Segmentation

1) Identify junctions between polylines, segment

polylines at junctions to form pseudo-edges.

2) Segment pseudo-edges at discontinuities in

curvature to form edges.

Grouping

3) Identify edge cycle that bounds the object.

4) Identify surfaces within the object by finding

minimal closures of edges.

5) Repeat 3 & 4 for internal edges.

Figure 1. The algorithm for finding surfaces

outer boundary. Next, the system traces both clockwise
and counter-clockwise among the inner edges that connect
to these external edges, in order to find both of the surfaces
that meet along each edge (Step 4).
 This method will find all surfaces for the set of edges
that are connected to the outer boundary of the sketched
object. However, there may be other, internal sets of
connected edges that do not connect to these edges. These
internal edges might represent a hole or protuberance on
the object. In order to find surfaces among the internal
edges, the entire process is repeated, beginning with
shooting out a ray to find an edge representing the exterior
of the internal edges (Step 5). Exterior internal edges are
also marked for the larger surface in which the internal set
of edges is found.

Line Labelling

Surface extraction returns a set of surfaces, along with the
cycle of edges that bounds each surface. Line labeling is
used to determine which of these edges are actually part of
the surface and which edges are part of another surface that
is occluding this surface. We use an extension of Malik’s
(1987) line labeling algorithm that handles curved surfaces.
This algorithm labels edges in a drawing as convex corners
between surfaces, concave corners, occluding edges where
one surface occludes another, and limb edges where a
surfaces curves away from the viewer. A junction catalog
specifies, for each type of junction, all possible
combinations of labelings for the edges in it. Constraint
satisfaction is used to solve for all edge labels.
 Malik’s (1987) algorithm and junction catalogue make
several assumptions about the objects that are being
interpreted. Unfortunately, the class of sketches we are
examining, engineering design drawings, violate several of
these assumptions. In the subsections that follow, we
describe each of the assumptions that is violated and how
we have adapted the junction catalog and labeling
algorithm to deal with it. Figure 2 contains several example
sketches. We will refer to specific junctions and surfaces

within this figure by letter. Figure 3 shows the additions
which were made to the junction catalogue.

1) Trihedral surfaces

The junction catalogue assumes that no more than three
surfaces meet at any vertex. However, some of the design
sketches considered contain a type of vertex made up of
four surfaces, +-vertices. +-vertices are formed when two
cuboids are adjacent but not quite aligned (see junction A
in Figure 2). Though they are a meeting of four edges, they
always appear in two-dimensional sketches as T-junctions
(where two collinear edges are bisected by a third edge).
We allow for these types of vertices by adding a new
possible labeling for T-junctions, one in which instead of
both collinear edges being occluding edges, one is an
occluding edge and the other is a concave edge.

2) Piecewise smooth surfaces

Malik’s algorithm assumes that surfaces curve smoothly.
However, our design sketches often contain surfaces with a
discontinuity in their curvature, where they change from
being straight to being curved (see surface B). This type of
surface has two effects. First, curved-L-junctions, where a
straight edge and a curved edge meet, may appear between
edges that lie along the exterior of these types of surfaces.
We expanded the set of labelings for curved-L-junction to
include all the labeling allowed for L-junctions (junctions
between two straight edges) as well as one additional
labeling in which both edges are convex (e.g., junction C).
Second, there is a new type of junction, the curved-away-
L-junction (junction D), in which the orientations of the
straight edge and the curved edge are discontinuous at the
point where they meet. This junction appears where a
surface (such as B) meets another surface at the point
where it changes from straight to curve. Its only possible
labeling is convex for one edge and concave for the other.

3) No curved holes

The existing junction catalogues contain no labellings to

Figure 2. Four of the 12 objects sketched in CogSketch

deal with circular holes. This is a problem for design
sketches because objects are often designed to fit together
around a cylindrical axle, so the objects will contain holes.
Often these holes are drawn as a simple ellipse (junction
E). Other times, they appear as curved-T junctions
(junction F). Because the edge circling around a hole can
vary between convex and occluding, our system simply
assigns all edges around curved holes a new label, hole.
 In theory, an ellipse drawn by the user might indicate a
sphere or a ring, as well as a hole. Our system relies on the
assumption that the user is sketching only one object.
Thus, any interior ellipse must be a hole. Similarly, any set
of connected interior edges whose bounding edges are
connected by only curved-T-junctions must be a hole. In
fact, if a hole is not quite circular, it may also contain
curved-L-junctions (see junction G). Thus, curved-L-
junctions that are located along the bounding edges of an
interior set of edges are reclassified as interior-L-junctions,
and their edges can only be labeled as hole edges. In this
example, a set of connected edges that actually do connect
to the exterior edges are considered interior because all
connections to the exterior edges are through T-junctions
(junctions H and I), indicating that this is probably a set of
interior edges that have been occluded by exterior edges.

4) No accidental viewpoints

Finally, traditional line labeling methods assume that
drawings contain no accidental viewpoints, i.e., there are
no junctions that are distorted by being viewed from just
the wrong viewpoint. However, the design sketches
contain two types of distortions. First, a viewpoint may
place two junctions on top of each other, such that they
appear to be a single junction at which four or more edges
meet (junction J). Our system utilizes the simple expedient
of ignoring any junction with more than three edges during
labeling. Second, two connected edges that are not
collinear in three-dimensional space may happen to line up
in the sketch such that they appear to be collinear, causing
a three-edge junction with them and a third edge to appear
to be a T-junction (junction K). Our system initially looks
for a normal sketch labeling and then, if this fails, looks for
a labeling in which at most one T-junction in the sketch is
ignored. If this fails, it increases the number of ignored T-
junctions. In principle, this approach could result in a
significant loss of efficiency, but in practice we have found
there is never more than one or two distorted T-junctions.

Dealing with ambiguity

One weakness of the line labeling approach is that it can
produce multiple consistent line labellings for a given
sketch. Fortunately, the ambiguity can be decreased
significantly by assuming that all the exterior edges of the

object are occluding the background surface. However,
there will still sometimes be a few possible labelings for
some edges. In such cases, the system simply assumes that
the first labeling found is correct. Unusual junction labels,
such as the new T-junction labeling, are considered last to
decrease the likelihood that they will be included if a
simpler globally consistent labeling is available.

Qualitative Representation

The representations generated by the system contain an
entity for each edge and each surface found in the sketch.
In addition, they contain three types of qualitative spatial
relations between these entities: corners along a surface,
corners along an edge, and parallel surface relations.
Corners are relatively local, and thus are represented as
only first- or second-order relations. Parallel surface
relations are more global, relating large parts of a sketch.

Corners along a surface
Every surface except the background has a cycle of edges
that bound it. The edge labels tell the system which of
these edges actually lie along the surface, rather than
occluding the surface. For each pair of adjacent edges
along a surface, the system asserts a relation describing the
corner between them. Typically, corners are classified as
convex or concave, although several additional
classifications are used for corners that fall along unusual
junctions (e.g., corners where a flat surface and a curved
surface meet). Second-order relations are asserted to
describing adjacent pairs of corners along a surface. See
Figure 4 for a simple example.

Corners along an edge
Each edge labeled either convex or concave is a corner
between two surfaces. Basic, first-order relations are
asserted to describe these corners.

Pseudo-junction | Curved-T-junction | Interior-L-junction

Curved-L-junction | Curved-away-L-junction | T-junction

Figure 3. Additions to the junction catalogue (+ convex, -

concave, ^ occluding, ^+ hole, unlabelled means unknown)

 To simplify the process of representing holes, a single
entity is constructed for a given hole, regardless of the
number of surfaces actually found within the hole. Then,
each of the edges along the hole is represented as a
boundary between the surrounding surface and the hole.
Second-order relations are included to represent pairs of
adjacent edges that lie around a hole. However, none of the
edges lying within the hole are represented. Thus, anything
located along the inside of a hole or visible through the
hole is ignored in the present representation scheme.

Parallel surface relations
The corner relations described thus far are fairly local. An
object may contain a large number of similar-looking
corners. A representation consisting only of a large number
of similar, low-level relations causes problems for SME,
because SME does not perform an exhaustive search for an
optimal mapping. Thus larger-scale, higher-order relations
are required to anchor the match.
 We rely on a heuristic about parallel edges in drawings
to infer higher-order structure. As Varley, Martin, and
Suzuki (2005) observe, parallel lines in a drawing usually
correspond to parallel edges in the three-dimensional
object being drawn. Therefore, if in the sketch one planar
surface has a corner A and another planar surface has a
corner B such that the first edge of corner A is parallel to
the first edge of corner B and the second edge of corner A
is parallel to the second edge of corner B, then the two
surfaces are almost certainly parallel in three dimensions.
 The system asserts three types of parallel surface
relations for surfaces that possess corners with pairs of
parallel edges. The first is for cases when one of the pairs
of edges is actually collinear. In this case, the evidence for
the surfaces being parallel is greatest because collinear
lines in a drawing nearly always correspond to collinear
edges in three dimensions (Varley et al., 2005). The system
asserts a higher-order relation stating that the colinearity of
the two edges supports the two surfaces being parallel.
 The second type of relation is for cases where the
parallel surfaces are each connected to the same third
surface by parallel edges. A higher-order relation is
asserted stating that the fact that the two corners between
the parallel surfaces and the third surface are parallel
supports the belief that the two surfaces are parallel.
 The third type is for all other cases where two surfaces
have corners with pairs of parallel edges. This is the
weakest evidence for parallel surfaces, so the system
simply asserts a first-order parallel surface relation.
 All of the parallel surface relations described thus far
are symmetric relations. A symmetric relation is one in
which the order of the arguments can be reversed. For
example, the relation (parallelSurfaces A B) is identical
to (parallelSurfaces B A). This representation makes no
commitment about the relative position or orientation of
the edges and surfaces being related.
 People clearly use some orientation-specific information
when comparing images, so we include orientation-specific
higher-order relations to aid SME in finding the correct

mapping. The system asserts an orientation-specific
version of the parallel surface relation for collinear edges.
Thus, while a mapping can be found between any pair of
collinear edge relations, there will be a stronger mapping in
cases where the relative position and orientation of the
edges and surfaces is maintained.

Comparing Shapes

Given two sketches in CogSketch, our system generates
qualitative representations of them as described above and
uses SME to find a mapping between them. Given the
nature of sketches, we add two additional constraints to the
matching process. A mapping is coherent if edges that are
connected in the base sketch correspond to edges that are
connected in the target sketch. In cases where two edge
mh’s (match hypotheses between an edge in the base and
an edge in the target) in a mapping are inconsistent, e.g.,
the two base edges are connected while the two target
edges are unambiguously disconnected, both edge mh’s are
removed from the mapping, along with any mh’s between
relations that take those edges as arguments. In cases
where an edge mh is inconsistent with a large number of
other edge mh’s, the entire SME match will be rerun with
the constraint that the faulty edge mh must be excluded
from all mappings. This may allow SME to find a superior
mapping that it failed to find on the first run because of
being distracted by incoherent edge matches.
 A mapping is complete if every edge mh that can be
included in the mapping without violating mapping
coherence is included. This completeness criterion is very
useful when SME is being used to recognize when two
sketches are of the same object. Incomplete edge mh’s are
identified by finding where both the base edge and the
target edge connect to additional edges that have been left
out of the mapping. Note that if, say, only the base edge
connects to additional edges, there is no problem; it may be
that the corresponding edges are occluded in the target.
Completeness is implemented by forbidding incomplete
edge mhs to appear in mappings, along with any mhs
between relations that take those edges as arguments.

Evaluation

We evaluated our system using a set of 12 sketched objects
taken from an exercise in an introductory engineering

Figure 4. Typical corner relations

adjacent corners

convex concave
 corner corner

Edge-A Edge-B Edge-C

First-Order

Relation

Entity

Second-Order

Relation

design textbook (Lueptow, 2007). In the exercise, sets of
four objects were shown in each of three sketching
perspectives (isometric, oblique, and orthographic), and
students were asked to sketch the objects in the other two
perspectives. These sketches were chosen because they
were a beginning exercise, and hence not overly
complicated, while still being representative of the kinds of
3D sketches engineers would be required to make.
 We tested the system’s ability to recognize oblique and
isometric perspective sketches of the same object. The
orientations of these two perspectives are about 45˚
different, resulting in a number of differences in the
sketches. See Figure 2 for examples of four objects; the
top row are sketched at an oblique perspective, and the
bottom row are sketched at an isometric perspective.
 A design student was asked to draw all 12 objects in
both an oblique and and an isometric perspective. Then,
one of the experimenters sketched each of the objects in
CogSketch, using the student’s sketches as a guide but
making corrections where the student had made mistakes,
such as forgetting to draw a hole in a surface.
 Our system computed qualitative representations for all

24 sketches. Because only one of the objects contained

internal edges that were not part of a hole, those edges

were left out of the representation. Each sketch was then

compared to the other 23 sketches using SME. The

measures of success were (a) whether the line labeling

algorithm provided correct results on each sketch, and (b)

whether a given sketch’s closest match was the other

sketch of the same object, based on SME’s mapping score.

Results
The output of the line labeling algorithm yielded correct
results on all edges for 22 of the 24 sketches. The other
two sketches showed minor mistakes; typically the correct
labeling had also been found, but it was not the first
labeling returned by the algorithm.
 The recognition evaluation showed an overall success
rate of 20/24, or 83%. That is, for 20 of the 24 sketches,
the best mapping found by SME was with the other sketch
of the same object. Because there were 22 distractor
sketches, chance performance would be 1/23, or 4%.
 The four mistakes occurred due to the failure of the
system to recognize either of the perspectives of two of the
objects. The rightmost object in Figure 2 is one of these.
These objects contained partially curved edges that proved
difficult to segment consistently. Also, the other problem
object was rotated enough to make a single surface in one
perspective appear to be two surfaces in the other.

Related Work

Most work on sketch recognition focuses on recognizing

objects drawn at the same orientation. Nonetheless,

recognition systems with quantitative representation

systems often require 20-50+ training examples per

category (Liwicki & Knipping, 2005; Sharon & van de

Panne, 2006), or can only be trained and evaluated on

sketches by a single user (Sezgin & Davis, 2007).

 Previous work on constructing three-dimensional

representations of sketches has tended to focused on

recovering frontal geometry (Varley et al., 2005; Kaplan &

Cohen, 2006), i.e., the distance to each point along the

visible surfaces. Because these distances change as

surfaces rotate in space, it is unclear whether this type of

representation would be useful in comparing two sketches

of an object at different orientations.

Discussion and Future Work

In the evaluation, our system demonstrated that it was
capable of constructing qualitative spatial representations
sufficiently robust to recognize two sketches of an object
drawn at different orientations, despite a large number of
distracters. Of the 12 objects being represented, only 2
caused problems for the system. We believe that these
initial results are promising, and that they show it is
possible, using qualitative representations, to accurately
compare different-looking sketches of the same object, at
least within the domain of engineering design.
 However, the system possesses a major limitation.
While it allows for a few junction distortions due to the
viewpoint, it assumes the user has sketched the object
nearly perfectly, allowing a globally consistent line
labeling to be found. This is fine for experts, but for naïve
users, a more flexible line labeling strategy will be needed.
The probabilistic line labeling algorithm developed by
Varley et al. (2004) is one promising option.

Being able to construct robust qualitative 3D
representations from 2D sketches and identify them via
comparison will facilitate using sketch understanding in a
variety of applications. These include education in
engineering, geoscience, and other highly spatial areas,
plus support tools for creative conceptual design. We hope
to explore these in future work.

Acknowledgements

This work was supported by NSF SLC Grant SBE-
0541957, the Spatial Intelligence and Learning Center
(SILC).

References

Falkenhainer, B., Forbus, K., and Gentner, D. 1986. The

Structure-Mapping Engine. In Proceedings of AAAI ’86.

Forbus, K., Usher, J., Lovett, A., Lockwood, K., and

Wetzel, J. 2008. CogSketch: Open-Domain Sketch

Understanding for Cognitive Science Research and For

Education. In Proceedings of Eurographics Sketch-Based

Interfaces and Modeling.

Forbus, K., Ferguson R., and Usher, J. 2001. Towards a

computational model of sketching. In Proceedings of

Intelligent User Interfaces.

Gentner, D. 1983. Structure-Mapping: A Theoretical

Framework for Analogy. Cognitive Science 7(2): 155-170.
Kaplan, M., and Cohen, E. 2006. Producing models

from drawings of curved surfaces. Workshop on Sketch-
Based Interfaces and Modeling.

Liwicki, M., and Knipping, L. 2005. Recognizing and

Simulating Sketched Logic Circuits. In Proceedings of the

9
th

 International Conference on Knowledge-Based

Intelligent Information & Engineering Systems, 588 – 594.

Lovett, A., Dehghani, M., and Forbus, K. 2007a.

Incremental Learning of Perceptual Categories for Open-

domain Sketch Recognition. In Proceedings IJCAI ’07.

Lovett, A., Forbus, K., and Usher, J. 2007b. Analogy

with Qualitative Spatial Representations Can Simulate

Solving Raven’s Progressive Matrices. In Proceedings of

the 29
th

 Annual Conference of the Cognitive Society.

Lueptow, R. M. 2007. Graphic Concepts for Computer

Aided Design. Upper Saddle River, NJ: Prentice Hall.

Malik, J. 1987. Interpreting Line Drawings of Curved

Objects. International Journal of Computer Vision 1: 73-

103.

Sharon, D., and van de Panne M. 2006. Constellation

Models for Sketch Recognition. In 3
rd

 Eurographics

Workshop on Sketch-Based Interfaces and Modeling.

Sezgin, T. M., & Davis, R. 2007. Sketch interpretation

using multiscale models of temporal patterns. IEEE

Computer Graphics and Applications 27(1): 28-37.

Tomai, E., Lovett, A., Forbus, K., and Usher, J. 2005. A

Structure Mapping Model for Solving Geometric Analogy

Problems. In Proceedings of the 27
th

 Annual Conference of

the Cognitive Science Society.

Varley, P. A. C., Martin, R. R., and Suzuki, H. 2005.

Frontal Geometry from Sketch of Engineering Objects: Is

Line Labelling Necessary? Computer-Aided Design 37:

1285-1307.
 Varley, P. A. C., Martin, R. R., and Suzuki, H. 2004.
Making the Most of Using Depth Reasoning to Label Line
Drawings of Engineering Objects. In Proceedings of the 9

th

ACM Symposium on Solid Modeling and Applications.

