
Learning Modeling Abstractions via Generalization

Matthew Klenk, Scott E. Friedman, Kenneth D. Forbus

Qualitative Reasoning Group, Northwestern University

21331 Sheridan Rd, Evanston, IL 60208 USA

{m-klenk, friedman, forbus}@northwestern.edu

Abstract

In domains with everyday scenarios, an important aspect of
model formulation concerns moving from broad
descriptions to the technical abstractions necessary for
effective problem-solving. We present a method for
learning how to make abstraction decisions from experience
via analogical generalization. Specifically, we generalize
abstraction decisions from worked examples, abstracting
away irrelevant information. When faced with a new
situation, our method compares the entities in the situation
with the generalizations, and makes its decision by using the
best match. We argue that the similarity score from the
comparison is an effective heuristic for judging the quality
of the modeling decision. Using textbook physics problems,
we show that our method can make accurate abstraction
decisions, and that these decisions improve as the system
gains experience.

Introduction

One of the important contributions of qualitative reasoning
has been formalizing the process of model formulation (cf.
Falkenhainer & Forbus 1991; Nayak 1994; Rickel & Porter
1994). Most model formulation work has focused on
ascertaining what levels of detail and which perspectives
should be used in a model, given a particular task. In
general, model formulation research has ignored the
problem of computing structural descriptions, i.e. moving
from the broad set of concepts used in everyday life to a
concise, technical vocabulary of abstractions that can be
used effectively for problem-solving. We use the term
participant abstraction to refer to the type of a participant
in a domain theory, and the term scenario entity to refer to
an entity within the everyday domain scenario. This work
addresses how decisions about participant abstractions can
be learned. Specifically, we use analogical techniques
from structure-mapping theory (Gentner 1983) to decide
how to represent everyday entities in a scenario model.
 The typical method for making these participant
abstraction decisions is as follows. Given a scenario and a
domain theory, one can use the type of each scenario entity
in an ontology to determine its appropriate participant
abstraction in the domain theory. For example, in the

ResearchCyc1 ontology, the collection Coin is a
specialization of the collection PartiallyTangible.
Consequently, we could write a rule stating that a
PartiallyTangible should be considered a PointMass in
a model. This rule-based approach is problematic for
several reasons. First, these rules would contain false
positives (e.g. a Lake, which is a PartiallyTangible,
should not be considered a point mass in most situations).
Second, participant abstraction decisions are very
contextual. While a coin falling off a building could be
considered a PointMass, the same coin spinning on a table,
in a rotational mechanics problem, should be a viewed as
an object with extent. Accounting for this necessary
contextual information greatly increases the complexity of
such rules. As noted by Falkenhainer and Forbus (1991),
modeling rules are very domain specific; that is, for each
new domain a knowledge engineer will have to construct a
new set of rules.
 We propose an alternative method that learns from
examples the necessary connections between everyday
scenario entities and participant abstractions to construct
scenario models. Our method uses psychological
simulations of analogical processing to learn these
participant abstraction decisions.

This paper uses physics problem solving to demonstrate
our method, but we believe it is applicable across a wide
range of domains. We begin by summarizing the
analogical processing components we use and our
representations of the physics domain. Next, we describe
how participant abstraction decisions can be learned from
examples, using generalization. We present experimental
results demonstrating the effectiveness of our method.
Finally, we close with a discussion of related work and
future work.

Background

Our approach to learning participant abstraction decisions
utilizes the SEQL generalization model (Kuehne et al.
2000). SEQL constructs generalizations incrementally via
analogical comparison using SME, the Structure-Mapping
Engine (Falkenhainer et al. 1989). For this work, the

1 http://research.cyc.com/ - a large scale effort to formalize

commonsense knowledge

generalizations are formed over example participant
abstraction decisions from physics problems. We begin
with an overview of the analogical processes utilized in our
method, and then we describe the participant abstractions
of our domain theory and physics representations.

Analogical Processes: SME and SEQL

We use Gentner’s (1983) structure-mapping theory, which
postulates that analogy and similarity are computed via
structural alignment between two representations (the base
and target) to find the maximal structurally consistent
match. For maximality, structure-mapping uses the
principle of systematicity: mappings that are highly
interconnected and contain deep chains of higher order
relations are preferred.
 SME simulates analogical matching. It takes as input
two structured representations (base and target). It
produces one or more mappings that describe how the two
representations can be aligned. A mapping includes
correspondences that link items (entities and relations) in
one representation with items of the other, a structural
evaluation score which reflects the quality of the entire
mapping, and a set of candidate inferences that are
conjectures about the target created by projecting partially
mapped base expressions.

SEQL simulates analogical generalization. It maintains
a list of generalizations and exemplars, which are
structured representations, called a generalization context.
It takes as input a sequence of new examples. Given a new
example, SME is used to compare it to the existing
generalizations. When the structural evaluation score is
above the assimilation threshold, the example is
assimilated into that generalization by keeping the
common overlapping structure. If the example is not
assimilated into an existing generalization, it is compared
against the exemplars. Again, if it is sufficiently similar to
another exemplar, a new generalization is created from the
common structure. Otherwise, the new example is added
to the list of exemplars.

Physics problem-solving and QP theory

de Kleer’s (1977) pioneering work emphasized the

importance of modeling in solving physics problems.

Given a domain theory and a physics problem, a problem-

solver must make a number of modeling decisions to arrive

at the correct solution. Consider a problem where a ball is

dropped off the top of a building. The ball should be

considered a point mass, and the falling event should be

considered a constant linear acceleration event. These are

examples of participant abstraction decisions and are the

focus of this paper. Solving this problem requires

additional modeling decisions, including assuming that the

event occurs on Earth. As noted in related work, analogy

may be useful for learning how to make these types of

decisions as well. In this paper, these other modeling

decisions are made via hand-coded rules, so we can focus

exclusively on participant abstraction decisions here.

Determining which abstraction to apply, given problem

scenarios whose entities can range over tens of thousands

of possible categories, is quite challenging.

Our physics domain theories consist of encapsulated

histories (Forbus 1984) that represent physics equations.

Encapsulated histories, unlike model fragments, permit

constraints to be placed on the duration of events and time

intervals. The encapsulated histories for our physics

domain theory include participant abstractions such as

PointMass and ConstantTranslationAccelerationEvent.

These abstractions are not used within the scenario

descriptions of physics problems; rather, the scenario

entities are encoded as real-world objects such as

Automobile and Driving. Moving from the real-world

entities to the technical language for problem-solving is

one kind of simplifying assumption (Falkenhainer &

Forbus 1991).

 Figure 1 shows the definition for the encapsulated

history representing the equation vf = vi + at, velocity as a

function of time. The two participants, theObject and

theEvent, must satisfy their type constraints, PointMass

and ConstantTranslationAccelerationEvent,

respectively. Furthermore, the conditions of the

encapsulated history must be satisfied in order to

instantiate it and conclude its consequences. In this

example, theObject must be the object moving in

theEvent for the encapsulated history to be instantiated.

The method we describe in this paper learns how

everyday entities in problems should be modeled in terms

of the abstractions used in the domain theory.

Representing Physics Problems and Examples

The representations used in this work are in CycL, the
predicate calculus language of the ResearchCyc knowledge
base (Matuszek et al. 2006). We use a subset of the
ResearchCyc KB, consisting of 33,000+ concepts, and

Figure 1: Encapsulated history definition

(def-encapsulated-history

 VelocityByTime-1DConstantAcceleration

 :participants

 ((theObject :type PointMass)

 (theEvent :type

 ConstantTranslationAccelerationEvent))

 :conditions

 ((primaryObjectMoving theEvent theObject))

 :consequences

 ((equationFor VelocityByTime

 (mathEquals

 (AtFn (Speed theObject) (EndFn theEvent))

 (PlusFn

 (AtFn (Speed theObject)

 (StartFn theEvent))

 (TimesFn

 (AtFn (Acceleration theObject) theEvent)

 (Time-Quantity theEvent)))))))

13,000+ relations, plus our own extensions for QP theory
(Forbus 1984) and problem-solving strategies.
Consequently, objects, relations, and events that appear in
physics problems such as “rotor,” “car,” and “driving” are
predefined in the ontology. This reduces the degree of
tailorability in our experiments.
 All the problems used in this work were taken from a
common physics textbook (Giancoli 1991). We represent
the problems and examples as cases, consisting of
predicate calculus facts. Consider the following physics
problem:

Suppose a ball is dropped from a 70m tower. How
far will it have fallen after 3 seconds?
Example problem 2-9, p. 30.

This problem is represented in our system as a case of

19 facts, a subset of which is shown in Figure 2. There are
five entities in the problem: the top of the tower, the tower,
the ball, the dropping event, and the 3-second interval.
The facts in Figure 2 pertain to the ball’s motion during the
dropping event, the description of the time interval, and the
query of the problem.

One common learning method physics students use is to
solve problem sets and compare their answers to worked
solutions. This technique motivates the feedback we
provide our system. Worked solutions are neither
deductive proofs nor problem-solving traces produced by
our solver. The worked solution for this example problem
consists of five steps:

1. Categorize the problem as a constant acceleration
linear mechanics problem

2. Assume that the acceleration of the ball (a = 10 m/s2)
3. Instantiate the distance by velocity time equation

(d = vit + .5at2)
4. Because the ball is stationary at the start of the drop

infer that its velocity is zero (vi = 0 m/s)
5. Solve the equation for d (d = 45 m)

The entire worked solution for this problem consists of

38 facts. The third step is most relevant to the goals of this
paper – the instantiation of the distance by the velocity

time equation. This step depends upon two abstraction
decisions, one for the ball and one for the dropping event,
as illustrated in Figure 3. Next we describe how we build
generalizations from these example decisions and apply the
learned knowledge to new problems.

Learning Participant Abstraction Decisions

The primary contribution of this work is our method for

learning how to make decisions about participant

abstractions for problem entities described in everyday

terms. Our method is best understood in two stages:

generalization and execution. First, we generalize

examples of participant abstraction decisions. Then, when

faced with a problem, our method uses analogies between

the entities in the problem and the generalizations to make

participant abstraction decisions. These decisions allow

our solver to instantiate the necessary encapsulated

histories to solve the problem.

Generalization of Participant Abstractions

We create generalizations at the granularity of the
participant abstraction. As such, we contextualize the
generalizations such that all examples of a given
participant abstraction are considered together. We
achieve this with generalization contexts. Each context has
an entry pattern that exemplars must satisfy to be
generalized within. The entry patterns used here reflect the
various participant abstractions. Figure 4 depicts the four
generalization contexts after generalizing decisions from
eight worked solutions.

Our system populates the generalization contexts with

exemplars generated from worked solutions. Exemplars

are created for each participant abstraction within the

worked solutions and generalized within the appropriate

contexts. For example, in the worked solution from Figure

3, there are two statements indicating participant

abstractions. The statement (abstractionForObject

Ball-2-10 PointMass) signals that an exemplar case

should be constructed, including all statements that

mention the entity Ball-2-10 in the problem plus the

abstractionForObject statement. Since the worked

solution contains a second participant abstraction, the

system generates a separate exemplar in the same manner

for the entity Drop-2-10. Next, these exemplars are added

to their appropriate generalization contexts as indicated by

Figure 4 and generalized via SEQL as described above.

Figure 3: Worked solutions indicate appropriate

participant abstractions for problem entities

(StepUses Gia-2-10-WS-Step-3

 (abstractionForObject Ball-2-10 PointMass))

(StepUses Gia-2-10-WS-Step-3

 (abstractionForObject Drop-2-10

 ConstantTranslationAccelerationEvent))

Figure 2: Part of example problem 2-9 representation

...

(objectStationary (StartFn Drop-2-10) Ball-2-10)

(primaryObjectMoving Drop-2-10 Ball-2-10)

(directionOfTranslation Fall-2-10 Down-Directly)

(objectTopSide Tower-2-10 Top-2-10)

(fromLocation Drop-2-10 Top-2-10)

(temporallyCooriginating Drop-2-10 Interval-2-10)

(valueOf (Time-Quantity Interval-2-10)

 (SecondsDuration 3))

(querySentence Gia-Query-2-10

 (valueOf

 (DistanceTravelled Ball-2-10 Interval-2-10)

 Distance-2-10))

Figure 4: Example generalization contextualization

This allows the system to maintain several contexts

simultaneously, each representing a participant abstraction

with its own lists of generalizations and ungeneralized

exemplars.

As new worked solutions are made available, our

method builds participant abstraction examples and adds

them to the appropriate generalization contexts. Therefore,

our method learns incrementally by refining and extending

its generalizations.

Making Participant Abstraction Decisions

Given a problem, a domain theory, and contextualized

generalizations of participant abstractions, our method uses

analogy to determine if and how entities in the problem

should be included in the model. In addition to making the

modeling decision, our method returns a confidence value

(0-1) as a heuristic for confidence in the decision.

The algorithm listed in Figure 5 is performed on every

entity in the problem. The process consists of three steps:

building a case around the entity, comparing it against the

best match from each generalization context, and deciding

which, if any, abstraction is appropriate for the entity.

 Our method begins by building an entity case from the

entity. As in building the worked solution exemplars, we

include all facts in the problem that mention the entity.

The system then compares this case to each generalization

context.

 From each generalization context, our method identifies

the generalization or exemplar with the highest structural

evaluation score via SME comparison with the entity case.

The systematicity principle implemented in SME means

that matches with deeper relational structures have higher

structural evaluation scores; therefore, the best mapping for

a generalization context is not necessarily the largest, but

the one with the most relational structure.

 The confidence value of the match is computed by

analyzing several aspects of the match. First, our method

analyzes the candidate inferences of the match between the

best match and the entity case. Because every case in the

generalization context has an abstractionForObject fact,

we search the mapping for a corresponding candidate

inference in the target (entity case) under consideration. If

there is no such candidate inference, the confidence for this

abstraction is zero. Otherwise, the confidence value is the

SME structural evaluation score normalized against a self-

match of the exemplar or generalization. Normalization is

necessary for comparing confidence values across

generalization contexts. Normalizing against the best

match means the maximum confidence score approaches

one as the entire exemplar or generalization, aside from the

abstractionForObject statement, participates in the

mapping.

 The confidence values are compared, and the system

identifies the generalization context that generated the

highest confidence value. The participant abstraction

represented by this generalization context is selected as the

abstraction for the entity. If the highest confidence value is

zero, the entity is not considered a participant in the model.

Evaluation

Our evaluation focuses on exploring the following
questions. First, is our method able to make accurate
participant abstraction decisions? Second, does our
method’s performance improve as examples are added to
the system? Finally, does the confidence value provide a

1) Given entity, e, from problem, P

a) Build entity case, ec, with each fact in P

mentioning e

2) For each Generalization Context gci

a) Compare ec with each exemplar and generalization

within gci

b) Use the best matching exemplar or generalization

as the base of an analogy with ec

c) If a candidate inference of this match includes a

fact of the form: (abstractionForObject e gci)

i) Return the normalized structural evaluation

score for this match as the confidence for this

generalization context

ii) Otherwise, return 0

3) Select as the participant abstraction for e from the

generalization with the highest confidence

a) If all generalization context score 0, do not make a

participant abstraction for e

Figure 5: Participant abstraction decision algorithm

useful heuristic in determining the accuracy of a participant
abstraction for a particular problem entity?

Method

Our materials include five linear kinematics problems and
five rotational kinematics problems. In these problems,
there are 34 entities, of which 21 should be modeled as one
of four different participant abstractions: PointMass,

LinearConstantAccelerationEvent, RigidObject,

RotationalConstant-AccelerationEvent. To evaluate
the effect of learning, we created four conditions based
upon the size of the training set (2, 4, 6, and 8). To ensure
that each generalization context has at least one exemplar,
each training set consists of an equal number of problems
from linear and rotational kinematics. Using the worked
solution for each training set problem, we added
participant abstraction exemplars to the appropriate
generalization contexts. The remaining problems were
used for testing. That is, for each entity in each problem
our method selected a participant abstraction based upon
the generalizations created by the training set. We
evaluated every possible combination of problems for the
training sets in each trial (size 2=25 trials, size 4=100
trials, size 6=100 trials, and size 8=25 trials).
 For each decision, we compare the result of our method
to the desired result, as indicated by the worked solutions.
There are five possible results:

1. Correct: The entity was a model participant and
identified correctly.

2. Correctly Ignored: The entity was not a model
participant and was not identified as one.

3. Extraneous: The entity was not a model participant,
and our method selected an abstraction.

4. Wrong: The entity was a model participant, but was
identified as the wrong abstraction.

5. Failed: The entity was a model participant, but was
not identified as any abstraction by our method.

 Correct and correctly ignored answers are considered
successful modeling decisions. Extraneous answers result
in more participants to consider when formulating the
model, but should not cause errors when solving the
problem. In the worst case, additional encapsulated
histories will be instantiated resulting in valid but
irrelevant equations for the problem-solver to consider.
Wrong and failed answers are errors, as they provide the
rest of the model formulation process with incorrect
information.

Results

As the number of trials varies by the size of the training set
and the number of entities per trial depends on the
problems in the test set, each condition has a different
number of total participant abstraction decisions.
Therefore, we report the frequency of each decision type as
a percentage of the total decisions made in Table 1.
 These results support our hypothesis that our method is
able to learn to make participant abstraction decisions.

With two worked solutions, the system made successful
inferences (correct + correctly ignored) 89% of the time,
extraneous inferences 6% and incorrect inferences (wrong
+ failed) 4% of the time. Furthermore, these results
support the learning hypothesis because the number of
incorrect decisions decreases down to 0.5% as the number
of worked solutions in the training set increases to eight.
 Figure 6 contains a graph of our method’s mean
confidence values for each of the inference categories.
Correctly ignored and failed decisions always have a
confidence value of 0; consequently, they are not shown.
The confidence values are a useful discriminator. The
correct answer values are significantly different from the
irrelevant and wrong answers (p < .001). Additionally, our
method’s confidence values for correct classifications is
significantly higher (p < .001) with eight worked solutions
than with two, supporting our learning hypothesis.

Discussion

These results indicate that our method is effective for

making participant abstraction modeling decisions. Our

method not only makes these decisions, but also returns a

confidence score, permitting additional reflection during

the model formulation process. Furthermore, our method

has a learning component, such that its decisions and

confidence estimates improve with experience. We can

explain these results by noting that SEQL generalizations

abstract away the aspects of the exemplars that are not

shared across scenarios. As such, this focuses the

participant abstraction decision on the appropriate

Table 1: Participant abstraction decision results

Training Set Size
(# of decisions)

2
(680)

4
(2040)

6
(1360)

8
(170)

Correct 72% 74% 75% 76%

Correctly Ignored 17% 16% 15% 14%

Extraneous 6% 7% 8% 8%

Wrong 4% 2% 1% .5%

Failed 0% 0% 0% 0%

Figure 6: Confidence by answer type and number of

examples

relational structure in the problem representation. The few

failure cases within our results are due to extraneous

relational structure within the generalization contexts

because the system has not seen enough examples.

 This behavior is more evident when we compare a

generalization and an exemplar from the experiment, both

of which are illustrated in Figure 7. This generalization

contains four facts and three generalized entities.

:genents are entities that have been abstracted by SEQL.

The generalization contains an entity that is an automobile,

which is the primary object moving in some event with a

known acceleration. On the other hand, the exemplar

contains seven concrete facts about a jet plane taking off,

some of which may complicate the modeling decision. For

example, the objectStationary fact provides distracting

relational structure that could align erroneously with facts

in the entity case and result in incorrect modeling

decisions. As generalizations are formed from additional

examples, however, our method is better able to extract

and preserve the relational structure important for making

modeling decisions.

Related Work

As noted previously, the majority of model formulation

work has focused on ascertaining the levels of detail and

perspectives that should be used in a model, given a

particular task (cf. Falkenhainer & Forbus 1991; Nayak

1994 Rickel & Porter 1994). A notable exception is Flores

and Cerda’s (2000) work in analog electronics, which

formalized a number of equivalent circuit configurations as

rewrite rules to simplify circuit schematics in a human-like

way. While these systems perform well in the domains in

which they were designed, the goal of this work is to learn

how to make modeling decisions in new domains based

upon examples. By focusing on learning, we believe our

approach will be applicable in a wide variety of domains.

 An alternative to these rule-based approaches is

analogical model formulation (Klenk et al. 2005; Klenk &

Forbus 2007). Motivated by the observation that engineers

frequently use analogies with their experiences in

formulating new models (Falkenhainer 1992), analogical

model formulation allows an agent to make a number of

modeling decisions about a situation, described in

everyday terms, based upon explanations of similar

situations. In this work, our method learns how to make

participant abstraction decisions via generalization. These

generalizations allow the learned knowledge to be applied

more generally than in analogical model formulation.

Conclusion & Future Work

This paper presents a method for learning participant

abstraction decisions from examples via generalization.

We present results from an evaluation in which participant

abstraction decisions were learned and applied in the

physics domain.

This represents a significant step towards building

systems that learn how to model situations from examples.

While our results demonstrate the utility of generalizing at

the granularity of the model participant decision, we plan

on extending this method to other modeling decisions. For

example, we plan to explore how generalization could be

used to learn situation-appropriate simplifying or operating

assumptions (e.g. ignoring friction, laminar flow, or elastic

collisions). We also plan to investigate generalization at

the level of physical processes or encapsulated histories,

perhaps accelerating the model formulation process with

experience.

The ability to leverage previously understood domains

when faced with new domains is an important frontier for

AI research. We plan to incorporate this method for

learning domain specific modeling decisions into our

Domain Transfer via Analogy (DTA) framework (Klenk &

Forbus 2007), which uses multiple cross domain analogies

to transfer domain theories between areas of physics.

Transferring the modeling knowledge encoded in these

generalizations is an important direction for transfer

learning research.

References

de Kleer, J. 1977. Multiple representations of knowledge
in a mechanics problem solver, pp.299–304. Proc. IJCAI-
77.

Figure 7: Generalization abstracts away unnecessary facts,

highlighting important relations

Generalization:

(Automobile :genent0)

(primaryObjectMoving :genent1 :genent0)

(valueOf

 (AtFn (Acceleration :genent0) :genent1)

 (MetersPerSecondPerSecond :genent2))

(abstractionForObject :genent0 PointMass)

Exemplar:

(PassengerAirplane Jet-2-19-P)

(TurbojetPropelledAircraft Jet-2-19-P)

(primaryObjectMoving TakeOff-2-19-P Jet-2-19-P)

(objectStationary

(StartFn TakeOff-2-19-P) Jet-2-19-P)

(valueOf (AtFn (Speed Jet-2-19-P)

 (EndFn TakeOff-2-19-P))

 (MetersPerSecond 80))

(querySentenceOfQuery Gia-Query-2-19-P

 (valueOf (AtFn (Acceleration Jet-2-19-P)

 TakeOff-2-19-P)

 Acceleration-2-19-P))

(abstractionForObject Jet-2-19-P PointMass)

Falkenhainer, B. 1992. Modeling without amnesia:
Making experience-sanctioned approximations.
Proceedings of QR02.

Falkenhainer, B. and Forbus, K. 1991. Compositional
modeling: finding the right model for the job. Artificial
Intelligence 51:95–143.

Falkenhainer, B., Forbus, K. and Gentner, D. 1989. The
Structure-Mapping Engine: Algorithm and examples.

Artficial Intelligence. 41.
Forbus, K. 1984. Qualitative process theory. Artificial

Intelligence
Flores, J. and Cerda, J. 2000. Efficient modeling of

linear circuits to perform qualitative reasoning tasks. AI
Communiations, 13(2) 125-134.

Gentner, D. 1983. Structure-mapping: A theoretical
framework for analogy. Cognitive Science.

Giancoli, D. 1991. Physics: Principles with
Applications. 3rd Edition. Prentice Hall.

Klenk, M. & Forbus, K. 2007. Learning domain theories
via analogical transfer. Proceedings of Qualitative
Reasoning Workshop. Aberystwyth, UK.

Klenk, M. & Forbus, K. 2007. Measuring the level of
transfer learning by an AP physics problem-solver.
Proceedings of Association for the Advancement of
Artificial Intelligence (AAAI-07). Vancouver, Canada.

Klenk, M., K. Forbus, E. Tomai, H. Kim, and B.
Kyckelhahn. 2005. Solving everyday physical reasoning
problems by analogy using sketches. Proceedings of the
American Association for Artificial Intellegence (AAAI-
05). Pittsburgh, PA.

Kuehne, S.E., Forbus, K.D., Gentner, D., & Quinn, B.
(2000). SEQL: Category learning as progressive
abstraction using structure mapping. Proceedings of
CogSci 2000, August.

Matuszek, C., J. Cabral, M. Witbrock, and J. DeOliveria.
An Introduction to the Syntax and Content of Cyc. 2006.
Proceedings of AAAI-06 Spring Symposium on
Formalizing and Compiling Background Knowledge and
Its Applications to Knowledge Representation and
Question Answering. Standford, CA.

Nayak, P. 1994. Causal approximations. Artificial
Intelligence 70:277–334.

Rickel, J. and Porter, B. 1994. Automated modeling for
answering prediction questions: selecting the time scale
and system boundary, pp. 1191–1198. Proc. AAAI-94.

