
A Report on QR-Based Testing

Harald Brandl and Gordon Fraser and Franz Wotawa ∗

Institute for Software Technology
Graz University of Technology

8010 Graz, Austria
{brandl,fraser,wotawa}@ist.tugraz.at

Abstract

As reactive and embedded systems continuously interact with
their environment, it is important to test as many as possible
interactions. The use of qualitative models of the environ-
ment and hardware has the potential to provide test cases that
might not be considered with traditional testing methods. We
present an approach that derives abstract test cases from such
models using qualitative reasoning, which is a well known
artificial intelligence technique to represent and reason about
physical behavior. For this purpose we introduce the underly-
ing concepts of qualitative reasoning, show the test case gen-
eration process, and provide the results of a case study.

Introduction

This paper extends the ideas proposed by Franz Wotawa
(Wotawa 2007) and presents first results for test case gen-
eration from QR-models.

The growing demand for smarter products with increased
functionality leads to a steady increase of the complexity of
systems and software. As an example, current cars typically
have more than 40 control units with many sensors and ac-
tuators on board; this number will further increase. Verifica-
tion and validation are therefore very important, and lead to
many issues related to the automation of test case generation
and execution. In the context of reactive and embedded sys-
tems, the difficulty of automated testing is further increased
because there is a high degree of interaction with the sur-
rounding environment. Because of this, correctness cannot
be guaranteed solely by testing the implemented functional-
ity, but also requires testing of the reactions to general stim-
uli originating from the environment. Although the behavior
upon certain wrong inputs is sometimes explicitly specified
in the case of reactive and embedded systems, it is unlikely
that all important cases are considered at design time. Con-
sequently, systems might fail in some cases when interacting
with the physical world.

∗Authors are listed in alphabetical order
Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In order to overcome this problem it is necessary to consider
the behavior of the physical world and its interaction with
the system. Qualitative reasoning (QR), which originates
from the field of Artificial Intelligence (AI), provides us with
means for deriving all possible behaviors. QR was orig-
inally developed to model commonsense reasoning within
the physical world, e.g., to allow for generating answers to
questions like “If I throw a stone upwards, what will hap-
pen?” A QR simulator will not only provide us with one
answer like the stone will move up to a certain point and fall
down afterwards, but with all possible answers, including
that the stone might go up and up if thrown fast enough.

In general, model based testing techniques use some kind of
formal specification describing a system’s expected behav-
ior in order to determine whether an implemented system is
correct. The specification is used to derive test cases and
also serves as oracle, which decides if an executed test case
detected an error. For more details on test based on for-
mal specifications we refer to existing surveys on the topic;
e.g., (Hierons et al. 2008). The semantic model of most of
these formal languages can be interpreted as a kind of tran-
sition system representing a system’s time variant behavior.
Unlike traditional formal specifications, QR techniques al-
low to describe a system in a declarative manner by a set of
qualitative differential equations (QDEs). From this com-
pact representation a QR engine derives a transition system
which represents all possible behaviors that can evolve over
time starting from an initial scenario.

QR modeling tools like Garp3 (Bredeweg et al. 2006) are
well suited when specifying physical systems on an abstract
behavioral level. Especially when there is already a mathe-
matical description of the system available (set of differen-
tial equations), the mapping can be done in a straightforward
way. Therefore, a focus of the presented approach lies on
control systems. The continuous domain of control systems
(or integer domain for digital controllers) can be transferred
via qualitative abstraction and simulation to a transition sys-
tem (TS).

In this paper, we briefly introduce the basic concepts of QR.
As a running example we use a system that sends GPS data
to a base station via GSM on a regular basis (Figure 1); such

Figure 1: Block Diagram of a container tracking unit.

Figure 2: The implemented prototype of the container track-
ing unit.

systems can for example be found in the logistics domain.
To increase mobility the system has a solar panel which
charges a battery. The system monitors the state of the bat-
tery and the solar panel and acquires other environmental pa-
rameters like the temperature via its sensors. Once new data
has been collected, the system decides upon the next actions
or if it should go to a power saving mode. A near field com-
munication module allows data exchange with other devices
within range.

The running example will be used to introduce the basic
concepts of generating test cases from QR models, and as
a case study to evaluate the feasibility of the presented ap-
proach. The possible behaviors inferable from QR models
are represented as labeled transition systems (LTS). Manu-
ally specified test purposes are used to derive test cases from
the LTS. For example, from the requirement that the sys-
tem should not run out of battery we create a test purpose
that expresses that we do not allow a battery to completely
discharge. Traditional LTS conformance testing techniques
are adapted to be applicable to QR based models, allowing
derivation of test cases from the synchronous product of the
system LTS and the test purpose. As the obtained test cases
are abstract they have to be refined in order to be executable
on an implementation under test (IUT). This is realized by
applying abstraction/refinement relations to the information
exchanged between a test case and an IUT.

The main contributions of this paper are as follows:

• Models that are close to hardware are used for test case
generation.

• The underlying models can include the system hardware,
the part of the software which interacts with the environ-
ment, and the environment itself.

• The use of environmental models ensures that all possi-
ble behaviors are covered, while during manual test case
generation some details may be missed.

• We adapt the input-output conformance testing theory
(ioco)(Jard and Jeron 2004) to transition systems derived
from QR models.

The remainder of the paper is organized as follows. First,
we introduce the basic concepts of QR and the modeling of
our running example. Then we present our approach of test
case generation from QR models in detail and present the
first results of our case study. Finally, we discuss related
research and conclude the paper.

QR Modeling with Garp3

Garp3 provides every means to build and inspect QR mod-
els. A detailed description of the functions can be found in
the user manual (Bouwer, Liem, and Bredeweg 2005), and
there is an elaborate user guide (Bredeweg et al. 2005) for
building QR models.

A Garp3 model consists of a set of model fragments, which
are the basic units that describe behavior. Two main types
of fragments can be distinguished: static and process model
fragments. A third fragment type called agent can be used to
model exogenous influences on the system. Static fragments
represent behavior that is invariant with regard to time, such
as proportional relations between quantities, like, for ex-
ample, “the amount of water in a vessel is proportional to
the water level”. A dynamic fragment introduces changes
via influences between quantities, for example “a positive
flow rate into a vessel will increase the amount of liquid and
hence the liquid level over time”.

Usually, systems consist of several model fragments that are
activated when certain boundary conditions are met. Garp3
uses colors to represent information like, e.g., the identifica-
tion of conditional elements in a model. Garp3 adds the con-
sequences of a model fragment as new facts to the knowl-
edge base, unless they contradict existing facts. Model frag-
ments enable the designer to partition the system domain
into qualitative equivalence classes that capture certain be-
havior. During simulation the set of fragments collected in
a library changes between being active and inactive as the
system evolves over time.

Within a model fragment the main modeling primitives are
entities, quantities, proportionalities, and a set of ordinal re-

lations. In dynamic model fragments there are additional
influences. Entities are the components of the system that
have certain properties expressed through associated quanti-
ties. For example, the entity battery has the quantities ”volt-
age”, ”current”, and ”charge”.

Proportionalities establish a mathematical relation between
two quantities in the form of a monotonic increasing or de-
creasing function. The notation P+ (Q1;Q2) expresses that a
change of Q2 causes a change of Q1 in the same direction.
A proportionality with a minus sign states that a change of
the cause quantity induces a change in the opposite direction
of the effected quantity.

Ordinal relations called inequalities provide means to con-
strain possible behavior. Influences cause dynamic changes
of the system and provide means for integration. For in-
stance, I+ (Q1,Q2) means that the value of Q2 determines
the change of direction of Q1. If Q1 is positive Q2 increases,
if Q1 is zero Q2 does not change, and if Q2 is negative Q1
decreases. The graphical notation used in Garp3 states rela-
tions with arrows between quantities.

The initial state of the system is captured with scenarios.
This initial state and the model fragments serve as input
to the simulation engine. Simulation is used to generate
the behavior of a QR system. The simulation engine de-
rives everything that does not contradict the boundary con-
ditions, i.e, inequalities between quantities. QR models can
only describe systems with continuously changing quanti-
ties, as stated by the continuity law (Forbus 1984). In gen-
eral, model creation is an iterative process: One has to find
the right level of abstraction and check if the simulation out-
put satisfies the requirements. If there are discrepancies, the
model has to be adapted and simulated again.

We use Garp3 models to describe hybrid systems, i.e., sys-
tems that combine discrete and continuous behavior, in a
qualitative fashion. Control modes of hybrid systems can
be captured with sets of model fragments that define a cer-
tain control mode when applied. Whenever a model frag-
ment is activated or deactivated during simulation the sys-
tem switches to a different mode. Garp3 models represent
a restricted form of hybrid systems, i.e., they require that
changes of variables between control modes follow the con-
tinuity law.

Example Model

Our example of a container tracking unit (see Figure 1) con-
sists of a solar panel, a battery, and the controller board
drawing some load current. In addition, there are external
quantities such as temperature and light conditions.

Figure 3 shows the model fragment for the solar panel. It is
a static fragment that defines the main proportionalities (P-
arrows) and correspondences (arrows with V for value-, and

Figure 3: Solar Panel.

Figure 4: Battery.

Q for quantity space-correspondences) between its quanti-
ties. A second fragment of the solar panel not shown here
is a conditional one that becomes active when the current
drawn from the panel is greater than the generated current.
If this condition is met, the fragment introduces a negative
feedback (P-) from the calculated Diff quantity to the draw-
ing current. This limits the maximum current that the panel
can deliver due to the current light conditions. A further
property the model reflects is that the voltage decreases with
increasing load current (P-). In the case of a short circuit the
voltage changes to zero while the maximum load current is
provided.

Certain corresponding boundary values are stated with di-
rected or undirected value correspondences. A directed
value correspondence (V) from Current light = zero to Volt-
age = zero indicates that the voltage is zero if the current
light is zero. This restricts the state space to allowed behav-
ior. The model fragment has two interface quantities Cur-
rent light and Current that can be referenced by other model
fragments or exogenous quantities.

The model fragment in Figure 4 depicts the discharging be-
havior of a battery. The fragment is activated if the charge
level of the battery is greater than zero. Furthermore, a dis-
charge rate greater than zero is defined (the arrow on the
plus value) which is directly proportional to the temperature.
The discharge rate and the load current decrease the battery’s
charge level as stated by the negative influences. The corre-
spondence (Q arrow) and proportionality (P arrow) between
charge and voltage causes Voltage to take on the same value
as Charge.

Figure 5 shows the compound model fragment of our sys-
tem comprising the solar panel, the battery, and the container
tracking unit represented as current drawing load. The frag-
ment is active when the voltage of the solar panel is greater
than the battery’s voltage, causing the flow of a charge cur-
rent from the panel to the battery. The arrow on the solar
panel’s current quantity requires the charge current to be
greater than zero. Note that the system software has to cap-
ture the behavior of the physical world as far as the specifi-
cation is concerned.

Test Case Generation

When testing reactive systems it is important that the sys-
tem model includes the behavior of the environment. To see
why this is so, consider an analogy from control theory: The
combination of the control process with the controller forms
the whole system. These two components influence each
other, and many important conclusions like stability of the
closed loop system cannot be drawn when looking at them
separately. This also applies to testing, where both the sys-
tem state and the environmental conditions have to be con-
sidered. This section shows a method for deriving test cases
from QR models and a technique to minimize them.

Deriving Test Models from Garp3 Models

We classify systems based on how they interact with the en-
vironment. The first type comprises conventional control
systems interacting in both directions with sensors that per-
ceive the environment and actuators that change it. The sec-
ond type are systems that only perceive their environment
without changing it. The gathered information is used to
adapt the internal behavior, which is not directly observable
from the outside world. In this context the term environment
comprises anything but the system software. As software is
not well suited for modeling with Garp3 we draw this line
between software and the physical world.

Garp3 is suitable to model systems that can be completely
specified by their observable external behavior. If there are
additional requirements on the internal system state (e.g.,
“the CPU has to operate in low power mode”), it is neces-
sary to monitor the execution of the software. We propose to
annotate the system software with assertions that can check

whether certain conditions are fulfilled. A test case can only
lead to a pass verdict if there was no assertion violation.

During test case execution the system software may influ-
ence the environment and hence any trace in the environ-
mental model that serves as test case. Therefore, we de-
fine interaction points as a subset of the quantities in the
Garp3 model. The quantities Q are partitioned into three
sets, viewed from the system side: input, output, and hidden.
Input quantities are refined to concrete sensor inputs for the
system, and system outputs are abstracted to output quanti-
ties influencing the environment. Consequently, the set of
interaction points is the set of all but the hidden quantities.

The simulation output of a QR model is a state space
representation of all possible behaviors that may evolve
over time, starting from an initial scenario. We define
this output as a QR transition system (QR TS) M =
(S, T, s0, Q, qs,QS, v, δ), where S is the set of states, T is
the transition relation T ⊆ S × S, and s0 ∈ S is the initial
state.

Every quantity in the set of quantities Q of the simulation
output has an associated quantity space. QS denotes the
domain of quantity spaces, and the function qs : Q → QS
maps each quantity to its associated quantity space. Each
state in the state space binds all quantities to a distinct value
and delta. The value v for quantities in Q and states in S is
defined as v : S × Q → qs(Q), and the delta δ is defined
as δ : S × Q → {min, zero, plus}. The delta of a value
stands for its direction of change over time, δ ∼ ∂value

∂t .

If there is a transition between two states, then either a value
or a delta for some quantity changes. The continuity rule
proposed by De Kleer and Brown (Kleer and Brown 1984)
states that a qualitative value as a function of time cannot
jump over values in its domain but has to change continu-
ously. As all state transitions computed by the QR engine
adhere to this rule, it follows that on every transition from
a state to a successor state at least one quantity changes its
value or direction; otherwise, the two states are qualitatively
equivalent.

Test Purposes for QR Models

In order to generate test cases from QR TS derived from
QR models, we adapt techniques from LTS testing. An LTS
extends a transition system with a set of labels P and a func-
tion L mapping transitions to labels: L : T → 2P , where P
is a set of atomic propositions. Garp3 is able to enumerate
the complete state space because of qualitative abstraction
as is possible for LTS, but in contrast to LTS, QR TS com-
prise states with simultaneously changing inputs and out-
puts. Consequently, the behavior of interest is not only spec-
ified via the occurrence of some state sequences. In addition
we are interested in the relations between quantities.

Figure 5: Container Tracking Unit.

Therefore, we define properties on the quantities, and use
these properties to define test purposes. The idea is to for-
mally specify both test purpose and test model as LTS, and
then to derive test cases by computing the synchronous prod-
uct of the specification and a test purpose, as initially pro-
posed by Jard and Jeron(Jard and Jeron 2004). A test pur-
pose describes some aspect of the specification that is of in-
terest for testing. It is defined as a regular expression over
symbols that represent properties of model quantities. A
property set represents the conjunction of several proper-
ties. To remove redundancy one can define global proper-
ties, which can optionally be added to property sets. The
set of all such property sets represents the set P of possible
transition labels.

As an example, consider the property of a battery that its
charge is greater than zero: battery : charge > zero,
where battery is the entity name and charge the name of
the quantity. This property denotes a value relation where
zero is a value in the quantity’s space. A second type of re-
lation considers the δ of quantities using the operator dx. As
an example, the property battery : charge dx = min states
that the battery charge decreases.

The regular expression that completely specifies the test pur-
pose consists of the defined symbols and operators allowed
in regular expressions. The equivalent deterministic automa-
ton accepts all symbol sequences that lead to an accept state.
This automaton represents an LTS with labels correspond-
ing to properties of the test purpose. Suppose we are inter-
ested in the the cyclic occurrence of a property a, e.g., for
three times and thereafter a path leading to property b. The
regular expression ([ˆa] ∗ a){3}. ∗ b describes such a test
purpose. Although theoretically possible, our current imple-
mentation does not make use of reject states, which are used

in LTS testing to consider only parts of the state space. As
QR models have discrete, commonly only small value do-
mains the models’ state spaces usually are not very big, and
reject states might not be necessary at all. Avoiding reject
states in test purposes has the effect that test case execution
cannot be inconclusive.

Once a test purpose is defined, we use the properties defined
in this test purpose as symbolic labels for the transitions of
our transition system. We annotate all transitions in the QR
TS with labels, where the properties represented by the la-
bels of a transition have to be satisfied in the target state of
the transition. This augmentation of the QR TS is necessary
for computing the synchronous product with a test purpose.
Algorithm 1 describes the annotation process. The LTS is
created simply by adding labels to the existing QR TS. The
conversion from QR TS to LTS is done by iterating through
the set of states. For each outgoing transition all symbols of
a given test purpose are considered. Each symbol represents
a set of conjunctively combined properties. If all properties
in the set are satisfied, the current symbol is added as transi-
tion label. In addition, a property set can have a global flag,
which requires that all global properties have to be satisfied
in addition to the properties of the set. Consequently, if the
global properties are not satisfied and the global flag is set,
the algorithm rejects the currently considered symbol for the
current transition. If the global properties are satisfied, the
reserved symbol y is added as a transition label. The algo-
rithm always terminates because the number of states in a
QR transition system is finite (The domains of the QR vari-
ables are finite).

As an example, Figure 6 shows a QR TS consisting of three
QR states. There are three symbols a, b, and c denoting three
different properties on the state variables. The QR TS is la-

Algorithm 1 QRSTATEGRAPH2LTS()
1: for all states in QR TS do
2: for all outgoing edges do
3: for all symbols of the test purpose do
4: get property set PS corresponding to

current symbol
5: get state S pointed to by current outgoing

edge
6: if S satisfies global properties then
7: add label ’y’ to current edge
8: else if PS has global flag set to true

then
9: continue with next symbol

10: end if
11: if S satisfies PS then
12: add current symbol to current edge
13: end if
14: end for
15: end for
16: end for

beled using these properties. As state s1 satisfies property
a but not properties b and c, the transition from s0 to s1 is
only labeled with a. State s2 satisfies all properties, there-
fore the transition from s0 to s2 is labeled with all symbols.
If there is more than one symbol in a label, this is interpreted
as the disjunction of the represented properties. Finally, s3
satisfies a and b and the transition from s0 to s3 is labeled
accordingly.

Figure 6: Labeled QR TS.

Test Case Generation with Test Purposes

With the converted LTS and a given test purpose we have
two LTS with the same alphabet, and hence the synchronous
product (Jard and Jeron 2004) can be computed; this is done
with a Depth First Search (DFS) algorithm. Starting from
the initial states of both LTS we match common labels on
all outgoing edges between the current states both LTS are
in. For every match found we get a state tuple by follow-
ing both edges to states. If this tuple is a new state in the
product LTS we add it with an edge. In addition the new
state is pushed onto a stack. The algorithm terminates when
the stack gets empty. In worst case this happens after all
state tuples QM1 ×QM2 have been visited. On average this

algorithm performs better than the simple approach of con-
sidering all state tuples.

The synchronous product is a new LTS, to which Tarjan’s al-
gorithm as a framework (Thierry Jeron 2004) for determin-
ing the set of states leading to an accepting state is applied.
It computes the set of strongly connected components while
updating reachability information for the visited states. A
state can reach an accepting state if itself or another state
in the same SCC can reach an accepting state. A strongly
connected component is defined as a subset of graph states,
inside which every pair of states can reach each other via
transitions to states inside the set. A directed graph with
possible cycles partitioned in its SCCs is a directed acyclic
graph (DAG) with the set of SCCs as nodes. The computed
subgraph is called Complete Test Graph (CTG). For each
state of the CTG, quantities can be mapped to actual values
with the v and δ functions (see Section), to serve as test data
and expected output.

Although input and output information is not contained in
labels but in states, it is possible to adapt existing confor-
mance relations to QR models. As an example, in order to
determine the conformance of a system to a QR model we
adapt the input/output conformance relation (ioco) (Jard and
Jeron 2004):

i ioco s↔ ∀σ ∈ traces(s) : out(i after σ) ⊆ out(s after σ)
where i is an IUT, s is the specification (the LTS derived
from the QR model), traces(s) = {σ = 〈t0, t1, . . .〉 | t0 =
s0∧∀i ≥ 0 : ti ∈ S∧(ti, ti+1) ∈ T}, and the set s after σ =
{s′ ∈ S | σ = 〈t0, ..., tn〉 ∧ ti ∈ S, (tn, s′) ∈ T}. In this
definition, out(s) describes the state s ∈ S with its output
quantities output(Q) ⊂ Q, and their values and deltas:

out(s) =def

⋃
{(q, v(s, q), δ(s, q)) | q ∈ output(Q)}

This relation considers all traces of the implementation that
are also contained in the specification (QR TS). The val-
ues and deltas of all quantities of the implementation after
a trace σ have to be a subset of the ones contained in the
specification after the same trace. During test case execu-
tion when the implementation changes to a state not defined
in the specification, meaning that after some trace the con-
formance relation is violated, we get a fail verdict.

State Space Minimization

As hidden quantities cannot be observed during test case ex-
ecution they are not relevant in the context of test case gen-
eration. When we find two connected states that only differ
in their non-relevant quantities we can merge them and up-
date the unconnected edges of the removed state. Two states
s1 and s2 of a TS M = (S, T, s0) are equivalent, if the fol-
lowing condition holds, where rel(Q) ⊂ Q denotes the set
of non-hidden quantities:

(s1, s2) ∈ T ∧ ∀q ∈ rel(Q) :
v(s1, q) = v(s2, q) ∧ δ(s1, q) = δ(s2, q)

Figure 7(a) shows an example state space with three states
and three quantities. Assume that quantity a is hidden and
thus not relevant. Consequently, states s2 and s3 are equiva-
lent and can be merged. Figure 7(b) shows the result of this
merge, with the updated transitions. Now a problem of non-
determinism arises in state s2, as the successor states s1 and
s4 are equivalent but cannot be merged because there is no
transition between them.

a = 6

b = 1

c = 2

s5

a = 1

b = 1

c = 1

s0

a = 2

b = 2

c = 1

s2

a = 3

b = 2

c = 1

s3

a = 5

b = 2

c = 2

s1

a = 4

b = 2

c = 2

s4

(a) Original TS.

a = 6

b = 1

c = 2

s5

a = 1

b = 1

c = 1

s0

a = 2

b = 2

c = 1

s2

a = 5

b = 2

c = 2

s1

a = 4

b = 2

c = 2

s4

(b) Minimized TS.

Figure 7: State Space Minimization.

If all hidden quantities are constant the minimized CTG re-
mains deterministic. This is because constant quantities can-
not discriminate two states. Otherwise the CTG in terms of
relevant quantities may become non-deterministic. At the
end of the minimization we convert the possibly nondeter-
ministic CTG to its equivalent deterministic CTG using the
standard finite automaton technique.

Dealing with Controllability

Test cases have to be controllable. This means that on ev-
ery node in the CTG where a decision between different in-
puts for the implementation is possible every branch taken
leads to a new test case. As most systems like ours are
not controlled by their environment, the implementation can
be non-deterministic. Consequently, test cases are not lin-
ear sequences but transition systems that can handle alter-
native outputs. The set of input quantities splits a state’s
outgoing transitions into partitions where the input quanti-
ties all have same values and deltas. The implementation
has the possibility to react with the according output quan-
tity assignments in that partition. In the example of Fig-
ure 6 the set of input quantities {i1, i2} splits the outgo-
ing transitions of state s0 into the partitions {(s0, s2)} and
{(s0, s1), (s0, s3)}. For the second partition the implemen-
tation side decides which branch is taken next. The states
of a test case have only outgoing transitions of one of its
partitions which ensures controllability.

To achieve controllability we extract test cases from the
CTG as follows: For every uncovered transition in the CTG
we create a complete path by searching backwards to the
start state and forward to an accept state. Then we traverse
the path and add all parts of the CTG that are reachable
considering the implementation’s nondeterministic outputs

to the test case TS. This approach returns test cases until all
transitions in the CTG are covered.

Test Case Execution

A test case is a QR TS. All information needed for its ex-
ecution is stored in its states. A QR state comprises a set
of quantities with their current values and deltas. This ab-
stract information has to be mapped to concrete quantity
values, e.g., voltage with value = plus and delta =
positive is mapped to a time variant function like voltage =
start(voltage)+k ·t. When the state is entered the concrete
voltage value is updated regularly on some time step ∆t as
long as all state quantities fulfill the state’s conditions. The
start(voltage) denotes the starting value of voltage when
the state is entered. In this way we proceed with all in-
put quantities and simultaneously observe the conditions of
the output quantities. The behavior of the output quanti-
ties decides in which state of a branch we are in. If there
is no matching state the implementation fails the test case.
A state is left when it gets inconsistent with the observed
output quantities. The current values of the output quanti-
ties have to be transferred to the successor state so that the
according functions have initial values to compute further
output values. When an accepting state is reached we get a
pass verdict. The next section contains an example test case
to illustrate this.

Demonstration and Results

For demonstration purposes we simplify the model of our
system by replacing the solar panel with an exogenous sine
quantity, which emulates a charging current changing with
light conditions. With the load also emulated as a sine
changing current, our model reduces to the battery model
fragment shown in Figure 4. The temperature is defined as
constant exogenous quantity. Simulation of the QR model
results in a QR TS with 70 states and 228 transitions.

Assume we are interested in the behavior that leads to an
empty battery. For this, we define the two property sym-
bols a for battery : charge > zero and b for battery :
charge = zero ∧ battery : charge dx = zero. The reg-
ular expression describing the test purpose is a*b. This test
purpose is fulfilled by paths containing any number of states
where the battery charge is greater than zero (a), followed
by a state where the battery charge is zero and the battery is
not charging (b).

Next we define input- and output-quantities for our QR TS.
The battery’s current drawn by the system is an output. The
system acquires the battery’s voltage as indicator for the ac-
tual charge level as input. These two quantities are relevant
for test case generation. From the test case view inputs and
outputs of the specification are reversed. In a first step we
augment the QR TS with labels and subsequently compute

0

9

18

27

45

28

34

13

1

49

14

2

25

26

57

58

52

Figure 8: Test Case.

the synchronous product with the test purpose. After that
Tarjan’s algorithm for computing reachability information is
applied to the product LTS which reduces search space for
later test case extraction to 59 states and 207 transitions. We
minimize the obtained graph with regard to relevant quanti-
ties and ensure determinism. Now we have the CTG ready
for test case extraction comprising 26 states and 72 transi-
tions. As the state space is not big the computation time for
all this steps is about 2 seconds.

The simplified model results in 16 test cases which cover
71 transitions in the CTG. One transition cannot be covered
because when chosen during resolving a controllability con-
flict it never leads to an accepting state. In total, the 16 test
cases cover 31% of the transitions of the QR TS.

Figure 8 shows an example test case for this test purpose.
States are annotated with their state IDs as used in the QR
TS. The test case has cyclic behavior in states {27, 34, 58,
25, 26}. Figure 9 shows one possible execution sequence
through the test case leading to an empty battery. The verti-
cal separation lines denote sets of outgoing transitions start-
ing with the initial state on the left side. The arrows mark
which transition has been taken during the execution.

Table 1: Characteristics of example test purposes.
Test Purpose CTG # TCs tr coverage

battery is empty 55 55 82%
battery is full 53 38 65%

Σ 93 90%

Figure 9: Value History: Test Case leading to an empty Bat-
tery.

Table 1 depicts some characteristics for two test purposes
considering Battery : Charge and Supply : Current as
input and Battery : Current as output, applied to the full
example model. The CTG column specifies the number of
states in the CTG, and #TC the number of test cases ex-
tracted from the CTG. The last column denotes the transition
coverage for the test suites measured on the QR TS.

Related research

Tretmans (Tretmans 1996) described test case generation for
Labeled Transition Systems (LTS). The paper focused on
Input-Output-LTS (IOLTS) and introduced conformance re-
lations for them. The proposed testing theory also deals with
states where quiescence is allowed. Jard and Jeron (Jard and
Jeron 2004) presented a tool for automatic conformance test
generation from formal specifications. They used IOLTS as
formal models and defined the ioco conformance relation for
weak input enabled systems. Test cases are generated using
defined test purposes.

Auguston et al. (Auguston, Michael, and Shing 2005) intro-
duced the use of attributed event grammars for generating
test-cases from environment models for reactive systems. In
the paper the authors use the grammar for representing an
event-based model. Possible execution traces of the model

form the test-cases. Insofar the underlying idea for test-
case generation as described in this paper is very similar, but
can be distinguished with respect to the underlying model-
ing language. Whereas Auguston et al. are using attributed
event grammars, in this paper we are proposing the use of
qualitative models for test-case generation.

Conclusions

In this paper we introduced an automated test case genera-
tion approach which relies on qualitative models. Qualita-
tive models are well suited for modeling in the embedded
systems domain. Especially when such systems strongly
interact with their physical envirnoment this approach is a
good choice.

Qualitative models represent all possible physical behaviors
of systems and their environments, and can be used to find
test cases which might not be considered when only using
a system’s specification. Similar to previous approaches we
make use of test purposes in order to generate tests.

The following steps lead from a QR model to a test suite:
(1) simulation of the QR model→ QR TS, (2) conversion of
the TS into a LTS according to a test purpose, (3) product of
the system LTS with the test purpose, (4) minimization and
ensuring determinism→ CTG, and finally (5) extraction of
controllable test cases from the CTG.

The first results indicate that useful test cases can be au-
tomatically generated from QR models. However, a more
in-depth analysis is still required. In general, the approach
is well suited when a physical model is available, e.g., in
the embedded systems area. We are currently in the process
of evaluating the approach on models derived from Matlab
Simulink models via qualitative abstraction. First experi-
ments indicate a sound test case execution, and resulting test
cases exercise the interactions of a system under test with
its environment. Future work will include application of the
presented methods to larger models. This represents new
challenges for the QR simulation tools, as for example in the
case of weakly constrained Garp3 models. Here, the simula-
tion output may become quite big (several thousand states)
with many transitions, which leads to very long computa-
tion times (several days) and memory problems with current
versions of Garp3.

Acknowledgements This work has been supported by the
FIT-IT research project Self Properties in Autonomous Sys-
tems(SEPIAS) which is funded by BMVIT and the FFG, and the
EU project ICT-216679, Model-based Generation of Tests for De-
pendable Embedded Systems (MOGENTES). The research herein
is partially conducted within the competence network Softnet Aus-
tria (www.soft-net.at) and funded by the Austrian Federal Min-
istry of Economics (bm:wa), the province of Styria, the Steirische
Wirtschaftsförderungsgesellschaft mbH. (SFG), and the city of Vi-

enna in terms of the center for innovation and technology (ZIT).

References

Auguston, M.; Michael, J. B.; and Shing, M.-T. 2005.
Environment behavior models for scenario generation and
testing automation. In International Workshop on Ad-
vances in Model Based Testing (A-MOST 2005). St. Louis,
Missouri, USA: ACM.
Bouwer, A.; Liem, J.; and Bredeweg, B. 2005. User Man-
ual for Single-User Version of QR Workbench. Naturnet-
Redime, STREP project co-funded by the European Com-
mission within the Sixth Framework Programme (2002-
2006). Project no. 004074. Project deliverable D4.2.1.
Bredeweg, B.; Liem, J.; Bouwer, A.; and Salles, P. 2005.
Curriculum for learning about QR modelling. Naturnet-
Redime, STREP project co-funded by the European Com-
mission within the Sixth Framework Programme (2002-
2006). Project no. 004074. Project deliverable D6.9.1.
Bredeweg, B.; Bouwer, A.; Jellema, J.; Bertels, D.; Lin-
nebank, F. F.; and Liem, J. 2006. Garp3 - a new workbench
for qualitative reasoning and modelling. In Proceedings
of 20th International Workshop on Qualitative Reasoning
(QR-06), 21–28.
Forbus, K. D. 1984. Qualitative process theory. Artif.
Intell. 24(1-3):85–168.
Hierons, R. M.; Bogdanov, K.; Bowen, J. P.; Cleaveland,
R.; Derrick, J.; Dick, J.; Gheorghe, M.; Harman, M.;
Kapoor, K.; Krause, P.; Luettgen, G.; Simons, A. J. H.;
Vilkomir, S.; Woodward, M. R.; and Zedan, H. 2008. Us-
ing formal specifications to support testing. ACM Comput-
ing Surveys.
Jard, C., and Jeron, T. 2004. TGV: theory, principles and
algorithms. International Journal on Software Tools for
Technology Transfer (STTT) 7(4):297–315.
Kleer, J. D., and Brown, J. S. 1984. A qualitative physics
based on confluences. Artif. Intell. 24(1-3):7–83.
Thierry Jeron, P. M. 2004. Test generation derived from
model-checking. Computer Aided Verification: 11th In-
ternational Conference, CAV’99. Trento, Italy, July 1999.
Proceedings 1633/1999(4):682.
Tretmans, J. 1996. Test generation with inputs, outputs,
and quiescence. In TACAS ’96: Proceedings of the Sec-
ond International Workshop on Tools and Algorithms for
Construction and Analysis of Systems, 127–146. Springer-
Verlag.
Wotawa, F. 2007. Generating test-cases from qualitative
knowledge – preliminary report. In Proceedings of the 21st
Annual Workshop on Qualitative Reasoning.

Order of Magnitude Reasoning in

Modeling Moral Decision-Making

Morteza Dehghani Emmett Tomai Ken Forbus Matthew Klenk
 Qualitative Reasoning Group, Northwestern University

2133 Sheridan Road, Evanston, IL 60201 USA

{morteza, etomai, forbus, m-klenk}@northwestern.edu

Abstract

We present a cognitive model of moral decision-making,
MoralDM, which models psychological findings about
utilitarian and deontological modes of reasoning. Current
theories of moral decision-making extend beyond pure
utilitarian models by relying strongly on contextual factors
that vary with culture. In MoralDM, the impacts of secular
versus sacred values are modeled via qualitative reasoning,
using an order of magnitude representation. We present a
simplified version of ROM(R) (Dague, 1993) and discuss
how it can be used to capture people’s degree of quantity
sensitivity. MoralDM uses a combination of first-principles
reasoning and analogical reasoning to determine
consequences and utilities of moral judgments. A natural
language system is used to produce formal representations
for the system from psychological stimuli, to reduce
tailorability. We compare MoralDM against psychological
results in moral decision-making tasks and show that its
performance improves with experience.

Introduction

While traditional models of decision-making in AI have
focused on utilitarian theories, there is considerable
psychological evidence that these theories fail to capture
the full spectrum of human decision-making. In particular,
research on moral reasoning has uncovered a conflict
between normative outcomes and intuitive judgments. This
has led some researchers to propose the existence of
deontological moral rules, which could block utilitarian
motives. Consider the starvation scenario (from Ritov &
Baron 1999) below:

A convoy of food trucks is on its way to a refugee
camp during a famine in Africa. (Airplanes cannot be
used.) You find that a second camp has even more
refugees. If you tell the convoy to go to the second
camp instead of the first, you will save 1000 people
from death, but 100 people in the first camp will die
as a result.

Would you send the convoy to the second camp?

While the utilitarian decision would send the convoy to the
second camp, participants were more likely to choose to
send the convoy to the first camp. Baron and Spranca
(1997) suggested the existence of sacred values, which are
not allowed to be traded off, no matter what the

consequences. Further, they suggest that these sacred
values “arise out of deontological rules about actions rather
than outcomes”. In our example, given that life is a sacred
value, people often refuse to take an action which would
result in taking lives.
 This paper describes a cognitively motivated model of
moral decision-making, called MoralDM, which operates
in two modes of decision-making: utilitarian and
deontological. MoralDM models the different impacts of
secular versus sacred values via qualitative reasoning,
using an order of magnitude representation. To reduce
tailorability, a natural language understanding system is
used to semi-automatically produce formal representations
from psychological stimuli re-rendered in simplified
English. MoralDM combines first-principles reasoning and
analogical reasoning to implement rules of moral decision-
making and utilize previously made decisions. We evaluate
our system by comparing it with established psychological
results and by examining how the performance of system
changes as a function of the number of available cases.
 We begin by summarizing relevant psychological results
on quantity insensitivity and how an order of magnitude
formalism can be used to capture this phenomenon. Next,
we describe MoralDM and how it works. Then we show
that MoralDM can account for results from two
psychological studies, and that its performance can be
improved by accumulating examples. Finally, we discuss
related and future work.

Decision-Making and Quantity Insensitivity

In the presence of sacred values, people tend to be less

sensitive to outcome utilities in their decision-making. This

results in decisions which are contrary to utilitarian

models. We claim that this can be accounted for using an

existing qualitative reasoning formalism. After

summarizing the relevant moral decision-making findings,

we present a simplified version of Dague’s (1993)

ROM(R) qualitative order of magnitude formalism which

we use to capture these results.

Sacred or protected values concern acts and not

outcomes. When dealing with a case involving a protected

value, people tend to be concerned with the nature of their

action rather than the utility of the outcome. Baron and

Spranca (1997) argue that when dealing with protected

values people show insensitivity to quantity. That is, in

trade-off situations involving protected values, they are

less sensitive to the outcome utilities of the consequences.

The amount of sensitivity (or insensitivity) towards

outcomes vary with the context. Lim and Baron (1997)

show that this effect varies across cultures.

 In addition to contextual factors, the causal structure of

the scenario affects people’s decision-making. Waldmann

and Dieterich (2007) show that people act more utilitarian,

i.e., become more sensitive to the outcome utilities, if their

action influences the patient of harm rather than the agent.

They also suggest that people act less quantity sensitive

when their action directly, rather than indirectly, causes

harm. Bartels and Medin (2007) argue that the agent’s

sensitivity towards the outcome of a moral situation is

dependent on the agent’s focus of attention.
 We model quantity sensitivity by using Dague’s (1993)
ROM(R) qualitative order of magnitude formalism. Order
of magnitude reasoning is a form of commonsense
reasoning which provides the kind of stratification that
seems necessary for modeling the impact of sacred values
on reasoning. Raiman (1991) uses the analogy of a coarse
balance to describe the intuitions behind order of
magnitude reasoning: a course balance can weigh
quantities with more or less precision. This precision level
depends on the order of magnitude scale used to map
quantities onto course values. He uses two granularity
levels Small and Rough to build a multitude of order of
magnitude scales. These two granularity levels provide
three qualitative relations between quantities which have
been formally defined in FOG (Raiman, 1991). Both O(M)
(Mavrovouniots and Stephanapoulos, 1987) and ROM(K)
(Dague, 1993) are attempts to provide a more
comprehensive order of magnitude formalism.
 ROM(R), the mapping of ROM(K) onto , is the only
system that guarantees validity in . Some order of
magnitude representations (e.g. FOG) do not allow values
at different levels to ever be comparable. One of the
features of ROM(R) is that it includes two degrees of
freedom, k1 and k2, which can be varied to capture
differences in quantity sensitivity. Dague defines four
classes of relationship between two numbers: “close to”,
“comparable to”, “negligible with respect to” and “distant
from”. While FOG and O(M) fail to capture gradual
change, the overlapping relations in ROM(K) allow a
smooth, gradual transition between the states.
 Although for engineering problems two degrees of
freedom and four relations is quite useful, we believe for
the task that we are interested in one degree of freedom
and three binary relations are more plausible. Therefore,
we implemented a simplified version of ROM(R) using
one degree of freedom, k, resulting in three binary
relations; almost equal, greater than, and orders of
magnitude different. These three classes can be computed
using the following rules:

• A ≈k B  |A-B| ≤ k * Max(|A|,|B|)
• A < k B  |A| ≤ k * |B|
• A ≠ k B  |A-B| > k * Max(|A|,|B|)

These relations respectively map to “close to”, “greater
than” and “distant from”. k can take any value between 0
and 1. Figure 1 demonstrates the interval landmarks of the
system. The analog in the above system of the parameter ɛ
of ROM(K) depends on the value of k. When k < ½, ɛ is
k/(1 - k), and, when k ≥ ½, ɛ is (1 - k)/ k. Quantity

sensitivity can be varied by changing k: setting k to k - ɛ
shifts the relationship between the compared values and
moves it from ≈ to < or from < to ≠ resulting in higher
quantity sensitivity. Depending on the sacred values
involved and the causal structure of the scenario, we vary k
to capture sensitivity towards the utility of the outcome.

MoralDM

Our model of moral decision-making, MoralDM, has been

implemented using the FIRE reasoning engine and

underlying knowledge base. The knowledge base contents

are a 1.2 million fact subset of Cycorp’s ResearchCyc

knowledge base
1
, which provides formal representations

about everyday objects, people, events and relationships.

The KB also includes representations we have developed

to support qualitative and analogical reasoning. The

scenarios, decisions and rule sets used in MoralDM are all

represented uniformly and stored in this KB.

 MoralDM operates in two mutually exclusive modes of

decision-making: utilitarian and deontological. If there are

no sacred values involved in the case being analyzed,

MoralDM applies traditional rules of utilitarian decision-

making by choosing the action which provides the highest

outcome utility. On the other hand, if MoralDM determines

that there are sacred values involved, it operates in

deontological mode and becomes less sensitive to the

outcome utility of actions, preferring inaction to actions

that would cause harm.

To solve a given moral decision-making scenario,

MoralDM begins by using a natural language

understanding system, to automatically translate simplified

English scenarios into predicate calculus. Given this

representation, the Orders of Magnitude Reasoning (OMR)

module calculates the relationship between the utility of

each choice. Using the outcome of OMR, MoralDM

utilizes a hybrid reasoning approach consisting of a First-

1
 http://research.cyc.com

0 k 1-k 1

≈

<

≠

Figure 1: Interval Landmarks

Principles Reasoning (FPR) module and an Analogical

Reasoning (AR) module to arrive at a decision. FPR

suggests decisions based on rules of moral reasoning. AR

compares a given scenario with previously solved decision

cases to suggest a course of action. We believe using

hybrid reasoning improves the robustness of the system

and provides a more cognitively plausible approach to

decision-making. Figure 2 depicts the MoralDM

architecture.

FRP and AR work in parallel and complement each

other by providing support (or disagreement) for a

decision. If both succeed and agree, the decision is

presented. When one module fails to arrive at a decision,

the answer from the other module is used. If the modules

do not agree, the system selects FPR’s choice. If both fail,

the system is incapable of making a decision. After a

decision is made for a given scenario, it can be stored in

the case library for future use. This enables the system to

make decisions in more scenarios as it accumulates

experience. Next, we discuss each module in detail.

Explanation Agent NLU

Our inputs are dilemmas from the psychological literature,
expressed in natural language. To construct formal
representations of these stimuli, we extended the
Explanation Agent Natural Language Understanding
system (EA NLU, Kuehne and Forbus, 2004).
Unrestricted automatic natural language understanding is
currently beyond the state of the art. Consequently, EA
NLU uses a controlled language and operates semi-
automatically, enabling experimenters to interactively
translate natural language stimuli into simplified syntax
and guide the generation of predicate calculus. This
practical approach allows us to broadly handle syntactic
and semantic ambiguities and to build deep formal
representations suitable for complex reasoning. This is a
significant advantage over having experimenters construct
representations by hand for two reasons. First, constructing
representations by hand is very time-consuming and
requires substantial expertise. Second, hand-coding
increases tailorability, i.e., the possibility that

representation choices were made to get a particular
example to work, as opposed to being uniform,
independently motivated conventions. Since EA NLU is
used by multiple projects and relies on an off-the-shelf
knowledge base, tailorability is greatly reduced.
 EA NLU uses Allen’s bottom-up chart parser (Allen,
1995) in combination with the COMLEX lexicon
(Macleod et al. 1998) and a simplified English grammar
(Kuehne and Forbus, 2004). The parser uses
subcategorization frames from ResearchCyc for word and
common phrase semantics. Each frame represents a case
for the term encoded as predicate calculus with
syntactic/semantic role variables. Roles are filled during
the parsing process. Frames are filtered according to both
case constraints and syntactic requirements explicitly
included in the frame.

Sentences within a stimulus are parsed separately. The
resulting parse trees are presented, together with the
semantic frames they entail, to the user in an interactive
interface. The user can selectively include or exclude trees
as well as individual frames. These selections serve as
input to a transformation process using dynamic logic
principles from Discourse Representation Theory (DRT)
(Kamp & Reyle 1993) to construct a description of the
sentence content. This description supports numerical and
qualitative quantification, negation, implication, modal
embedding and explicit and implicit utterance sub-
sentences. Anaphoric references are resolved via
selectional restrictions from the Cyc ontology guiding
sentence attachment and thereby the integration into the
representation of the discourse as a whole.

Figure 3: Starvation scenario in simplified English

Figure 3 contains the controlled language for the

starvation scenario. Given these statements, EA NLU
identifies events of transporting, famine, dying (1000
people), saving, ordering, going and dying (100 people)
together with the two quantified sets of people, the convoy,
food, two refugee camps and the proper name Africa.
There is also an explicit reference to the listener, “you”.
Figure 4 contains the frame-based interpretation of the
order.

Causal links are explicitly stated between the order and
the saving and the order and the second set of deaths. The
abstraction of saving drives inferential attention to events
in the description that the beneficiary may be being saved
from. The expected future modality of the first set of
deaths makes it a reasonable candidate. Based on the
possible modality of the saving/ordering sequence,

A convoy of trucks is transporting food

to a refugee camp during a famine in

Africa. 1000 people in a second refugee

camp will die. You can save them by

ordering the convoy to go to that

refugee camp. The order will cause 100

people to die in the first refugee camp.

Figure 2: MoralDM Architecture

combined with the use of the explicit reference to the
listener, the system infers an abstraction of choice being
presented with known consequences resulting from both
action and inaction. Figure 5 contains the inferred
abstraction of choice and its causal consequences.

Figure 5: Predicate calculus for the choice presented

Order of Magnitude Reasoning Module

The inputs to OMR include the sacred values for the
culture being modeled and the causal structure of the
scenario. Using the predicate calculus produced by EA
NLU, OMR calculates the expected utility of each choice
by summing the utility of its consequences. For each
consequence of a choice, OMR uses its rules to ascertain if
the outcome is a positive or negative outcome, and to
identify any sets whose cardinality matters in the decision
(e.g., number of people at risk).

After computing utilities, OMR selects a k value based
upon the context of the scenario. Assuming that the
relationship between the utilities, a and b, are
“comparable”, MoralDM sets k to 1 – (| a / b |). This
results in the relationship between the utilities falling
within <, right between ≠ and ≈ (Fig 1). If the decision
involves a sacred value for the modeled culture, setting k to
k + ɛ shifts the relationship between utilities from greater
than to close to, resulting in the system being less sensitive
to the numeric utility of the outcome. On the other hand, if
the there are no sacred values involved, the system
substitutes k with k - ɛ thereby making the system more
quantity sensitive to the computed utilities. In addition to
sacred values, the causal structure of the scenario affects k.
OMR checks to see if the scenario contains patient

intervention or agent intervention. It uses low quantity
insensitivity for the first case and high otherwise,
consistent with psychological findings (Waldmann and
Dieterich 2007). The system also checks for direct versus
indirect causation. In the case of indirect causation, a
higher degree of insensitivity is applied.

Returning to the starvation scenario, there are two
choices: ordering and inaction. For ordering, there are two
consequences, 1000 people in the second camp will be
saved and 100 people in the first camp will die. Consulting
the KB, the system determines that dying has negative
utility and saving positive, resulting in a choice utility of
900 for the ordering choice. Using the same procedure, the
utility for inaction is calculated to be -900. Using the
formula given above, k is initially set to 0 with ɛ = 1.
Given that both choices involve agent intervention and
indirect causation, there are no structural differences
between the two choices. Therefore, the k value is set
solely by the existence of sacred values. In this case,
causing someone to die is a sacred value resulting in k
being set to k + ɛ = 1, therefore causing the system to act
less quantity sensitive. Using ROM(R), the relationship
between the utilities of the two choices is calculated to be
≈. On the other hand, if there had not been a sacred value,
the value of k would have remained 0 causing the
relationship between the utilities to be ≠. These utilities,
900 and -900, and the computed relationship, ≈, are
provided to FPR and AR.

First-Principles Reasoning Module

Motivated by moral decision-making research, FPR makes
decisions based upon the following factors: the orders of
magnitude relationship between utilities, sacred values,
computed utilities, and action vs. inaction. FPR uses three
methods for making decisions. First, the utilitarian method,
which selects the choice with the highest utility, is invoked
when the choice does not involve a sacred value. Second,
in situations with sacred values and without an order of
magnitude difference between outcomes, the pure-
deontological method selects the choice that does not
violate a sacred value. Third, the utilitarian-deontological
method operates when the scenario contains sacred values
and an order of magnitude difference between outcomes,
selecting the choice with the higher utility. Therefore, the
pure-deontological method is the only method that makes
decisions that violate utilitarian norms.
 In the starvation scenario, there is a sacred value, people
dying, and no order magnitude difference between the
utility of the two choices. Therefore, the system uses the
pure deontological method to select the inaction choice.
 These methods are mutually exclusive, returning at most
one choice per scenario. Given the breadth of moral
reasoning scenarios, the rules implementing FPR are not
complete. Therefore, FPR necessarily fails on some
scenarios. These cases highlight the need for the hybrid-
reasoning approach taken in MoralDM. The resulting
choice is compared with the results of the analogical
reasoning module of MoralDM.

(isa Sel131949 SelectingSomething)

(choices Sel131949 order131049)

(choices Sel131949 Inaction131950)

(causes-PropSit

 (chosenItem Sel131949 Inaction131950)

 die128829)

(causes-PropSit

 (chosenItem Sel131949 order131049)

 save128937)

(isa order131049 Ordering-CommunicationAct)

(performedBy order131049 you128898)

(recipientOfInfo order131049 convoy127246)

(infoTransferred order131049

 (and

 (isa refugee-camp129739 RefugeeCamp)

 (isa convoy127246 Convoy)

 (isa go129115 Movement-TranslationEvent)

 (primaryObjectMoving go129115 convoy127246)

 (toLocation go129115 refugee-camp129739)))

Figure 4: Predicate calculus for ordering

Analogical Reasoning Module

An important role that analogy plays in decision-making is
framing the situation. When making a choice, decision
makers frequently use past experiences and draw
inferences from their previous choices (Markman and
Medin, 2002). For more details and examples about the use
of analogy in decision-making please refer to Dehghani et
al. (2008a). To model analogy in decision making, we use
the Structure-Mapping Engine (SME) (Falkenhainer et al.
1989), a computational model of similarity and analogy
based on Gentner’s (1983) structure mapping theory of
analogy in humans. SME operates over structured
representations, consisting of entities, attributes of entities
and relations. Given two descriptions, a base case and a
target case, SME aligns their common structure to find a
mapping between the cases. This mapping consists of a set
of correspondences between entities and expressions in the
two cases. SME produces mappings that maximize
systematicity; i.e., it prefers mappings with higher-order
relations and nested relational structure. The structural
evaluation score of a mapping is a numerical measure of
similarity between the base and target. SME identifies
elements in the base that fail to map to the target and uses
the common relational structure to calculate candidate
inferences by filling in missing structures in target.
 Running concurrently with FPR, AR uses comparisons
between new cases and previously solved cases to suggest
decisions. When faced with a moral decision scenario, AR
uses SME to compare the new case with every previously
solved scenario in its memory. The similarity score
between the novel case and each solved scenario is
calculated using SME by normalizing the structural
evaluation score against the size of the scenario. If this
score is higher than a certain threshold and both scenarios
contain the same order of magnitude relationship between
outcome utilities, then the candidate inferences are
considered as valid analogical decisions. If the scenarios
have different orders of magnitude relationships, it is likely
that a different mode of reasoning should be used for the
target scenario and AR rejects the analogical inference.
After comparing against all of the solved scenarios, AR
selects the choice in the new scenario with the highest
number of analogical decisions. In the case of a tie, AR
selects the choice with the highest average similarity score
supporting it. Because analogical alignment is based upon
similarities in structure, similar causal structures and/or
sacred values align similar decisions. Therefore, the more
structurally similar the scenarios are, the more likely the
analogical decision is going to be the correct moral one.
 Returning to our starvation example, AR can solve this
decision problem through an analogy with a traffic
scenario given below, in which the system chose to not
transfer funds:

A program to combat accidents saves 50 lives per
year in a specific area. The same funds could be used
to save 200 lives in another area, but the 50 lives in
the first area would be lost.

Do you transfer the funds?

The analogical decision is determined by the candidate
inferences where the decision in the base, inaction, is
mapped to the choice in the target representing inaction.
Because the traffic scenario contains the same the order of
magnitude relationship, almost equal, as in the starvation
scenario, the system accepts the analogical decision.

Evaluation

We evaluated MoralDM by running it on 8 moral decision-
making scenarios taken from two psychology studies
(Waldmann and Dieterich 2007; Ritov and Baron 1999).
In all the scenarios used, traditional utility theories fail to
predict subjects’ responses, as often the subjects choose the
choice which provides a smaller overall outcome utility.
We compare MoralDM’s decisions to subjects’ responses
in these experiments. If the decision of MoralDM matched
those of the subjects, as reported by the authors, we
consider it a correct choice.
 EU NLU translated all 8 cases into predicate calculus.
MoralDM made the correct choice in each of the scenarios
using the result from FPR. This illustrates MoralDM’s
ability to do complex reasoning from natural language
input and provides evidence for its psychological fidelity.
 One of the more difficult aspects in building the FPR
module is the number of rules to handle the broad range of
situations covered in moral decision making. The AR
module is capable of making moral decisions in situations
when gaps in the KB or rule set would prevent the FPR
module from coming up with an answer. Therefore, we
evaluated the AR module independently of the FPR
module, to answer two questions: (1) Can we use analogy
to do moral decision-making from natural language input?
(2) How is AR performance affected as the number of
previously solved cases stored in memory increases?
 Given the 8 solved scenarios, we created case libraries
of every combination of these scenarios. This provided us
with 254 different case libraries (8 of size 1, 28 of size 2,
56 of size 3…). Then, with each case library, we tested the
AR module by running it on each of the scenarios not in
the case library. So for each of the 8 libraries of size 1, the
test consisted of 7 decision scenarios for a total of 56
decision scenarios.
 Figure 6 shows the performance of AR as a function of
the number of available cases. There is a monotonic
increase in the number of correct answers as the size of the
library increases (Pearson’s r = .97, p < .0001). Also, there
is a significant decrease in the number of cases where AR
does not come up with an answer (r = -.95, p < .001). The
number of incorrect decisions changes insignificantly from
18% to 25% (r = .53, p < .22). The statistics reported have
been computed by comparing each series against the size
of the case library.

 The results of these evaluations are very encouraging.
First and foremost, our system matches human behavior on
8 decision-making scenarios provided in natural language.
In addition to this result, we also found that there was a
significant improvement in AR module performance as the
number of cases in MoralDM’s memory increased. For a
more comprehensive analysis of evaluation of each of the
modules please refer to Dehghani et al. (2008b).

Related Work

Reasoning with orders of magnitude is a form of
commonsense reasoning which is mostly suitable when
complete quantitative information is not available or when
tackling problems involving complex physical systems.
Order of magnitude reasoning has been used in several
engineering tasks (e.g. Dague, 1994; Mavrovouniots and
Stephanapoulos, 1988; Dague, Deves and Raiman 1987).
 Several research projects have focused on building
ethical advisors. The MedEthEx system uses ILP
techniques to learn decision principles from training cases
(Anderson et al. 2006). Mclaren's Truth-Teller and
SIROCCO systems (2005) use case-based reasoning to
highlight relevant ethical considerations and arguments to
a human user. Like them, we use prior cases, but to guide
the system’s own reasoning, rather than give advice. They
also were not designed to model the effects of sacred
versus secular values that MoralDM captures.

Computational models of cultural reasoning are
receiving increasing attention. For example, the CARA
system (Subrahmanian et al. 2007) is part of a project to
“understand how different cultural groups today make
decisions and what factors those decisions are based
upon”. CARA uses semantic web technologies and
opinion extraction from weblogs to build cultural decision
models consisting of qualitative rules and utility
evaluation. While we agree that qualitative reasoning must
be integrated with traditional utility evaluation, we also
believe that analogy plays a key role in moral reasoning.
Moreover, we differ by evaluating our system against

psychological studies, which helps ensure its judgments
will be like those that people make.

Our combination of analogical and first-principles
reasoning is inspired in part by Winston’s (1982) use of
both precedents and rules to reason about a situation. His
work was hampered by the lack of off-the-shelf large-scale
knowledge bases, and the technologies for NLU and
analogical reasoning have improved since then.

Our use of simplified English is inspired by both CMU’s
KANT project (cf. Mitamura & Nyberg 1995) and
Boeing’s controlled language work (cf. Clark et al. 2005).

Conclusions and Future Work

MoralDM uses qualitative modeling to reason about
utilities, capturing the differences between sacred and
secular values via an order of magnitude representation. It
uses a combination of first-principles logical reasoning and
analogical reasoning to determine the utility of outcomes
and make decisions based on this information. The hybrid
approach produces answers in a wider range of
circumstances than either alone. Natural language input of
scenarios, in simplified English, reduces tailorability, a key
problem in cognitive simulation research. We showed that
MoralDM can be used to model psychological results from
two studies. While there is still more to be done, we think
MoralDM represents an important step in computational
modeling of moral decision-making.

We plan to pursue several lines of investigation next.
First, we plan to extend the valuation rules to model
different cultures, based on existing collaborations with
cognitive psychologists and anthropologists. This will
require extending the first-principles reasoning rules to
cover a broader range of scenarios. Constructing these
rules is a time consuming and error prone process. One
alternative is to automatically extract rules by generalizing
over previously made decisions. By focusing on decisions
from a specific culture, we can explore automatic model
construction for making novel predictions about the
behavior of a certain group (Dehghani et al. 2007). Second,
we plan to extend the range of EA NLU coverage to handle
a wide range of cultural stories. This will enable us to
create story libraries for different cultural groups, and
translate transcripts from interview data more easily.
Third, we plan to incorporate a cognitively plausible model
of similarity-based retrieval, MAC /FAC (Forbus et al.,
1995), to make analogical reasoning more scalable as the
story library grows. Finally, we plan to test MoralDM on a
wider range of problems, using data gathered from
participants from multiple cultural groups.

References

Allen, J. F. 1995. Natural Language Understanding.
(2nd ed). Redwood City, CA.: Benjamin/Cummings

0

25

50

75

100

1 2 3 4 5 6 7
Case Library Size

%
 o

f
To

ta
l D

e
ci

si
o

n
s

Correct

No response

Failed

Figure 6: Analogical reasoning results

Anderson, M., Anderson, S., and Armen, C. 2006. An
Approach to Computing Ethics. IEEE Intelligent Systems.
21(4): 56-63.

Bartels, D. M. & Medin, D. L. 2007. Are Morally-
Motivated Decision Makers Insensitive to the
Consequences of their Choices? Psychological Science, 18,
24-28.

Baron, J., and Spranca, M. 1997. Protected Values.
Organizational Behavior and Human Decision Processes
70: 1–16.

Clark, P., Harrison, P., Jenkins, T., Thompson, J., and
Wojcik, R. 2005. Acquiring and Using World Knowledge
using a Restricted Subset of English. In Proceedings of The
18

th
 International FLAIRS Conference.

Dauge, P. 1993. Symbolic Reasoning with Relative
Orders of Magnitude. In Proceedings of the 13

th
 IJCAI.

Dauge, P. 1993. Numeric Reasoning with Relative
Orders of Magnitude. In Proceedings of the 7th
International Workshop on Qualitative Reasoning.

Dague, P., Deves, P., and Raiman, O. 1987.
Troubleshooting: when Modeling is the Trouble, In
Proceedings of AAAI87 Conference, Seattle.

Dague, P. 1994. Model-based Diagnosis of Analog
Electronic Circuits. Annals of Mathematics and Artificial
Intelligence,11, 439-492

Dehghani, M., Tomai, E., Forbus, K., Iliev, R., Klenk,
M. (2008a). MoralDM: A Computational Modal of Moral
Decision-Making. To appear in Proceedings of the 30th
Annual Conference of the Cognitive Science Society
(CogSci), Washington, D.C

Dehghani, M., Tomai, E., Forbus, K., Klenk, M.
(2008b). An Integrated Reasoning Approach to Moral
Decision-Making. To appear in Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence
(AAAI). Chicago, IL.

Dehghani, M., Unsworth, S., Lovett, A., Forbus. K.
(2007) Capturing and Categorizing Mental Models of Food
Webs using QCM. 21st International Workshop on
Qualitative Reasoning. Aberystwyth, U.K.

Falkenhainer, B., Forbus, K. and Gentner, D. 1989. The
Structure-Mapping Engine: Algorithms and Examples.
Artificial Intelligence, 41: 1-63.

Forbus, K., Gentner, D. and Law, K. 1995. MAC/FAC:
A Model of Similarity-based Retrieval. Cognitive Science,
19(2), 141-205.

Gentner, D. 1983. Structure-Mapping: A Theoretical
Framework for Analogy. Cognitive Science, 7: 155-170.

Kuehne, S. and Forbus, K. 2004. Capturing QP-Relevant
Information from Natural Language Text. Proceedings of
QR04.

Lim, C. S, and Baron, J. 1997, Protected values in
Malaysia Singapore, and the United States. Manuscript,
Department of Psychology, University of Pennyslvania.

Markman, A and Medin, D.L. 2002. Decision Making.
Stevens Handbook of Experimental Psychology, 3rd
edition: Volume 2, Memory and Cognitive Processes. New
York: Wiley.

Macleod, C., Grishman, R., and Meyers, A. 1998.
COMLEX Syntax Reference Manual, Version 3.0.
Linguistic Data Consortium. University of Pennsylvania:
Philadelphia, PA.

Mavrovouniotis M. L. and Stephanopoulos, G. 1987,
Reasoning with orders of magnitude and approximate
relations, In Proceedings of AAAI 1987 Conference,
Seattle.

Mavrovouniotis M. L. and Stephanopoulos, G. 1987,
Order of Magnitude Reasoning in Process Engineering,
Computer. chem. Engng. 12, 1988 .

McLaren, B. 2005. Lessons in Machine Ethics from the
Perspective of Two Computational Models. In Anderson,
M. et al. (Eds.) Machine ethics: Papers from the AAAI Fall
Symposium, Technical Report FS-05-06. Menlo Park, CA.

Mitamura, T., & Nyberg, E. H. 1995. Controlled English
for Knowledge-Based MT: Experience with the KANT
System. In Proceedings of 6th International Conference on
Theoretical and Methodological Issues in Machine
Translation, Leuven, Belgium.

Raiman, O. 1991. Order of magnitude reasoning.
Artificial Intelligence 51.

Ritov, I. and Baron, J. 1999. Protected Values and
Omission Bias. Organizational Behavior and Human
Decision Processes, 79(2): 79-94.

Subrahmanian, VS., Albanese, M., Martinez, V., Nau,
D., Reforgiato, D., Simari, G., Sliva, A., and WIlkenfeld, J.
2007. CARA: A Cultural Adversarial Reasoning
Architecture. IEEE Intelligent Systems. 22(2): 12-16.

Waldmann, M. R., and Dieterich, J. 2007. Throwing a
Bomb on a Person Versus Throwing a Person on a Bomb:
Intervention Myopia in Moral Intuitions. Psychological
Science, 18 (3), 247-253.

Winston, P.H. 1982. Learning New Principles from
Precedents and Exercises. Artificial Intelligence 19(3),
321-350.

http://www.psych.northwestern.edu/~medin/publications/Markman%20&%20Medin%202002%20decision%20making.PDF

A qualitative model on sexual behaviour: mate

guarding and extra-pair copulation in birds

R. I. Dias
a
 and P. Salles

b

a Graduate Program in Ecology, University of Brasília, Brasília, Brazil
b Institute of Biological Sciences, University of Brasília, Brasília, Brazil

{raphaeligor, psalles}@unb.br

Abstract

Extra-pair paternity is widespread among avian species, showing

high inter and intra-specific variation both in frequency and in

typical behaviours. These variations are the result of individual,

ecological and phylogenetic influences upon the behavioural

searching pattern for extra-pair copulations. A qualitative

reasoning model was developed to show how decisions made by

females and males could affect the occurrence of extra-pair

paternity and fitness. The model demonstrates that population

density and the genetic quality of the male with whom the female

is mated influences female predisposition to search for extra-pair

copulations. Accordingly, high-quality males should have a

higher number of within and extra-pair young than low quality

males. The model shows that since the interests of males and

females are similar, both sexes may achieve an increment in their

fitness.

1. Introduction

Monogamy in birds is conceptually defined as a web of

complex interactions and conflicts of interest between

paired males and females (Westneat and Stewart, 2003).

The study of this subject has suffered significant changes

with the application of molecular tools, showing it to be

less simple than was initially assumed, with a number of

hypotheses being suggested to explain the wide variation

(0-70%) in the rate of extra-pair fertilization (EPF) among

species. Variation in EPF levels must be the result of

different ecological, phylogenetic and individual

constraints that should have influenced the evolution of

this behaviour. The use of a qualitative approach may play

an important role in helping to understand the causal

relations of this process.

This paper presents a simulation model that intends to

increase understanding about the role of individual features

and behavioural factors associated with the occurrence of

extra-pair paternity (EPP), based on qualitative reasoning

(QR) techniques (Weld and de Kleer, 1990). QR models

contribute to ecological theory development by

determining the logical consistency and the consequences

of long and complex chains of ecological reasoning and

rapid assessment of assumptions, hypotheses and other

ideas (Rykiel, 1989). In the context of EPF studies, QR

techniques are useful for establishing causal relations and

predicting the system’s behaviour using incomplete

knowledge.

The model presented here attempts to answer questions

such as: What is the effect of mate quality on female pursuit

for extra-pair copulations? Is mate guarding an effective

strategy for decreasing paternity loss? Does male genetic

quality affect male and female individual fitness?

2. Extra-pair paternity in birds

Despite the variation in the frequency of EPP among

species, the determinants of this behaviour are poorly

understood. Moreover, it is difficult to separate cause and

effect relations, as some variables may have a causal effect

on EPP, whereas others may result from the consequences

of this behaviour (Westneat and Stewart, 2003). A number

of hypotheses have been proposed to explain how such

reproductive strategies evolved. These possible

explanations include breeding synchrony, need for paternal

care, rate of adult mortality, and ecological explanations,

such as the relation between breeding density and levels of

EPP (Griffith et al. 2002). The breeding density hypothesis

states that the proximity to neighbours would increase

accessibility to mates for extra-pair copulation (EPC), and

would enhance opportunities to evaluate available mates

(Birkhead and Møller, 1992).

Considering a bird’s fitness (i.e. a measure of the

individual’s ability, relative to others, to leave viable

offspring), it is possible for males to increase their

reproductive gain without additional parental investment

by seeking for EPCs (Birkhead and Møller, 1992).

However, the reproductive gain for females is less obvious,

because their reproductive capacity is limited by the

number of eggs they can produce. As sexual promiscuity

does not increase the number of female offspring, the role

of female behaviour in determining the level of EPP is

unclear.

According to the good genes hypothesis, if males differ in

genetic quality, females paired with low quality males are

compensated when searching for EPF with males of higher

quality, because this behaviour would improve their

offspring’s survival and reproductive chances (reviewed in

Jennions and Petrie, 2000). Nevertheless, from the male’s

perspective, EPC’s are only valuable for those males that

can obtain extra-pair fertilizations, but are unfavorable for

those males that lose paternity in their own nest. Thus,

males must prevent the occurrence of EPCs by their own

females to avoid the future cost of rearing offspring sired

by other males. Thus, males develop counterstrategies to

avoid, or at least interfere with extra-pair behaviour of their

females (Trivers, 1972). The more commonly used for the

males is mate guarding, which consists of following the

female during her fertile period, to prevent them from

copulating with other males (Birkhead and Møller, 1992).

On the other hand, males also try to increase their fitness

through EPCs, but with this, they incur the risk of losing

paternity by leaving their female unguarded, since males

cannot maximize within and extra-pair paternity

simultaneously (Hasselquist and Bensch, 1991). The result

is that males must decide how much time to allocate to

these two mutually exclusive activities, and must adjust

mate guarding behaviour according to the risk of being

cuckolded.

Males and females must follow adaptive rules of

differential allocation, where mating and reproductive

effort depend on the attractivity, or quality of their mates as

well as their own quality (reviewed in Magrath and

Komdeur, 2003). Thus, it is reasonable to expect that low

quality (LQ) males invest more in mate guarding than high

quality (HQ) males, and also that females mated with HQ

males are less likely to search for EPCs. The level of EPP

in a population reflects the response to a series of possible

conflicts between females, their social mates, and one or

more extra-pair males (Lifjeld et al., 1994).

3. Qualitative models

The model presented in this study was implemented in the

qualitative simulator Garp3 (Bredeweg et al., 2006), using

elements of ontology provided by the qualitative process

theory (Forbus, 1984). Following the compositional

modelling approach (Falkenhainer and Forbus, 1991), the

model was developed by creating a library of reusable

components, model fragments, used to represent processes,

agents and static views of the modeled system. Causal

relations are captured by means of relations between the

quantities, direct influences (I+ and I-) for representing

processes and qualitative proportionalities (P+ and P-) for

propagating the effects of processes to other parts of the

system. Static model fragments are used to model events

that do not change with time, while process and agent

model fragments implement system components that

define dynamic aspects of the system. Scenarios provide

the context of the initial values from where the simulations

progress. Once quantity values and relations are defined,

the simulator generates states. Transitions between states

are determined by transition rules and options defined by

the user, and each sequence of states created during the

simulation is a behaviour path. The collection of all the

states produced by the simulation is denominated state

graph. With Garp3 functionalities, it is possible to inspect

the causal model, the equation history and the quantity

value history. This approach has been used in different

ecological studies (for example, Salles et al., 2003; Salles

and Bredeweg, 2006; Salles et al., 2006), but not in

behavioural ecology.

4. The model

Relevant assumptions in this model are: (a) males cannot

maximize both within-pair and extra-pair paternity

simultaneously. Accordingly, mate guarding can only be

totally efficient if it occurs continuously throughout the

entire period of female fertility; (b) males can be of either

high (HQ) or low quality (LQ) and female propensity to

search for EPC is related to the quality of their mates;

(c) mate guarding varies as a function of male quality;

(d) females do not obtain other non-genetic benefits from

an extra-pair mating.

The current version of the model consists of three entities

associated to 16 quantities, that express properties of the

entities and ultimately characterize the states of the system

under study. The system structure is organized around

entities and the configurations ‘Female’ mates with ‘Male’

and these two entities are included in the ‘Population’.

Quantities associated to the entity ‘Population’ represent

aspects of population dynamics. Growth rate represents the

population growth process, and population Density is a

proxy for the concept of breeding density. The entity

‘Male’, is associated to the quantities Mate guarding and

Search for EPC. These quantities have quantity spaces

spanning from zero to maximum, to capture the idea that a

male has a limited amount of time to expend in each of

these behaviours. The quantity Control rate, which is

motivated by mate guarding, represents the level of control

males have regarding female behaviour. The quantity N of

within partner chicks represents offspring produced with

the male’s pair and its quantity space includes a maximum

point because the number of chicks produced is

constrained by the number of eggs a female can lay.

Females are also associated to the quantity N of within

partner chicks with the same quantity space. The quantities

related to the number of extra-pair young produced by

males (N of male extra-pair young) and females (N of

female extra-pair young) have different quantity space for

a simple reason; males can fertilize a high number of

females, while females are again constrained by the

number of eggs they produce. Therefore, only the female’s

quantity space includes the value maximum. The

Fertilization rate refers to the rate of female fertilization.

The quantity N of female EPC solicitations represents

female extra-pair behaviour – solicitations for extra-pair

copulation, that may result in fertilization. Male and female

fitness are calculated in different ways (see specific

fragments below), in relation to number of chicks produced

(for males) and the quality of chicks produced (for

females). Female fitness changes are seen as the result of a

process, with a Fitness variation rate that varies according

to the levels of within pair and extra-pair behaviour.

The library consists of 33 model fragments, 13 of them

representing ecological processes (population growth,

female reproduction, constraining female behaviour, and

female fitness variation). Reproduction of females is

represented by a model fragment in which there are two

opposite direct influences: I+(N of within partner chicks,

Fertilization rate) and I–(N of female extra-pair young,

Fertilization rate). An inverse correspondence between the

quantity spaces of the two types of offspring assures that

increase in one of them corresponds to decrease in the

other, given the limited number of eggs produced by the

female in her lifespan. This representation expresses the

idea that females exert some control over the offspring

produced.

Mate guarding is a central concept for the control of EPP.

It is assumed that, given that the male’s time and energy

budgets are limited, there is a tradeoff between mate

guarding and search for EPC, so that low quality males

invest more in the former and less in the latter, while high

quality males invest more in the search for EPC. This

hypothesis is captured by model fragments that represent

male fitness variation. In this model, the quantity Mate

guarding is determined by breeding Density and by the

quantity N of female EPC solicitations. The male reaction

is captured by the model fragment ‘Constraint on female

behaviour’, a process that constrains females from

engaging in EPC.

The most important model fragments are those related to

the fitness variation of females and males. Female fitness

changes due to a process, represented in the model

fragment ‘Female fitness variation’, which introduces the

relation I+(Female fitness, Fitness variation rate). The rate

of this process is influenced both by N of within partner

chicks and by N of female extra-pair young. As mentioned

above, females mated with low quality males may increase

their fitness via EPC. This idea is captured by the model

fragment ‘Fitness of female mated with low quality male’

(Figure 1) that shows a negative proportionality between

N of within partner chicks and Fitness variation rate, and a

positive one linking N of female extra-pair young and the

rate. This model fragment also shows the assumption

‘Female fitness variation rate follows the n of extra-pair

young’ related to the correspondence between derivatives,

causing the rate to follow the direction of change of female

extra-pair offspring.

Fm09 female fitness variation

Female
Female

N of within partner chicks

Zlmhm

N of female extrapair young

Zlmhm

Female fitness

Zlmh

Fitness variation rate

Mzp

Fm05b low quality

Male
Male

Quality
Low

Female fitness variation rate follow the n of extrapair young

Mate with

Figure 1. Model fragment ‘Fitness of female mated with low

quality male’

If the female is mated to a high quality male, her fitness

variation process is organized in a similar way, except for a

positive proportionality between N of within partner chicks

and Fitness variation rate, that replaces the negative

proportionality shown in Figure 1.

5. Simulations

The model has 31 scenarios, from simple simulations

exploring only population dynamics and male or female

features to complex interactions between HQ and LQ

males and female within-pair and extra-pair reproduction

and the effects of mating success and mate quality on their

fitness. The initial scenario ‘Female mated with a HQ

male’ produces the most complex simulation within this

model. The following assumptions hold in this scenario:

‘Female fitness variation rate follow the n of chicks with

the partner’ and ‘N of within partner chicks are the same

for males and females’. In this scenario, population Growth

rate starts with the value <plus,?>, Density with

<medium,?>, and the trade off between male Mate

guarding and Search for EPC have initial values in the

interval <low,?> and <high,?> respectively. All the other

quantities started with the value <medium,?>, except the

rates that have value <zero,?>. The simulation produced

three initial states; the full simulation, 166 states. The

causal model, as it appears in state 10, is presented in

Figure 2. It shows that an increase in Density propagates to

Mate guarding, which has three influences: (a) it

negatively affects the male Search for EPC, reducing the

N of male extra-pair young; (b) it positively affects

Constraining rate, triggering the feedback loop that

reduces the N of female EPC solicitations and causes Mate

guarding to decrease; and (c) it positively affects

Fertilization rate, causing N of within partner chicks to

increase and N of female extra-pair young to decrease.

These two quantities influence the female Fitness variation

rate, but given that there is a derivative correspondence,

the rate will take the derivative of N of within partner

chicks.

Mate with

Includes

Includes

Density

Population growth rate

Population

Search for epc

Constraining rateMate guarding

N of within partner chicks

Male fitnessN of male extrapair young

Male N of female epc solicitations

Fitness variation rate

Female fitness

N of female extrapair young

N of within partner chicks

Fertilization rate

Female

Figure 2. Causal model in state 10 of the simulation starting with

the scenario ‘Female mated with a high quality male’

Values of selected quantities in the behaviour path [2 → 6

→ 13 → 14 → 58 → 64 → 143] are presented in Figure 3.

These diagrams show that, in this behaviour path, while

Density is increasing male Mate guarding is also

increasing and Search for EPC is decreasing and N of

female EPC solicitations is decreasing. In both partners,

N of within partner chicks is increasing and N of male

extra-pair young and N of female extra-pair young are

decreasing, reaching zero in state 143.

Male: Mate guarding

Zero

Low

Medium

High

Max

2 6 13 14 58 64 143

Male: Search for epc

Zero

Low

Medium

High

Max

2 6 13 14 58 64 143

Male: N of male extrapair young

Zero

Low

Medium

High

2 6 13 14 58 64 143

Male: Male fitness

Zero

Low

Medium

High

2 6 13 14 58 64 143

Female: N of female epc solicitations

Zero

Low

Medium

High

2 6 13 14 58 64 143

Female: N of female extrapair young

Zero

Low

Medium

High

Max

2 6 13 14 58 64 143

Female: N of within partner chicks

Zero

Low

Medium

High

Max

2 6 13 14 58 64 143

Female: Female fitness

Zero

Low

Medium

High

2 6 13 14 58 64 143

Figure 3. Value history diagrams of selected quantities in a

simulation of the scenario ‘Female mated with a HQ male’

In the behaviour path explored above, Male fitness

followed the derivative of N of within partner chicks, but

there are behaviour paths in which it follows the derivative

of N of male extra-pair young and is decreasing. In fact,

Male fitness may enter a cyclic path, and oscillate between

the values low and high, as shown in Figure 4:

Male: Male fitness

Zero

Low

Medium

High

148 149 62 77 80 125 156 83 79 64 148

Figure 4. Cyclic behaviour expressed by the quantity Male

fitness in a simulation starting with the scenario ‘Female

mated with a high quality male’

6. Discussion

Qualitative reasoning models may contribute to the

development of ecological theories in many ways. They

can be used to formalize scientific hypotheses, or

qualitative theories about particular domains, that may

support the development of new ideas that explore

applications or further theoretical developments of those

theories. The model described in this paper also has the

potential to support further studies on sexual selection. As

genetic polyandry with extra-pair offspring seems to

happen in approximately 90% of bird species (Griffith et

al., 2002) it is of great interest to understand why such

sexual behaviour evolved and how these traits may affect

bird fitness. However, modelling sexual behaviour in birds

presents new challenges for qualitative reasoning models.

Among them, the need for representing interactions

involving phenomena that occur in different time scales,

and in different generations. Integration of changes in

successive generations in phylogenetic studies will require

the implementation of evolutionary mechanisms such as

mutation, adaptation and natural selection that may explain

why current generations of birds behave as they do.

The model presented here was designed to help students

and researchers interested in behavioural ecology,

especially in sexual selection, to understand processes

involved in evolution of extra-pair paternity on a narrow

scale, based on individual decisions. Although not

evaluated so far by end users, the model was evaluated by

an expert in animal behaviour in a step-by-step procedure,

during which relevant concepts, model fragments,

scenarios and simulation results were presented and

discussed (Rykiel, 1996). The expert made comments and

suggestions to improve knowledge representation, which

were included in the model, and the results obtained were

considered satisfactory and potentially useful.

7. Conclusions

In this paper, qualitative reasoning techniques are used to

formalize representations of hypotheses related to sexual

behaviour and extra-pair paternity in avian species,

expressing cause – effect relations and exploring complex

chains of reasoning about system behaviour. The answers

provided by the model to the questions formulated in the

introduction are based on the most relevant mechanisms

identified in the literature to explain extra-pair paternity in

birds, such as the trade-off between mate guarding and

male search for EPC and the use of different strategies for

increasing fitness in females mated to high and low quality

males.

Ongoing work includes improving representations of both

male and female behaviour and of the factors that affect

their fitness. For males, current modelling effort aims to

improve the representation of mate guarding and paternal

care; for females, the goal is to explore alternative

hypotheses about how their own interests would drive

behaviour and influence the level of extra-pair paternity.

The results obtained so far confirm the potential of QR

modelling contribution to the ecologists’ understanding of

the theoretical basis of complex aspects of sexual selection

in birds.

Acknowledgements We are grateful to Regina Macedo for

comments and suggestions on the model and on this

version of the manuscript.

References

Birkhead, T. R. and Møller, A. P. 1992. Sperm

Competition in Birds- Evolutionary Causes and

Consequences. London, Academic.

Bredeweg, B., Bouwer, A., Jellema, J., Bertels, D.,

Linnebank, F. and Liem, J. 2006. Garp3 - A new

Workbench for Qualitative Reasoning and Modelling.

Proceedings of the 20th International Workshop on

Qualitative Reasoning (QR06), 21-28.

Falkenhainer, B., and Forbus, K. 1991. Compositional

modeling-finding the right model for the job. Artificial

Intelligence, 51: 95-143.

Forbus, K. D., Qualitative process theory. Artificial

Intelligence, 24: 85-168, 1984.

Griffith, S.C.; Owens, I.P.F. and Thuman, K.A. 2002.

Extra pair paternity in birds: a review of interspecific

variation and adaptive function. Molecular Ecology, 11:

2195-2212.

Hasselquist, D. and Bensch, S. 1991. Trade-off between

mate guarding and mate attraction in the polygynous great

reed warbler. Behavioural Ecology and Sociobiology, 28:

187-193.

Jennions, M. and Petrie, M. 2000. Why do females mate

multiply? A review of the genetic benefits. Biological

Reviews of the Cambridge Philosophical Society, 75: 21-

64.

Lifjeld, J. T., Dunn, P. O.,Westneat, D.F. 1994. Sexual

selection through sperm competition in birds- male-male

competition or female choice? Journal of Avian Biology,

25: 244-50.

Magrath, M. J. L., Komdeur, J. 2003. Is male care

compromised by additional mating opportunity? Trends in

Ecology and Evolution, 18: 424-430.

Rykiel, E.J. 1989. Artificial Intelligence and Expert

Systems in Ecology and Natural Resource Management.

Ecological Modelling, 46: 3-8.

Rykiel, E.J. 1996. Testing ecological models: the meaning

of validation. Ecological Modelling, 90:229-244.

Salles, P.; Bredeweg, B.; Araújo, S. e Neto, W. 2003.

Qualitative models of interactions between two

populations. AI Communications 16(4): 291-308.

Salles, P. and Bredeweg, B. 2006. Modelling population

and community dynamics with qualitative reasoning.

Ecological Modelling, 195: 114-128

Salles, P., Bredeweg, B., Bensusan, N. 2006. The ants’

garden: qualitative models of complex interactions

between populations. Ecological Modelling, 194: 90-101.

Trivers R.L. 1972 Parental investment and sexual

selection. In B. Campbell (ed.) Sexual Selection and the

Descent of Man , pp. 136-179. Aldine Press, Chicago.

Weld, D. and de Kleer, J. (eds.) 1990. Readings in

Qualitative Reasoning about Physical Systems. San Mateo,

CA: Morgan Kaufmann.

Westneat, D. F. and Stewart, I. R. 2003. Extra-pair

paternity in birds: causes, correlates, and conflict. Annual

Review of Ecology and Systematics, 34: 365-396.

Qualitative Models of Shape, Size, Orientation and Distance Applied to
the Description of Images Containing 2D Objects

Zoe Falomir and M. Teresa Escrig

Universitat Jaume I, Engineering and Computer Science Department
E-12071 Castellón, Spain

{zfalomir, escrigm}@icc.uji.es

Abstract
In this paper, we present an approach to qualitative
description of images containing non-overlapping 2D
objects. This approach consists of extracting the properties
of the main points of the objects in an image and applying
qualitative models to them. Qualitative models of shape and
size describe visual features of the objects in the image,
while qualitative models of orientation and distance
describe spatial features of those objects. Finally, a string
which describes the image in qualitative terms is obtained.
This string can be used to compute the relationships
between the objects in the image and also to compare
images by obtaining a degree of similarity between them.

Introduction
Service robots need a system of visual perception similar
to that of human beings in order to interact with people and
to navigate efficiently through real environments dealing
with problems such as unpredictable obstacles or changing
targets. Qualitative techniques for representing information
and reasoning can help robots to interpret their
environment: to describe a new place and to recognize a
known one only by using the main landmarks/features of
that environment.

Human beings use language to describe images. How
we do it is studied by psycho-linguistic researchers
(Landau & Jackendoff 1993). In general, nouns are used to
refer to objects, adjectives to express properties of these
objects and prepositions to express relations between them.
These nouns, adjectives and prepositions are qualitative
labels which extract knowledge from images and which
can be used to communicate and compare image content.

Because of the numerical properties of digital images,
most of the image treatment in computer vision has been
carried out by applying mathematical models and other
quantitative techniques to detect objects in an image. Our
aim is to use some of these techniques in order to obtain
the main points of the objects contained inside an image
(such as edges and vertices) and then to apply qualitative
models to them, so that we could obtain the main visual
and spatial information of these objects.

The approach presented in this paper applies qualitative
models of shape (Museros & Escrig 2004), size, distance
(Escrig & Toledo 2001) and orientation (Hernández 1991;
Freksa 1992) to image description. These models represent
visual (shape and size) and spatial (orientation and
distance) information about 2D objects in an image. The
visual information obtained from an image describes which
objects are placed in an environment, and the spatial
information obtained describes where all the objects are
located with respect to (wrt) each other and wrt the
observer. Contextualizing our approach to robot
navigation, a mobile robot with a camera could
qualitatively describe its environment by describing the
images taken by the camera and, by interconnecting all the
images, it could localize itself wrt all the objects contained
in any of the images, that is, in any place of the
environment.

In the literature, related works which describe images
qualitatively have appeared. In (Museros & Escrig 2004),
an approach for the qualitative description of the shape of a
2D object contained in an image is applied to assemble tile
mosaics. In (Qayyum & Cohn 2007; Bañuelos 2000),
qualitative description of images are used for image
retrieval in data bases. In (Qayyum & Cohn 2007),
landscape images are divided by a grid for its description
so that semantic categories (grass, water, etc.) are
identified and qualitative relations of compared size, time
and topology relations are used to describe the image. In
(Bañuelos 2000), images composed by squares, triangles
and circles are described qualitatively by using the
approach in (Chang et al. 1989) which uses projections to
find the spatial relations between the objects in an image.
In (Socher 1997), a verbal description of an image is
provided to a robotic manipulator system, so that it can
identify and pick an object. These objects are described
qualitatively by predefined categories of type, colour, size,
shape and spatial relations. In (Lovett et al. 2006), a
qualitative description for sketch image recognition is
proposed, which defines lines, arcs and ellipses as basic
elements and also considers relative position, relative
length and relative orientation of pairs of edges.

We believe that all the works described above provide
evidence for the effectiveness of using qualitative
information to describe and compare images. However, to
our knowledge, none of them is intended to be applied to
the description of the robot environment and to the
enhancement of robot navigation. This is our main aim.
Although we have tackled the problem by considering
images containing 2D objects, in the near future, we will
describe real images taken from the robot environment
where doors, corners and other 3D objects will appear.

Outlining our Approach for Qualitative Image
Description

In order to describe qualitatively images composed of 2D
objects, our approach applies qualitative models of shape,
size, orientation and distance.

If the considered image contains just one object, only its
shape, its size with respect to (wrt) the image, and its
orientation wrt the centre of the image can be described.
For example, a possible qualitative description of the
image in Figure 1a could be “an image containing a
medium-sized blue square situated left-front wrt the centre
of the image”.

If the considered image contains two objects, the
relative size of each object wrt each other and the
orientation of an object wrt the other objects can be
described. For example, a possible qualitative description
of the image in Figure 1b could be “an image containing a
blue small square and a red medium-sized triangle (…) the
triangle is situated right-front wrt the centre of the image
and right-front wrt the square”.

Finally, if the considered image contains more than two
objects, relations of compared distance and relative
orientation between objects can be described. For example,
a possible qualitative description of the image in Figure 1c
could be “an image containing a triangle, an hexagon, a
square and a pentagon (…) the square is closer to the
pentagon than to the triangle (…) the pentagon is located
left-middle wrt the reference system defined from the
centroid of the triangle to the centroid of the hexagon,
while the square is located left-front wrt the same reference
system (…)”.

(a) (b) (c)

Figure 1. Images composed by 2D objects.

Table 1 shows the qualitative models that our approach
uses to describe images which contain an object, two
objects and more than two objects.

Table 1. Qualitative models our approach uses to describe
images composed by 2D objects.

 Number of Objects
Qualitative Model of 1 2 > 2

Shape x x x
Fixed Orientation x x x
Compared Size (Object wrt Image) x x x
Compared Size (Object wrt Object) - x x
Relative Orientation - - x
Compared Distance - - x

The following sections describe the qualitative models of
shape, size, orientation and distance used by our approach.
Then, the structure of the string for the qualitative
description of any image is presented. Finally, our
conclusions and future work are explained.

Qualitative Model for Shape Description
Our approach uses Museros and Escrig’s qualitative model
for shape description (Museros and Escrig 2004) to obtain
a description of any 2D object in an image. This model has
been extended to identify regularity and convexity of the
objects. Next section summarizes Museros and Escrig’s
model and, in the following section, our extension to this
model is explained.

Museros and Escrig’s Approach
Museros and Escrig’s approach extracts the boundary of
each object in an image by applying Canny’s edge detector
(Canny 1986). Then the slope between the pixels that
compose that boundary is compared in order to obtain the
main points of each object: vertices and points of
curvature. These points are described qualitatively by this
approach, which also obtains the colour and the centroid of
each object.

The vertices of each object are described by a set of
three elements <Aj, Lj, Cj> where:

Aj ∈ {right, acute, obtuse},
Lj ∈ {smaller, equal, bigger} and

Cj ∈ {convex, concave}
• Aj or the qualitative amplitude of the angle j is

calculated by obtaining the circumference that includes
the previous and following vertices of vertex j (j-1 and
j+1) (Figure 2). If vertex j is included in that
circumference, then the angle is right. If vertex j is
external to the circumference, then the angle is acute.
Finally, if vertex j is included in the circle that this
circumference defines, then the angle is obtuse.

• Lj or the relative length of the two edges related to
vertex j is obtained by comparing the Euclidean distance
between two segments: the segment defined from vertex
j-1 to vertex j and the segment defined from vertex j to
vertex j+1. If the first distance obtained is
smaller/equal/bigger than the second one, the relative
length between the two edges in vertex j is
smaller/equal/bigger, respectively.

• Cj or the convexity of the angle defined by the edges
related to vertex j is calculated by obtaining the segment
from the previous vertex (j-1) to the following vertex
(j+1). If vertex j is on the left of that segment, then the
angle is convex. If vertex j is on the right of that oriented
segment, then the angle is concave.

Figure 2. Characterization of a vertex in Museros and Escrig’s

approach.

The points of curvature of each object are characterized
by a set of three elements <curve, TCj, Cj> where:

TCj ∈ {acute, semicircular, plane} and
Cj ∈ {convex, concave}

• TCj or the type of curvature in point j is obtained by
comparing the size of the segment defined by the
previous point of curvature j-1 and the centre of the
curve (da in Figure 3) with the size of the segment
defined by the point of curvature j and the centre of the
curve (db in Figure 3). If da is smaller than db, the type
of curvature in j is acute; if da is equal to db, the type of
curvature in j is semicircular; and finally, if da is bigger
than db, the type of curvature in j is plane.

Figure 3. Characterization of a curve in Museros and Escrig’s

approach.

• Cj or the convexity of the point of curvature j is
calculated by obtaining the segment from the previous
vertex (j-1) to the following vertex (j+1). If vertex j is
on the left of that segment, then the angle is convex. If
vertex j is on the right of that segment, then the angle is
concave.

Thus, the complete description of a 2D object is defined as
a set of qualitative tags as:

[Type, Colour, [A1,C1,L1]|[curve,TC1,C1], …,
 [An,Cn,Ln]|[curve,TCn,Cn]]

where n is the number of vertices and points of curvature
of the object, Type belongs to the set {without-curves,
with-curves}, Colour describes the RGB colour of the
object by a triple [R,G,B] which stands for the Red, Green
and Blue coordinates and A1,…,An, C1,…,Cn, L1,…,Ln and
TC1,…, TCn, which have been previously explained.

Finally, as an example, Figure 4 shows the qualitative
description of the hexagon in Figure 1c provided by

Museros and Escrig’s approach. The first vertex detected is
that with the smaller coordinate x (considering that the
origin of coordinates in computer vision is the upper-left
corner of the image), while the first vertex described is that
defined by the three first vertices obtained.

1:
2:
3:
4:
5:
0:

QualitativeShapeDescription(S)=
[without-curves, [255, 206, 0],
 [
 [obtuse, equal, convex],
 [obtuse, equal, convex],
 [obtuse, equal, convex],
 [obtuse, equal, convex],
 [obtuse, equal, convex],
 [obtuse, equal, convex],
],
].

Figure 4. Qualitative description of the hexagon in Figure 1c.

Characterizing the Shape of 2D Objects
In Museros and Escrig’s approach, a qualitative tag is
included in order to distinguish if the object has curves or
not (with-curves, without-curves), so that the comparison
process can be accelerated. However, a more accurate
characterization of the objects (according to geometry
principles) can be defined by using the qualitative features
described for each vertex.

The characterization defined for our approach consists
on: (1) giving a name to the object that could represent it
geometrically, (2) describing the regularity of its edges and
(3) defining the convexity of the whole object.

Therefore, objects without curves can be characterized
by a set of three elements:

[Name, Regularity, Convexity]
where,

Name ∈ {triangle, quadrilateral, pentagon, hexagon,
heptagon, octagon, …, polygon},

Regularity ∈ {regular, irregular} and
Convexity ∈ {convex, concave}

• Name is the name given to the object depending on its
number of edges (or vertices qualitatively described)
and it can take values from triangle to polygon;

• Regularity indicates if the object have equal angles and
equal edges (so it is regular), or not (so it is irregular);

• Convexity indicates if the object has a concave angle
(so it is concave) or not (so it is convex).

However, for triangular and quadrilateral objects a more
accurate characterization can be made.

Triangular objects can be characterized as right, obtuse
or acute triangles according to the kind of angles they
have, and as equilateral, isosceles or scalene triangles
according to the relation of length between its edges.
Therefore, the element Name for a triangle is made up by
three elements:

triangle–Kind_of_angles–Sides_relation
where,

Kind_of_angles ∈ {right, obtuse, acute}
Edges_Relation ∈ {equilateral, isosceles, scalene}

• Kind_of_angles indicates if the triangle has got a right
angle (so it is right), an obtuse angle (so it is obtuse), or
if all its angles are acute (so it is acute); and

• Edges_relation shows, if the edges of the triangle are
all equal (so it is equilateral), or two equal (so it is
isosceles), or none equal (so it is scalene).

Quadrilateral objects can be also characterized more
accurately as square, rectangle or rhombus depending on
the compared length between its edges and on its kind of
angles. Therefore, the element Name for a quadrilateral is
made up by two elements:

 quadrilateral–Type_quadrilateral
where,

Type_quadrilateral ∈ {square, rectangle, rhombus}

• Type_of_quadrilateral specifies if the quadrilateral is a
square (if all their angles are right and their edges
equal), a rectangle (if all their angles are right and their
opposite edges are equal), or a rhombus (if all their
edges are equal and their opposite angles are equal).

On the other side, objects with curves can be also
characterized by a set of three elements:

[Name, Regularity, Convexity]
 where,

Name ∈ {circle, ellipse, polycurve, mix-shape}
Regularity ∈ {regular, irregular}
Convexity ∈ {convex, concave}

• Name is the name given to the object depending on its
properties: mix-shape (if the shape of the object is made
up by curves and straight edges), polycurve (if the shape
of the object is made up only by curves), circle (if the
shape of the object is a polycurve with only four
relevant points, two of them defined as semicircular
points of curvature) and ellipse (if the shape of the
object is a polycurve with only four relevant points, two
of them defined as points of curvature with the same
type of curvature but different from semicircular, that
is, both plane or acute).

• Regularity regarding to curves is not defined by our
approach from the point of view of geometry. We
consider 2D objects with circular or elliptical shapes as
regular and the rest of objects with curvaceous shapes
as irregular.

• Convexity of objects with curvaceous shapes is defined
in the same way as for objects containing only straight
edges: if an object has a concave vertex or point of
curvature, that object is defined as concave; otherwise it
is defined as convex.

Finally, according to this characterization, the triangle in
Figure 1b will be characterized as [triangle-acute-
equilateral, regular, convex].

Qualitative Model of Compared Size
In order to describe images which contain objects with the
same features but with different size, a qualitative model of
Compared Size (CS) has been developed.

Represented Information. In order to represent the
size of the objects in the image a Compared Size Reference
System (CSRS) with two levels of granularity has been
defined. The reference system with coarse level of
granularity represents the size of an object A wrt the size
of the image (A wrt Image), while the reference system
with fine level of granularity represents the size of an
object A wrt the size of another object B (A wrt B). Two
reference systems are used in order to distinguish situations
where the object compared can be larger than the other
object (object wrt object comparison) or not (object wrt
image comparison).

The CSRS has three components, CSRS = {US, LABcsrs,
INTcsrs}, where US refers to the relation obtained after
comparing the area of an object wrt the area of another
object or wrt the area of the image; LABcsrs refers to the set
of qualitative labels which represent compared size; and
INTcsrs refers to the intervals associated to each compared
size label of LABcsrs, which will describe the size of the
object in terms of US and which depends on the
application.

The CSRS with coarse level of granularity is used to
obtain the size of each object wrt the size of the image and
it is defined as:

CSRSLAB1 = {small (s), medium (m), large (l)}
CSRSINT1 = {]0, 1/8 us[, [1/8 us, 1/4 us[, [1/4 us, 1us[}.

The CSRS with fine level of granularity is used to obtain
the size of each object (A) wrt the size of another object
(B) and it is defined as:

CSRSLAB2 = {smaller_than_half (sh), half (h),
larger_than_half (lh), equal (e), smaller_than_double (sd),
double (d), larger_than_double (ld)}
CSRSINT2 = {]0, 1/2 us[, [1/2 us, 1/2 us],]1/2 us, 1 us[, [1
us, 1 us],]1 us, 2 us[, [2 us, 2 us],]2 us, ∝[}.

Application to qualitative description of images. First,
our approach for qualitative description of images
calculates: (1) the area of the image (n pixels of height x m
pixels of width) and (2) the area of each object by using the
cross-product of its vertices, as described in (Goldman
1991). After that, our approach compares the area of each
object wrt the area of the image and obtains a qualitative
tag of compared size from the reference system of
compared size at a coarse level of granularity. Finally, our
approach compares the area of each object wrt the area of

the other objects in the image and obtains a qualitative tag
of compared size from the reference system of compared
size at a fine level of granularity.

As an example, the square in Figure 5b will be
characterized as: [2, quadrilateral-square,…, small …, [0,
larger_than_half],[1,smaller_than_half],[3,larger_than_h
alf]],…], which means “a small square (Object 2) which is
larger than half the triangle (Object 0), smaller than half
the hexagon (Object 1) and larger than half the pentagon
(Object 3)”.

Qualitative Models of Orientation
In order to provide a description of the location of the
objects wrt the centre of the image, our approach uses
Hernandez’s qualitative model of Fixed Orientation (FO)
(Hernández 1991) and fixes the area named as front of the
defined reference system to the upper edge of the image.

Moreover, to obtain relative orientations between the
objects of an image, our approach applies Freksa’s model
of Relative Orientation (RO) (Freksa 1992).

Qualitative model of fixed orientation
Represented Information. In order to represent the
orientation of an object A wrt the image (A wrt Image) or
to represent the orientation of an object A wrt the
orientation of another object B (A wrt B), Hernandez’s
Fixed Orientation Reference System (FORS) is used. This
FORS divides space into eight regions (Figure 5a):

FORS LAB = {front (f), back (b), left (l), right (r), left-front
(lf), right-front (rf), left-back (lb), right-back (rb)}

(a) (b)

Figure 5. (a) Representation of the FORS; (b) FORS applied to
image in Figure 1(c).

Application to qualitative description of images. First,
our approach for qualitative description of images situates
the FORS in the centre of the image in order to obtain a
global orientation of all the objects inside that image.
Secondly, our approach locates the centre of the FORS on
the centroid of each object in order to obtain the location of
all the other objects in the image wrt the current one.

The orientation of an object is determined by the union
of all the orientation labels obtained for each of the
vertices/points of curvature of the object.

Our approach calculates the orientation of a vertex wrt a
FORS by obtaining the slope between this vertex and the
centre of the FORS and then comparing this slope with the
slope of each of the straight lines which define the regions
of orientation in the FORS (Figure 5a).

Finally, as an example, the orientation description for
the hexagon (Object 1) in Figure 5b is the following string:
[1, hexagon, …, [front, front_left, left], [[0, left], [2, front,
front_right], [3, front, front_left]], …] which means “an
hexagon (Object 1) located: front/front-left/left wrt the
centre of the image, left wrt the triangle (Object 0),
front/front-right wrt the square (Object 2) and front/front-
left wrt the pentagon (Object 3).

Qualitative model of relative orientation
Represented information. Freksa’s model divides the
space into 15 qualitative regions by means of a Reference
System (RS). This RS is formed by an oriented line
determined by two reference points a and b. From a to b a
line is defined, which determines the left/right dichotomy;
another line is defined perpendicular to b, which defines
the first front/back dichotomy; and another line is defined
perpendicular to a to establish the second front/back
dichotomy. The information which can be represented by
this model is the qualitative orientation of a point c wrt the
RS formed by the points a and b, that is, c wrt ab (Figure
6). This model defines the following regions of orientation:

RORS LAB = { left-front (lf), straight-front (sf), right-front
(rf), left (l), identical-front (idf), right (r), left-middle (lm),
straight-middle (sm), right-middle (rm), identical-back-left
(ibl), identical-back (ib), identical-back-right (ibr), back-
left (bf), straight-back (sb), back-right (br) }

Figure 6. Freksa’s model and its iconical representation: RS(a,b)

and the 15 qualitative tags of orientation located according to
RS(a,b).

Application to qualitative description of images. Our
approach establishes a reference system (RS) between all
pairs of objects in the image. The points a and b of the RS
are the centroids of the selected objects. All the vertices
and points of curvature of the objects that do not compose
the RS are located with respect to the corresponding RS.
The orientation of an object wrt each RS is the union of all
the orientation labels obtained by each vertex or point of
curvature of the object.

Our approach calculates the orientation of a vertex wrt a
RORS by projecting each vertex to two lines of the RS:
first to the line defined by the points a and b and then to
the line perpendicular to a or to the line perpendicular to b,
depending on which are closer to the vertex. If any of the
vertices is included in any of these lines, no projection is
needed. After having the vertices projected into the RS, we
study the orientation of the RS by observing the tendency
of the coordinates x and y of the points a and b, that is if
they increase, decrease or remain constant from a to b. The
tendency of the coordinates inside the lines perpendicular
to the points a and b is related to the orientation of the RS.
Therefore, if we compare the tendency of the coordinates
of a vertex with the tendency of each line of the RS, we
could locate the vertex to the left/right of the line a-b and
to the front/back of the line perpendicular to a or to the
front/back of the line perpendicular to b, depending on the
situation of the vertex. By combining these locations and
taking into account if the original vertex was included into
a line of the RS or was projected into it, the final
orientation of the vertex wrt the RORS is obtained.

Figure 7. Reference systems obtained for the image in Figure 1c.

In Figure 7, all possible reference systems obtained for the
image in Figure 1c are shown. Therefore, according to
Figure 7, the orientation of the square (Object 2) is
described as the following string:

[2, square, …, [[[0, 1], left_front], [[0, 3], right_middle,
right_front], [[1, 0], back_right], [[1, 3], right_middle],
[[3, 0], left_middle, back_left], [[3, 1], left_middle]], …]

which means that “the square is located: left-front wrt the
RS from the triangle (Object 0) to the hexagon (Object 1),
right-middle/right-front wrt the RS from the triangle
(Object 0) to the pentagon (Object 3), back-right wrt the
RS from the hexagon (Object 1) to the triangle (Object 0),
right-middle wrt the RS from the hexagon (Object 1) to the
pentagon (Object 3), left-middle/back-left wrt the RS from
the pentagon (Object 3) to the triangle (Object 0) and left-
middle wrt the RS from pentagon (Object 3) to the
hexagon (Object 1)”.

Qualitative Model of Compared Distance
In order to describe the distance between the objects in the
image, our approach applies Escrig and Toledo’s
Compared Distance (CD) model (Escrig & Toledo 2001).

Represented Information. In order to compare the
distance from the current object or point of view (PV) to
another object (A) and the distance from that PV to another
object (B), the Compared Distance Reference System
(CDRS) defined by Escrig and Toledo is used. This CDRS
has two components, CDRS = {RP, LAB}, where RP
refers to the Reference Points between which the distances
to be compared are calculated; and LAB refers to the labels
which represent compared distances. The Referent Points
(RP) in CDRS are: the point of view (PV), the first end
point (A) to which the first distance is obtained and the
second end point (B) to which the second distance is
obtained. Compared distance labels are:

CDRSLAB = {closer_than (ct), nearby (nb), further_than
(ft)}

Application to qualitative description of images. In
our approach, the Euclidean distance between the centroid
of the current object and the centroid of the other objects in
the image is obtained. Then, those distances are compared
among them by using the CDRS. Our reference points in
the CDRS are: the centroid of the current object or the PV,
the centroid of another object (A) to which the first
Euclidean distance is calculated, and the centroid of the
other object (B) to which the second Euclidean distance is
calculated.

As an example, the compared distance for the triangle in
Figure 7 is described as the string: [0, triangle-acute-
equilateral, …, [[1,2, closer_than], [2,1, further_than],
[1,3, closer_than], [3,1, further_than], [2,3, further_than],
[3,2, closer_than]], which means that “the triangle (Object
0) is: closer to the hexagon (Object 1) than to the square
(Object 2), and viceversa, further from the square than
from the hexagon; closer to the hexagon (Object 1) than to
the pentagon (Object 3), and viceversa, further from the
pentagon than to the hexagon; and finally, further from the
square (Object 2) than from the pentagon (Object 3), and
vicerversa, closer to the pentagon than to the square”.

Final String for the Qualitative Description of
an Image

Finally, an application that provides the qualitative
description of an image containing two-dimensional
objects has been implemented.

In general, the structure of the string provided by the
application, which describes any image composed by K
two-dimensional objects, is defined as a set of qualitative
tags as:

[[QVisual, QSpatial]1, …, [QVisual, QSpatial]K]

For each object in the image, its qualitative visual
characteristics (QVisual), and its qualitative spatial
characteristics inside the image (QSpatial) are described.

The qualitative visual characteristics of the objects
(QVisual) consist of the identifier of the object, its name,
its regularity, its convexity, its colour in RGB coordinates,
the type of object (if it has curves or not), its size wrt the
image, the qualitative description of its shape, and a list of
compared sizes wrt the other objects:

QVisual = [ObjId, Name, Regularity, Convexity, Colour,
Type, Size, QShapeDesc, ListSizewrtObj]

where,
ObjId = N ∈ [0, ∝]
Name ∈{triangle, quadrilateral,…, polygon, circle,
ellipse, polycurve, mix-shape}
Regularity ∈ {regular, irregular}
Convexity ∈{convex, concave}
Colour = [R, G, B] / R, G, B = N ∈ [0, 255]
Type ∈{without-curves, with-curves}
Size = {small, medium, large}
QShapeDesc = [[PointQDesc1, …, PointQDescNmP]]
PointQDesc = [Angle|curve, Lenght|TypeCurvature,
Convexity]

where,
Angle ∈{acute, right, obtuse}
Length ∈{smaller, equal, bigger}
TypeCurvature ∈{acute, semicircular, plane}
Convexity ∈{concave, convex}

ListSizewrtObj = [[ObjId, CompSize]1,…, [ObjId,
CompSize]K-1],
 where,
 CompSize = {smaller_than_half, half,
larger_than_half, equal, smaller_than_double, double,
larger_than_double}

Finally, the qualitative spatial situation of each object
inside the image (QSpatial) consists of (1) the fixed
orientation of the current object wrt the centre of the image
and a list of fixed orientations of the current object wrt the
other objects; (2) a list of relative orientations of the
current object wrt all the reference systems in the image;
and (3) a list of qualitative compared distances obtained by
comparing the distance from the current object to all pairs
of other objects in the image.

QSpatial = [OrientwrtImage, LOrienwrtObj,
 LOrienwrtRS, LCompQDistance]

where,

OrientwrtImage = {front, back, left, right, front-left, front-
right, back-left, back-right, centre}
LOrienwrtObj =[[ObjId, LOrien]1,…,[ObjId, LOrien]K-1]
LOrien = [Orien1, …, Orien no]

Orien = {front, back, left, right, front-left, front-right,
back-left, back-right}
LOrienwrtRS = [OrienwrtRS 1, … OrienwrtRS m]
OrienwrtRS = [ObjIdA, ObjIdB, [RelOrien1,..., RelOriennr]]
RelOrien = {left_front, straight_front, right_front, left,
identical_front, right, left_middle, straight_middle,
right_middle, identical_back_left, identical_back,
identical_back_right, left_back, straight_back,
right_back}
LCompQDistance = [CQDistance1,…, CQDistance m]
CQDistance = [ObjIdA, ObjIdB, Qdistance]
Qdistance = {closer_than, nearby, further_than}

As a result of the application which implements our
approach, the qualitative description of the image shown
by Figure 8 is presented. The string obtained describes the
four objects contained in the image in the order presented
in Figure 8b. Objects containing vertices with smaller
coordinates x and y are described first, considering that, in
traditional computer vision, the origin of coordinates (x = 0
and y = 0) is located on the upper-left corner of the image.
Figure 8b also shows the location of the vertices detected
by our approach.

Finally, the qualitative description obtained by our
application for the image in Figure 8 is the following one:

[

[0, triangle-acute-equilateral, regular, convex, [255,0,0], without_curves,
small,
 [[acute,equal,convex],[acute,equal,convex],[acute,equal,convex]],
 [[1, larger_than_half],[2, smaller_than_double],[3,
smaller_than_double]],
 [front, right, front_right],
 [[1, right], [2, front_right, right], [3, front, front_right]],
 [[[1, 2], back_left], [[1, 3], left_middle], [[2, 1], right_front], [[2, 3],
left_middle, left_front], [[3, 1], right_middle], [[3, 2], right_middle,
back_right]],
 [[1, 2, closer_than],[1, 3, closer_than],[2, 1, further_than],[2, 3,
further_than],[3, 1, further_than],[3, 2, closer_than]]
],

[1, hexagon, regular, convex, [255, 206, 0], without_curves, small,
 [[obtuse,equal,convex],[obtuse,equal,convex],[obtuse,equal,convex],[o
btuse,equal,convex],[obtuse,equal,convex],[obtuse,equal,convex]],
 [[0, smaller_than_double],[2, larger_than_double],[3,
smaller_than_double]],
 [front_left, front, left],
 [[0, left], [2, front, front_right], [3, front, front_left]],
 [[[0, 2], right_middle], [[0, 3], right_middle], [[2, 0], left_middle], [[2,
3], back_left, left_middle], [[3, 0], left_middle], [[3, 2], right_front,
right_middle]],
 [[0, 2, further_than],[0, 3, closer_than],[2, 0, closer_than],[2, 3,
closer_than],[3, 0, further_than],[3, 2, further_than]]
],

[2, quadrilateral-square, regular, convex, [49, 101, 255], without_curves,
small,
 [[right,equal,convex],[right,equal,convex],[right,equal,convex],[right,
equal,convex]],
 [[0, larger_than_half],[1, smaller_than_half],[3, larger_than_half]],
 [left, back_left],
 [[0, left, back_left], [1, back_left, back], [3, front_left, left]],

 [[[0, 1], left_front], [[0, 3], right_middle, right_front], [[1, 0],
back_right], [[1, 3], right_middle], [[3, 0], left_middle, back_left], [[3, 1],
left_middle]],
 [[0, 1, further_than],[0, 3, further_than],[1, 0, closer_than],[1, 3,
closer_than],[3, 0, closer_than],[3, 1, further_than]]
],

[3, pentagon, irregular, convex, [0,129,0], without_curves, small,
 [[obtuse,smaller,convex],[obtuse,equal,convex],[obtuse,bigger,convex],
[obtuse,smaller,convex],[obtuse,equal,convex]],
 [[0, larger_than_half],[1, larger_than_half],[2, smaller_than_double]],
 [back],
 [[0, back_left, back], [1, back_right, back], [2, right, back_right]],
 [[[0, 1], left_middle], [[0, 2], left_middle], [[1, 0], right_middle], [[1,
2], left_middle, left_front], [[2, 0], right_middle], [[2, 1], right_middle,
back_right]],
 [[0, 1, further_than],[0, 2, further_than],[1, 0, closer_than],[1, 2,
further_than],[2, 0, closer_than],[2, 1, closer_than]]
].

(a)

(b)

Figure 8. (a) Original image which has been processed by our
application; (b) output image after the processes of segmentation
and location of the relevant points of the objects. The numbers of
the objects have been added previously to the image in order to
arrange the qualitative description obtained.

As it can be observed from the qualitative description of
the image in Figure 8, Museros and Escrig’s method for
detecting the vertices of the objects sometimes can be
inaccurate, this is the reason why some regular objects are
sometimes described as irregular by our approach.

Conclusion and Future Work
This paper has presented an approach for describing
images containing 2D objects by applying qualitative
models of shape, compared size, fixed and relative
orientation and compared distance. Qualitative models of
shape and size describe visual features of the objects in the
image, while qualitative models of orientation and distance
describe spatial features of those objects. As the final
result, our approach obtains a string of qualitative labels
which can be easily (1) used for computing relationships
between the objects in the image and (2) compared to
another string that describes another image in order to
obtain a degree of similarity between both images.

While the obtained results are encouraging, much
research remains in order to apply our approach to real
images taken from a camera of a mobile robot. As for
future work, we intend to (1) improve the accuracy of the
detection process of the vertices of the objects in the
image; (2) use the final string obtained by our approach in
order to compare images and calculate a degree of visual
and/or spatial similarity between them; (3) extend our
approach to include topology relations between the objects
in the image; and finally (4) apply our approach to
qualitatively describe visual landmarks (such as corners or
doors) for robot map building and navigation.

Acknowledgements
This work has been partially supported by CICYT and Generalitat
Valenciana under grant numbers TIN 2006-14939 and
BFPI06/219, respectively. We would like to thank the referees for
their comments which helped improve this paper.

References
Bañuelos, J. I.: Algoritmo de indexado en bases de datos
de imágenes. Master thesis in Maestría Electrónica
supervised by Leopoldo Altamirano Robles. Instituto
Nacional de Astrofísica, Óptica y Electrónica. México
(2000).
Canny, J. F.; A computational approach to edge detection.
IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8,
pp. 679--697 (1986).
Chang, S-K., Jungert, E., Li, Y.: Representation and
retrieval of symbolic pictures using generalized 2D strings.
In: SPIE Conference on Visual Communications and
Image Processing, pp. 1360--1372. Philadelphia, USA
(1989).
Escrig M. T., Toledo F.: Reasoning with Compared
Distances at Different Levels of Granularity. In: 9th
Conferencia de la Asociación Española para la Inteligencia
Artificial (ECAI), Spain (2001).
Freksa, C.: Using Orientation Information for Qualitative
Spatial Reasoning. In: Frank, A.U., Campari, I.,

Formentini, U. (eds.), Theories and Methods of Spatio-
Temporal Reasoning in Geographic Space, Proc. Int. Conf.
GIS- From Space to Territory. LNCS, vol. 639, pp. 162--
178 (1992).
Goldman R. N., Area of Planar Polygons and Volume of
Polyhedra. In Arvo J. Ed., Graphics Gems II, The Graphics
Gems series, ISBN 0-12-064481-9, pp. 170 -- 171 (1991).
Hernández, D.: Relative Representation of Spatial
Knowledge: The 2-D Case. In: Mark, D.M., Frank, A.U.
(eds), Cognitive and Linguistic Aspects of Geographic
Space, pp. 373--385, Kluwer, Academic Publishers,
Dordrecht (1991).
Landau, B., Jackendoff, R.: 'What' and 'Where' in spatial
language and spatial cognition. Behavioral and Brain
Sciences, 16 (2), 217--265 (1993).
Lovett A., Dehghani M., Forbus K.: Efficient Learning of
Qualitative Descriptions for Sketch Recognition. In: 20th
International Workshop on Qualitative Reasoning.
Hanover, USA, 2006.
Museros L., Escrig M. T.: A Qualitative Theory for Shape
Representation and Matching for Design. In: 16th
European Conference on Artificial Intelligence (ECAI), pp.
858--862. IOS Press. ISSN 0922-6389 (2004).
Qayyum, Z. U., Cohn, A. G.: Image retrieval through
qualitative representations over semantic features. In: 18th
British Machine Vision Conference (BMVC2007), pp.
610--619. Warwick, UK (2007).
Socher, G.: Qualitative Scene Descriptions from Images
for Integrated Speech and Image Understanding.
Dissertationen zur Kunstlichen Intelligenz (DISKI 170).
Infix-Verlag, Sankt Augustin (1997).

Learning Qualitative Causal Models

via Generalization & Quantity Analysis

Scott E. Friedman and Kenneth D. Forbus

Qualitative Reasoning Group, Northwestern University

2145 Sheridan Road, Evanston, IL 60208-0834 USA

{friedman, forbus}@northwestern.edu

Abstract

Learning causal models is a central problem of qualitative
reasoning. We describe a simulation of learning causal
models from exemplars that uses progressive alignment and
qualitative process theory to derive plausible qualitative
causal models from observations. We show how
protohistories can be created via progressive alignment and
used to infer causality. The result, a causal corpus, can
make simple predictions and set the stage for more
sophisticated qualitative models. The simulation has been
successfully tested with learning causal mechanisms of
three physical scenarios, with encouraging results.

Introduction

Forbus & Gentner (1986) proposed decomposing learning
of physical domains from experience into four stages. (1)
Protohistories are prototypical behaviors, generalized from
multiple experiences. (2) The causal corpus consists of
fragmentary causal models, created from protohistories.
(3) These fragmentary models are organized into a naïve
physics, which regularizes the fragmentary causal models
by postulating broadly applicable mechanisms. (4) Expert
understanding consists of deepening the naïve physics and
tying it to mathematical and other formal models, typically
culturally learned. Importantly, these stages are localized
within the understanding of particular phenomena. For
example, someone might have an expert understanding of
electronics while having only a partial set of causal models
for fluids.

This paper focuses on learning initial causal models of a
domain from observations. We use qualitative process
theory (Forbus, 1984) to formally represent causal models.
Causal models are learned from symbolic representations
of experiences via a combination of analogical processing
(Gentner, 1983) and statistical methods. The simulation
has been successfully tested on three scenarios; we use
understanding floating versus sinking as a running example
for illustration. We first review QP theory and the
structure-mapping models we use. Then we discuss how
protohistories are learned from experience via progressive
alignment, proposing generalization contexts as a means of
organizing experience around salient questions. Next we
discuss quantity analysis strategies to develop fragmentary

causal models by hypothesizing ordinal conditions, limit
points, and new quantities. We summarize results from
our simulation and close by discussing other related work
and future plans.

Background

Our theoretical framework uses qualitative process theory

as its account of modeling mechanisms of change.

Changes are caused by continuous physical processes,

which provide the notion of mechanism for causality (cf.

Chi et al 1994; Ahn et al 1995). These changes propagate

through the system via qualitative proportionalities which

indicate causal relationships between quantities.

Qualitative proportionalities provide only partial

information about what will happen. This makes them

particularly appropriate for representing local causal

models, since models learned from one set of experiences

can be more easily combined with others.

These causal laws are contextualized by belonging to

either processes or views, and hold only when their

conditions are true. Conditions are typically ordinal

relations, involving parameters of the entities participating

in the process or view. The values that a quantity is

compared with in such relations are called limit points,

since they help determine when processes start and stop,

and when views hold or not. Postulating the existence of

limit points is an important challenge in learning QP

models, since they are crucial for prediction.

QP theory does not describe how these models are

learned. We claim that statistical accounts of causality (cf.

Pearl, 2000; Gopnik et al 2004) can be harnessed to

produce QP models. We incorporate statistics via

similarity, using structure-mapping operations to construct

probabilities as a side-effect of assimilating experiences.

The SEQL model of generalization (Kuehne et al 2000)

constructs generalizations incrementally via analogical

comparison. We simulate analogical matching via SME,

the Structure-Mapping Engine (Falkenhainer et al 1989;

Forbus et al 1994). Given two structured representations,

the base and target, SME computes one or two mappings

which describe how the base and target can be aligned.

Mappings include a set of correspondences that detail

exactly which entities and statements in one description go

with entities and statements in the other, a structural

evaluation score which indicates the overall quality of the

match, and a set of candidate inferences that are

conjectures about the target, using the correspondences to

project partially unmapped base structures. Candidate

inferences allow predictions and explanations to be

generated without rules, via analogy to prior experiences

and explanations. This makes them particularly important

for accounts of learning like ours that postulate localized,

incrementally generated models.

SEQL operates by maintaining a list of generalizations

and exemplars. Given a new exemplar, SEQL compares it

with existing generalizations. If it is sufficiently similar to

one of them, it is assimilated into that generalization.

Otherwise, it is compared against the list of unassimilated

exemplars. If a pair of exemplars is sufficiently similar,

they are combined to form a new generalization.
We call a set of generalizations and exemplars that are

being processed together by SEQL a generalization
context. Generalization contexts can be defined bottom-
up, via similarity-based retrieval, or by labeling, e.g., a
learner might use a generalization context to process all
examples that have been given a verbal label, like “cat”.

Learning Protohistories

Protohistories are generalizations of specific observed
behaviors. Observed behaviors are typically rich with
perceptual information, and in new domains, impoverished
with regard to explanations. We postulate that analogical
generalization, as modeled in SEQL, is used to construct
prototypical behaviors. Below is an example observation
given to our simulation. It describes an adult female
human, swimming (gliding) in a still pond, and floating:

(isa bodyInLiquid0 AdultFemaleHuman)

(isa container0 Pond)

(isa liquid0 (LiquidFn Water))

(in-UnderspecifiedContainer liquid0 container0)

(massOfObject bodyInLiquid0 (Kilogram 60))

(volumeOfObject bodyInLiquid0 (CubicCentimeter 62039))

(isa gliding0 MovementEvent)

(primaryObjectMoving gliding0 bodyInLiquid0)

(isa stillLiquid0 StandingStill)

(doneBy stillLiquid0 liquid0)

(in-Floating bodyInLiquid0 liquid0).

The vocabulary of concepts and relations is drawn from

the ResearchCyc knowledge base1, an independently
developed representation system for common-sense
knowledge. The predicate calculus was produced using a
natural-language understanding system (Kuehne & Forbus,
2004) from simplified English, to reduce tailorability.

The simplified English that generates the above
predicate calculus observation is:

1
 h t t p :/ / r e se a r ch .cy c.co m /

The woman bodyInLiquid0 floats in water liquid0 in a
pond container0. The mass of the woman
bodyInLiquid0 is 60 kilograms. The volume of the
woman bodyInLiquid0 is 62039 cubic centimeters.
The woman bodyInLiquid0 is moving but the water
liquid0 is standing still.

For SME processing, isa statements are automatically

translated into attributes (i.e., (AdultFemaleHuman

bodyInLiquid0)). SEQL generalizations abstract specific

individuals (e.g., bodyInLiquid0) into anonymous

individuals, not variables. Numerical parameters (e.g.,

(Kilogram 60)) are also abstracted into anonymous

individuals, but their values are preserved in a distribution

for each quantity in the generalization. These distributions

are used to conjecture limit points below. We ignore

memory retrieval in this simulation, and provide as input a

stream of observations like the above.

How many generalization contexts should be used?

Since SEQL automatically constructs multiple

generalizations according to similarity, one possibility is to

use a single context. The drawback with a single context is

that it may not provide enough discrimination for learning.

For example, to learn why things float, the learner must

distinguish between floating and sinking examples. We

have observed that SEQL may, because of attribute

information, cluster cases from both types of situations into

the same generalization. Consequently, we create separate

generalization contexts for each possibility. Every

generalization context incorporates a set of entry patterns

that are tested against new exemplars. When a new

exemplar satisfies the entry pattern for a generalization

context, it is processed in that context. The same example

can be processed in multiple contexts, since a learner might

be learning multiple concepts at once.

Consider a learner trying to understand the distinction

between floating and sinking, as well as sailboats sailing.

Figure 1 illustrates the three example generalization

contexts that would be used. If an exemplar arrives with

(SinkingEvent sinking0) as a constituent fact, with no

mention of floating, it will be incorporated into the

rightmost context alone. If another exemplar arrives with

(isa boat0 SailBoat) and (floating-in boat0

(LiquidFn Water)) as constituent facts, it will be

incorporated into both leftmost and middle contexts.

Figure 1: Example contextual protohistory organization

Learning a Causal Corpus

The causal corpus consists of a set of causal models

grounded in, and connecting, protohistories. These causal

models are local to particular protohistories or collections

of protohistories. Restructuring these local models into

general domain theories, of the kind typically used in

qualitative reasoning, occurs only after a reasonable causal

corpus has been constructed (Forbus & Gentner 1986).

Even fragmentary causal models are quite powerful:

Understanding what qualitative proportionalities hold in a

protohistory yields a means of predicting the immediate

consequences of parameter changes. Similarly,

understanding quantity conditions that determine which

protohistory represents the behavior that occurs in a

situation enables predictions of state changes.

Our simulation uses three causal learning strategies –

procedures that take protohistories and quantities as input,

and generate causal hypotheses, expressible using the

vocabulary of QP theory. We also describe a method for

deriving complex quantities from constituent input

quantities. We do not view this set of strategies as

complete, but we believe they are a good starting point.

 Analyzing quantity values enables us to hypothesize

limit points, quantity conditions, and qualitative

proportionalities. The quantity condition strategy

identifies relevant ordinal relationships. The limit point

strategy hypothesizes new causally-relevant values. The

quantity derivation strategy hypothesizes compound

quantities. We discuss each in turn.

Quantity Condition Strategy. Conditions for processes

and views typically include ordinal relations between

quantities. For instance, for a body to be floating in a

liquid, its density must be less than the liquid’s density.

Quantity conditions are conjectured as follows:

1. Protohistories that summarize experience related to

the target phenomenon are divided into two groups: those

that express it (P+) and those that do not (P-).

2. For each protohistory pi within (P+  P-), the ordinal

relationships Ri = {r1, r2, …, rn} are identified that hold for

every exemplar within Pi. The ordinal relationships tested

are =, >, <, , and , over the set of exemplars that were

used in forming Pi.

3. Conditions are identified that pertain to the entirety of

P+ and P-, such that R+ = {R+
1  …  R+

n} and R- = {R-
1

 …  R-
n}.

4. Conditions that coincide with the phenomenon are the

set Rcause = R+ - R-. Relationships that coincide with the

absence of the phenomenon are the set Rprevent = R- - R+.

We use exemplars in step 2 because our encoding

process does not automatically generate ordinal

relationships from numerical values in observations. (The

quantity value distribution information stored with

generalizations cannot be used to compute this, because

links to particular exemplars is not included.) This is a

simplification: We believe that psychologically, encoding

choices are driven in part by learning goals, which would

propose encoding particular ordinal relationships in order

to test conjectures via this strategy. Such goals might be

generated based on trying various ordinals on a small

number of exemplars, but that is left for future work.

Limit Point Strategy. Some physical phenomena occur

when a quantity’s value is above or below a specific limit

point. Like the quantity condition strategy, the limit point

strategy assumes that two sets of protohistories have been

identified, such as water being heated and boiling and

water being heated and not boiling. Recall that

protohistories preserve the set of exemplar values {v1, v2,

…, vn} for each quantity. This information can be

summarized via an interval V, where V = [min(v1, v2, …,

vn), max(v1, v2, …, vn)].

After calculating quantity intervals for individual

protohistories, we first compute possible limit points by

grouping protohistories into two sets: those that express the

given phenomena P+ = {p+
1, p

+
2, …, p+

n} and those that do

not P- = {p-
1, p-

2, …, p-
n}. For each quantity-type q, we

merge the protohistory intervals so that

P+
q = [min(p+

1q, p
+

2q, …, p+
nq), max(p+

1q, p
+

2q, …, p+
nq)]

P-
q = [min(p-

1q, p
-
2q, …, p-

nq), max(p-
1q, p

-
2q, …, p-

nq)].

If the intervals P+
q and P-

q do not overlap for a quantity,

it could be the case that a limit point exists within the

interval [max(min(P+
q, P-

q)), min(max(P+
q, P-

q))], or

between the maximum point of the lower interval and the

minimum point of the higher interval. This interval is then

added to the causal corpus, as a limit point approximation.

If the intervals P+
q and P-

q overlap, there could still be an

uninterrupted interval [qmin, qmax] that represents a

condition under which the phenomenon occurs. Instead of

merging protohistory intervals into P+
q and P-

q, we test for

exclusiveness, such that no protohistory intervals in P+

overlap protohistory intervals in P- for a quantity q.

Uninterrupted intervals in q are then added to the causal

corpus as possible conditions for the target phenomenon.

Quantity Derivation Strategy. Understanding many

physical phenomena requires introducing quantities

beyond those observed. To understand why something

floats versus sinks, for example, requires introducing the

idea of density. If the quantity analysis fails to distinguish

between two behaviors within the encoded quantities, the

quantity derivation strategy proposes new quantities that

are then searched for limit points and ordinal relationships.

For all explicitly mentioned quantities a and b such that a

 b, a set of new quantities C is derived:

C = {a/b, b/a, a*b, a+b, a-b, b-a}.

The units for the derived quantities may be identical to

their constituent quantities (kg + kg = kg), or they may be

combinations of their constituent units (kg/cc = kg/cc).

Simulation Results

We demonstrate how these methods combine to produce

plausible causal corpus elements from a set of

observations. We first go through a single learning task in

detail, then summarize the results of others.

To investigate learning floating versus sinking, we

encoded 30 unique exemplars – 16 floating and 14 sinking

– in simplified English, which were fed into our natural

language understanding system to automatically produce

predicate calculus descriptions like our earlier example.

Many factors used in the scenarios were based on Piaget’s

(1930) interviews with children: the motion of the water

(still or wavy); the body in water (man, woman, log, cruise

ship, or tree branch); the body of water (ocean, sea, lake,

pond, bath-tub, or bowl); and autonomous motion of the

body (moving/gliding or still). In all scenarios, a body

floats when the body’s density is less than 1 g/cc.

The simulation first generates protohistories from the

exemplars. Two generalization contexts were used, with

entry patterns (in-Floating ?x ?y) and (isa ?x

SinkingEvent), to model the focus on understanding when

something floated or sank. The assimilation threshold for

SEQL was set to 0.75. This yielded six protohistories, five

for floating and one for sinking. All exemplars were

assimilated into a generalization. Table 1 shows the

protohistory abstractions with the generic entities in bold,

and the protohistory size, |P|. Protohistories P1 and P4

preserved tree branch and cruise ship in their abstractions,

respectively; the rest contain only generic entities.

The abstractions for P2 and P3 are identical, yet they are

still distinct. This is due to uncertain facts within the

generalization. Specifically, in P2, P(body = man) = .66,

and in P3, P(body = woman) = .66. Thus, although the

abstractions are identical, the underlying representations

differ. Low-probability facts are considered for similarity

processing, so they remained distinct.

Context # Protohistory Abstraction |P|

Floating 1 Idle tree branch, wavy water 2

2 Moving body 3

3 Moving body 3

4 Moving cruise ship 3

5 Wavy water 5

Sinking 6 Idle body, still water 14

Table 1: Protohistories for floating and sinking

To generate causal corpus information for these

protohistories, the strategies defined above were executed

in the order given.

Given a set of protohistories, the simulation proceeds to

analyze its quantities, searching for limit points and

quantity conditions that help explain floating. The

observable quantities yielded no causal hypotheses, so the

simulation used the quantity derivation strategy to create

new quantities and try again. One of the derived

quantities does yield a limit point, as shown in Table 3.

Since this limit point (which we know as density) was

derived as the ratio of mass and volume, we also obtain the

qualitative proportionalities shown in Table 3, imposing a

causal direction on what was an algebraic relationship by

assuming that observable parameters are more primitive

than derived parameters. (This is a heuristic, of course,

that could be incorrect – consider heat derived from

temperature, for example.)

Causal Hypothesis Type Formula

Derived Quantity q = massbody/volumebody

Limit Point q < [0.001, 0.00102] kg/cc

Qualitative Proportionality floatability Q- q

q Q+ massbody

q Q- volumebody

floatability Q- massbody

floatability Q+ volumebody

Table 3: Causal hypotheses generated about floating

In addition to floating/sinking, we tested the simulation

on two other learning scenarios. This involved creating

new stimuli descriptions and changing the entry patterns of

the generalization contexts to suit the scenarios. The

remainder of the learning process remained the same.

To model learning how balance scales work (Siegler,

1983), we encoded nine scenarios using the methodology

above, varying the kinds of objects on the balance and the

posture of the object (e.g., sitting or kneeling or upright).

Using two generalization contexts, one for right-side

sinking and one for left-side sinking, the simulation

generated two protohistories for each context. The

quantity condition strategy creates the sensible quantity

hypothesis

(> (massOfObject leftside0) (massOfObject rightside0))

to predict when the left side will sink.

In another learning experiment conjecturing when

boiling would occur, six exemplars were encoded using the

methodology above. The limit point strategy conjectures a

limit point for temperature to predict when boiling occurs:

 Hypothesis: phenomena occurs when

 (temperatureOfObject kettle0)

 is above some point in the range:

 [95.0-100.0] DegreeCelsius.

The lower bound of the range could be refined by more

experience.

While the number of learning experiments conducted to

date is small, the results obtained so far are very

reasonable.

Related Work

The closest previous simulation is COBWEB (Fisher,

1987) which utilized conceptual clustering, but did not

introduce causal models, nor was it tested on semi-

automatically generated stimuli. Our quantity derivation

strategy is inspired by Langley’s (1981) BACON

simulation.

Some of diSessa’s (1983) p-prims (for

“phenomenological primitives”) can be viewed as causal

corpus elements while others may be viewed as

protohistories. No computational model for learning them

was ever implemented.

Discussion and Future Work

Our simulation combines symbolic, relational

representations with quantity analysis to learn causal

models. We think this is a very promising approach to

developing deep qualitative models of physical domains.

In cognitive psychology, many advocates of statistical

accounts of causality do not include any notion of

mechanism, and we obviously (along with Chi et al 1994;

Ahn et al 1995) do not believe that is sufficient. As

demonstrated in this paper, generalization and quantity

analysis can be used to generate fragmentary qualitative

models of these causal mechanisms.

This simulation is obviously only a beginning. In

addition to testing the simulation on a broader range of

learning problems, we also plan to incorporate retrieval,

using MAC/FAC (Forbus et al 1995). Having the

simulation generate its own distinctions to explore, perhaps

via failed predictions made with protohistories, is also an

important problem to investigate.

Acknowledgments

This work was funded by the Office of Naval Research

under grant N00014-08-1-0040.

References

Ahn, W. k., Kalish, C. W., Medin, D. L., & Gelman, S. A.

(1995). The role of covariation versus mechanism

information in causal attribution. Cognition, 54, 299-

352.

Chi, M., Slotta, J., & De Leeuw, N. (1994). From things to

processes: A theory of conceptual change for learning

science concepts. Learning and Instruction, 4(1), 27-43

diSessa, A. (1983). Phenomenology and the evolution of

intuition. In D. Gentner and A. Stevens (Eds), Mental

Models. 15-33. Hillsdale, NJ: Lawrence Erlbaum.

Falkenhainer, B., Forbus, K. & Gentner, D. (1989). The

Structure-Mapping Engine: Algorithm and examples.

Artficial Intelligence. 41.

Fisher, D.H. (1987). Knowledge acquisition via

incremental concept clustering. Machine Learning 2, pp.

139-172.

Forbus, K. (1984). Qualitative Process Theory. Artificial

Intelligence, 24, 85-168.

Forbus, K.D & Gentner, D. (1986). Learning physical

domains: towards a theoretical framework. In R.S.

Michalski, J.G. Carbonell and T.M. Mitchell” Machine

Learning: An Artificial Intelligence Approach, Vol. 2.

Forbus, K., Gentner, D. & Law, K. (1995). MAC/FAC: A

model of Similarity-based Retrieval. Cognitive Science,

19(2), April-June, pp 141-205.

Gentner, D. (1983). Structure-mapping: A theoretical

framework for analogy. Cognitive Science, 7(2), 155-170

Gopnik, A., Glymour, C., Sobel, D., Schulz, L., Kushnir,

T., & Danks, D. (2004). A theory of causal learning in

children: Causal maps and Bayes nets. Psychological

Review, 111, 1, 1-31.

Kuehne, S. & Forbus, K. (2004). Capturing QP-relevant

information from natural language text. Proceedings of

the 18th International Qualitative Reasoning Workshop,

Evanston, Illinois, USA, August

Kuehne, S.E., Forbus, K.D., Gentner, D., & Quinn, B.

(2000). SEQL: Category learning as progressive

abstraction using structure mapping. Proceedings of

CogSci 2000, August.

Langley, P. (1981). Data-driven discovery of physical

laws. Cognitive Science 5, 31-54.

Pearl, J. (2000). Causality:Models, Reasoning, and

Inference. Cambridge University Press.

Piaget, J. (1930). The Child's Conception of Physical

Causality. Kegan Paul, London.

Siegler, R. (1983). Five generalizations about cognitive

development. American Psychologist 38, 263-277.

Immersive Examination of the Qualitative Structure of Biomolecules
Kenny Gruchalla

gruchall@colorado.edu
Department of Computer Science
University of Colorado at Boulder

Mark Dubin
dubin@colorado.edu

Department of Molecular, Cellular,
and Developmental Biology

University of Colorado at Boulder

Jonathan Marbach
marbach@colorado.edu

Department of Computer Science
University of Colorado at Boulder

Elizabeth Bradley
lizb@colorado.edu

Department of Computer Science
University of Colorado at Boulder

Abstract

The geometry of biomolecules dictates their function,
but reasoning about that structure is difficult because of
their 3D complexity and the range of scales involved.
The wooden or plastic ball-and-stick models that are
common in high-school chemistry labs help people rea-
son about these issues when the molecules involved
are small, but they are useless in the study of large
biomolecules. Largely for this reason, 3D computer
visualization tools have become essential in this field.
However, these tools are limited by their interfaces. Tra-
ditional graphics workstations project a 3D model onto
2D screen, and interaction with the 3D model is indi-
rect, using 2D mouse or pointing device. Immersive vi-
sualization is a potential solution to this: it allows a user
to visualize a biomolecule in 3D and interact with it di-
rectly in 3-space. This paper reports upon a pilot study
about the effects of immersive visualization upon an ex-
pert’s reasoning about the qualitative structure of these
molecules. We ported a standard visualization applica-
tion (PyMOL) to a CAVE-like immersive virtual envi-
ronment (IVE), then invited three separate biochemistry
research groups—people who use PyMOL routinely on
desktop computers—to examine their favorite molecule
in the IVE. Within ninety minutes of immersive inves-
tigation, each group reported a new discovery about the
qualitative structure of that molecule. We believe that
the immersive environment facilitated these discoveries
by supporting and facilitating the natural spatial reason-
ing abilities of its users.

An immersive virtual environment is a combination of hard-
ware and software that provides a psychophysical experi-
ence of being surrounded by a computer-generated scene
(see Figure 1). Immersive virtual environments provide
users with an egocentric three-dimensional perspective:
users are immersed in a virtual world, where they can ex-
plore complex spatial systems by looking through them,
walking around them, and viewing them from different per-
spectives. Immersive environments may help people see
and understand the structure of complex three-dimensional
datasets; in contrast to more traditional graphics worksta-
tions, these environments allow one to visualize data us-
ing the well-practiced, non-concious analysis that automati-
cally accompanies an embodied, egocentric visual perspec-

tive. There are several studies that have investigated the
added value of immersive environments (Pausch, Proffitt, &
Williams 1997; Ruddle, Payne, & Jones 1999; Arns, Cruz-
Neira, & Cook 1999; Swan et al. 2003; Gruchalla 2004;
Schulze et al. 2005; Demiralp et al. 2006). However, the
results of these studies are mixed and the issue is somewhat
controversial. There are few studies that clearly demonstrate
the effectiveness of immersive environments for real-world
problems, and none that approach this issue from the stand-
point of qualitative reasoning. Our study does so, and our
results indicate that experts understand more about the ge-
ometry of biomolecules if they use an immersive environ-
ment than if they use the same visualization tools on a stan-
dard desktop. Within ninety minutes of immersive inves-
tigation, each of the three groups in our study reported a
new discovery about the qualitative structure of an important
biomolecule—molecules that these groups had been study-
ing for years in with the same software visualization tool on
desktop environments.

Immersive visualization has long been proposed as a
means to analyze the complex three-dimensional structure
of biological molecules (Ihlenfeldt 1997), and it is used by
numerous investigators in basic research and industrial set-
tings. Qualitative spatial analysis of the structure of these
molecules at a range of scales is essential, because their
overall three-dimensional configuration dictates the atomic
interactions that are the basis of their function. Understand-
ing the geometry of the building blocks of a biomolecule,
and their relationships, is key to many of the grand-challenge
problems in biochemistry: the rational design of drugs that
enhance or inhibit molecular activity, the understanding of
how steps in embryonic development normally proceed or
go wrong in the presence of genetic mutations of molecular
structure, and so on.

This paper documents a pilot study in which three sepa-
rate groups of biochemists visualized and interacted with in-
dividual biological molecules in a CAVE-like IVE. In each
case, the immersive working session yielded new insights
that the same biochemists had not previously achieved with
their extensive use of the same visualization package on
standard desktop computer displays. Large-scale spatial
features, such as pockets and ridges, were readily identi-

Figure 1: A user interacting with a PyMOL visualization of
a molecular surface inside a CAVE-like immersive virtual
environment, which provides the opportunity to visualize the
molecule using normal, everyday-world perceptual abilities
that have been tuned and practiced from birth.

fied when walking around the molecule displayed at human
scale.

Methods
Three University of Colorado at Boulder (UCB) biochem-
istry research groups were invited to study a molecule of
their choice—one central to their current research—in a
FakeSpace Flex, a CAVE-like immersive virtual environ-
ment. The research groups had each intensively stud-
ied their chosen molecule using non-immersive visualiza-
tion techniques—the desktop version of PyMOL, a pop-
ular open-source molecular visualization system (DeLano
2002)—for at least a year prior to conducting their research
in the IVE. We ported this same tool to a stereoscopic, inter-
active IVE (Gruchalla, Marbach, & Dubin 2007) to provide
some informal control in our study.

The Flex is configurable large-screen projection-based
12’x12’x10’ theater, consisting of four walls: three rear-
projected screens measuring 12’x10’ that form the right
wall, back wall, and left wall of the IVE. The fourth wall
is the 12’x12’ floor that is projected from above. A three-
dimensional effect is created inside the IVE through ac-
tive stereo projection and motion parallax. Stereo projec-
tion is achieved by projecting two images in sequence on
each screen: an image for the viewer’s left eye, followed
by an image for the viewer’s right eye. Viewers wear active
stereo LCD shutter glasses to view the stereoscopic images.
Infrared emitters synchronize the glasses with the graphics
pipes. When the computer renders the image for the left
eye, the right eye shutter is closed. Similarly, when the com-
puter renders the image for the right eye, the left eye shut-
ter is closed. This shuttering action creates the illusion of
three-dimensional images. A motion parallax is supported

by tracking the position and orientation of the viewer’s head
and using this information to generate an egocentric per-
spective. Virtual objects can be manipulated inside the IVE
using a tracked wand.

PyMOL (DeLano 2002) is a powerful and versatile open-
source, cross-platform real-time molecular visualization
system that supports standard representations for molecu-
lar structures (e.g., wire bonds, cylinders, spheres, ball-and-
stick, dot surfaces, solid surfaces, wire meshes, backbone
ribbons, and cartoon ribbons). PyMOL’s primary interface is
an embedded Python interpreter, which is the basis for its so-
phistication. Our immersive port of PyMOL allows users to
view PyMOL visualizations in a head-tracked IVE and ma-
nipulate molecular structures using a six-degree-of-freedom
input device. Only the visualization and 3D interaction ele-
ments of PyMOL were ported to the IVE; its python-based
command-line interface ran on a desktop computer. The vi-
sualization is composed (e.g., loading pdb files, choosing
representations, selecting colormaps, ...) using the PyMOL
command-line interface on this desktop, then viewed and
manipulated in the IVE. Clearly, an IVE is poorly suited
to support a command-line interface. Dividing the work-
flow between the two environments allows all the power and
sophistication of the command-line interface to be used to
construct the 3D model, while the visualization of the model
and the spatial reasoning about its nature can be done in the
3D space of the IVE.

In this environment, three biochemistry groups conducted
actual research about how the structure of their molecule re-
lates to its function:

• The laboratory of Professor Arthur Pardi studying the
anti-VEGF aptamer (Ruckman et al. 1998)

• The laboratory of Professor Natalie Ahn study-
ing the extracellular signal-regulated kinase ERK2
(1erk.pdb) (Zhang et al. 1994)

• The laboratory of Professor Shelley Copley study-
ing the enzyme maleylacetoacetate isomerase
(1fw1.pdb) (Polekhina et al. 2001)

With one exception1, the participants had no previous ex-
perience in viewing or manipulating objects in the IVE.
Each group was given a brief introduction to the environ-
ment and how to manipulate molecular structures using the
wand. Each group worked for about 90 minutes, with three
of four members of the team working collaboratively inside
the IVE, while one team member controlled the content of
the visualization from a desktop computer using the PyMOL
command-line and desktop interfaces. This similar to a tra-
ditional team working session, in which one member group
would control the visualization from a desktop computer us-
ing the PyMOL command-line and desktop interface; how-
ever, in a traditional working session the rest of the team
would gather around the computer to view and try to under-
stand the resulting visualization.

1Professor Pardi had toured the immersive facilities and seen
several immersive demos prior to the pilot study.

Results
Despite having a long and extensive research history with
their respective molecules, all three groups arrived at a new
insight from their 90-minute IVE research session. All of
these insights were similar, and all involved qualitative rea-
soning about geometry. Each group became newly aware
of a large spatial feature, such as an empty space or ridge,
that they had not noticed during their (considerable) previ-
ous PyMOL work with the molecule on desktop computer
monitors. In each case, the newly recognized feature led to
insights about the molecule’s function that follow directly
from geometry: how its pieces move, for instance, or how
they fit together. These are described in the following para-
graphs. Each group left with the intention of exploring a
new theoretical possibility based on these insights; the Ahn
group actually integrated a hypothesis concerning the struc-
ture into a new grant proposal.

The Copley group recognized an empty pocket indent-
ing from the surface in the enzyme maleylacetoacetate iso-
merase (MAAI) (see Figure 2). MAAI is normally a dimer,
in which the interface between the dimer molecules blocks
this pocket. However, the monomer of MAAI is similar to—
and is used by the Copley group as—a model for another
molecule, tetrachlorohydroquinone (TCHQ) dehalogenase,
which is a monomer. This group is studying how a key com-
ponent of the molecule’s active site, amino acid cysteine at
position 16 (cys16), interacts with substrate molecules that
must be able to diffuse into TCHQ dehalogenase in order
to reach cys16. The pocket represents a large enough open-
ing for such entry, with cys16 lying at its base (darkened
area in Figures 2c and 2d). When viewing this molecule on
workstations, the researchers had discounted this region as
a potential active site of TCHQ dehalogenase because they
did not judge it to be spacious enough for the substrate to
penetrate to cys16. The immersive visualization gave the re-
searchers the ability to stand inside the pocket, which gave
them enough information to reverse their decision.

The Ahn group was interested in a long “ridge” of poten-
tially interacting amino acids that link two important sites
of the enzyme ERK2 (see Figure 3). ERK2 is crucial com-
ponent of the machinery that underlies normal and malig-
nant cell production. Previous experiments had determined
that small conformational changes caused by mutations of
amino acids in the region shown in orange can cause a
change in shape all the way across the molecule, in the re-
gion shown in purple. Biochemists are interested in under-
standing how such conformational changes are transferred
across molecules, and the Ahn group used the IVE port of
PyMOL to investigate this issue in ERK2. During their im-
mersive investigation, they recognized the “ridge” between
these two regions (shown in green in figure 3) as a possible
physical linkage. This ridge could “transmit” changes in the
orange region across the molecule to the purple region.

The Pardi group was interested in understanding how the
complex surface regions of two molecules fit together in a
complementary way. They used the IVE’s six-degree-of-
freedom handheld wand to manipulate the positions and ori-
entations of the regulatory molecule VEGF and the anti-
VEGF aptamer. VEGF has been implicated in human mac-

Figure 2: A molecular “pocket” that was discovered in the
IVE: At top, the molecule (maleylacetoacetate isomerase)
is shown in stick-representation with the region of interest
shown with bright, non-dark-blue sticks; (a) is a view look-
ing down into the pocket, (b) is a side view of the molecule at
the same scale. The bottom two images show partial surface
views of the region of the molecule immediately surround-
ing the pocket, with the approximate inside “surface” of the
pocket in gold, and the amino acid cys16 in orange. (c) is a
view looking down into the pocket; the mouth of the pocket
corresponds to the region shown in the stick representation,
as indicated by the lines. For (d), the pocket was bisected by
the plane indicated by the line (x-axis) in (c), and rotated 90
degrees about the x-axis to yield a view of half of the pocket
seen in side view, corresponding to the portion of the pocket
at the top of (c). Panels (c) and (d) are to the same scale; the
width of visible pocket in (c) is approximately 10 angstroms.

ular degeneration, a progressive disease that causes loss of
high-acuity, central vision. The synthetic, anti-VEGF ap-
tamer has been shown to be effective in slowing the progres-
sion of macular degeneration; however, the ability of anti-
VEGF aptamer to inhibit the VEGF molecule is deterimined
by the quality of the fit between the two. Using the inter-
active capabilities of the IVE, the Pardi group discovered a
new possible fitting between the two molecules (see Figure
4).

Figure 3: A stick-figure model of ERK2 with regions of in-
terest shown in space-fill representation. Mutations in the
orange region are known to cause shape changes in the ma-
genta region. The “ridge” of green colored atoms, recog-
nized by the Ahn group in the IVE, is a possible linkage
between these regions.

Discussion
Reasoning about relationally generated space (such as a
pocket in a molecule) depends on the scale of presenta-
tion, varying points of view, and movement in and around
it. Thus, we suggest it is not surprising that the naturalis-
tic IVE display allowed each of the three research groups to
recognize important spatial features that they had previously
overlooked in small, flat-screen, computer displays that must
be indirectly manipulated with a mouse. The importance of
naturalistic viewing is supported by numerous elegant ex-
periments involving real-world, normal-size scenes (Purves
& Lotto 2003; Yang & Purves 2003). Probabilistic matching
of images like this provides a good explanation of numerous
visual phenomena. This is not surprising; perceptual experi-
ence has molded our genetic makeup and it is tuned by the
learning that each of us accumulates as we exist and develop
day-to-day (Geary & Huffman 2002). This kind of knowl-
edge is wired—and continuously rewired—in the neural cir-
cuitry of our brain, based on polysensory activities. That
is, cognitive structures are developed from perception and
action, and grounded in the physical interactions with the

Figure 4: The Pardi group used the 3D interactive wand
inside the IVE to investigate how the loop region of anti-
VEGF aptamer (cyan) fits to a site on the outside of VEGF
(magenta). The surfaces of both regions are show as meshes
surrounding stick-figure representations, with atoms consid-
ered important shown in space-fill view.

environment (Pecher & Zwaan 2005).
In this context, it makes complete sense that working in an

IVE allows people to reason more effectively about the ge-
ometry of biomolecules. Studies that demonstrate this effect
are surprisingly rare, though, and the added value of immer-
sion is controversial in the visualization community. This
study is part of a larger effort that addresses this broader is-
sue: a general definition of conditions under which the use of
fully interactive, three-dimensional, immersive visualization
adds value to research activities. As indicated in the previ-
ous section, our results suggest that short, intense sessions
of IVE viewing valuably augment more extensive, non-IVE
based research of molecular function. The underlying rea-
sons for this, we believe, are threefold:

• First, spatial judgments are body-relative in everyday ac-
tivity (Hatfield 2003). It is easier, for example, to judge
whether you could crawl through a passageway in a cave
if you are in the cave and looking at the passageway than
if you are examining a five-inch-tall rendering of it on
a flat screen monitor. Our hypothesis is that examining
a molecule at a human scale made it easier for the bio-
chemists to reason about the different spatial structures.
Because the IVE presented the biomolecules at a natu-
ral and familiar scale—similar to the way many complex-
shaped, everyday objects appear in the world—it facili-
tated effective reasoning about there shape.

• Second, the egocentric perspective improves spatial rea-
soning, object recognition, and stresses the role of action
in building knowledge. Much of this happens automati-
cally: people do not stop and think about how to move
their heads or bodies in order to get a better view of some-
thing. The IVE supports this very naturally. Its unique
features—natural body movements and well-practiced au-
tomatic brain function as the basis for examination of
the structure in question—is consistent with recent re-
search on embodied cognition, cognition that is based
on perceptual knowledge accumulated through what we
have encountered and manipulated with our bodies as
we move within and examine the world (Wilson 2002;
Wolputte 2002).

• Finally, the collaborative nature of the environment facil-
itates collaborative reasoning about the data. The large
scale of the environment allowed multiple biochemistry
researchers to gather inside the environment simultane-
ously. All the groups commented that they found working
collaboratively in the IVE to be much easier than crowd-
ing around a small computer screen. The large scale made
it easy to see what atoms and regions another member of
the group was referring to. Often they used bodily refer-
ences to direct each other, such as, ”that group of bonds
near your left shoulder.”

Reasoning about the geometry of objects has a long and
rich history in the qualitative reasoning field, and there are
interesting papers about ontologies, paradigms, techniques,
and applications for this in every QR workshop—beginning
with an augmented version of Hayes’s “pieces of stuff” on-
tology that was presented at QR ’87 for reasoning about

collections of molecules (Collins 1987). A few QR sys-
tems have been built over the years specifically for rea-
soning about molecular structure (Bandini, Cattaneo, &
Stofella 1988). Most of the geometry-related work in the QR
community has involved mechanical devices, an application
(like biomolecules) where shape and function are intimately
inter-related. Iwasaki, Joskowicz, Nielsen, and Faltings
have made significant contributions to this over the years
(Joskowicz 1987; Iwasaki 1987; Nielsen 1987; 1988; Falt-
ings, Baechler, & Kun 1991; Tessler, Iwasaki, & Law 1993;
Faltings 1993; Sun & Faltings 1994; Joskowicz & Sacks
1997). There has also been some work in the QR commu-
nity that considers the cognitive science perspective along
with the representation and the geometry, notably from Ken
Forbus’s group (Ferguson & Forbus 1999; Forbus, Fergu-
son, & Usher 2000; Forbus, Tomai, & Usher 2003; 2005;
Lovett, Dehghani, & Forbus 2006).

The study reported here has a much more complicated
application area than most of these papers, and much less
lofty aims. We are not trying to simulate, design, or de-
duce anything. We rely on the human experts to figure out
what’s meaningful; we want simply to understand how im-
mersive environments support their reasoning about the ge-
ometry that factors into that determination. Because of the
comparative nature of our study, the ontology and the model
are pre-specified. Our goal is not to figure out whether a bet-
ter model or ontology exists for these purposes, as in many
interesting QR papers, e.g., (Pacheco, Escrig, & Toledo
2002) but rather to study how the presentation & interface
affects the spatial reasoning about the molecules. We are
not trying to generalize ideas about structure across applica-
tion domains, as in (Adorni et al. 1988) nor are we trying
build more-abstract modelling paradigms, as in the elegant
work of Escrig (which is concerned with many of the con-
cepts that arise here, like how things fit together) (Museros
& Escrig 2004). There are obviously many interesting prob-
lems to tackle involving the kinematics & dynamics of the
biomolecules in our study, as well as the role of geometry in
those processes, but these are “grand-challenge” problems
and outside our scope.

Conclusion
This pilot study suggests that immersive environments en-
hance the ability of human experts to reason about the ge-
ometry of complex biomolecules. It also contributes fur-
ther evidence to the general debate about the added value of
large-scale immersive environments in the investigation of
complex interactive spatial domains. The small sample size
and lack of formal controls, however, mean that the results
are only preliminary. The discoveries reported by the sci-
entists in the study may have been facilitated by the oppor-
tunity to use embodied perceptual mechanisms afforded by
the environment. Comments from the subjects suggest that
the environment may have also provided a much improved
collaborative atmosphere. Regardless of the specifics mech-
anisms, the results are very promising: all three user tests
in this study generated a new piece of science as a result of
their improved geometric reasoning about a complex prob-
lem.

Acknowledgements
We thank Geoffrey Dorn, Gwen Pech and Mick Coady of the
University of Colorado-Boulder, BP Center for Visualiza-
tion for their assistance, support and advice. We are grateful
to the members of the research groups who participated in
this study. Professor Pardi was especially helpful in defining
the early stages of this project and in choosing PyMOL for
this work. We thank Sara Klingenstein for assisting in the
initial research on theoretical considerations. This project
was supported by a University of Colorado Butcher Award
to Professors Dubin and Pardi and by equipment donations
from NVIDIA.

References
Adorni, G.; Burdese, M.; Del Grosso, A.; Loddo, R.; and
Zucchini, A. 1988. A qualitative approach to structural
mechanics. In Proceedings of the International Workshop
on Qualitative Reasoning about Physical Systems.
Arns, L.; Cruz-Neira, C.; and Cook, D. 1999. The ben-
efits of statistical visualization in an immersive environ-
ment. In VR ’99: Proceedings of the IEEE Virtual Reality
1999 (VR’99), 88–95.
Bandini, S.; Cattaneo, G.; and Stofella, P. 1988. A theory
for molecule structures: The molecular onthology theory.
In Proceedings of the International Workshop on Qualita-
tive Reasoning about Physical Systems.
Collins, J. W. 1987. Reasoning about fluids via molecular
collections. In Proceedings of the International Workshop
on Qualitative Reasoning about Physical Systems.
DeLano, W. 2002. The pymol molecular graphics system.
http://www.pymol.org.
Demiralp, C.; Jackson, C.; Karelitz, D.; Zhang, S.; and
Laidlaw, D. H. 2006. Cave and fishtank virtual-reality dis-
plays: A qualitative and quantitative comparison. IEEE
Transactions on Visualization and Computer Graphics
12(3):323–330.
Faltings, B.; Baechler, E.; and Kun, S. 1991. Efficient
qualitative kinematics. In Proceedings of the International
Workshop on Qualitative Reasoning about Physical Sys-
tems.
Faltings, B. 1993. Qualitative structural analysis using
diagrammatic reasoning. In Proceedings of the Interna-
tional Workshop on Qualitative Reasoning about Physical
Systems.
Ferguson, R., and Forbus, K. 1999. Georep: A flexible
tool for spatial representation of line drawings. In Proceed-
ings of the International Workshop on Qualitative Reason-
ing about Physical Systems.
Forbus, K. D.; Ferguson, R. W.; and Usher, J. M. 2000.
Towards a computational model of sketching. In Proceed-
ings of the International Workshop on Qualitative Reason-
ing about Physical Systems.
Forbus, K. D.; Tomai, E.; and Usher, J. 2003. Qualita-
tive spatial reasoning for visual grouping in sketches. In
Proceedings of the International Workshop on Qualitative
Reasoning about Physical Systems.

Forbus, K. D.; Tomai, E.; and Usher, J. 2005. Solving
everyday physical reasoning problems by analogy using
sketches. In Proceedings of the International Workshop
on Qualitative Reasoning about Physical Systems.
Geary, D., and Huffman, K. 2002. Brain and cognitive
evolution: forms of modularity and functions of mind. Psy-
chol. Bull. 128(5).
Gruchalla, K.; Marbach, J.; and Dubin, M. 2007. Port-
ing legacy applications to immersive virtual environments:
A case study. In Proceedings of 2007 International Con-
ference on Computer Graphics Theory and Applications,
179–184.
Gruchalla, K. 2004. Immersive well-path editing: Investi-
gating the added value of immersion. In VR ’04: Proceed-
ings of the IEEE Virtual Reality 2004 (VR’04), 157–164.
Hatfield, G. 2003. Representation and constraints: the
inverse problem and the structure of visual space. Acta
Psychol. (Amst.) 114:355–378.
Ihlenfeldt, W. 1997. Virtual reality in chemistry. Journal
of Molecular Modeling 3:368–402.
Iwasaki, Y. 1987. Generating behavior equations from ex-
plicit representation of mechanisms. In Proceedings of the
International Workshop on Qualitative Reasoning about
Physical Systems.
Joskowicz, L., and Sacks, E. 1997. Qualitative and quan-
titative mechanical assembly design. In Proceedings of the
International Workshop on Qualitative Reasoning about
Physical Systems.
Joskowicz, L. 1987. Shape and function in mechanical
devices. In Proceedings of the International Workshop on
Qualitative Reasoning about Physical Systems.
Lovett, A.; Dehghani, M.; and Forbus, K. 2006. Solv-
ing everyday physical reasoning problems by analogy us-
ing sketches. In Proceedings of the International Workshop
on Qualitative Reasoning about Physical Systems.
Museros, L., and Escrig, M. T. 2004. A qualitative the-
ory for shape representation and matching. In Proceed-
ings of the International Workshop on Qualitative Reason-
ing about Physical Systems.
Nielsen, P. 1987. A qualitative approach to mechanical
constraint. In Proceedings of the International Workshop
on Qualitative Reasoning about Physical Systems.
Nielsen, P. 1988. Qualitative mechanics: Envisioning the
clock. In Proceedings of the International Workshop on
Qualitative Reasoning about Physical Systems.
Pacheco, J.; Escrig, M. T.; and Toledo, F. 2002. Qualita-
tive spatial reasoning on three-dimensional orientation. In
Proceedings of the International Workshop on Qualitative
Reasoning about Physical Systems.
Pausch, R.; Proffitt, D.; and Williams, G. 1997. Quantify-
ing immersion in virtual reality. In Proceedings of the 24th
annual conference on Computer graphics and interactive
techniques, 13–18. ACM Press/Addison-Wesley Publish-
ing Co.
Pecher, D., and Zwaan, R. 2005. Introduction to grounding
cognition. In Pecher, D., and Zwaan, R., eds., Grounding

cognition, 1–7. Cambridge, England: Cambridge Univer-
sity Press.
Polekhina, G.; Board, P.; Blackburn, A.; and Parker,
M. 2001. Crystal structure of maleylacetoacetate iso-
merase/glutathione transferase zeta reveals the molecular
basis for its remarkable catalytic promiscuity. Biochem-
istry 40(6):567–576.
Purves, D., and Lotto, B. 2003. In Why We See What
We Do: An Empirical Theory of Vision. Sunderland, MA:
Sinauer.
Ruckman, J.; Green, L.; Beeson, J.; Waugh, S.; Gillette,
W.; Henninger, D.; Claesson-Welsh, L.; and Janjic, N.
1998. 2’-fluoropyrimidine rna-based aptamers to the
165-amino acid form of vascular endothelial growth fac-
tor(vegf(165)) - inhibition of receptor binding and vegf-
induced vascular permeability through interactions requir-
ing the exon 7-encoded domain. Journal of Biological
Chemistry 273:20556–20567.
Ruddle, R.; Payne, S.; and Jones, D. 1999. Navigating
large-scale virtual enviroments: What differences occur be-
tween helmet-mounted and desk-top displays? Presence:
Teleoperators and Virtual Environments 8:157–168.
Schulze, J.; Forsberg, A.; Kleppe; Zeleznik, R.; and Laid-
law, D. H. 2005. Characterizing the effect of level of im-
mersion on a 3D marking task. In Proceedings of HCI In-
ternational.
Sun, K., and Faltings, B. 1994. Supporting creative me-
chanical design. In Proceedings of the International Work-
shop on Qualitative Reasoning about Physical Systems.
Swan, J. E.; Gabbard, J. L.; Hix, D.; Schulman, R. S.; and
Kim, K. P. 2003. A comparative study of user performance
in a map-based virtual environment. In VR ’03: Proceed-
ings of IEEE Virtual Reality 2003 (VR’03), 259–266.
Tessler, S.; Iwasaki, Y.; and Law, K. 1993. Qualita-
tive structural analysis using diagrammatic reasoning. In
Proceedings of the International Workshop on Qualitative
Reasoning about Physical Systems.
Wilson, M. 2002. Six views of embodied cognition. Psy-
chon. Bull. Rev. 9(4):625–636.
Wolputte, S. V. 2002. Hang on to your self: of bodies,
embodiment, and selves. Ann. Rev. Anthropol. 33:251–269.
Yang, Z., and Purves, D. 2003. A statistical explanation of
visual spaces. Nat. Neurosci. 6(6):632–640.
Zhang, F.; Strand, A.; Robbins, D.; Cobb, M.; and Gold-
smith, E. 1994. Atomic structure of the map kinase erk2 at
2.3 a resolution. Nature 367:704–711.

Qualitative Abstraction of Piecewise Affine Systems

Michael W. Hofbaur and Theresa Rienmüller
Department of Automation and Control, Graz University of Technology

Kopernikusgasse 24/2, 8010 Graz, Austria
{michael.hofbaur, theresa.rienmueller}@TUGraz.at

Abstract

Qualitative or symbolic abstractions of hybrid systems re-
ceived considerable interest recently to solve problems of
hybrid systems estimation, control and verification symboli-
cally. To abstract a hybrid system one has to slice the continu-
ously valued input/output/state-space into a (finite) set of par-
titions. The number of partitions potentially grows exponen-
tially with the dimension of the space. As a consequence, one
has to divide the spaces carefully in order to obtain a manage-
able abstraction. This paper presents a systematic procedure
to partition the state-space of piecewise affine (PWA) systems
into qualitatively distinct regions. As a consequence, we ob-
tain a moderately large set of partitions that characterises the
hybrid dynamics of the PWA system. The abstraction scheme
helps also to keep the number of so called spurious behaviors
of qualitative simulation small, in particular when compared
to the typically used grid-based abstractions.

Introduction
Complexity in hybrid systems analysis, estimation and con-
trol arises from the close interaction between the system’s
mode-dependent continuous dynamics and discrete mode
changes. Optimal hybrid estimation, for example, has to
consider all possible hybrid trajectories that the system can
exhibit and performs the associated numerical filtering pro-
cess for each trajectory. Since the number of trajectories
grows exponentially over time, it is easy to see that sub-
optimal and computationally efficient methods are key for
any real-time operation of hybrid estimation.

A tempting approach is to use finite (qualitative) abstrac-
tions of the continuous dynamics together with the discrete
dynamics of the hybrid system and re-formulate the hybrid
estimation/control task in a pure discrete way. The rich tool-
set of Qualitative Reasoning and Model Checking can then
be used to solve tasks for analysis, simulation, verification,
estimation and control. However, there is no free lunch.
A qualitative model for the continuously valued dynamics
requires a finite abstraction of the input/output/state-space
of the hybrid model. Input and output space partitions can
arise naturally through quantisation. The state-space ab-
straction, however, is more demanding. In particular, as the
number of partitions potentially grows exponentially with
the dimension of the continuous state. Another difficulty is
that qualitative models allow trajectories that the underlying

real system cannot show. These so called spurious behav-
iors (Kuipers 1994) can significantly deteriorate the reason-
ing result, for example, in that one fails to prove stability of
a hybrid control system.

This paper provides an approach for the qualitative ab-
straction of piecewise affine (PWA) systems that addresses
both issues mentioned above. We propose a state-space ab-
straction scheme that uses distinct features of the system’s
continuous and discrete dynamics. As a result we obtain a
separation that partitions the state-space in qualitatively dis-
tinct regions only and thus keeps the number of partitions
moderate. Another benefit is that our partitioning scheme
reduces the number of spurious behaviors compared to using
a state-space abstraction through a hyper-dimensional grid.

Related Research
Qualitative or symbolic abstractions of dynamic systems are
a major theme in Qualitative Reasoning (Weld & de Kleer
1990; Kuipers 1994), a fruitful branch of AI. Our work
on qualitative abstraction of a system’s state-space has its
origins in the pioneering work of Yip, Zhao and Bailey-
Kellogg (Yip 1991; Yip & Zhao 1996; Bailey-Kellogg,
Zhao, & Yip 1996) that provide symbolic abstractions
for complex non-linear dynamics. Whereas they use ad-
vanced reasoning methods for system’s analysis, Lunze and
coworkers (Lunze 1994; Lunze, Nixdorf, & Schröder 1999;
Schröder 2003) build their qualitative abstraction upon the
concept of stochastic automata and use them to mainly solve
diagnosis problems.

Timed automata (Alur & Dill 1994), a specific class of
hybrid systems, lead themself to a symbolic model and thus
allow one to apply analysis and verification methods from
computer science, such as bisimulation. This line of re-
search received considerable interest, e.g. (Alur et al. 2000)
and much effort was devoted to extending the applicabil-
ity of symbolic approximations and bisimulation techniques
to solve analysis, verification and control problems for
other, more general, classes of hybrid systems (Tiwari 2003;
Girard & Pappas 2006; Tabuada 2007). Most recent research
limits its scope to systems with ’strong’ stability properties
so that the artifacts of discrete approximation, i.e. spurious
behaviors, do not prevent one from applying bisimulation
type analysis techniques. All of these techniques face also
the curse of dimensionality. Discrete abstractions of contin-

uous state-spaces lead to a number of domains for the state
that grows exponentially with the state’s dimension. We
cannot fully avoid this difficulty for our proposed stochas-
tic automata encoding of PWA systems, but provide an ab-
straction technique that slices the state-space carefully ac-
cording to qualitative distinctions of the system’s dynamics.
This keeps the number of state partitions moderate and, as
a nice side-effect, actively reduces spurious behaviors. To
deal with complexity, we can further draw upon our work
to efficiently encode stochastic automata in an OBDD-like
fashion (Kleissl & Hofbaur 2005).

PWA Systems
A widely adopted and versatile class of hybrid systems are
the so-called piecewise affine (PWA) systems. PWA systems
specify a hybrid model with continuously valued state x =
[x1, . . . , xnx

]T , input u = [u1, . . . , unu
]T and output y =

[y1, . . . , yny
]T . The model specifies dynamics in discrete-

time (sampling period Td) through the affine discrete-time
model

xk+1 = Aixk + Biuk + fi (1)
yk = Cixk + Diuk + gi , (2)

where the subscript i = 1, . . . , l of the model-parameter
Ai,Bi,Ci,Di, fi,gi stands for the mode or PWA dynam-
ics that is valid in a particular domain Di of the combined
state/input space. More specifically, the state traverses at
mode i whenever [

xk

uk

]
∈ Di .

To guarantee uniqueness for the PWA trajectories one en-
sures that the domains Di specify a non-overlapping sep-
aration of the state/input space D. A domain Di is usu-
ally defined through a polyhedral partition of the combined
state/input space that can be expressed through constraints
of the form

Gx
i xk + Gu

i uk ≤ Gc
i .

For the scope of this paper we use a slightly weaker do-
main specification that allows us to abstract the continuous
state and input space separately, more specifically, we select
a mode i, whenever the two inequalities hold

xk ∈ Dx,i : Gx
i xk ≤ Gcx

i
uk ∈ Du,i : Gu

i uk ≤ Gcu
i .

(3)

Again, to guarantee uniqueness of PWA trajectories, the par-
titions Di = Dx,i × Du,i do not overlap, i.e. Di ∩ Dj =
∅, i 6= j.

Example
Figure 1 shows trajectories1 for an autonomous PWA system
with l = 3 modes and a 2-dimensional state-space that is
limited to

−6 ≤ x1 ≤ +6, −3 ≤ x2 ≤ +3 . (4)
1As in many real-world applications of hybrid systems, we ob-

tain the PWA model through sampling of the continuous time dy-
namics shown in Fig. 1.

Mode switching occurs at x1 = −2 (between modes 1
and 2) and at x1 = +2 (between modes 2 and 3). Our
discrete-time PWA model operates at a sampling period
Td = 0.1 [sec.] and defines the dynamics as follows: PWA
Mode 1 specifies dynamics with a stable equilibrium at
xr = [−3 0]T , eigenvalues z1 = z2 = e−2Td and an
eigenvector p = [1 − 1]T . The dynamics of mode 2 are
characterised through an unstable equilibrium (saddle point)
at the origin, eigenvalues z1 = e−Td , z2 = e+Td and associ-
ated eigenvectors p1 = [2 1], p2 = [2 − 1]. Finally, at
mode 3 the system exhibits an undamped oscillatory behav-
ior with equilibrium xr = [2 0]T and frequency ω = 1. We
will use the same scalar measurement yk = x1,k + x2,k for
all three PWA modes.

-6 -4 -2 0 2 4 6

-3

-2

-1

0

1

2

3

x
1

x
2

mode 1 mode 2 mode 3

Figure 1: 3-mode PWA system

Qualitative PWA Model
A qualitative PWA model abstracts the continuously valued
affine dynamics (1-2) symbolically. Thus, it merges the con-
tinuous dynamics with its discrete dynamics (mode changes)
into one common discretely valued behavioral description.
For this purpose, one defines partitions for the continu-
ously valued state-, input- and output-space. The input- and
output-space partitions can arise naturally through quantisa-
tion, for example, whenever one deals with real-world sig-
nals with low resolution (e.g. 4-bit A/D converter). In terms
of the input-space, we only have to make sure, that the quali-
tative abstraction allows us to formulate the input inequality
of the PWA guard condition (3). The state-space abstraction
can either be derived recursively during qualitative reason-
ing (Kuipers 1994) or verification (Girard & Pappas 2006) or
the partitions are specified explicitly prior compiling an au-
tomaton abstraction for the PWA model. Since we intend to
use a qualitative model for fast on-line reasoning, we choose
the second form and compute a so-called stochastic automa-
ton from the PWA model that encodes the model’s dynamics
through a state machine with stochastic transition specifica-
tion.

Stochastic Automaton PWA Model
A stochastic automaton (Lunze 1994; Bukharaev 1995;
Schröder 2003) defines a tuple

A = 〈X ,U ,Y, PT , PO〉 , (5)

where X = {X1, . . . , XNx}, U = {U1, . . . , UNu} and
Y = {Y1, . . . , YNy} denote the finite domains for the au-
tomaton state x̄, input ū and output ȳ, respectively. With
x̄k, ūk and ȳk we denote valuations of the state, input, and
output at a particular time-step k. The behavior of the au-
tomaton is captured through the conditional transition- and
observation-probabilities2

PT (x̄k+1, x̄k, ūk) = P (x̄k+1|x̄k, ūk)
PO(ȳk, x̄k, ūk) = P (ȳk|x̄k, ūk) .

(6)

A stochastic automaton can be almost directly used as a
qualitative model of our PWA system (1-3). The only en-
tity that we have to add is a map M : X ×U → {1, 2, . . . , l}
that specifies the PWA mode for every qualitative state/input
pair. This enables us to define the qualitative abstraction of
a PWA system as an extended stochastic automaton through
the tuple

Apwa = 〈X ,U ,Y, PT , PO,M〉 . (7)

Automaton compilation: To compile a stochastic au-
tomaton Apwa with pre-defined state/input/output-space
partitions one has to compute the conditional probabilities
PT (·) = P (Xi|Xj , Uζ) and PO(·) = P (Yi|Xj , Uζ) for all
triples {i, j, ζ} according to the PWA dynamics. For this
purpose one assumes a uniform distribution for xk ∈ Xj

and uk ∈ Uζ and computes the distribution on state and out-
put space for xk+1 and yk. This can be done, for example,
through sampling or hyper-box mapping (Schröder 2003).
Compilation of the stochastic automaton is computationally
expensive. However, once we have compiled a stochastic
automaton Apwa for the PWA system, we can use this au-
tomaton model to efficiently perform qualitative simulation,
estimation or control.

State-Space Abstraction
Qualitative abstraction through stochastic automaton compi-
lation requires us to divide the continuous state-space

Dx =
⋃

i=1,...,l

Dx,i ⊂ IRnx

into a finite set of non-overlapping partitions
{Dx,1, . . . ,Dx,Nx} where each partition Dx,i repre-
sents a qualitative abstraction or state Xi = [Dx,i] of the
stochastic automaton. This has to be done carefully, since
the number Nx potentially increases exponentially with the
dimension nx of the continuous PWA dynamics. On the
other hand, one has to provide sufficiently fine partitions to
retain the characteristics of the continuous dynamics.

Grid-based abstraction
The simplest abstraction of a bounded domain Dx in state-
space is to apply an nx-dimensional grid with fixed or adap-
tive grid-size. A grid-based abstraction happens naturally,

2In general, one would define a behavioral relation
PQ(x̄k+1, ȳk, x̄k, ūk) = P (x̄k+1, ȳk, |x̄k, ūk) that defines
PT and PO as its boundary distributions. However, the successor
state xk+1 and output yk of our PWA system are stochastically
independent so that PQ(·) = PT (·)PO(·) holds and PT and PO
represent the same information as PQ.

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-1.5

-1

-0.5

0

0.5

1

1.5

x
1

x
2

X2

X3

X1

p
1

p
2

Figure 2: Boxed state-space abstraction

whenever one partitions each state-variable individually and
obtains the overall partition of the state-space through the
cross product. This often leads to unsatisfactory results since
the number of partitions explodes as the dimension of the
system increases and the associated qualitative models do
not constrain possible behaviors well enough. Simulating
such a model would predict an unnecessarily large number
of spurious behaviors, i.e. behaviors that the original (PWA)
system cannot show. Figure 2 illustrates this property for
mode 2 of our autonomous PWA system. The eigenvec-
tors p1 and p2 of the dynamic matrix A2 uniquely partition
the state-space, however, the grid is not conform with this
separation. Take the three partitions X1, X2, X3 of Fig. 2.
The continuous behavior at mode 2 clearly allows transi-
tions xk ∈ X1 → xk+1 ∈ X2 and xk ∈ X2 → xk+1 ∈
X3. A stochastic automaton would encode these facts in
terms of the transition probabilities PT (X2, X1) 6= 0 and
PT (X3, X2) 6= 0. As a consequence, a simulation on the
basis of this stochastic automaton would predict the qualita-
tive behavior X1 → X2 → X3, a behavior that the original
PWA system cannot show! Another difficulty with a grid-
based abstraction is to select the appropriate grid-size. An
upper bound for the number of partitions Nx will be most
likely the limiting factor for grid-size selection. However, it
is difficult to judge, whether the resulting abstraction is fine
enough to capture the details of the mode’s continuous dy-
namics unless one performs exhaustive simulation studies.

Besides abstracting the continuous dynamics, we have to
make sure that the state-space partitions are also conform
with the discrete dynamics of the PWA system. In detail, we
have to ensure that the state-space abstraction allows us to
formulate the state inequality of the PWA guard condition 3.
PWA mode domains are in general polyhedral partitions, so
that an abstraction through hyper-boxes in state-space can
be inadequate.

These arguments illustrate that it is desirable to have a
qualitative abstraction of the state-space that (1) respects the
properties of the continuous dynamics as well as (2) captures
the polyhedral specification of PWA mode domains.

Qualitative abstraction of continuous dynamics
The example above indicates that we need a more gen-
eral state-space separation technique that builds upon (non-
overlapping) polyhedral partitions. We propose to use the
eigenvectors or in general hyper-planes that are defined
through the eigenvectors of the PWA dynamics (or their as-
sociated dynamic matrices Ai) to partition the state-space
into qualitatively distinct regions. For second order PWA
dynamics at mode i that is characterised through the dy-
namic matrix Ai with eigenvalues z1, z2, z1 6= z2 we can
write

xk+1 = Aixk + fi = α1p1z1 + α2p2z2 + fi ,

where pj (j = 1, 2) denotes the eigenvector for zj and the
parameters α1 and α2 are given through

xk = α1p1 + α2p2 .

It directly follows from Systems Theory (Hirsch & Smale
1974) that the eigenvectors, centred at the equilibrium point

xr = (I−Ai)−1fi ,

partition the state-space into distinct regions. Each region
is characterised through the signs of α1 and α2, clearly a
qualitative distinction!

Eigenvector-partitioning works with eigenvectors for real-
valued eigenvalues zj , but not for complex-valued eigenvec-
tors/eigenvalues as in mode 3 of our PWA example. In order
to abstract these behaviors that spiral round the equilibrium
point, we propose to partition the state-space into sectors dif-
ferently. The complex-valued eigenvectors uniquely charac-
terise the orientation of the elliptical behavior, whereas the
eigenvalues determine its stability character. As a conse-
quence, we can use the eigenvectors to determine the ellipse-
axes for the spiralling behavior and use these axes to par-
tition the state-space into 4 sectors. This abstraction en-
ables us to uniquely characterise the direction of the behav-
ior (clockwise or counter-clockwise) but not the mode’s sta-
bility property. Ideally, one would want to use elliptical re-
gions in state-space to specify a Lyapunov-function for an
asymptotically stable equilibrium point, for example. How-
ever, the approximation of elliptical regions through poly-
hedral domains is impracticable. One way to overcome this
difficulty is to use a combination of sectors and hyper-boxes
to enclose the ellipsoids and use additional reasoning con-
cepts (Hofbaur & Dourdoumas 2001) that go beyond the
scope of standard stochastic automata theory.

An additional qualitative characterisation of the state-
space is given through the sign of a state xk or its compo-
nents xi,k, in particular. Consequently, we suggest to addi-
tionally partition the state-space according to the unit vec-
tors e1, . . . , enx . Figure 3 shows the result of the combined
sign, eigenvector and ellipse-axes based state-space separa-
tion for our PWA example along with possible trajectories.

Adding inputs and noise: Up to now, we used an au-
tonomous PWA system. However, we intend to use a quali-
tative model for estimation and control and thus, we have to
deal with a non-zero control input uk = [u1,k, . . . , unu,k]T

-6 -4 -2 0 2 4 6

-3

-2

-1

0

1

2

3

x
1

x
2

Figure 3: 3-mode PWA system with state-space partitions
and system trajectories

and disturbances. We use a typical PWA notation (Kvas-
nica et al. 2006) and introduce bounded additive distur-
bances w = [w1, . . . , wnx]T that act upon the state-variable
through

xk+1 = Aixk + Biuk + fi + wk . (8)

We characterise the disturbance in terms of a bounding poly-
tope W , for example, a hyperbox that defines min/max val-
ues for each wi, i = 1, . . . , nx.

Let us deal with a scalar input u and an associated input
vector Bi = [bi] for (8) first. A constant input uk = u∗
shifts the equilibrium point xr of mode i to

xr = (I−Ai)
−1 (biuk + fi) . (9)

Therefore, an input umin ≤ uk ≤ umax at time-
step k can be interpreted as shifting the origin for our
eigenvalue/ellipse-axes based state-space separation accord-
ing to (9). To partition the state-space into qualitatively dis-
tinct regions, we apply our separation scheme at the two ex-
tremal points of xr (uk = umin and uk = umax). Figure 4a
shows the resulting separation for the PWA mode 2 with an
input vector b2 = [0.0992 0.0075]T and umin = −1.0,
umax = 1.0. The bar at the origin indicates the region for
xr.

Dealing with multiple inputs is straightforward. Through
combination of all min/max values for the inputs, we obtain
a region (polytope) Xr in state-space for xr. We then per-
form the state-space separation at all extremal points of Xr.

A disturbance w = [w1, . . . , wnx]T can be handled in
two ways. First, we can treat each disturbance wj as an
additional input (with input vector ej) and use the noise
bounds to enlarge Xr. This adds additional 2nx extremal
points to Xr and thus introduces many additional partitions
of the state-space. Figure 4b shows the resulting separation
for bounded noise |wi| ≤ 0.01, i = 1, 2. The black region in
the center indicates Xr. The second way to deal with distur-
bances is to perform state-space separation for deterministic
inputs only and include the effects of disturbances through
the probability specifications of the resulting stochastic au-
tomaton. We prefer this approach since it keeps the number
of state-space partitions small.

-2 -1 0 1 2
-3

-2

-1

0

1

2

3

x
1

x
2

(a) Separation for |u| ≤ 1

-2 -1 0 1 2
-3

-2

-1

0

1

2

3

x
1

x
2

(b) Separation for |u| ≤ 1
and |wi| ≤ 0.01, i = 1, 2

Figure 4: State-space separation for mode 2

Abstraction of PWA mode changes
The PWA model operates on discrete-time. As a result,
switching does not occur exactly on the mode-boundary but
within its vicinity. Therefore, it is essential to capture the
regions in state-space where switching can occur. Addi-
tionally, we observed that simulation and particularly PWA
mode estimation results improve whenever one specifies
also those regions in state-space from where we can reach
the switching domains within one time-step. Both domains
can be computed easily through a 1-step forward/backward
reachability analysis. As before, we can include distur-
bances in two ways. Directly, in terms of an inclusive reach-
ability analysis, or indirectly through the transition probabil-
ities of the stochastic automaton. Again, we prefer the latter
approach.

Combining behavior-based abstractions
The overall state-space abstraction combines the partitions
from the dynamics-based separation scheme with the par-
titions for mode-change characterisation and computes a set
of Nx non-overlapping polytopes {X1, . . . , XNx} that parti-
tions the continuous state-space into qualitatively distinct re-
gions. Figure 5 shows the partitions for our non-autonomous
PWA system with a scalar input u that acts through the input
vectors

b1 = [0.0775 0.0585]T , b2 = [0.0992 0.0075]T ,
b3 = [0.0515 0.0022]T

along with a trajectory for uk = sin(0.1k) and disturbance
|wi| ≤ 0.1, i = 1, 2.

Qualitative Estimation
Our main application of the stochastic automaton model is to
perform hybrid estimation which can be formulated through
the following recursive belief update process

b
(j)
k|k−1 =

∑

Xi∈X
PT (Xj , Xi, Uζ)b

(i)
k−1 (10)

b
(j)
k ∝ PO(Yκ|Xj , Uξ)b

(j)
k|k−1 (11)

-6 -4 -2 0 2 4 6
-3

-2

-1

0

1

2

3

x
1

x
2

Figure 5: Overall state-space abstraction and PWA trajec-
tory example

that computes the belief (or probability) b
(j)
k for xk ∈ Xj ,

given the qualitatively abstracted input values and measure-
ment, i.e. uk−1 ∈ Uζ , uk ∈ Uξ and yk ∈ Yκ.

For our example we use an input abstraction with 3 par-
titions, and a 4-bit measurement resolution (24 = 16 parti-
tions). Figure 6 shows the PWA mode estimation result that
we obtained through selecting the PWA mode with the max-
imum cumulated belief for the trajectory of Fig. 5 that starts
at x0 = [−1.9 − 1.25]T . We used the non-autonomous
system with the input uk = sin(0.1k) and disturbances
|wi| ≤ 0.1, i = 1, 2. The estimation starts with no state
knowledge, thus b

(j)
0 = 1/Nx and requires some steps to

focus. Estimation with our state-space abstraction (69 parti-
tions) provides an estimation result that is similar to a grid-
based abstraction with 9× 9 = 81 partitions.

To judge estimation quality better, we performed addi-
tional experiments with random initial states. In order to
highlight the effects of state-space abstraction and stochastic
automaton estimation we used an idealised setting with per-
fect initial knowledge. This eliminates the focusing process
at the beginning of an experiment. We generated 1000 ran-
dom initial states and simulated the non-autonomous PWA
system for 100 time-steps3. Hybrid estimation with our
state-space separation scheme provides on average a PWA
mode estimation error of 3.55%. In comparison, a boxed
scheme provided 4.25% for a 6× 6 grid, 3.10% for a 9× 9
grid and 2.97% for a 12× 12 grid.

0 10 20 30 40 50 60 70 80 90 100

1

2

3

time-step k

P
W

A
 m

o
d

e

PWA mode

PWA mode estimate - qpartition

PWA mode estimate - rect partition

Figure 6: PWA-mode estimation result

3Most trajectories in our system get absorbed into the equilib-
rium point of mode 1 after about 100 time-steps.

Conclusion
The usual approach to abstract continuously-valued state-
spaces is to use a grid-based abstraction of non-overlapping
hyper-boxes. This requires one to select an appropriate grid-
size that (a) is sufficiently fine to capture the system’s dy-
namics and (b) is sufficiently coarse to keep the number
of partitions manageable. To overcome this difficulty, we
proposed a state-space abstraction scheme for PWA systems
that uses qualitative features of the system’s dynamics to
partition the state-space into behavioral distinct regions. We
present this abstraction for 2-dimensional systems to intro-
duce the concepts concisely, however, we should note that it
is equally well suited for higher order systems.

We used this abstraction to compile a stochastic automa-
ton model for the PWA system and evaluated its estimation
capabilities. We performed a random set of experiments
and obtained evidence that our abstraction scheme leads to
an estimation quality that is comparable with hyper-box ab-
stractions that use a similar number of state-space partitions.
However, in contrast to hyper-box approximations where
one has do decide the grid resolution manually, we provide a
quantisation scheme that automatically selects an appropri-
ate resolution according to the system’s dynamics. A more
detailed analysis of qualitative simulation and estimation ca-
pabilities, in particular for higher order systems, is subject to
ongoing research.

Our main motivation for a stochastic automata encoding
is to formulate hybrid estimation and control schemes that
use the discrete abstraction to quickly pre-select feasible and
good estimation/control candidates. A consecutive numeri-
cal refinement can either validate an estimation/control can-
didate or identify spurious solutions and reject them. Our
initial studies for such approaches (Kleissl & Hofbaur 2005;
Kleissl 2006; Richter 2006) showed, that a good qualita-
tive abstraction that avoids spurious behaviors is essential
for this strategy. The results of this paper are an important
step towards our proposed estimation and control schemes.
However, they surely are also valuable for other works in
hybrid systems analysis and verification.

Acknowledgement
This research is funded by the Austrian Science Fund (FWF)
under grant P20041-N15.

References
Alur, R., and Dill, D. 1994. A theory of timed automata.
Theoretical Computer Science 126:183–235.
Alur, R.; Henzinger, T.; Lafferriere, G.; and Papas, G.
2000. Discrete abstractions of hybrid systems. Proceed-
ings of the IEEE 88(7):971–984.
Bailey-Kellogg, C.; Zhao, F.; and Yip, K. 1996. Spatial
aggregation: Language and applications. In Proceedings of
the 10th International Workshop on Qualitative Reasoning
(QR96), 3–11.
Bukharaev, R. 1995. Theorie der stochastischen Auto-
maten. Teubner Verlag.

Girard, A., and Pappas, G. 2006. Verification using simula-
tion. In Hespanha, J., and Tiwari, A., eds., Hybrid Systems:
Computation and Control, HSCC 2006, volume 3927 of
Lecture Notes in Computer Science. Springer Verlag. 272–
286.
Hirsch, M., and Smale, S. 1974. Differential Equations,
Dynamical Systems, and Linear Algebra. Academic Press.
Hofbaur, M. W., and Dourdoumas, N. 2001. Lyapunov
based reasoning methods. IEEE Transactions on Systems,
Man, and Cybernetics - Part A 31(4):546–558.
Kleissl, W., and Hofbaur, M. W. 2005. A qualitative model
for hybrid control. In Proceedings of the 19th International
Workshop on Qualitative Reasoning (QR05), 8–16.
Kleissl, W. 2006. Control of Multi Component Hybrid Sys-
tems through Qualitative Pre-Selection. PhD thesis, Fac-
ulty of Electrical Engineering, Graz University of Technol-
ogy, Graz, Austria.
Kuipers, B. 1994. Qualitative Reasoning: Modeling and
Simulation with Incomplete Knowledge. Cambridge, MA:
MIT Press.
Kvasnica, M.; Grieder, P.; Baotic, M.; and Christophersen,
F. 2006. Multi-parametric toolbox (mpt). Technical report,
Institut für Automatic, ETH - Swiss Federal Intstitute of
Technology Zürich.
Lunze, J.; Nixdorf, B.; and Schröder, J. 1999. Determin-
istic discrete-event representations of linear continuous-
variable systems. Automatica 35(3):395–406.
Lunze, J. 1994. Qualitative modelling of linear dynamical
systems with quantized state measurements. Automatica
30(3):417–431.
Richter, S. 2006. Probabilistic Hybrid Estimation for PWA
Systems through Qualitative Pre-Selection. MSc thesis,
Institute of Automation and Control, Graz University of
Technology, Graz, Austria.
Schröder, J. 2003. Modelling, State Observation and
Diagnosis of Quantized Systems, volume 282 of LNCIS.
Springer Verlag.
Tabuada, P. 2007. Approximate simulation relations and
finite abstractions of quantized control systems. In Bempo-
rad, A.; Bicchi, A.; and Buttazzo, G., eds., Hybrid Systems:
Computation and Control, HSCC 2007, volume 4416 of
Lecture Notes in Computer Science. Springer Verlag. 529–
542.
Tiwari, A. 2003. Approximate reachability for linear sys-
tems. In Maler, O., and Pnueli, A., eds., Hybrid Systems:
Computation and Control, HSCC 2003, volume 2623 of
Lecture Notes in Computer Science. Springer Verlag. 514–
525.
Weld, D., and de Kleer, J., eds. 1990. Qualitative Reason-
ing about Physical Systems. Morgan Kaufmann.
Yip, K., and Zhao, F. 1996. Spatial aggregation: The-
ory and applications. Journal of Artificial Intelligence Re-
search 5:1–26.
Yip, K. 1991. Understanding complex dynamics by visual
and symbolic reasoning. Artificial Intelligence 51:179–
221.

Intelligent Support for Authoring ’Graph of Microworlds’ based on
Compositional Modeling Technique

Tomoya Horiguchi
Graduate School of Maritime Sciences,

Kobe University
5-1-1, Fukaeminami, Higashinada, Kobe,

Hyogo, 658-0022 Japan
horiguti@maritime.kobe-u.ac.jp

Tsukasa Hirashima
Department of Information Engineering,

Hiroshima University
1-4-1, Kagamiyama, Higashihiroshima,

Hiroshima 739-8527 Japan
tsukasa@isl.hiroshima-u.ac.jp

Abstract

In simulation-based learning environments (SLEs), in
order to make students understand the domain theory
systematically, it is important to sequence a set of mi-
croworlds of various complexity (from relatively simple
systems/phenomena to more complicated ones) adap-
tively to the context of learning. We previously pro-
posed Graph of Microworlds (GMW) which is a frame-
work for indexing a set of microworlds based on their
models. By using GMW, it is possible to design a func-
tion for adaptively selecting the microworld a student
should learn next, and for assisting him in transferring
between microworlds. However, it isn’t easy to describe
GMW because, for model-based indexing, an author
must have the expertise of model generation in the do-
main. In this paper, therefore, we propose a method
for semi-automating the description of GMW by intro-
ducing a mechanism of model generation based on the
compositional modeling technique. This method makes
it possible to assist the author in generating a set of
indexed microworlds and also assist him in consider-
ing educational meanings of the relations between mi-
croworlds. We present how to design such a function
and also illustrate how it works in describing a simple
GMW for the domain of mechanics.

Introduction
In science education, it has been proved that simulation-
based learning environments (SLEs), in which students can
experience various phenomena in the domain (e.g., physics)
by computer simulations, are very useful (Towne, 1995;
Towne et al., 1993; Wenger, 1987). In SLEs, the range
of (physical) systems and their behaviors is usually limited
from some educational viewpoint in order for students to be
able to understand the laws/principles behind the observed
phenomena. This is called a microworld. In order to make
students understand the whole theory of the domain sys-
tematically, therefore, it is necessary to sequence a set of
microworlds of various complexity (from relatively simple
systems/phenomena to more complicated ones) adaptively
to the context of learning.

In designing such a function, it is essential to appro-
priately index a set of microworlds. Most of the current
SLEs and authoring systems for them, by indexing a set
of microworlds with the labels which represent their edu-

cational objectives and/or difficulty, provide the framework
for sequencing them according to various teaching strategies
(Merrill, 1999; Murray et al., 2003, for example). However,
in order to facilitate a conceptual understanding of the do-
main, it is important to explain why, in the situation given
by a microworld, the laws/principles are applicable and why
the model is valid. It is also important to explain why/how
the model changes if the situation is changed. In order to
make such explanations, it is necessary to index a set of mi-
croworlds based on their models not mere labels.

Therefore, for adaptive sequencing of a set of mi-
croworlds in SLEs which aim at a conceptual understand-
ing of the domain, we proposed a Graph of Microworlds
(GMW), which is a framework for indexing the microworlds
and the relations between them based on their models
(Horiguchi and Hirashima, 2005). We also indicated that,
by using the ability in model-based inference of this frame-
work, it becomes possible to design a function for adaptively
selecting the microworld to which a student should transfer
next (i.e., which he should learn next), and a function for
assisting a student in transferring between microworlds.

Though GMW provides sufficient indices for designing
the above functions, it isn’t easy to describe a GMW. An
author should make a set of microworlds and organize them
by indexing the microworlds and the relations between them
based on their models, that is, he must have the expertise in
model generation process in the domain. Most of the (non-
programmer) authors, therefore, would have great difficulty
in describing GMW.

In this paper, therefore, we propose a method for semi-
automating the description of GMW by introducing a mech-
anism of model generation based on expertise in the do-
main (i.e., compositional modeling (Falkenhainer and For-
bus, 1991; Levy et al., 1997). This method makes it
possible for the author not only to organize a set of mi-
croworlds by model-based indexing, but also make a set
of microworlds which compose a GMW. The functions for
such assistance are designed by using the method’s ability to
generate the model semi-automatically which embodies the
given law(s)/principle(s) in the domain, and to infer how the
model changes if the situation is changed.

In this paper, we first describe the related work (section
2), and then illustrate a GMW and how it works for design-
ing the above functions (section 3). In section 4, we discuss

the difficulties in describing GMW and present the frame-
work of our method for assisting the author with composi-
tional modeling technique. In section 5, we present how to
describe the domain knowledge in order to implement our
method and illustrate how it works. In section 6, we make
some concluding remarks.

Related Work
Murray classifies the current ITS-authoring systems and the
functions of ITSs built with them into pedagogy-oriented
and performance-oriented (Murray et al., 2003). The former
systems, focusing on the function for sequencing learning
contents indexed at a relatively shallow level adaptively to
the context of learning (i.e., global guidance and planning in
the whole domain), pay main attention to the representation
of indices and teaching strategies. The latter systems, fo-
cusing on providing rich learning environments about each
learning content (i.e., authentic content and feedback on er-
rors), pay main attention to the representation of the domain-
specific phenomena and problem solving processes.

Current SLE-authoring systems and the SLEs built with
them belong to the latter. That is, most of them pay main
attention to making the precise model of a specific con-
tent (i.e., microworld), but have the framework for indexing
learning contents only at a relatively shallow level (Merrill,
1999; Murray et al., 2003, for example).

However, especially in SLEs which aim at a conceptual
understanding of the domain, it becomes necessary to index
the microworlds and the relations between them at a deeper
level, that is, based on their models. The importance of con-
sidering differences between models in the SLEs which have
multiple microworlds has been pointed out in earlier sys-
tems. For example, Burton et al. proposed a methodology
for assisting students’ progressive learning with a sequence
of increasingly complex microworlds (called ICM) (Bur-
ton et al., 1984), and several systems based on ICM have
been developed (Fischer, 1988; Towne et al., 1993; White
and Frederiksen, 1993; White and Frederiksen, 1990). In
these systems, however, the sequences are fixed (i.e., the
microworlds and the relations between them aren’t explic-
itly indexed) and they can’t be adaptively changed. On the
other hand, Hirashima et al. proposed a framework for in-
dexing problems in mechanics based on the models and sit-
uations they deal with in order to sequence them adaptively
(Hirashima et al., 1994; Hirashima et al., 1993). However,
its ability in model-based inference is limited (especially, as
it doesn’t cover behavioral differences between models), and
the method for assisting authors in indexing problems isn’t
given.

The framework of GMW and the method proposed in this
paper for describing GMW present a solution to the prob-
lems these current systems have.

Assistance Provided by GMW
GMW (Horiguchi and Hirashima, 2005) consists of a set
of microworlds each of which has a model which embod-
ies some specific law(s)/principle(s) in the domain. Each
microworld is indexed not only with the law(s)/principle(s)

but also with the situation in which the model is valid. A
situation is the system’s structure and its state assumed in a
model. It is represented by a set of modeling assumptions,
which are the descriptions of the viewpoint in modeling the
system, the behavioral range of the system to be considered
and the boundary conditions of the system. Modeling as-
sumptions represent the conditions concerned with the sys-
tem’s structure and its state on which the model is valid.

By indexing each microworld not only with the
law(s)/principle(s) but also with the situation, the education-
ally meaningful transition between microworlds can be de-
signed. Suppose that after learning some law(s)/principle(s)
with a model of a situation, a student is ready to learn the
next law(s)/principle(s). It isn’t desirable for him to learn
the next law(s)/principle(s) with a model which embodies
it/them but the situation of which is completely different
from the previous one. From an educational viewpoint, it
is more desirable that he finds the necessity of the evolu-
tion of the previous model in the new situation, and conse-
quently gets the new model which embodies the next the
law(s)/principle(s). By describing modeling assumptions
explicitly, it becomes possible to judge whether two mi-
croworlds are in such relation (called educationally mean-
ingful relation).

[Example-1] An example of GMW for a physical system is
shown in Figure 1. It consists of 5 microworlds, each of
which is indexed with the following items:

(m1) the physical system and a model of it

(m2) the physical structure of the system: the physical ob-
jects and their relations, their attributes, and the physical
processes to be considered in the model

(m3) the behavioral range of the system to be considered

(m4) the boundary conditions of the system

(m5) the skills necessary for the model-based problem
solving (e.g., how to solve differential equations)

(m6) the tasks to be performed for understanding the model

MW-1 deals with a piece of domain theory linear uniform
motion as its learning item, and has a model which embodies
it. MW-2 deals with linear accelerated motion and frictional
force as its learning items, and has a model which embodies
them. As for MW-3, heat generation and melt of the ice are
added to those of MW-2, and MW-3 has a model which em-
bodies all of them. MW-4 and MW-5 deal with elastic col-
lision and inelastic collision respectively, and have models
which embody them respectively. In addition, parameter-
change rules are attached to the edges between MW-1 and
MW-2, between MW-2 and MW-3 and between MW-4 and
MW-5, which relate the difference between the situations
(i.e., modeling assumptions) of two microworlds to the dif-
ference between the behaviors of their models (only the first
rule is shown in Figure 1).

For example, when a student learned the learning item in
MW-1, MW-2 and MW-4 are identified as the candidates he
should learn next by examining the nodes adjacent to MW-1

MW-1
(m1) v1(t) = v0, x1(t) = x0 + v0t

(m2) uniform motion
(m3) 0 < v0 <v0 , µ1 < !, position(M1)!"[x0, x1]

(m4) ¬sweep([x0, x1])

(m5) ...

(m6) ...

1

MW-2
(m1) a1(t) = -µ1 M1 g, v1(t) = v0 - µ1 M1 gt,

 x1(t) = x0 + v0t - µ1 M1 gt /2

(m2) decelerated motion, frictional force
(m3) 0 < v0 <v0 , µ1 > !, position(M1)!"[x0, x1]

(m4) ¬sweep([x0, x1])

(m5) ...

(m6) ...

1

MW-3
(m1) a1(t) = -µ2 M1 g, v1(t) = v0 - µ2 M1 gt,

 x1(t) = x0 + v0t - µ2 M1 gt /2

(m2) decelerated motion, frictional force,

 heat generation, melt of the ice
(m3) 0 < v0 <v0 ,µ1 >µ2 >!, position(M1)!"[x0, x1]

(m4) sweep([x0, x1])

(m5) ...

(m6) ...

2

MW-4
(m1) M1v1 = M1v1’ + M2v2’, ...

(m2) elastic collision
(m3) velocity(M1, x1) = v1

(m4) v1 > 0 , v2 = 0, e = 1

(m5) ...

(m6) ...

MW-5
(m1) M1v1 = M1v1’ + M2v2’, ...

(m2) inelastic collision
(m3) velocity(M1, x1) = v1

(m4) v1 > 0 , v2 = 0, 0 < e < 1

(m5) ...

(m6) ...

Boundary condition: v1 > 0

x0, v0 Tice

µ1M1 M2

x1,v1

thrown with the initial velocity v0
swept with broom uniformly

2 2

PC-Rule-1:
If 0 < v0 <v0 and position(M1)!"[x0, x1] and

 ¬sweep([x0, x1]) and changed(µ1 < ! => µ1 > !)

Then decrease(velocity(M1, x))

1

Figure 1: An example of Graph of Microworlds

in GMW. In addition, in order to assist a student in transfer-
ring from MW-1 to MW-2, it is possible to generate a task
by using the parameter change rule attached to the edge be-
tween them, such as: derive the velocity of M1 when the
value ofμ 1 becomes greater and the friction becomes not
negligible. It is also possible to generate the explanation of
how/why the velocity of M1 changes. In this task, the ne-
cessity of the model of MW-2 is strongly suggested because
the difference between the velocities of M1 before/after the
change ofμ 1 can’t be explained only by the model of MW-
1. Such a task which needs the transition to another mi-
croworld to be performed is called inter-mw-task, while a
task which can be performed with only the model of the mi-
croworld it belongs to is called intra-mw-task.

Method for Assisting Authors in Describing
GMW

Definition of the Problem
In science education, there are a set of key concepts and
laws/principles which compose the domain theory and must
be learned in order for a student to understand the theory. We
call them learning items. The learning items usually have
the relations of prerequisite, whole/part, and others between
them (e.g., acceleration should be learned before Newton’s
2nd law, and linear uniform motion is the specific case of
linear accelerated motion). In other words, they have a par-
tial ordering. The lessons in school and the chapters in text-
books are sequenced according to the ordering. Therefore,

we suppose a learning item network is given which consists
of a partially ordered set of learning items each of which
deals with some specific law(s)/principle(s) in the domain.
An author is required to describe a GMW which satisfies the
following requisites (see the upper part of Figure 2):
(1) The set of microworlds in the GMW has the same par-

tial ordering as the learning item network (i.e., they are
isomorphic), and each microworld has a model which
embodies the law(s)/principle(s) dealt with by its corre-
sponding learning item 1 .

(2) Each microworld is indexed by the law(s)/principle(s)
it deals with, the model which embodies the
law(s)/principle(s) and its modeling assumptions
(i.e., (m1)-(m4) in section 3.1). (The relations between
two microworlds are indexed by the difference between
these.)

(3) Two microworlds which correspond to two adjacent
learning items in the learning item network have the edu-
cationally meaningful relation as much as possible.

As for these requisites, there are the following difficulties:
(1) It is, in general, difficult to find the situation (i.e., the
system’s structure and its state) which embodies the given
law(s)/principle(s) because its search space becomes vast.
1A model in a microworld may include the law(s)/principle(s)

dealt with by the learning item(s) which is/are upper than the mi-
croworld’s corresponding learning item in the learning item net-
work.

model2

model3

model4 model5

model6

model11

model9

model10

model7

model8

model1

model1

model2

model3

model4 model5

model6

Graph of Microworlds

embody
embody

embody

embody

embody

embody

Intra-MW-

tasks

Intra-MW-

tasks

Intra-MW-

tasks

Intra-MW-

tasks

Inter-MW-

tasks

Inter-MW-

tasks

Inter-MW-

tasksInter-MW-

tasks

Inter-MW-

tasks

Intra-MW-

tasks

Intra-MW-

tasks

Inter-MW-

tasks
Inter-MW-

tasks

LI1

LI2

LI3

LI4 LI5

LI6Th1

Th2 Th3

Th4 Th5

Th6

Graph of Models in the Domain

Base Graph of Microworlds

Domain Theory

Th7

Th8

Th9

Th10

Th0 Learning Item Network

}

Figure 2: The structure of Graph of Microworlds

(2) It needs the expertise in model generation process in
the domain to index the models in microworlds with the
law(s)/principle(s) behind them and their modeling as-
sumptions, especially because modeling assumptions are
usually implicit information in models.

(3) Because of the same reason as above, it is difficult to
identify the relation between two microworlds based on
the differences of their models and modeling assumptions
and to judge whether the transition between them is ed-
ucationally meaningful. Moreover, it is also difficult to
make a set of microworlds which includes the education-
ally meaningful relations following the partial ordering in
the learning item network.

Method for Assistance
Consider the network which consists of the possible models
(i.e., consistent combinations of modeling assumptions) and
the possible relations between them (i.e., consistent pertur-
bations of modeling assumptions) in the domain. We call it
Graph of Models (GoM) 2 3 . We suppose that the consis-

2Possible models/relations mean they can theoretically exist but
need to be described in order to exist concretely. Because the num-
ber of possible models/relations in the domain is vast, an author
can’t describe the whole GoM. However, he needn’t do so because
what he should describe here is a set of possible models/relations
which are educationally useful and cover the given learning item
network (i.e., a GMW).

3The GoM proposed by Addanki et al. (Addanki et al., 1991)
deals with only the general/specific relation between models, while
we extend it for dealing with other types of relations (see section
5).

tency of models and relations between them can be judged
based on the domain theory.

In this paper, we propose a method for assisting an author
in describing GMW by a generation-test method, in which
he semi-automatically generates the models which belong
to the GoM in the domain one after another, and judges
whether each of them is appropriate to the GMW from an
educational viewpoint. That is, we suppose that GMW can
be described by extracting a subgraph from the GoM from
an educational viewpoint (called base GMW), and by adding
intra-/inter-MW-tasks (including the tools necessary for per-
forming them) to it (see the lower part of Figure 2). The
method we propose here is for the former (i.e., describing
base GMW), not for the latter. Hereafter, we call base GMW
simply GMW.

In order to implement the above method, we need a mech-
anism of model generation which guarantees that the com-
bination of modeling assumptions in a model generated by
it is consistent, and that the difference of modeling assump-
tions in a relation between two models is consistent, based
on the domain theory. That is, the target of this method is
a teacher who describes GMW as the teaching material in
his class, not a programmer who describes domain theory
for the mechanism of model generation. We suppose that
domain theory is appropriately described by a programmer
according to the guide in organizing it (presented in section
5).

In our method, compositional modeling technique
(Falkenhainer and Forbus, 1991; Levy et al., 1997) is used
as such a mechanism, which generates the models in the do-
main based on explicit modeling assumptions. In composi-

(defModel (kinetic-friction ?obj ?flr)

:Individuals ((?obj :conditions (m-object ?obj))

 (?flr :conditions (m-floor ?flr)))

:Assumptions ((CONSIDER (k-cof ?obj ?flr)))

:Conditions ((on ?obj ?flr)

 (gt (mag (normal-force ?obj ?flr)) 0)

 (gt (mag (velocity-t ?obj ?flr)) 0))

:Relations ((Quantity (k-friction ?obj) :p-vector)

 (= (mag (k-friction ?obj))

 (* (k-cof ?obj ?flr) (mag (normal-force ?obj ?flr))))

 (= (dir (k-friction ?obj))

 (rev (dir (velocity-t ?obj ?flr))))))

Figure 3: An example of model fragment

tional modeling, domain theory is described as a set of prim-
itives called model fragments each of which stands for a spe-
cific law/principle in the domain (called a library of model
fragments) . Each model fragment consists of two parts:
One is a partial situation (i.e., a partial system’s structure
and its state) to which the law/principle can be applied. This
is described as a set of modeling assumptions. The other is
a set of constraints which becomes valid when such a par-
tial situation does exist. When a situation (i.e., a system’s
structure and its state) is inputted into the mechanism, a set
of model fragments each of which matches the modeling as-
sumptions which are true in the situation are instantiated,
and the set of constraints given by these model fragments
are outputted as the model of the situation. (Since this tech-
nique mainly targets physical systems, our method also does
so.) An example of model fragment used in our implemen-
tation is shown in Figure 3.

By introducing compositional modeling mechanism, it is
automated to index the models of a given situations with
their modeling assumptions. It is, however, still difficult to
find the situations which embody the given laws/principles.
In our method, therefore, the author describes GMW as fol-
lows:

(1) First, suppose the author can find a situation which
embodies the law(s)/principle(s) dealt with by a learning
item in the given learning item network. The composi-
tional modeler automatically generates the model and in-
dexes it by its modeling assumptions.

(2) Then, he perturbs this situation by changing some pa-
rameter(s) of the system 4 . The compositional modeler
automatically generates the model of this new situation
and indexes it by its modeling assumptions 5 .

(3) If the new model embodies the law(s)/principle(s) dealt
with by another learning item which is adjacent to the for-
mer learning item in the learning item network, he decides

4A mechanism is necessary which infers what change of param-
eter(s) causes what change of a situation (i.e., change of modeling
assumption(s)). In this paper, we omit the description of this mech-
anism on account of limited space.

5The consistency of the model of the new situation (i.e., the
new combination of modeling assumptions) is guaranteed by the
compositional modeler (inconsistent ones are detected and deleted
by it).

whether it is added to the GMW or not. If he judges that
the difference between these two models is educationally
meaningful, he adds the new one and the new edge be-
tween them to the GMW.

(4) By repeating (2) and (3) to grow the GMW, the author
would finally get the whole GMW which embodies all the
learning items in the given learning item network by a set
of microworlds (and the set of microworlds has the same
partial ordering as the learning item network).

By this procedure, the difficulties indicated in section 4.1
are solved except the following two points: One is to find
the initial situation and its model from which the GMW is
grown. The other is to identify the relation between two
models based on the perturbation of situation (i.e., the dif-
ference of modeling assumptions) and to judge whether it is
educationally meaningful or not. As for the former, how-
ever, it is sufficient to find only one situation and its model
which embody an arbitrary learning item in the learning item
network, which would be much easier than find a set of mi-
croworlds covering all the learning items. As for the lat-
ter, the function is desirable which advises the author on
what physical meaning a difference of modeling assump-
tions has. In order to design such a function, it is necessary
to classify modeling assumptions based on their physical
meanings. The classification means organizing the library
of model fragments based on the modeling assumptions in-
cluded in each model fragments.

In the next section, therefore, we consider what types
of modeling assumptions are used in generating models of
physical systems and classify the modeling assumptions.
Based on this classification, we also present how to orga-
nize a library of model fragments in the domain of physics.
Though previous researches have presented several ways of
classifying modeling assumptions and organizing a library
of model fragments, we try the reclassification of modeling
assumptions especially from the viewpoint of difference of
models caused by the perturbation of situation. We finally
describe the design of the function for inferring the relation
between two models based on the difference of their model-
ing assumptions.

Relations between Models based on the
Difference of Modeling Assumptions

Modeling Assumptions
We classify the modeling assumptions made in generat-
ing models of physical systems into constraints of physical
structure (CPS) and constraints of operating range (COR).
In a model or model fragment, at least one of these respec-
tive assumptions must be specified.

Constraint of physical structure (CPS) is the assumption
which specifies what kind of objects, relations and their
attributes in a physical system are considered (where, the
specification about objects is called constraint of physical
objects (CPO), and the one about relations and attributes
is called constraint of physical attributes (CPA)). CPS rep-
resents the decisions about perspectives and granularity in
modeling a physical system. For example, the specification
about whether two connected metal blocks are considered as
one object or two objects is a CPO. The specification about
whether their mechanical relations/attributes (e.g., mass, ap-
plied forces) or their electrical ones (e.g., current, resistance)
are considered is a CPA.

Physical phenomena occur assuming a physical system is
in a specific state. When the state changes, the model may
become invalid. Therefore, a model must have the speci-
fication about the range (in its state space) within which it
is valid. It is called constraint of operating range (COR)
(where, the one which can be specified by (a set of) physical
attributes is called constraint of physical range (CPR), and
the one which need to be specified by (a set of) conceptual
attributes (e.g., complex shape of an object, complex posi-
tional relation between objects) is called constraint of con-
ceptual range (CCR)). For example, since a model of two
connected blocks’ motion with the internal force between
them assumes their velocities are the same, such specifica-
tion is necessary. A model of a resistance assuming its value
is constant needs the specification that its current and volt-
age are within the proportional range. These are CPRs. In a
model of a block b descending an inclined plane p by gravity
from the gravitational field g, their positional relation must
be appropriately specified (e.g., in(b, g), on(b, p)). This is a
CCR.

In each type of these modeling assumptions, there are of-
ten the sets of exclusive ones which can’t be made simul-
taneously. For example, in a physical system which has a
CPS, it isn’t allowed to make assumptions transient state
and steady state simultaneously as COR. In a physical sys-
tem which has a CPO, it isn’t allowed to make assumptions
consider friction between two blocks and not consider fric-
tion between them simultaneously as CPA. Moreover, in a
physical system, it isn’t allowed to make assumptions view
a block as a rigid object and view it as an aggregation of
atoms/molecules as CPO.

Relations between Models
When the domain theory is described as a library of model
fragments, each model fragment stands for a specific physi-
cal law/principle. A set of CPS and COR is attached to each
model fragment as its condition of application. The model of

a situation (i.e., the system’s structure and its state) is gener-
ated as a conjunction of the constraints given by the instan-
tiated model fragments. Its modeling assumption is the con-
junction of the ones attached to each model fragments (the
consistency of the conjunctions is guaranteed by the compo-
sitional modeling mechanism).

By grouping the model fragments each of which has ex-
clusive modeling assumption(s), it is possible to design the
function for suggesting the relation between the models in
two microworlds before and after the perturbation of situa-
tion. That is, first, the two sets of model fragments are com-
pared, each of which composes each model. Then, if a pair
of model fragments each of which belongs to each model
and matches the same/similar partial situation has exclusive
modeling assumption(s), the relation between the models is
inferred from the type of the assumption. The procedure is
as follows:

(0) Assume that it is possible for each model fragment in
one model to find its corresponding model fragment in an-
other model. Two model fragments corresponds to each
other (called a pair of model fragments) if they are instan-
tiated by matching the same/similar partial physical struc-
ture (i.e., physical objects and their relations/attributes)
in the system (when two models have different CPOs, it
is assumed that the method is given for finding the cor-
respondence between the physical objects considered in
them). If a model fragment in one model can’t find its
corresponding model fragment in another model, the fol-
lowing procedure is carried out based on its modeling as-
sumptions themselves.

(1) When two model fragments which corresponds to each
other have exclusively different CPOs, it is inferred that
the difference of two models is change of the view-
point/granularity about the partial system which they
match.

(2) When two model fragments which corresponds to
each other have the same CPOs and exclusively differ-
ent CORs, it is inferred that the difference of two models
is change of the operating range about the partial system
which they match.

(3) When two model fragments which corresponds to each
other have the same CPOs, the same CORs and exclu-
sively different CPAs (i.e., it isn’t possible to find the cor-
respondence between the relations/attributes considered
in them), it is inferred that the difference of two mod-
els is general/specific about the partial system which they
match 6 .

The differences inferred by the above procedure are some-
times concerned with all the pairs of model fragments which
compose the models (i.e., the whole system), or concerned
with a pair of model fragments (i.e., the partial system which

6It is assumed that there is some kind of inclusion relation be-
tween the CPAs of two model fragments. For example, Levy et al.
defined a simpler-than relation based on the superset/subset rela-
tion between the causal orderings of (the output quantities of) two
model fragments (Levy et al., 1997).

they match). In the former case, they stand for the global dif-
ferences between two models, while in the latter case, they
stand for only the local differences between them. In gen-
eral, because there can be multiple global/local differences
in two models, it is difficult to determine the most appropri-
ate difference between them.

In this research, therefore, we adopt the following
method: (1) the authoring system first enumerates the pos-
sible global/local differences between two models by the
above procedure, then the author, referring to them, iden-
tifies the most appropriate difference and judges its educa-
tional meaning (i.e., determines whether there is the edge
between them and its type). In our method, since the new
model is generated by perturbing the old one’s situation (i.e.,
modeling assumptions), it is expected that there are at most
a few differences between them and that the author has little
difficulty in the identification and judgement.

[Example-2] Figure 4a shows the physical system in which
an object b1 is put on an inclined plane p1 (to which a hori-
zontal plane p2 is connected). Figure 4b shows a model (i.e.,
a set of instantiated model fragments) of a situation of this
system in which b1 remains at rest on p1 because the tangen-
tial component of b1’s gravity on p1 is smaller than the max-
imum static friction between b1 and p1. It (called model-1)
consists of 5 model fragments, including static friction and
rest. If the coefficient of static friction is decreased in this
situation, another situation may occur in which b1 moves
downward accelerated by its gravity (and the kinetic fric-
tion). The model of this situation (called model-2) is shown
in Figure 4c and it consists of 5 model fragments, including
kinetic friction and linear acc-motion.

Because the model fragments gravity in model-1 and
model-2 are instantiated by matching with the same phys-
ical structure in these models, they correspond to each other.
As for the model fragments normal force and acceleration
in both models, the matters are the same. These model frag-
ments compose the common part of model-1 and model-2
because their CORs are also the same in both models re-
spectively.

The model fragments static friction in model-1 and ki-
netic friction in model-2 correspond to each other because
of the same reason. However, their CPRs which specify the
range of the value of the coefficient of static friction are ex-
clusively different. It is, therefore, inferred that there is a
difference between these models in ’the change from static
friction to kinetic friction because of the change in the value
of the coefficient of static friction.’ The model fragments
rest in model-1 and linear acc-motion in model-2 also corre-
spond to each other because of the same reason. Their CPRs
which specify the range of the value of b1’s acceleration are
exclusively different. It is, therefore, inferred that there is a
difference between these models in ’the change from rest to
linear accelerated motion because of the change in the value
of b1’s acceleration.’

Referring to these two differences enumerated by the au-
thoring system, the author identifies the most appropriate
difference and judges its educational meaning.

[Example-3] In Figure 4, if the time variable of model-2 is
increased, b1 transfers from p1 to p2 (i.e., on−floor(b1, p1)
changes to on− floor(b1, p2)). The model of this new situ-
ation (called model-3) is shown in Figure 4d and it consists
of 4 model fragments, including linear uni-motion.

The model fragments gravity and acceleration in model-
2 and model-3 compose the common part of these models
because of the same reason as Example-2.

The model fragments kinetic friction, normal force in
model-2 and normal force in model-3 don’t have their cor-
responding model fragments. The reason is that their CCRs
which specify the positional relation among b1, p1 and p2

exclusively changed because of b1’s transition from p1 to
p2. It is, therefore, inferred that there are the differences be-
tween these models in ’the disappearance of kinetic friction
and normal force between b1 and p1, and the appearance of
normal force between b1 and p2 because of the change in the
positional relation among b1, p1 and p2.’

The model fragments linear acc-motion in model-2 and
linear uni-motion in model-3 correspond to each other be-
cause they are instantiated by matching the same physical
structure in these models. Their CPRs which specify the
range of the value of b1’s acceleration are exclusively dif-
ferent. It is, therefore, inferred that there is a difference be-
tween these models in ’the change from linear accelerated
motion to linear uniform motion because of the change in
the value of b1’s acceleration.’

Concluding Remarks
In this paper, we proposed a method for assisting an author
in describing GMW. The feature of our method is that it uses
a problem solver (i.e., model generator) in the domain for
indexing a set of microworlds semi-automatically. We think
this is inevitable in order to assist the authors in indexing
them based on their models, aiming at the ability in inference
about the difference between models.

Introducing the powerful model of expertise may cause
the problems of its cost and limited applicability. However,
we think they can be reduced by adopting compositional
modeling technique. That is, it has a framework for judging
the consistency of models at a conceptual level (i.e., based
on modeling assumptions), and the methods for describing
domain knowledge (i.e., library of model fragments) at that
level have been developed in literature. We think preparing
a set of templates of model fragments in each domain would
provide the guideline for describing the domain knowledge.
Moreover, because this technique works in any domain of
physics and provides the model generator which widely cov-
ers its domain, our method would be applicable to many do-
mains of physics. We are planning to verify the usefulness
of the prototype system which implements our method, and
to discuss the method for describing the expertise in model
generators.

References
Addanki, S.; Cremonini, R.; and Penberthy, J.S. 1991. Graphs of
models. Artificial Intelligence 51: 145-177.
Burton, R.R.; Brown, J.S.; and Fischer, G. 1984. Skiing as a model

MF:
linear
acc-motion

on-floor(b1, p1)

m-object(b1)

m-floor(p1)

in-field(b1, f1)

k-friction(b1) = kf1

g-field(f1)

MF:

gravity force

mass(b1) = m1

g-force(b1) = g1

MF:

normal force
n-force(b1) = n1

g-force-n(b1) = n1

g-force-t(b1) = t1

net-force(b1) = net-f1 > 0

MF:

acceleration
acceleration(b1) = acc1 > 0

k-cof(b1, p1) = µk

location(b1) = xo +(1/2)acc1t
2

init-velocity(b1) = v0 = 0

s-cof(b1, p1) = µs'

MF:

rest

on-floor(b1, p1)

m-object(b1)

m-floor(p1)

in-field(b1, f1)

s-friction(b1) = sf1

g-field(f1)

MF:

gravity force

mass(b1) = m1

g-force(b1) = g1
MF:

static friction

MF:

normal force
n-force(b1) = n1

s-cof(b1, p1) = µs

g-force-n(b1) = n1

g-force-t(b1) = t1

net-force(b1) = net-f1 = 0

location(b1) = xo

init-velocity(b1) = v0 = 0

MF:

acceleration
acceleration(b1) = acc1 = 0

k-cof(b1, p1) = µk

p1b1
µs : coefficient of static friction between b1 and p1

µk : coefficient of kinetic friction between b1 and p1

Assume b1 transfers from p1 to p2 smoothly (for simplicity,the curvature at their joint is ignored).

Assume p2 is completely frictionless.p2

(a)

(b)

(c)

MF:
linear
uni-motion

on-floor(b1, p2)

m-object(b1)

m-floor(p2)

in-field(b1, f1)

g-field(f1)

MF:

gravity force

mass(b1) = m1
g-force(b1) = g1

MF:

normal force
n-force(b1) = n1'

g-force-n(b1) = n1'

g-force-t(b1) = t1' =0

MF:

acceleration

k-cof(b1, p1) = µk

init-velocity(b1) = v0' > 0

net-force(b1) = net-f1 = 0'

acceleration(b1) = acc1 = 0'

location(b1) = xo + vo't'

s-cof(b1, p1) = µs'

(d)

MF:

kinetic friction

Figure 4: An example of difference between models

of instruction. In Rogoff, B.; and Lave, J. eds. Everyday Cogni-
tion: its development in social context. Harvard Univ.Press.
Falkenhainer, B.; and Forbus, K.D. 1991. Compositional Model-
ing: Finding the Right Model for the Job. Artificial Intelligence 51:
95-143.
Fischer, G. 1988. Enhancing incremental learning processes with
knowledge-based systems. In Mandl, H.; and Lesgold, A. eds.
Learning Issues for Intelligent Tutoring Systems. Springer-Verlag.
Hirashima, T.; Niitsu, T.; Hirose, K.; Kashihara, A.; and Toyoda, J.
1994. An Indexing Framework for Adaptive Arrangement of Me-
chanics Problems for ITS. IEICE Trans. Inf. and Syst. E77-D(1):
19-26.
Hirashima, T.; Niitsu, T.; Kashihara, A.; and Toyoda, J. 1993. An
Indexing Framework for Adaptive Setting of Problem in ITS. In
Proceedings of AIED93, 90-97.
Horiguchi, T.; and Hirashima, T. 2005. Graph of Microworlds:
A Framework for Assisting Progressive Knowledge Acquisition

in Simulation-based Learning Environments. In Proceedings of
AIED2005, 670-677.
Levy, A.Y.; Iwasaki, Y.; and Fikes, R. 1997. Automated model
selection for simulation based on relevance reasoning. Artificial
Intelligence 96: 351-394.
Merrill, M.D. 1999. Instructional Transaction Theory (ITT): In-
structional Design Based on Knowledge Objects. In Reigeluth,
C.M. ed. Instructional-Design Theories and Models Vol.II: A
New Paradigm of Instructional Theory, 397-424. Hillsdale, NJ:
Lawrence Erlbaum Associates.
Murray, T.; Blessing, S.; and Ainsworth, S. eds. 2003. Authoring
Tools for Advanced Technology Learning Environments. Kluwer
Academic Publishers.
Towne, D.M. 1995. Learning and Instruction in Simulation En-
vironments. Educational Technology Publications, Englewood
Cliffs, New Jersey.
Towne, D.M.; de Jong, T.; and Spada, H. eds. 1993. Simulation-

Based Experiential Learning. Springer-Verlag, Berlin, Heidelberg.
Wenger, E. 1987. Artificial Intelligence and Tutoring Systems:
Computational and Cognitive Approaches to the Communication
of Knowledge. Morgan Kaufmann.
White, B.; and Frederiksen, J. 1993. ThinkerTools: Causal models,
conceptual change, and science education. Cognition and Instruc-
tion 10: 1-100.
White, B.; and Frederiksen, J. 1990 Causal model progressions as
a foundation for intelligent learning environments, Artificial Intel-
ligence 42: 99-157.

Qualitative simulation of nonlinear dynamical models of gene-regulatory networks

Liliana Ironi and Luigi Panzeri
IMATI-CNR

via Ferrata 1, Pavia (Italy)

Abstract

This paper discusses the work-in-progress of a research
effort aiming at the design and implementation of a
qualitative simulation algorithm of the dynamics of
a specific class of ODE models of Gene-Regulatory
Networks (GRN). In such models, characterized by in-
complete knowledge of regulation mechanisms and ki-
netic parameters, regulation is assumed to be threshold-
dependent, i.e. only effective above or below a certain
threshold. Switch-like behaviors across variable thresh-
olds are properly modeled by steep sigmoid functions
the values of which continuously vary from zero to one
around the threshold. The ODE models that result from
the algebraic combination of such switch-like interac-
tion terms describe both linear and nonlinear GRN dy-
namics that occur at different time-scales. Qualitative
simulation of such kinds of models is a quite hard prob-
lem that requires the development of ad hoc tailored
algorithms. Unlike GNA, that considerably simplifies
the problem by approximating threshold-regulated re-
sponse functions by step functions, we propose a qual-
itative simulation algorithm that works for continuous
models, being the continuity assumption crucial in view
of more and more realistic models. The algorithm is
grounded on the integration of QR techniques with sin-
gular perturbation analysis methods that lay the mathe-
matical basis for dealing with both slow and fast non-
linear dynamics.

Introduction
Due to unprecedented amount of information at genomic
level made available, in recent years, by high-throughput
experimental technologies, it has become increasingly clear
that computational modeling and simulation frameworks are
needed to represent, understand and predict the complex dy-
namics of Gene-Regulatory Networks (GRN). Although, up
to now, there is no model that efficiently and accurately rep-
resents the gene interactions underlying regulatory mecha-
nisms in their whole complexity, a specific class of ODEs
has shown to be adequate to describe the essential features of
their dynamics. These models assume that the interactions
between variables are threshold-dependent, i.e. the effect of
a variable on another one is regulated by a threshold value.
Such an assumption is quite reasonable as switch-like be-
haviors across variable thresholds are well-suited to mathe-
matically represent the effects of the transcription factors on

the transcription rates of genes. Although such models allow
us to provide detailed description of gene regulatory mech-
anisms at the molecular level (Glass & Kauffman 1973;
Plahte, Mestl, & Omholt 1998), their applicability to predict
their quantitative dynamics is rather limited even when the
network at hand is very well studied. As a matter of fact,
making predictions of the dynamics of specific networks,
either from an initial state or in response to environmen-
tal stimuli, by exploiting classical numerical approaches is
mostly impracticable as precise and quantitative information
on (i) the biochemical reaction mechanisms underlying reg-
ulatory interactions, and (ii) kinetic parameters and thresh-
old concentrations are currently unknown and not identi-
fiable from data. However, at the current state of knowl-
edge, qualitative predictions of the dynamical properties are
not make-shift solutions but rather appropriate to get insight
into the functioning of systems not completely understood
as molecular interaction networks are.

To this end, the application of generic qualitative simu-
lation approaches (Kuipers 1994), at least in their original
form, is not the right solution. The mathematical tools they
are grounded on are too much simple to compensate for the
lack of complete knowledge. This results in a number of
drawbacks, e.g. their inability to upscalability, the exponen-
tial growth of the generated behaviors, and the generation of
spurious behaviors, that reveal to be particularly serious in
predicting nonlinear dynamics of regulatory networks even
in the case of networks with a small number of interact-
ing genes. A qualitative study of GRNs dynamics could,
in theory, be performed by more sophisticated analytical
methods based on the classical theory of qualitative analysis
of dynamical systems, and properly adapted to the specific
class of models (Glass & Kauffman 1973; de Jong 2002;
Plahte, Mestl, & Omholt 1998; Plahte & Kjøglum 2005).
But, in practice, given the complexity of the network struc-
tures due to the large number of both components and inter-
actions, such kind of analysis is quite hard or even unfeasi-
ble to be performed by hand. Thus, the need for the devel-
opment of qualitative simulation algorithms, based on more
sophisticated and adequate mathematical tools, and specif-
ically tailored to capture the network dynamical properties
that depend only on the model structure and are invariant for
ranges of values of kinetic parameters.

The work, herein presented, is an effort in this direction,

and aims at providing a qualitative simulation algorithm of
ODE models of GRN dynamics which works under the as-
sumptions that (i) threshold-dependent regulation mecha-
nisms are modeled by continuous steep sigmoid functions,
and (ii) any two genes are never regulated at the same thresh-
old by a certain variable. The sigmoidal-nonlinearities make
the simulation problem quite hard to be tackled. But, the
assumption that all sigmoids have very high steepness al-
lows us to apply a systematic way of analysis. Let us ob-
serve that, due to the switch-like character of the response
functions around the thresholds, the GRN dynamics occurs
at different time-scales. To be able to deal with both slow
and fast nonlinear dynamics we theoretically base our algo-
rithm on a classical singular perturbation analysis method
properly adapted to the assumed class of ODEs (Plahte &
Kjøglum 2005; Veflingstad & Plahte 2007). Such a method
suitably combined with QR key concepts computationally
drives, starting from an initial state and constraints that de-
fine the parameter space domain, the construction of all pos-
sible state transitions along with the sets of symbolic in-
equalities on parameter values that hold when specific tran-
sitions occur.

Related work
Since frameworks for phenomenological modeling of GRNs
by ODE equations have been proposed (de Jong 2002; Glass
& Kauffman 1973; Plahte, Mestl, & Omholt 1998), a rather
significant number of efforts in developing analytical meth-
ods for their qualitative study has been made (Glass 1977;
Hasty et al. 2001; Gouzè & Sari 2003; Plahte & Kjøglum
2005). But, due to the difficulty to perform by hand such
kind of analysis, the actual application of these methods has
been restricted to toy-examples of scarce biological inter-
est. Pioneering work towards automated qualitative analy-
sis and simulation of GRNs results in a computational tool,
called GNA (de Jong et al. 2004). GNA circumvents the
hard problem of dealing with sigmoidal nonlinear response
functions by approximating them with step functions, dis-
continuous in the threshold hyperplanes. Such an assump-
tion considerably simplifies the analysis as the model results
in piecewise-linear equations, but it raises the problem to
find a proper continuous solution across the threshold hyper-
planes, or, in other words, to seek for generalized solutions
of ODEs with discontinuous right-side terms. But, the solu-
tion to this problem is not straightforward as (i) there exists
in the literature several definitions of generalized solutions,
(ii) it is not yet completely understood what are the rela-
tionships between different definitions, and then, (iii) it is
not clear how to choose the “right” definition for a particu-
lar task (Bacciotti 2003). GNA adopts the Filippov approach
that results particularly popular and convenient to deal with
control problems but it may present drawbacks when ap-
plied to approximate the limit solutions of a continuous ODE
model: it might find “too many” solutions, and fail to reach
all stable solutions. As a consequence, GNA suffers from the
same disadvantages that together with a further approxima-
tion introduced in the algorithm for computational problems
might compromise its soundness and completeness (Dordan,
Ironi, & Panzeri).

Therefore, the algorithm we propose aims at both over-
coming the limits of GNA and providing a framework that,
thanks to the continuity assumption, can be gradually ex-
tended to tackle wider and more and more realistic classes
of models.

Theoretical background
Singular perturbation analysis: basic ideas
Singular perturbation analysis is a classical approach to
study phenomena that occur at different time-scales (Holmes
1995). The dynamics of such phenomena are described by
ODEs in which a small parameter multiplies either one of
the derivatives or higher order derivative, that is by system
equations of the form:

εẋ = f(x,y, ε)

ẏ = g(x,y, ε)
(1)

where the dot denotes differentiation with respect to the or-
dinary time t, x(t) ∈ Rm,y(t) ∈ Rl, 0 < ε � 1, and f ,g
smooth functions of x,y, t.

Let us indicate Eq. (1) associated with appropriate initial
conditions byMε , and the same initial value problem where
ε = 0 by M0. The system modeled by Mε, called full sys-
tem, is singularly perturbed if, as ε → 0, the solution of Mε

identifies a “small” region, called boundary-layer region, of
non-uniform convergence to the solution of the reduced sys-
tem M0. The region of uniform-converge of Mε to M0 is
called outer region.

Singular perturbation methods aim at calculating an ap-
proximate solution of Mε for 0 < ε � 1, and differ
from each other for the way they calculate and combine the
boundary-layer solution and outer solution. In outline, the
fundamental idea underlying these methods is to calculate
local solutions in both boundary-layer and outer region, and
combine them to find the global approximate solution. The
fast dynamics in the boundary-layer is studied by suitably
scaling the time variable, namely τ = t/ε. Then, the full
initial value problem turns into the boundary-layer system:

x′ = f(x,y, ε)

y′ = ε g(x,y, ε)
(2)

where the prime denotes the derivative with respect to τ . In
the limit, the fast dynamics is obtained by solving:

x′ = f(x,y, 0)

y′ = 0
(3)

This system has a manifold of stationary points given by
f(x,y, 0) = 0, called slow-manifold. The reduced system
M0:

0 = f(x,y, 0)

ẏ = g(x,y, 0)
(4)

describes the motion in the original time t along those points
in the slow-manifold, x = x(y), that satisfy suitable hy-
potheses among those stability (Tikhonov-Levinson theo-
rem, 1952). Then, the outer solution is described by the
equation:

ẏ = g(x(y),y, 0) (5)

Taken together, the reduced equation and the boundary-
layer solution approximate the solution of Mε for small
nonzero values of ε.

A computational framework for the analysis of
GRN dynamics

Experimental and theoretical studies seem to confirm the ad-
equacy of the following specific class of ODEs to describe
the essential features of a wide range of regulatory systems,
and, in particular, of the complex dynamics of GRNs:

ẋi = fi(Z) − γixi i = 1, . . . , n (6)

where the dot denotes time derivative, xi is the concentration
of the i-th gene product, γi > 0 is the decay rate of xi, Z is a
vector with Zjk as components, and Zjk = S(xj , θjk, q) is a
sigmoid function with threshold θjk .The response, or regula-
tory, function S : R+ → [0, 1] is a continuous monotonic S–
shaped map depending on the parameter q (0 < q � 1), that
determines the steepness of S around the threshold value
θjk , such that for q → 0 we have S(xj , θjk, q) = 0 (respec-
tively 1) when the value of xj is smaller (greater) than θjk .

Each xi, defined in Ωi ⊂ R+, is associated with ni thresh-
olds ordered according to θij < θik if j < k. The state equa-
tions describe the balance between the production process
fi(Z) and the degradation one, herein supposed to be linear.
The functions fi are multilinear polynomials in the variables
Zjk, and are frequently composed by algebraic equivalents
of Boolean functions. More precisely,

fi(Z) =

Li
∑

l=1

κil

∏

j=1,n
k=1,nj

Z
αjkl

jk (7)

where κil are real values that denote kinetic rate parameters,
Li is the possibly empty number of interactions that synthe-
size xi, and, in accordance with the network structure, αjkl

assumes value either equal to 1 when Zjk takes part in the
l-th interaction or equal to 0 otherwise.

In the present paper we adopt a further assumption that
sounds quite realistic:
Assumption A. Every gene product only regulates one gene
at each of its thresholds.

Mathematically, this assumption implies that each Zjk

only occurs in one equation. This simplifies the calculation
of the slow–motion manifold that, otherwise, generally con-
sists in an heavy, nonlinear computational problem.

To exemplify the concepts and the definitions as they are
introduced, all through the paper we will consider the ODE
model:
ẋ1 = κ11(1 − Z11)(1 − Z22) + κ12(1 − Z21) − γ1x1

ẋ2 = κ21(1 − Z12) − γ2x2
(8)

where all parameters are strictly positive, and, the response
function Zjk is expressed by the standard Hill function

S(xj , θjk , q) =
x
1/q
j

x
1/q
j +θ

1/q
jk

, commonly used in the literature.

θ21

θ11

θ22

θ12
0 x1

x2

D1 D2 D3 D4 D5

D6 D7 D8 D9

D11 D13D12

D10

D14 D15

D16 D17 D18 D19 D20

D21 D22 D23 D24 D25

3

Figure 1: Partition of the phase-plane into regular and
switching domains.

A - Regular and Switching Domains. Let us consider the
n-dimensional vector of the state variables x whose domain
Ω = Ω1 × . . . × Ωn is given by the product of the domains
Ωi ⊂ R+ of each of its component. The ordered set Θi of
the ni threshold values θij associated with each xi naturally
induces a partition of Ωi into qualitatively distinct domains.
As a matter of fact, instead of the sharp value θij we must
consider a range of values around it, whose width, δ > 0,
is a monotonic function of the steepness parameter q with
δ(q) → 0 for q → 0, and characterizes the domain where
the related response function takes values other than zero or
one. Let us denote by θij and θij the values θij − δ/2 and
θij +δ/2, respectively. Then, each Ωi results from the prod-
uct of open, (θik , θi(k+1)), and closed, [θi(k+1), θi(k+1)],
intervals Iik

1. The whole system domain Ω is then par-
titioned, as showed in Fig. 1, into hyper-rectangles D =
I1l1 × . . . Iili . . . × Inln , li ∈ {0, . . . , ni+1}.

In the set ∆ of all the domains identified by the partition,
we can distinguish the set ∆s ⊂ ∆ of switching domains
(SD) from the set ∆r ⊂ ∆ of regular domains (RD), such
that ∆ = ∆s ∪ ∆r.

A domain D belongs to ∆s if one, several, or all vari-
ables are at (one of) their thresholds or, equivalently, if it
results from the product of at least one closed interval, e.g.
D6, D14, D17. Let σ(D), D ∈ ∆s, be the switching order
of D, i.e.the number of switching state variables, then those
ones that assume values in a closed interval in D. A SD with
σ = n is called a center. In the example, the centers are D7,
D9, D17, and D19.

A domain D belongs to ∆r if it is an open set, e.g.
D1, D5, D13, and it is also called box.

The network dynamics in each domain D ∈ ∆ is de-
scribed by different models: the slow motion in Dr ∈ ∆r

is described by linear ODEs whereas the fast motion in
Ds ∈ ∆s, or equivalently around the thresholds, is described

1k = 0, . . . , ni, where θi0 and θni+1 denote 0 and xi =
max(xi), respectively.

by nonlinear equations. Thus, the need to adopt different
analysis strategies of the motion in regular and switching
domains.

B - Motion equations in regular domains. In each box
Dr, Zjk equals either 0 or 1 in the step function limit. This
simplifies Eq. (6) as they reduces to linear equations:

ẋi = µi − γixi, i = 1, . . . , n (9)

where µi depends on Dr, and is given by the sum of some
κil. From Eq. (9) we can easily find the focal point x∗ =
{x∗

j =
µj

γj
} the trajectories are heading towards. Herein,

we assume that focal points do not belong to switching do-
mains. If x∗ belongs to the initial domain Dr, there is a
stable point in it, called Regular Stable Point (RSP). Other-
wise, the trajectories move to a switching domain adjacent
to Dr.

For example, the motion equations (8) in the domain D11,
being Z21 = 1 and Z11 = Z12 = Z22 = 0, reduce to:

ẋ1 = κ11 − γ1x1

ẋ2 = κ21 − γ2x2
(10)

whose trajectories move towards the focal point x∗ =
(κ11

γ1
, κ21

γ2
). If x∗ ∈ D13 the trajectories starting in D11 point

to x∗. Thus, they escape from D11, and heading towards
D13, they first move to D12.

C - Motion equations in switching domains. In a switch-
ing domain Ds we distinguish σ(Ds) switching variables,
xs ∈ [θs, θs], from n − σ(Ds) regular ones xr. For exam-
ple, in the domain D12 (σ(D12) = 1), x1 is the switching
variable while x2 is the regular one.

Using singular perturbation analysis as properly adapted
to study the system (6) (Plahte & Kjøglum 2005), we can
capture the salient features of the nonlinear dynamics in a
switching domain Ds, and determine how the trajectories
cross it to move towards other domains. In outline, (i) Eq.
(6) related to the xs variables are rewritten into the form (1)
through a change of coordinate system, (ii) the boundary-
layer and outer solutions are calculated in the new coordi-
nates, and (iii) they are converted back into the usual frame
of reference.

Let Σ : Ω 7→ [0, 1]n be the coordinate transformation that
converts the xs coordinates into the Zs ones. As under our
assumptions, ∂Zs

∂xs
= 1

q
ds(Zs, xs), where ds is a continuous

and limited function, we can write the full system:

qŻs =ds(Zs, xs)(fs(ZR,ZS) − γsxs)

ẋr =fr(ZR,ZS) − γrxr

(11)

where ZS,ZR are the vectors of switching and regular vari-
ables Zs and Zr, respectively. For q → 0, Eq. (11) are
of the form (1), and then we study the fast dynamics in the
boundary-layer in the scaled time variable τ = t

q
:

Z ′

s = ds(Zs, θs)(fs(ZR,ZS) − γsθs)

x′

r = 0.
(12)

The solution of the system (12) associated with appropriate
initial conditions gives us the boundary-layer solution. As
ZR is constant in any Ds ∈ ∆s, we focus on the switching
variables Zs only, and calculate the slow-manifold of the
system (12) that is the set of solutions, for all s, of the sta-
tionary equations Z ′

s = 0. We call exit point set (EP) the set
of stable solutions satisfying the conditions of the Tikhonov-
Levinson theorem, and we call Z-cube Z(Ds) = [0, 1]σ(Ds)

the frame of reference where we search for an exit point.
Then, under the hypothesis that at least one exit point Z̃S

exists, the reduced equations are obtained by substituting it
in the motion equations of regular variables:

ẋr = fr(Z̃S,ZR) − γrxr . (13)
The problem (13) is linear, and then, given the initial condi-
tions, the outer solution, that determines how the trajectories
move along the xr directions, is easily calculated.
Remark 1. The location of each exit point is crucial in our
analysis as it indicates the next adjacent domains the trajec-
tories are moving towards along the xs directions.

Let A(Ds) be the set of domains adjacent to Ds, and
Ds = Ds ∪ A(Ds). In the limit q → 0, we define a
map ΣDs : Ds 7→ Z(Ds) such that the interior of Z(Ds),
int(Z(Ds)), and its boundary are the images of Ds, and
A(Ds), respectively. More precisely, the domains Dk ∈
A(Ds) are mapped into the faces of Z(Ds) when Dk ∈ ∆s

or into its vertices, otherwise. If an exit point exists in the
interior of Z(Ds), and the associated reduced system has a
critical point inside Ds then it exists a stable point in Ds,
also called Singular Stable Point (SSP).

As an example let us consider the boundary-layer system
in D12:

Z ′

11 =
Z11(1 − Z11)

θ11
(κ11(1 − Z11) − γ1θ11)

x′

2 = 0

(14)

Its candidate exit point set EP = {0, 1, 1 − γ1θ11

κ11
} includes

the vertices, and a point in the interior of Z(D12), being
Z(D12) the segment [0, 1], whose endpoints 0, 1, and its
interior are the images of D11, D13, and D12, respectively.
Then, D11 and D13 are possible next traversed domains and
D12 may contain a stable point.

D - Search for exit points. Let us observe that stationary
points always exist on the vertices of Z(Ds). Then, for a
vertex to be an exit point it should fulfill the stability condi-
tion. The computational cost of the search for all the other
exit points could be quite heavy, but it can be considerably
reduced by checking first a necessary condition for the exis-
tence of a stationary point on the other elements of Z(Ds).
Let F be a face or the interior of Z(Ds). In (Veflingstad &
Plahte 2007), it has been proved that necessary condition for
the existence of a stationary point in F is that the Jacobian
matrix JF = (∂fi

∂Zj
) restricted to the switching variables in

F has a complete loop. This holds if and only if there is a
non-zero loop involving all variables in JF , and it can be
checked by using concepts from graph theory.

Let be F̃ any elements of Z(Ds), face, vertex, or interior,
where a stationary point Z̃ is located, and LF̃ = {l : l ∈

{1, . . . , σ(Ds)}, Z̃l ∈ {0, 1}}. Z̃ is an exit point if: (i) it
is stable, and (ii), if F̃ is on the boundary of Z(Ds), Zl, ∀l ∈
LF̃ has to head towards F̃ . The stability of a candidate exit
point Z̃ is checked by analyzing the spectrum of the Jacobian
matrix, and the condition (ii) is verified when the sign of
Z ′

l(Z̃), given by fl(Z̃), ∀l ∈ LF̃ , is coherent with the value
of Z̃l, namely fl(Z̃) > 0 and Z̃l = 1 or fl(Z̃) < 0 and
Z̃l = 0.
Remark 2. Let us remind that singular perturbation analysis
works out in the limit q → 0, but the calculated solution
approximates the solution of Eq. (11) for sufficiently small
q (0 < q � 1). Moreover, it can be proved that the Jacobian
matrix is stable for 0 < q � 1. This means that the exit
points calculated in the limit also hold for sufficiently small
q (Ironi, Panzeri, & Simoncini).
Remark 3. Let us observe that, under Assumption A, the
reduced equations are always independent of the Zs occur-
ring in the boundary-layer equations, and that the two sets of
equations are mutually independent. For this reason, the be-
havior of the switching variables in a Z-cube is completely
independent of the values of regular variables. Then, the
study of the motion in a switching domain may be performed
by first analyzing the switching variables, and then the reg-
ular ones.

A qualitative simulation algorithm
Among the generic qualitative approaches proposed in the
literature, QSIM results to be both the most suitable formal-
ism and algorithm to model and simulate models qualita-
tively abstracted from ODEs (Kuipers 1994). For this rea-
son, the description of the specialized qualitative algorithm
we are developing will be mostly given in accordance with
the QSIM jargon.
Qualitative value. The qualitative value of each state vari-
able xi with domain Ωi = [0, xi] is described in terms of
its quantity space. In our context, the quantity space of xi

is defined by the ordered set Θi of its ni threshold symbolic
values. The set Θi also contains the endpoints of the do-
main of xi, namely 0, and xi. The partition, induced by
the state variable quantity-spaces, of the whole system do-
main Ω identifies qualitatively distinct hyper-rectangles D
that define all possible system qualitative values.
Qualitative state. Let A(D) be the set of domains adjacent
to D ∈ ∆. The qualitative state of D, QS(D), is defined
by all of its adjacent domains Dk towards which a transition
from it is possible:

QS(D) = {Dk | Dk ∈ A(D), D → Dk}

Each transition from D identifies a domain next traversed
by a system trajectory. More precisely, if we number by i
the domain D traversed at time ti, each Dk ∈ QS(D) will
be traversed by different trajectories at time ti+1.
State transition. Qualitative simulation of network dynamics
is achieved by iteratively applying local transition strategies

from one domain to its adjacent domains. The possible tran-
sitions from any D are determined by different strategies
according to whether D ∈ ∆r or D ∈ ∆s.

In the case D ∈ ∆r, like in traditional QR methods and
in GNA (de Jong et al. 2004), transitions are determined
by the signs of ẋi. As ẋi are defined by linear expressions,
such signs are easily and uniquely determined by exploiting
the inequalities that define the parameter space domain, and
constrain the RSPs to belong to specific domains.

In the case D ∈ ∆s, a sign-based strategy is not practi-
cable as the expressions for ẋi are nonlinear. A convenient
way to proceed is given by singular perturbation analysis:
transitions from D towards adjacent Dk are determined by
the locations of the exit points in the associated Z(D) that
can be either on (i) the boundary of Z(D) or in (ii) its inte-
rior. Except in the case (ii), the number of exit points may
be greater than one, and especially in a qualitative context
where knowledge incompleteness on the parameter values
is expressed by coarse constraints. Then, in general, the
successors of D are not uniquely determined. But, through
symbolic computation procedures, it is possible to calculate
the set of inequalities, I i

j , on parameters that hold when a
transition from Di to Dj occurs. Then, each path from Di

to Dj is clearly identified by the 3-tuple 〈Di, Dj , I
i
j〉.

Qualitative behavior. A finite sequence of paths, where each
path is clearly both linked and consistent with its predeces-
sor and successor, defines a qualitative behavior:

QB = 〈D0, I0〉, 〈D0, D1, I
0
1 〉, . . . 〈Dk, Di, I

k

i 〉, . . . 〈DF , IF 〉,
where D0 is the initial domain, and DF either contains a
stable fixed point or identifies a cycle, i.e it is an already
visited domain. I0 is the initial set of inequalities that defines
the parameter space domain, and IF the set of inequalities
on parameter values associated with DF .
Qualitative simulation. Starting from an initial domain D0

and a set, I0, of symbolic inequalities on parameter val-
ues, qualitative simulation generates all possible state tran-
sitions, and represents them by a directed tree rooted in D0,
BT(D0), where the vertices correspond to Di, and the arcs,
labeled by the inequalities I i

j , to the transitions from Di to
Dj . Each branch in BT(D0) defines a qualitative trajectory
from D0, that occurs when the values of parameters satisfy
its related inequalities. Then, although, from a strictly com-
putational point of view, the tree representation is a little bit
less convenient than the graph one, it is much preferable as
it enables an easier, more direct, and less ambiguous inter-
pretability of the simulation outcomes.

Given as input, (i) n symbolic state equations of the form
(6); (ii) n quantity spaces Θi = {θij} of the state variable
xi; (iii) D0 ∈ ∆; (iv) a set of symbolic inequalities I0 on
parameters defining a parameter space domain PSD0, the
algorithm provides as output BT(D0). Its main steps are
outlined in the following:

1. Calculate the qualitative state QS(Di) of the current do-
main Di, or equivalently the possible transitions from Di.

2. Determine constraints I i
k on parameters for each path

ek = Di → Dk, where Dk ∈ QS(Di).
3. Append 〈Di, Dk, I i

k〉 to BT(D0) if I i
k are consistent with

the initial constraints I0, and mark Di as visited domain.

4. Repeat from step 1 for each not visited Dk.

Step 1 is the core of the overall algorithm, and it requires
two separate algorithms to implement the different strate-
gies adopted according to whether Di ∈ ∆r or Di ∈ ∆s.
Both algorithms calculate the conditions on parameters I i

k

that should hold for a possible transition from Di to Dk. A
transition from Di to Dk actually occurs, and then Dk ∈
QS(Di), only if the set I i

k is consistent with the set I0. Let
us define I i

k consistent with I0 when it defines a not empty
parameter space domain PSDi

k such that PSDi
k ⊆ PSD0.

Furthermore, as both the algorithms involve the calcula-
tion of the relative positions of two regions we define the
relative position of D1 with respect to D2, indicated by
V (D1, D2) = {vj}n

j=1 where vj ∈ {−1, 0, 1}, by the com-
parison of the intervals defining D1 and D2, where D1 and
D2 ∈ ∆.

Transition from a regular domain

The algorithm in charge of the construction of the possi-
ble paths from regular domains is, in principle, similar to
that one proposed by GNA, but it is more informative as
it calculates the I i

ks. As δ(q) → 0 for q → 0, for the
sake of simplicity, we indicate Di ∈ ∆r by the product
Di =

∏n
j=1(θji, θj(i+1)) where (θji, θj(i+1)) denotes the

interval of xj in Di. In outline, the algorithm performs the
following steps:

1- Calculate A(Di) and state equations in Di. The algorithm
calculates the set A(Di), the symbolic state equations in Di

(9), and its focal point x∗. As an example, let us consider
the domain D11: A(D11) = {D6, D7, D12, D16, D17},
the state equations (10) have a stationary solution x∗ =
(κ11

γ1

, κ21

γ2

).

2- Calculate I i
k and possible transitions. ∀Dk ∈ A(Di), the

algorithm calculates the set of inequalities on parameters I i
k

that need to be fulfilled to have a transition from Di to Dk.
As in Di all the equations (9) are linear, and all the trajecto-
ries head towards a focal point x∗ in a regular domain, such
inequalities are calculated by imposing that the signs of state
variable rates match the relative position of Dk with respect
to Di. Let V (Dk, Di) = {vj}n

j=1 be the relative position
of Dk with respect to Di. I i

k, initialized to I0, is updated,
∀j ∈ {1, . . . , n}, with either the inequality (

µj

γj
> θj(i+1))

if vj = 1 or (
µj

γj
< θji) if vj = −1. Thus, if the calculated

inequality set defines a not empty parameter space domain
PSDi

k ⊆ PSD0 then a transition towards Dk is possible
and the qualitative state QS(Di) is updated accordingly. As
an example, let us define I0 as follows:

I0 : (
κ11 + κ12

γ1
> θ11) ∧ (θ21 <

κ21

γ2
< θ22) (15)

Then, transitions from D11 in Fig. 1 are possible under the

following conditions on parameters:

I11
6 : ẋ2 < 0 ⇒ (κ21

γ2
< θ21) to go to D6

I11
12 : ẋ1 > 0 ⇒ (κ11

γ1

> θ11) to go to D12

I11
7 : ẋ1 > 0, ẋ2 < 0 ⇒ I11

6 ∧ I11
12 to go to D7

I11
16 : ẋ2 > 0 ⇒ (κ21

γ2
> θ22) to go to D16

I11
17 : ẋ1 > 0, ẋ2 > 0 ⇒ I11

12 ∧ I11
16 to go to D17

Among the inequalities given above, only I11
12 is not in

disagreement with I0. Thus, a possible transition from D11

towards D12 occurs when I11
12 ∧ I0 holds. In other words,

QS(D11) = {D12}.
3- Check the existence of a RSP in Di. A stable point
RSP exists in Di, i.e. Di ∈ QS(Di), if P̃ SD ⊆ PSD0

and P̃ SD 6= ∅, where P̃ SD is a parameter space domain
defined by the set of inequalities (θji <

µj

γj
< θj(i+1))

∀j ∈ {1, . . . , n}.

Transition from a switching domain
Let Di ∈ ∆s be defined by the σ(Di) switching variables
xs with their values around θs and by the n−σ(Di) regular
ones, xr. In a switching domain, the nonlinear dynamics is
characterized by fast and slow motions, respectively associ-
ated with xs and xr that are independently calculated. Let
us reindex the variables xj , Zj such that the switching vari-
ables come first, and proceed first with the construction of
the fast motion.

A - Fast motion. The study of the fast dynamics is per-
formed in Z(Di) in the scaled time, and aims at localizing
the set of exit points in Z(Di) rather than at detailing the
dynamics within it. Such points clearly identify the next ad-
jacent domains the trajectories are moving towards from Di

along the xs directions. To this end, the algorithm proceeds
as follows:
1- Calculate the boundary-layer equations in Di. The algo-
rithm symbolically calculates the boundary-layer equations
(12) in the Z variables, and defines the mapping ΣDi : Di →
Z(Di) that states a correspondence between Di and its ad-
jacent domains Dk with the interior and the elements on the
boundary of Z(Di). Let F be the set of both the faces and
the interior of Z(Di): its generic element F = ΣDi(D),
D ∈ ∆s is either a face of Z(Di) when D ∈ A(Di) or its
interior when D = Di.

To exemplify, let us consider the switching domain D7,
which is characterized by fast motion only as both variables
are switching in it. In D7 the boundary-layer system is given
by:

Z
′

11 =
Z11(1 − Z11)

θ11

(κ11(1 − Z11) + κ12(1 − Z21) − γ1θ11)

Z
′

21 =
Z21(1 − Z21)

θ21

(κ21 − γ2θ21)

(16)

The set F has five elements, the four faces Fk correspond-
ing to D2, D6, D8, D12, and the interior of Z(D7) that cor-
respond to D7. Moreover, the vertices of Z(D7) are the

6D D8

2D

12D

6F F8

2F

12F
1

Z

11

1

1311D D

D3D

0 1 Z

 7
D

21

Figure 2: Correspondence between the domains in the
phase-plane and the elements of Z(D7). The candidate exit-
points are denoted by an empty circle.

images, through the mapping Σ, of the adjacent regular do-
mains D1, D11, D3, and D13.
2- Search for stationary points. Let us denote by EP the
set of stationary points, initially made up of the vertices
of Z(Di). The set of the candidate exit points EP is up-
dated by the possible stationary points on each element of
F , that under the Assumption A contains at most one sta-
tionary point. To this end, the algorithm symbolically calcu-
lates, ∀F ∈ F , the Jacobian matrix JF , obtained by remov-
ing, ∀i ∈ LF , the i-th rows and columns from the Jacobian
matrix of the system, and by computing its elements on F .

The Jacobian matrices associated with the elements of F
in the example above are:

JF7
=

(

−κ11 −κ12

0 0

)

; JF2
= (−κ11);

JF6
= (0); JF8

= (0); JF12
= (−κ12)

As the presence of a non-zero loop is a necessary condi-
tion for the existence of a stationary point, the algorithm first
searches for a non-zero loop involving all variables in JF :
in case, it symbolically calculates the stationary point on F ,
and updates accordingly the set of candidate exit points EP .

In the example, only JF2
and JF12

have a non-zero loop.
Then, the algorithm looks for the stationary state on F2 and
F12: Z̃2 = (1 + κ12

κ11
− γ1θ11

κ11
, 0) and Z̃12 = (1 − γ1θ11

κ11
, 1).

Finally, the exit point candidate set is updated with the points
Z̃2 and Z̃12 (Fig. 2).
3- Calculate I i

k and possible transitions by checking stability
of stationary points. The inequality set I i

k , initialized to I0, is
calculated for each candidate exit point Z̃k = {Z̃k

s } ∈ EP
by requiring that each point fulfills stability conditions. In
addition, for those Z̃k located on elements of F , I i

k is fur-
ther constrained by the inequalities on parameters that im-
pose 0 < Z̃k

s < 1 for each Z̃k
s /∈ {0, 1}. The algorithm

checks the stability conditions (i) by analyzing the spectrum
of the Jacobian matrix JF , and (ii) by imposing conditions
on the sign of Z ′

l(Z̃
k), given by fl(Z̃k), ∀l ∈ LF . The latter

condition is easily checked as it is of the form (fl(Z̃k) > 0)

if Z̃l = 1 and (fl(Z̃) < 0) if Z̃l = 0, while the former one is

 7

11

12

D

D
D

11

Z

Z10

1

21

Figure 3: Z(D7) and the exit-points denoted by a filled cir-
cle. The empty circles denote unstable stationary points that
correspond to possible entrance points to the domain.

checked by using concepts from graph theory, and the usual
definition of stability based on the sign of the eigenvalues
of JF . Due to Assumption A, JF has just one element per
row and per column. Then, reordering the variables leads to
a matrix JF block-structured, where each block is a permu-
tation matrix associated with a sub-loop. It follows that the
characteristic equation |JF − λI | = 0 is:

m
∏

i=1

(λl(i) + Li) = 0 (17)

where the roots of the equation above, λi, are the eigenval-
ues, m is the number of sub–loops of JF , li is the i–th sub–
loop, l(i) is the length of li and Li is the loop product of li.
As stability is guaranteed when the eigenvalues of JF have
not positive real part, we exclude the case l(i) > 2. Then,
Z̃ is stable if: (i) JF has no blocks with dimension strictly
greater than 2; (ii) in blocks with l(i) = 1, Li = bi < 0; (iii)
in blocks with l(i) = 2, the product of the non-zero elements
is negative.

The stable points located on Z(Di) clearly identify the
set of all possible exit domains, i.e. those domains towards
which a transition from Di is possible. Such domains are
easily calculated by the algorithm by applying the map Σ−1

to each element of Z(Di) that contains an exit point. Let us
observe that the remaining unstable stationary points in EP
are possible entrance points to Di.

Going back to the example, both exit points Z̃2 and Z̃12

fulfill the stability condition (i) as −κ11 < 0 and −κ12 < 0.
The condition (ii) on variable Zl, l = 2 requires that :

Is,2 : f2(Z̃
2) < 0 ⇒ κ21 − γ2θ21 < 0 (18)

Is,12 : f2(Z̃
12) > 0 ⇒ κ21 − γ2θ21 > 0 (19)

The inequality Is,12 defined by (19) is compatible with (15),
but the inequality Is,2 is not. Then, Z̃2 is removed from
the exit point set. To be an exit point Z̃12 must satisfy the
condition:

I(0,1),12 : 0 < Z̃12
1 < 1 ⇒ (κ11 > γ1θ11)

Finally, Z̃12 is an exit point if I7
12, defined by I0 ∧ Is,12 ∧

I(0,1),12, holds.
As for vertices in the example, the stability condition is

fulfilled in the point Z̃11 = (0, 1) that corresponds to the
vertex defined as image of D11 by the map Σ.

D1

D7

I
1

7

D12

I
7

12

D11

I
12

11

QB2

D12

I
7

12

QB3

D11

I
7

11

QB1

D2

I
1

2

D3

I
2

3

D4

I
3

4

D5

I
4

5

QB9

D8

I
3

8

D7

I
8

7

D12

I
7

12

QB8

D12

I
7

12

D11

I
12

11

QB7

D11

I
7

11

QB6

D13

I
8

13

D12

I
13

12

D11

I
12

11

QB5

D12

I
13

12

QB4

D9

I
3

9

D5

I
9

5

QB10

D13

I
9

13

D12

I
13

12

QB11

D12

I
13

12

D11

I
12

11

QB12

D7

I
2

7

D12

I
7

12

QB15

D12

I
7

12

D11

I
12

11

QB14

D11

I
7

11

QB13

D6

I
1

6

D11

I
6

11

QB16

I
7

12
, I12, I

2

3
I0 ∧ (

κ2

γ1

> θ11)

I11, I
7

11
, I

12

11
, I

2

7
I0 ∧ (

κ2

γ1

< θ11)

I
4

5
, I

9

5
, I

3

9
, I

3

4
I0 ∧ (

κ2

γ1

> θ12)

I5 I0 ∧ (θ12 <
κ2

γ1

< x1)

1

Figure 4: Behavior tree rooted in D1.

Finally, the only exit domains are D12, D11, and then
QS(D7) = {D12, D11} (Fig. 3).

B - Slow motion. The slow dynamics of regular variables
xr is studied in the normal time in the usual frame of ref-
erence, and it is reconstructed from the reduced system
through the same symbolic procedure given for regular do-
mains.

Locating SSPs in Di. Let us consider the general case
when the domain model is characterized by both switching
and regular variables. The motion towards a SSP, that occurs
in a sliding mode along a stable point in the slow-manifold
of the boundary-layer system, is described, in the normal
time, by the reduced system. A stable stationary point ex-
ists in Di, i.e. Di ∈ QS(Di), if a stable point exists in the
interior of Z(Di), and the regular variable rates are zero in
a point inside Di. The set Ir,i of inequalities that checks
the latter condition are defined by θji <

µj

γj
< θj(i+1)

∀j ∈ {σ(Di) + 1, . . . , n}. Let us observe that, due to As-
sumption A, any Z(Di) can at most contain one internal sta-
ble point. This occurs if all variables in Z(Di) are involved
in a loop.

As an example, let us consider again the domain D12,
and check if it contains one SSP. In D12 the boundary-
layer system is given by Eq. (14), and the stationary state
Z̃12 = 1 − γ1θ11

κ11

in the interior of Z(D12) fulfills the sta-
bility conditions when it holds I0 ∧ I(0,1),12, being I(0,1),12

the inequality set that constrains it to belong to the interval
(0,1).

Finally, the stability condition Ir,12 : (θ21 < κ21

γ2

< θ22)

on the regular variable x2 is provided by the reduced equa-
tion: ẋ2 = κ21 − γ2x2. Thus, a SSP exists in D12 when pa-
rameter values satisfy the set of inequalities I0 ∧ I(0,1),12 ∧
Ir,12.

Results
The algorithm is currently under implementation. To illus-
trate the type of output, let us consider the results of a sim-
ulation of the ODE model (8) starting from D1 with the pa-
rameter space defined by the inequalities I0. The algorithm

builds the behavior tree showed in Fig. 4, and calculates
the inequalities on parameters, listed in Fig. 5(b), that are
associated with each path in BT(D1). As n = 2, a represen-
tation in the phase plane of the trajectories described by the
tree, possibly filtered as explained below, is also given (Fig.
5(a)). Three reachable stable states, located in D11, D12 and
D5, are identified by the final leaf of each branch in BT.
As D12 ∈ ∆s, one of them is a SSP whereas the others are
RSPs. These stable states are reached by different predicted
qualitative behaviors, each of them occurring under specific
constraints on parameters. For example, the trajectory QB16
starting from D1, crossing D6, and reaching a RSP in D11

is allowed when the inequalities I1
6 , I6

11 and I11, consistent
with I0, hold.

The qualitative simulation outcomes are numerically con-
firmed. In Fig. 6 we report some of the numerical simula-
tions performed under different conditions. Fig. 6(a) shows
trajectories, abstracted by QB4 and QB11, and character-
ized by a sliding motion along θ11 towards the SSP in D12.
The trajectories moving towards the RSP in D5 (Fig. 6(b))
are abstracted by QB9, and those moving towards the RSP
in D11 (Fig. 6(c)) are abstracted by QB1 and QB16.
Soundness. The algorithm guarantees that the behavior tree
captures all of the sound behaviors for values of q suffi-
ciently small. The determination of a symbolic upper bound,
q, depending on parameters would better characterize the
terms of validity of the generated behaviors. However, for a
formal proof of soundness we need to prove that assuming
stability instead of asymptotic stability does not affect the
main results in singular perturbation analysis. Both prob-
lems are currently under study, and close to be solved.
Completeness. At present, the algorithm may generate spu-
rious behaviors. There is a twofold explanation for that.
First, we have not yet performed a thorough analysis with re-
spect to entrance-exit transition, or in other words, we have
not yet solved (i) the problem of identifying the only admis-
sible connections between entrance and exit points. More-
over, singular perturbation analysis is a “local” procedure
that works quite well in a quantitative context but that needs,
in a qualitative context, to be supported by a “global” crite-
rion when local paths are combined to produce a specific
trajectory. For example, the behavior QB2 is spurious as

(a) (b) (c)

Figure 6: Phase space plots of the numerical simulations performed with different parameter sets and initial conditions taken on
an uniform grid of points in D1. Common parameter values are: θ11 = θ21 = 1, θ12 = θ22 = 2, q = 0.01, κ21 = 1.5, γ2 = 1.
Other parameters are: (a) κ11 = 2.5, κ12 = 2.5, γ1 = 1; (b) κ11 = 25, κ12 = 2.5, γ1 = 10; (c) κ11 = 0.7, κ12 = 0.7, γ1 = 1.

θ21

θ11

θ22

θ12
0 x1

x2

D1 D2 D3 D4

D5

D6 D7 D8 D9

D11

D13

I
7

12

I
13

12

D12

D10

D14 D15

D16 D17 D18 D19 D20

D21 D22 D23 D24 D25

I
1

2

I
1

6 I
1

7

I
2

3

I
2

7
I
3

8 I
3

9

I
3

4
I
4

5

I
6

11
I
7

11

I
8

7

I
8

13
I
9

13

I
9

5

I
12

11

I
13

12

2

(a)

(b)

Figure 5: (a) Phase space representation of trajectories de-
scribed by BT after filtering; • denotes a stable state. (b)
Inequalities calculated by the algorithm.

I7
12 is not consistent with I12

11 . Similarly, QB7 and QB14
are spurious. We are quite confident that the automatic anal-
ysis of the consistency of the whole sequence of inequalities
that characterizes a behavior together with the solution of
problem (i) will allow us to filter out all spurious solutions,
and to prove the completeness of the algorithm.

Conclusion and future work
The qualitative simulation algorithm we propose works for
models of GRNs with continuous sigmoid response func-
tions. The continuity assumption makes the simulation
problem hard to be tackled but it is crucial in view of the
realization of tools that can be gradually extended to tackle
more and more realistic models. The algorithm is grounded
on a set of symbolic computation algorithms that carry out
the integration of qualitative reasoning techniques with sin-
gular analysis perturbation methods: the former techniques
allow us to cope with uncertain and incomplete knowledge
whereas the latter ones lay the mathematical groundwork for
a sound and complete algorithm capable to deal with regu-
lation processes that occur at different time-scales.

As for symbolic calculus, the algorithm requires to tackle
complex tasks, such as: (i) update an inequality set with an
another one; (ii) check the consistency of two sets of in-
equalities I1 and I2; (iii) solve systems of equations; (iv)
find cycles in the Jacobian matrix. As for (iii), the original
equations are multilinear in Zs, but due to Assumption A
they assume a linear form in the boundary layer, and then
they can be straightforward solved and analyzed for stabil-
ity. Also the solution of problems (i) and (ii) benefits from
Assumption A as the inequalities are always linear. Then,
thanks to the Assumption A, and to algorithms proposed
both by the literature and common symbolic computation
package, such as Mathematica (Wolfram 2003), the tasks
(i)-(iii) are simplified and feasible. As for the task (iv), it is
performed by using cycle–detection algorithms and tools of
matrix graph theory (Gross & Yellen 2006).

The characterization of the paths from one domain to the
next ones by sets of inequalities constraining the model pa-
rameters is quite new in the field of qualitative simulation,
as for both general-purpose and specifically tailored algo-
rithms. Such a strategy may reveal quite useful in the def-

inition of a “global criterion” that allows us to distinguish
sound behaviors from spurious ones by requiring that the
sets of inequalities that label the local paths in a specific tra-
jectory are consistent with each other. Both the definition of
such a criterion and its implementation are not a trivial task,
especially from a computational point of view. As for algo-
rithm completeness, another essential methodological and
computational issue to be deepened deals with the definition
of the transition map that states the proper connection of the
entrance points to the exit points associated with a switching
domain. Moreover, the complex nonlinearities of the mod-
els we are interested in require to design methodological and
computational methods to deal with possible aspects of the
model dynamics that we have ignored herein, such as limit
cycles.

Acknowledgement
The authors gratefully acknowledge Olivier Dordan, Erik
Plahte and Valeria Simoncini for the useful discussions on
the different methodological aspects and mathematical prob-
lems related to the work described in this paper.

References
Bacciotti, A. 2003. Some remarks on generalized solutions
of discontinuous differential equations. Int. Journal of Pure
and Applied Mathematics 10(3):257–266.
de Jong, H.; Gouzé, J. L.; Hernandez, C.; Page, M.; Sari,
T.; and Geiselmann, J. 2004. Qualitative simulations of
genetic regulatory networks using piecewise linear models.
Bulletin of Mathematical Biology 66(2):301–340.
de Jong, H. 2002. Modeling and simulation of genetic
regulatory systems: A literature review. Journal of Com-
putational Biology 9(1):67–103.
Dordan, O.; Ironi, L.; and Panzeri, L. Some critical re-
marks on GNA. in preparation.
Glass, L., and Kauffman, S. A. 1973. The logical analy-
sis of continuous, nonlinear biochemical control networks.
Journal of Theoretical Biology 39(1):103–129.
Glass, L. 1977. Global analysis of nonlinear chemical
kinetics. In Berne, B., ed., Statistical Mechanics, Part B:
Time Dependent Processes, 311–349. Plenum Press, New
York.
Gouzè, J. L., and Sari, T. 2003. A class of piecewise linear
differential equations arising in biological models. Dynam-
ical systems 17:299–316.
Gross, J., and Yellen, J. 2006. Graph Theory and its Ap-
plications. New York: Chapman & Hall/CRC Press.
Hasty, J.; McMillen, D.; Isaacs, F.; and Collins, J. 2001.
Computational studies of gene regulatory networks: In nu-
mero molecular biology. Journal of Computational Biology
2:268–279.
Holmes, M. 1995. Introduction to Perturbation Methods.
Berlin: Springer.
Ironi, L.; Panzeri, L.; and Simoncini, V. Matrix perturba-
tion analysis for qualitative simulation of the dynamics of
gene-regulatory networks. in preparation.

Kuipers, B. 1994. Qualitative Reasoning: Modeling and
Simulation with Incomplete Knowledge. Cambridge, MA:
MIT Press.
Plahte, E., and Kjøglum, S. 2005. Analysis and generic
properties of gene regulatory networks with graded re-
sponse functions. Physica D: Nonlinear Phenomena
201(1-2):150–176.
Plahte, E.; Mestl, T.; and Omholt, S. W. 1998. A method-
ological basis for description and analysis of systems with
complex switch-like interactions. Journal of Mathematical
Biology 36(4):321–348.
Veflingstad, S. R., and Plahte, E. 2007. Analysis of gene
regulatory network models with graded and binary tran-
scriptional responses. Biosystems 90:323–339.
Wolfram, S. 2003. The Mathematica Book. Wolfram Me-
dia.

Using Qualitative Reasoning in Building Ubiquitous Computing System

Hyeon-Kyeong Kim

Department of Information Science and Telecommunication, Hanshin University
411 Yangsan-dong, Osan-si, Gyeonggi-do, 447-791, Korea

hkim@hs.ac.kr

Abstract
A key problem in building ubiquitous computing system is
providing context aware and adaptive services to users by
cooperation among various computing objects. In this paper,
we show how an integration of qualitative reasoning and
multi-agent based architecture can be used to provide
context aware and adaptive services for operation of
physical system in ubiquitous computing environment.
Differential qualitative analysis is used to propose
appropriate services once an abnormal operation of a given
physical system is detected. Causal dependencies generated
from a qualitative model combined with primitive tasks are
traced to restore the given physical system to normal state.
This idea has been implemented and tested on several tasks
including the operations of incineration plant and pyrolysis
reactor.

Introduction
Recently, computing-device-rich and communication-
resource-rich environment has introduced a new computing
paradigm called ubiquitous computing. The goal of
ubiquitous computing is to provide seamless services to
users by cooperation between various computing objects.
A key factor in building ubiquitous computing system
(UCS) is intelligence that can provide self-configuring,
self-repairing and adaptive abilities (Roman et al, 2002;
Ranganathan, 2005). We believe that qualitative reasoning
(QR) will play an important role in providing the
intelligence in UCS. We expect that QR can provide a way
for breadth, robustness and natural user interaction. Since
QR has been developed to capture both everyday reasoning
and expert reasoning, it can provide a firm ground for
breadth of system. By robustness, we mean the ability to
solve a given problem even with partial knowledge. QR,
that solves problems by using qualitative knowledge,
already provides a good possibility (Klenk etal, 2005).
Lastly, natural interaction with user is an important feature
for UCS since it can enhance active user participations as
active computing objects in cooperation. Qualitative nature
of QR is expected to support this feature.

We are exploring how QR can support intelligent
services for a given task in ubiquitous computing

environment. Unlike previous work in task execution
framework in ubiquitous computing that workflow and
primitive tasks are predefined, our framework
accomplishes a given task by tracing causal dependencies
generated for the task (Ranganathan, 2005). We are
focusing on the operation of physical system. In this paper,
we show our work by describing a UCS for operation of
incineration plant (Kim & Kim, 2007).

Incineration Process Domain
Lately, incineration has drawn attention because of its
reduction efficiency of solid wastes and technical stability.
A lot of incineration plants have been installed in Korea
during the last two decades. However, incineration was
blamed to generate air pollutants such as dioxins. Basically
it consists of 1st incinerator, 2nd incinerator and flue gas
treatment train. Given solid waste and air, it finally
produces gases through combustion and thermal
destruction of incompletely combusted gas. Ideally if the
working condition is controlled, this process should not
produce air pollutants. But it is impossible in real world.
What we can do is to control parameters of system to avoid
undesired conditions as much as possible.

While many efforts have been made to develop
complete quantitative incineration process model,
complicated thermodynamic nature of the process has
made it difficult to build such a model. Although such a
model has been developed, there are still difficulties to get
complete and precise input data, i.e., complete data about
solid waste supplied. In addition to this, it is not easy for
non-expert to interpret numerical results.

Problem Solving with a Qualitative Model
A qualitative model provides a basis for problem

solving. The expert knowledge about incineration process
is often imprecise and of qualitative nature. Our qualitative
incineration process model captures the qualitative
knowledge of the experts. It is built based on qualitative

process theory (Forbus, 1984). Figure 1 shows a part of
causal dependencies generated from a qualitative
incineration model.

Figure 1: A part of causal dependencies of

incineration process

 We are focusing on the operation of physical system.
Our system concentrates on maintaining normal conditions.
Once an abnormal condition occurs, our system tries to
restore to a normal state. It implies that system tries to the
related quantity to change (e.g., to increase or to decrease)
to a normal state. Differential qualitative analysis (DQA) is
an inference technique that propagates the effects of a
perturbation through causal dependencies (Weld, 1988).
We use DQA backwards to find appropriate services for a
given task. Problem solver works backwards from the top-
level goal to sub-goals by tracing qualitative influences
through the causal dependencies. For example, as shown as
Figure1 a way to decrease the amount of dioxin is to
decrease dioxin synthesis rate. And one way to decrease
the rate is to decrease the temperature of dioxin precursor.
And the temperature is decreased by increasing cooling
rate. The cooling rate is increased by increasing the amount
of water supplied. The rate is also increased by decreasing
the temperature of water. Then the task to increase the
cooling rate is achieved by primitive tasks to control water
supplier device and water temperature control device,
respectively.

In the figure, underlined parameters represent primitive
tasks that are controlled by operating corresponding
devices. Services in our framework are primitive tasks
performed by devices. To achieve a task, reasoning agent
regress back to the primitive tasks through causal relations.

UCS for Operation of Physical System

Figure 2: Architecture

Figure 2 shows the overall architecture for our system.

In this section, we describe our system by using operation
of incineration plant. The system (IPC: Incineration
Process Control) consists of multiple agents that execute
tasks by cooperation among them. We assume devices and
sensors are connected to our framework. The following
describes each agent shortly.

Context Agent: Context agent monitors the chosen
plant. It collects data about quantities from the sensors
attached to the plant, detects deviations from expected
values of quantities: either a higher value than expected or
a lower value than expected. Once a deviation is detected,
this fact is reported to IPC. For example, if the
concentration of dioxin is higher than normal value, this is
reported to IPC.

Reasoning Agent: Reasoning agent finds solutions, i.e.,
proper services to change higher or lower value to
expected value. It tries to make the quantity with a higher
value decrease and to make the quantity with a lower
value increase. It figures out the necessary service by
applying DQA through causal dependencies generated
from qualitative model. Service consists of primitive tasks
operated by devices such as “increase water supply by
operating water supplier”.
 Device Agent: Once proper service is suggested by
reasoning agent, IPC requests to device agent for relevant
devices to perform primitive tasks as directed. Device
repository maintains a list of all entities such as
incineration plants and their devices. Devices are the
entities that can change the values of physical parameters
such as air supplier and thermostat.

User Agent: User agent provide user interface. The
explanation regarding the execution of the task is given to
users and users provide feedback through user agent.

Figure 3: Screenshot of user interface

Figure 3 shows screenshot of user interface in the
middle of execution of IPC. The top four windows show
the values of quantities monitored by corresponding
sensors. Since dioxin level is reported as higher than
expected in the figure, reasoning agent finds proper
services to lower the level. The window at the right
bottom displays explanation regarding the perturbation of
the quantity and the execution of the services performed by
device agent.

Our system has been implemented in Java. Qualitative
incineration model and reasoning agent have been
implemented by using Jess. Jess is a rule engine for the
Java platform. Agent communications has been
implemented with JADE. JADE is Java agent
Development Framework that supports developing multi-
agent system.

Discussion
This work shows our effort to combine QR with multi-
agent framework for building an intelligent UCS. We are
exploring how QR can provide context aware and adaptive
services in ubiquitous computing environment. We believe
that UCS is a good application domain where QR can show
its strengths. We plan to keep exploring the possibilities.

Acknowledgement
This research is supported by Foundation of ubiquitous
computing and networking project (UCN) Project, the
Ministry of Knowledge Economy(MKE) 21st Century

Frontier R&D Program in Korea and a result of subproject
UCN 08B3-S2-10M.

References
Forbus, K. 1984. Qualitative Process Theory. Artificial

Intelligence
Jess. http://herzberg.ca.sandia.gov/jess/
JADE. http://jade.tilab.com/
Klenk, M. et al. 2005. Solving Everyday Physical

Reasoning Problems by Analogy using Sketches. AAAI
Kim, H. and Kim, S. 2007. Multi-agent Based Incineration

Process Control System with Qualitative Model. 10th
Pacific Rim Int’l Workshop on Multi-Agents

Ranganathan, A.. 2005. A Task Execution Framework for
Autonomic Ubiquitous Computing. PhD thesis,
University of Illinois at Urbana-Champaign

Roman, M. et.al, 2002. Gaia: A middleware Infrastructure
to Enable Active Spaces. IEEE Pervasive Computing

Weld, D. 1988. Comparative Analysis. Artificial
Intelligence.

Learning Modeling Abstractions via Generalization

Matthew Klenk, Scott E. Friedman, Kenneth D. Forbus

Qualitative Reasoning Group, Northwestern University

21331 Sheridan Rd, Evanston, IL 60208 USA

{m-klenk, friedman, forbus}@northwestern.edu

Abstract

In domains with everyday scenarios, an important aspect of
model formulation concerns moving from broad
descriptions to the technical abstractions necessary for
effective problem-solving. We present a method for
learning how to make abstraction decisions from experience
via analogical generalization. Specifically, we generalize
abstraction decisions from worked examples, abstracting
away irrelevant information. When faced with a new
situation, our method compares the entities in the situation
with the generalizations, and makes its decision by using the
best match. We argue that the similarity score from the
comparison is an effective heuristic for judging the quality
of the modeling decision. Using textbook physics problems,
we show that our method can make accurate abstraction
decisions, and that these decisions improve as the system
gains experience.

Introduction

One of the important contributions of qualitative reasoning
has been formalizing the process of model formulation (cf.
Falkenhainer & Forbus 1991; Nayak 1994; Rickel & Porter
1994). Most model formulation work has focused on
ascertaining what levels of detail and which perspectives
should be used in a model, given a particular task. In
general, model formulation research has ignored the
problem of computing structural descriptions, i.e. moving
from the broad set of concepts used in everyday life to a
concise, technical vocabulary of abstractions that can be
used effectively for problem-solving. We use the term
participant abstraction to refer to the type of a participant
in a domain theory, and the term scenario entity to refer to
an entity within the everyday domain scenario. This work
addresses how decisions about participant abstractions can
be learned. Specifically, we use analogical techniques
from structure-mapping theory (Gentner 1983) to decide
how to represent everyday entities in a scenario model.
 The typical method for making these participant
abstraction decisions is as follows. Given a scenario and a
domain theory, one can use the type of each scenario entity
in an ontology to determine its appropriate participant
abstraction in the domain theory. For example, in the

ResearchCyc1 ontology, the collection Coin is a
specialization of the collection PartiallyTangible.
Consequently, we could write a rule stating that a
PartiallyTangible should be considered a PointMass in
a model. This rule-based approach is problematic for
several reasons. First, these rules would contain false
positives (e.g. a Lake, which is a PartiallyTangible,
should not be considered a point mass in most situations).
Second, participant abstraction decisions are very
contextual. While a coin falling off a building could be
considered a PointMass, the same coin spinning on a table,
in a rotational mechanics problem, should be a viewed as
an object with extent. Accounting for this necessary
contextual information greatly increases the complexity of
such rules. As noted by Falkenhainer and Forbus (1991),
modeling rules are very domain specific; that is, for each
new domain a knowledge engineer will have to construct a
new set of rules.
 We propose an alternative method that learns from
examples the necessary connections between everyday
scenario entities and participant abstractions to construct
scenario models. Our method uses psychological
simulations of analogical processing to learn these
participant abstraction decisions.

This paper uses physics problem solving to demonstrate
our method, but we believe it is applicable across a wide
range of domains. We begin by summarizing the
analogical processing components we use and our
representations of the physics domain. Next, we describe
how participant abstraction decisions can be learned from
examples, using generalization. We present experimental
results demonstrating the effectiveness of our method.
Finally, we close with a discussion of related work and
future work.

Background

Our approach to learning participant abstraction decisions
utilizes the SEQL generalization model (Kuehne et al.
2000). SEQL constructs generalizations incrementally via
analogical comparison using SME, the Structure-Mapping
Engine (Falkenhainer et al. 1989). For this work, the

1 http://research.cyc.com/ - a large scale effort to formalize

commonsense knowledge

generalizations are formed over example participant
abstraction decisions from physics problems. We begin
with an overview of the analogical processes utilized in our
method, and then we describe the participant abstractions
of our domain theory and physics representations.

Analogical Processes: SME and SEQL

We use Gentner’s (1983) structure-mapping theory, which
postulates that analogy and similarity are computed via
structural alignment between two representations (the base
and target) to find the maximal structurally consistent
match. For maximality, structure-mapping uses the
principle of systematicity: mappings that are highly
interconnected and contain deep chains of higher order
relations are preferred.
 SME simulates analogical matching. It takes as input
two structured representations (base and target). It
produces one or more mappings that describe how the two
representations can be aligned. A mapping includes
correspondences that link items (entities and relations) in
one representation with items of the other, a structural
evaluation score which reflects the quality of the entire
mapping, and a set of candidate inferences that are
conjectures about the target created by projecting partially
mapped base expressions.

SEQL simulates analogical generalization. It maintains
a list of generalizations and exemplars, which are
structured representations, called a generalization context.
It takes as input a sequence of new examples. Given a new
example, SME is used to compare it to the existing
generalizations. When the structural evaluation score is
above the assimilation threshold, the example is
assimilated into that generalization by keeping the
common overlapping structure. If the example is not
assimilated into an existing generalization, it is compared
against the exemplars. Again, if it is sufficiently similar to
another exemplar, a new generalization is created from the
common structure. Otherwise, the new example is added
to the list of exemplars.

Physics problem-solving and QP theory

de Kleer’s (1977) pioneering work emphasized the

importance of modeling in solving physics problems.

Given a domain theory and a physics problem, a problem-

solver must make a number of modeling decisions to arrive

at the correct solution. Consider a problem where a ball is

dropped off the top of a building. The ball should be

considered a point mass, and the falling event should be

considered a constant linear acceleration event. These are

examples of participant abstraction decisions and are the

focus of this paper. Solving this problem requires

additional modeling decisions, including assuming that the

event occurs on Earth. As noted in related work, analogy

may be useful for learning how to make these types of

decisions as well. In this paper, these other modeling

decisions are made via hand-coded rules, so we can focus

exclusively on participant abstraction decisions here.

Determining which abstraction to apply, given problem

scenarios whose entities can range over tens of thousands

of possible categories, is quite challenging.

Our physics domain theories consist of encapsulated

histories (Forbus 1984) that represent physics equations.

Encapsulated histories, unlike model fragments, permit

constraints to be placed on the duration of events and time

intervals. The encapsulated histories for our physics

domain theory include participant abstractions such as

PointMass and ConstantTranslationAccelerationEvent.

These abstractions are not used within the scenario

descriptions of physics problems; rather, the scenario

entities are encoded as real-world objects such as

Automobile and Driving. Moving from the real-world

entities to the technical language for problem-solving is

one kind of simplifying assumption (Falkenhainer &

Forbus 1991).

 Figure 1 shows the definition for the encapsulated

history representing the equation vf = vi + at, velocity as a

function of time. The two participants, theObject and

theEvent, must satisfy their type constraints, PointMass

and ConstantTranslationAccelerationEvent,

respectively. Furthermore, the conditions of the

encapsulated history must be satisfied in order to

instantiate it and conclude its consequences. In this

example, theObject must be the object moving in

theEvent for the encapsulated history to be instantiated.

The method we describe in this paper learns how

everyday entities in problems should be modeled in terms

of the abstractions used in the domain theory.

Representing Physics Problems and Examples

The representations used in this work are in CycL, the
predicate calculus language of the ResearchCyc knowledge
base (Matuszek et al. 2006). We use a subset of the
ResearchCyc KB, consisting of 33,000+ concepts, and

Figure 1: Encapsulated history definition

(def-encapsulated-history

 VelocityByTime-1DConstantAcceleration

 :participants

 ((theObject :type PointMass)

 (theEvent :type

 ConstantTranslationAccelerationEvent))

 :conditions

 ((primaryObjectMoving theEvent theObject))

 :consequences

 ((equationFor VelocityByTime

 (mathEquals

 (AtFn (Speed theObject) (EndFn theEvent))

 (PlusFn

 (AtFn (Speed theObject)

 (StartFn theEvent))

 (TimesFn

 (AtFn (Acceleration theObject) theEvent)

 (Time-Quantity theEvent)))))))

13,000+ relations, plus our own extensions for QP theory
(Forbus 1984) and problem-solving strategies.
Consequently, objects, relations, and events that appear in
physics problems such as “rotor,” “car,” and “driving” are
predefined in the ontology. This reduces the degree of
tailorability in our experiments.
 All the problems used in this work were taken from a
common physics textbook (Giancoli 1991). We represent
the problems and examples as cases, consisting of
predicate calculus facts. Consider the following physics
problem:

Suppose a ball is dropped from a 70m tower. How
far will it have fallen after 3 seconds?
Example problem 2-9, p. 30.

This problem is represented in our system as a case of

19 facts, a subset of which is shown in Figure 2. There are
five entities in the problem: the top of the tower, the tower,
the ball, the dropping event, and the 3-second interval.
The facts in Figure 2 pertain to the ball’s motion during the
dropping event, the description of the time interval, and the
query of the problem.

One common learning method physics students use is to
solve problem sets and compare their answers to worked
solutions. This technique motivates the feedback we
provide our system. Worked solutions are neither
deductive proofs nor problem-solving traces produced by
our solver. The worked solution for this example problem
consists of five steps:

1. Categorize the problem as a constant acceleration
linear mechanics problem

2. Assume that the acceleration of the ball (a = 10 m/s2)
3. Instantiate the distance by velocity time equation

(d = vit + .5at2)
4. Because the ball is stationary at the start of the drop

infer that its velocity is zero (vi = 0 m/s)
5. Solve the equation for d (d = 45 m)

The entire worked solution for this problem consists of

38 facts. The third step is most relevant to the goals of this
paper – the instantiation of the distance by the velocity

time equation. This step depends upon two abstraction
decisions, one for the ball and one for the dropping event,
as illustrated in Figure 3. Next we describe how we build
generalizations from these example decisions and apply the
learned knowledge to new problems.

Learning Participant Abstraction Decisions

The primary contribution of this work is our method for

learning how to make decisions about participant

abstractions for problem entities described in everyday

terms. Our method is best understood in two stages:

generalization and execution. First, we generalize

examples of participant abstraction decisions. Then, when

faced with a problem, our method uses analogies between

the entities in the problem and the generalizations to make

participant abstraction decisions. These decisions allow

our solver to instantiate the necessary encapsulated

histories to solve the problem.

Generalization of Participant Abstractions

We create generalizations at the granularity of the
participant abstraction. As such, we contextualize the
generalizations such that all examples of a given
participant abstraction are considered together. We
achieve this with generalization contexts. Each context has
an entry pattern that exemplars must satisfy to be
generalized within. The entry patterns used here reflect the
various participant abstractions. Figure 4 depicts the four
generalization contexts after generalizing decisions from
eight worked solutions.

Our system populates the generalization contexts with

exemplars generated from worked solutions. Exemplars

are created for each participant abstraction within the

worked solutions and generalized within the appropriate

contexts. For example, in the worked solution from Figure

3, there are two statements indicating participant

abstractions. The statement (abstractionForObject

Ball-2-10 PointMass) signals that an exemplar case

should be constructed, including all statements that

mention the entity Ball-2-10 in the problem plus the

abstractionForObject statement. Since the worked

solution contains a second participant abstraction, the

system generates a separate exemplar in the same manner

for the entity Drop-2-10. Next, these exemplars are added

to their appropriate generalization contexts as indicated by

Figure 4 and generalized via SEQL as described above.

Figure 3: Worked solutions indicate appropriate

participant abstractions for problem entities

(StepUses Gia-2-10-WS-Step-3

 (abstractionForObject Ball-2-10 PointMass))

(StepUses Gia-2-10-WS-Step-3

 (abstractionForObject Drop-2-10

 ConstantTranslationAccelerationEvent))

Figure 2: Part of example problem 2-9 representation

...

(objectStationary (StartFn Drop-2-10) Ball-2-10)

(primaryObjectMoving Drop-2-10 Ball-2-10)

(directionOfTranslation Fall-2-10 Down-Directly)

(objectTopSide Tower-2-10 Top-2-10)

(fromLocation Drop-2-10 Top-2-10)

(temporallyCooriginating Drop-2-10 Interval-2-10)

(valueOf (Time-Quantity Interval-2-10)

 (SecondsDuration 3))

(querySentence Gia-Query-2-10

 (valueOf

 (DistanceTravelled Ball-2-10 Interval-2-10)

 Distance-2-10))

Figure 4: Example generalization contextualization

This allows the system to maintain several contexts

simultaneously, each representing a participant abstraction

with its own lists of generalizations and ungeneralized

exemplars.

As new worked solutions are made available, our

method builds participant abstraction examples and adds

them to the appropriate generalization contexts. Therefore,

our method learns incrementally by refining and extending

its generalizations.

Making Participant Abstraction Decisions

Given a problem, a domain theory, and contextualized

generalizations of participant abstractions, our method uses

analogy to determine if and how entities in the problem

should be included in the model. In addition to making the

modeling decision, our method returns a confidence value

(0-1) as a heuristic for confidence in the decision.

The algorithm listed in Figure 5 is performed on every

entity in the problem. The process consists of three steps:

building a case around the entity, comparing it against the

best match from each generalization context, and deciding

which, if any, abstraction is appropriate for the entity.

 Our method begins by building an entity case from the

entity. As in building the worked solution exemplars, we

include all facts in the problem that mention the entity.

The system then compares this case to each generalization

context.

 From each generalization context, our method identifies

the generalization or exemplar with the highest structural

evaluation score via SME comparison with the entity case.

The systematicity principle implemented in SME means

that matches with deeper relational structures have higher

structural evaluation scores; therefore, the best mapping for

a generalization context is not necessarily the largest, but

the one with the most relational structure.

 The confidence value of the match is computed by

analyzing several aspects of the match. First, our method

analyzes the candidate inferences of the match between the

best match and the entity case. Because every case in the

generalization context has an abstractionForObject fact,

we search the mapping for a corresponding candidate

inference in the target (entity case) under consideration. If

there is no such candidate inference, the confidence for this

abstraction is zero. Otherwise, the confidence value is the

SME structural evaluation score normalized against a self-

match of the exemplar or generalization. Normalization is

necessary for comparing confidence values across

generalization contexts. Normalizing against the best

match means the maximum confidence score approaches

one as the entire exemplar or generalization, aside from the

abstractionForObject statement, participates in the

mapping.

 The confidence values are compared, and the system

identifies the generalization context that generated the

highest confidence value. The participant abstraction

represented by this generalization context is selected as the

abstraction for the entity. If the highest confidence value is

zero, the entity is not considered a participant in the model.

Evaluation

Our evaluation focuses on exploring the following
questions. First, is our method able to make accurate
participant abstraction decisions? Second, does our
method’s performance improve as examples are added to
the system? Finally, does the confidence value provide a

1) Given entity, e, from problem, P

a) Build entity case, ec, with each fact in P

mentioning e

2) For each Generalization Context gci

a) Compare ec with each exemplar and generalization

within gci

b) Use the best matching exemplar or generalization

as the base of an analogy with ec

c) If a candidate inference of this match includes a

fact of the form: (abstractionForObject e gci)

i) Return the normalized structural evaluation

score for this match as the confidence for this

generalization context

ii) Otherwise, return 0

3) Select as the participant abstraction for e from the

generalization with the highest confidence

a) If all generalization context score 0, do not make a

participant abstraction for e

Figure 5: Participant abstraction decision algorithm

useful heuristic in determining the accuracy of a participant
abstraction for a particular problem entity?

Method

Our materials include five linear kinematics problems and
five rotational kinematics problems. In these problems,
there are 34 entities, of which 21 should be modeled as one
of four different participant abstractions: PointMass,

LinearConstantAccelerationEvent, RigidObject,

RotationalConstant-AccelerationEvent. To evaluate
the effect of learning, we created four conditions based
upon the size of the training set (2, 4, 6, and 8). To ensure
that each generalization context has at least one exemplar,
each training set consists of an equal number of problems
from linear and rotational kinematics. Using the worked
solution for each training set problem, we added
participant abstraction exemplars to the appropriate
generalization contexts. The remaining problems were
used for testing. That is, for each entity in each problem
our method selected a participant abstraction based upon
the generalizations created by the training set. We
evaluated every possible combination of problems for the
training sets in each trial (size 2=25 trials, size 4=100
trials, size 6=100 trials, and size 8=25 trials).
 For each decision, we compare the result of our method
to the desired result, as indicated by the worked solutions.
There are five possible results:

1. Correct: The entity was a model participant and
identified correctly.

2. Correctly Ignored: The entity was not a model
participant and was not identified as one.

3. Extraneous: The entity was not a model participant,
and our method selected an abstraction.

4. Wrong: The entity was a model participant, but was
identified as the wrong abstraction.

5. Failed: The entity was a model participant, but was
not identified as any abstraction by our method.

 Correct and correctly ignored answers are considered
successful modeling decisions. Extraneous answers result
in more participants to consider when formulating the
model, but should not cause errors when solving the
problem. In the worst case, additional encapsulated
histories will be instantiated resulting in valid but
irrelevant equations for the problem-solver to consider.
Wrong and failed answers are errors, as they provide the
rest of the model formulation process with incorrect
information.

Results

As the number of trials varies by the size of the training set
and the number of entities per trial depends on the
problems in the test set, each condition has a different
number of total participant abstraction decisions.
Therefore, we report the frequency of each decision type as
a percentage of the total decisions made in Table 1.
 These results support our hypothesis that our method is
able to learn to make participant abstraction decisions.

With two worked solutions, the system made successful
inferences (correct + correctly ignored) 89% of the time,
extraneous inferences 6% and incorrect inferences (wrong
+ failed) 4% of the time. Furthermore, these results
support the learning hypothesis because the number of
incorrect decisions decreases down to 0.5% as the number
of worked solutions in the training set increases to eight.
 Figure 6 contains a graph of our method’s mean
confidence values for each of the inference categories.
Correctly ignored and failed decisions always have a
confidence value of 0; consequently, they are not shown.
The confidence values are a useful discriminator. The
correct answer values are significantly different from the
irrelevant and wrong answers (p < .001). Additionally, our
method’s confidence values for correct classifications is
significantly higher (p < .001) with eight worked solutions
than with two, supporting our learning hypothesis.

Discussion

These results indicate that our method is effective for

making participant abstraction modeling decisions. Our

method not only makes these decisions, but also returns a

confidence score, permitting additional reflection during

the model formulation process. Furthermore, our method

has a learning component, such that its decisions and

confidence estimates improve with experience. We can

explain these results by noting that SEQL generalizations

abstract away the aspects of the exemplars that are not

shared across scenarios. As such, this focuses the

participant abstraction decision on the appropriate

Table 1: Participant abstraction decision results

Training Set Size
(# of decisions)

2
(680)

4
(2040)

6
(1360)

8
(170)

Correct 72% 74% 75% 76%

Correctly Ignored 17% 16% 15% 14%

Extraneous 6% 7% 8% 8%

Wrong 4% 2% 1% .5%

Failed 0% 0% 0% 0%

Figure 6: Confidence by answer type and number of

examples

relational structure in the problem representation. The few

failure cases within our results are due to extraneous

relational structure within the generalization contexts

because the system has not seen enough examples.

 This behavior is more evident when we compare a

generalization and an exemplar from the experiment, both

of which are illustrated in Figure 7. This generalization

contains four facts and three generalized entities.

:genents are entities that have been abstracted by SEQL.

The generalization contains an entity that is an automobile,

which is the primary object moving in some event with a

known acceleration. On the other hand, the exemplar

contains seven concrete facts about a jet plane taking off,

some of which may complicate the modeling decision. For

example, the objectStationary fact provides distracting

relational structure that could align erroneously with facts

in the entity case and result in incorrect modeling

decisions. As generalizations are formed from additional

examples, however, our method is better able to extract

and preserve the relational structure important for making

modeling decisions.

Related Work

As noted previously, the majority of model formulation

work has focused on ascertaining the levels of detail and

perspectives that should be used in a model, given a

particular task (cf. Falkenhainer & Forbus 1991; Nayak

1994 Rickel & Porter 1994). A notable exception is Flores

and Cerda’s (2000) work in analog electronics, which

formalized a number of equivalent circuit configurations as

rewrite rules to simplify circuit schematics in a human-like

way. While these systems perform well in the domains in

which they were designed, the goal of this work is to learn

how to make modeling decisions in new domains based

upon examples. By focusing on learning, we believe our

approach will be applicable in a wide variety of domains.

 An alternative to these rule-based approaches is

analogical model formulation (Klenk et al. 2005; Klenk &

Forbus 2007). Motivated by the observation that engineers

frequently use analogies with their experiences in

formulating new models (Falkenhainer 1992), analogical

model formulation allows an agent to make a number of

modeling decisions about a situation, described in

everyday terms, based upon explanations of similar

situations. In this work, our method learns how to make

participant abstraction decisions via generalization. These

generalizations allow the learned knowledge to be applied

more generally than in analogical model formulation.

Conclusion & Future Work

This paper presents a method for learning participant

abstraction decisions from examples via generalization.

We present results from an evaluation in which participant

abstraction decisions were learned and applied in the

physics domain.

This represents a significant step towards building

systems that learn how to model situations from examples.

While our results demonstrate the utility of generalizing at

the granularity of the model participant decision, we plan

on extending this method to other modeling decisions. For

example, we plan to explore how generalization could be

used to learn situation-appropriate simplifying or operating

assumptions (e.g. ignoring friction, laminar flow, or elastic

collisions). We also plan to investigate generalization at

the level of physical processes or encapsulated histories,

perhaps accelerating the model formulation process with

experience.

The ability to leverage previously understood domains

when faced with new domains is an important frontier for

AI research. We plan to incorporate this method for

learning domain specific modeling decisions into our

Domain Transfer via Analogy (DTA) framework (Klenk &

Forbus 2007), which uses multiple cross domain analogies

to transfer domain theories between areas of physics.

Transferring the modeling knowledge encoded in these

generalizations is an important direction for transfer

learning research.

References

de Kleer, J. 1977. Multiple representations of knowledge
in a mechanics problem solver, pp.299–304. Proc. IJCAI-
77.

Figure 7: Generalization abstracts away unnecessary facts,

highlighting important relations

Generalization:

(Automobile :genent0)

(primaryObjectMoving :genent1 :genent0)

(valueOf

 (AtFn (Acceleration :genent0) :genent1)

 (MetersPerSecondPerSecond :genent2))

(abstractionForObject :genent0 PointMass)

Exemplar:

(PassengerAirplane Jet-2-19-P)

(TurbojetPropelledAircraft Jet-2-19-P)

(primaryObjectMoving TakeOff-2-19-P Jet-2-19-P)

(objectStationary

(StartFn TakeOff-2-19-P) Jet-2-19-P)

(valueOf (AtFn (Speed Jet-2-19-P)

 (EndFn TakeOff-2-19-P))

 (MetersPerSecond 80))

(querySentenceOfQuery Gia-Query-2-19-P

 (valueOf (AtFn (Acceleration Jet-2-19-P)

 TakeOff-2-19-P)

 Acceleration-2-19-P))

(abstractionForObject Jet-2-19-P PointMass)

Falkenhainer, B. 1992. Modeling without amnesia:
Making experience-sanctioned approximations.
Proceedings of QR02.

Falkenhainer, B. and Forbus, K. 1991. Compositional
modeling: finding the right model for the job. Artificial
Intelligence 51:95–143.

Falkenhainer, B., Forbus, K. and Gentner, D. 1989. The
Structure-Mapping Engine: Algorithm and examples.

Artficial Intelligence. 41.
Forbus, K. 1984. Qualitative process theory. Artificial

Intelligence
Flores, J. and Cerda, J. 2000. Efficient modeling of

linear circuits to perform qualitative reasoning tasks. AI
Communiations, 13(2) 125-134.

Gentner, D. 1983. Structure-mapping: A theoretical
framework for analogy. Cognitive Science.

Giancoli, D. 1991. Physics: Principles with
Applications. 3rd Edition. Prentice Hall.

Klenk, M. & Forbus, K. 2007. Learning domain theories
via analogical transfer. Proceedings of Qualitative
Reasoning Workshop. Aberystwyth, UK.

Klenk, M. & Forbus, K. 2007. Measuring the level of
transfer learning by an AP physics problem-solver.
Proceedings of Association for the Advancement of
Artificial Intelligence (AAAI-07). Vancouver, Canada.

Klenk, M., K. Forbus, E. Tomai, H. Kim, and B.
Kyckelhahn. 2005. Solving everyday physical reasoning
problems by analogy using sketches. Proceedings of the
American Association for Artificial Intellegence (AAAI-
05). Pittsburgh, PA.

Kuehne, S.E., Forbus, K.D., Gentner, D., & Quinn, B.
(2000). SEQL: Category learning as progressive
abstraction using structure mapping. Proceedings of
CogSci 2000, August.

Matuszek, C., J. Cabral, M. Witbrock, and J. DeOliveria.
An Introduction to the Syntax and Content of Cyc. 2006.
Proceedings of AAAI-06 Spring Symposium on
Formalizing and Compiling Background Knowledge and
Its Applications to Knowledge Representation and
Question Answering. Standford, CA.

Nayak, P. 1994. Causal approximations. Artificial
Intelligence 70:277–334.

Rickel, J. and Porter, B. 1994. Automated modeling for
answering prediction questions: selecting the time scale
and system boundary, pp. 1191–1198. Proc. AAAI-94.

Online Model-Based Diagnosis of Production Systems

Lukas Kuhn, Johan de Kleer
Palo Alto Research Center

3333 Coyote Hill Road, Palo Alto, CA 94304 USA
{lkuhn,dekleer}@parc.com

Abstract

This paper extends model-based diagnosis (MBD) (Reiter
1987; de Kleer & Williams 1987) to systems which convert,
move and process material. Examples of such systems are
printers, refineries and food processing plants. Such plants
present two challenges to model-based diagnosis: (1) the
plant may process 100s-1000s of items per minute so retain-
ing full details of behavior of all past objects is impracti-
cal, and (2) complex multi-way interactions can occur among
components operating on the same object. We address the first
challenge by synopsizing past behavior in a data structure of
fixed size. We address the second challenge by introducing
the notion of interaction fault which represents the situation
where a set of components operating on the same object dam-
age the object even though each component alone produces
no noticeable damage. Introducing interaction faults is much
simpler than introducing fine-grained models of component-
object interactions. We demonstrate the approach on a highly
redundant printer.

Introduction
Most existing approaches to model-based diagnosis presume
all information flow in a system as signals. They are good
for modeling systems that can be directly modeled as ODEs
such as in is characterized by system dynamics (Shearer,
Murphy, & Richardson 1971). However, most real world
systems transport and modify materials. For example, a re-
finery converts one kind of fuel into another with differ-
ent characteristics, a printer converts blank paper to paper
with marks on it, and a General Mills plant converts wheat
and cardboard into boxes containing donut-shaped objects
(Cheerios). Such systems need to reason about both the at-
tributes of the stuff (e.g., voltage, current, pressure) and their
properties (e.g., wrapped candy bar, unwrapped candy bar,
partially assembled automobile).

Plants present two challenges to model-based diagnosis:
(1) the plant processes 100s-1000s of items per minute so
retaining full details of behavior of all past objects is im-
practical, and (2) complex multi-way interactions can oc-
cur among components operating on the same object. This
paper outlines an integrated approach to both challenges.
First, we synopsize the results in a single fixed-size data

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

structure. Necessarily some information will be lost and we
rely on high throughput rates to “make up” for any infor-
mation so lost. Second, we do not explicitly model the de-
tails of component-object-component behavior, but instead
introduce a new generic fault category of an interaction fault
which specifies some misbehavior has occured, but omitting
details on exactly how.

We draw many of our examples from a prototype printer
illustrated in Figure 1 ((Fromherz, Bobrow, & de Kleer
2003) provides more background).

Figure 1: Model of PARC’s prototype highly redundant printer. It
consists of 4 printers (large rectangles). Sheets enters on the left
and exit on the right.

Refineries, printers, manufacturing lines all run continu-
ously. They are expensive to halt so minor problems are ig-
nored or compensated for by later manual processing. Un-
like simple qualitative envisionments of one signal propa-
gated through the system, we intend to address a continuous
movement with large number of objects being processed at
any moment. The closest analog to this type of qualitative
reasoning is the parts-of-stuff ontology of (Collins & Forbus
1987). Although more difficult to analyze, continous oper-
ation has the advantage that it is possible to gather a great
deal of observations quickly and cheaply.

The fact that objects are being processed by the system
introduces a whole new set of fault types. For example,
we will often see situations where component A operates
correctly stand-alone, and component B operates correctly
stand-alone, yet fail when they both operate on the same ob-
ject. Consider a food processing line for candy bars. There
are multiple components wrapping and boxing candy bars.
It may be that component A leaves a tiny rip which is of no
consequence for the consumer, but boxing component B has
a small protrusion such that the rip sometimes catches and

destroys the candy bar. We call such faults interaction faults:
A and B are perfectly operational individually but will not
work correctly if A and B both process the same candy bar.
The classical model-based diagnosis approach would be to
consider both components A and B as faulted, but that is not
useful for the technician. The line can be restored to full op-
eration by either removing the protrusion on B or repairing
A. There is no need to replace both A and B. Such faults oc-
cur in digital circuits as well: Gates A and B may not work
well together as both may be “late”. Replacing either A or B
with one having an average gate delay restores the circuit to
full functioning.

A technician reasons about a system at multiple levels of
abstraction. A technician will make the simplest assump-
tions possible to diagnose a system and only when those as-
sumptions yield a contradiction will he/she choose a more
detailed model. We adopt the meta-diagnosis abstraction
framework of (de Kleer 2007). In this approach, the meta-
assumptions (of the modeling approach itself) are treated as
assumptions in a model-based diagnosis engine. The system
always picks one particular diagnosis as the current abstrac-
tion level.

Example: Simplest Meta-Diagnosis Failing
For simplicity, we presume that if components are persis-
tent faulty they will always manifest bad behavior. This as-
sumption can also be a meta-assumption, but this makes the
examples too complicated.

The three initial meta-assumptions we make are: (1) the
system does not have multiple faults “M” (vs. single fault),
(2) the fault is not intermittent “I” (vs. persistent), (3) the
fault is not interactive “N.” This corresponds to the bottom
node of Figure 2(a).

For integrated

MIN

paper

Note all the other
lattices have too

MI MN INy

many arrows.

co
m

pl
ex

ity

M I N

c

ø

(a) M indicates multiple
faults; I indicates intermit-
tent faults; N indicates inter-
action faults

For integrated

MIN

paper

Note all the other
lattices have too

MI MN INy

many arrows.

co
m

pl
ex

ity

M I N

c

eliminated

ø

(b) After the minimal con-
flict ABa(I) ∨ABa(N).

Figure 2: Meta-Diagnosis lattice

Consider only the components A, B, C. Suppose we ob-
serve the following plans:

time plan observation conclusion
1 A,B fail ¬M exonerates C

2 B,C success ¬I exonerates B, C

3 A success ¬I exonerates A

A plan pi = [c1, c2, . . . , cn] is a sequence of components
involved in an execution. Plan 1 (A, B) fails, therefore if the
system does not contain a multiple fault, one of A or B must

be faulted and C cannot be faulted. Plan 2 (B, C) succeeds,
therefore given the system is not intermittent B and C must
be functioning correctly. Plan 3 (A) succeeds so A cannot be
faulted. At this point no single fault, non-intermittent, non-
interaction faults exist. This results in the meta-conflict:

ABa(M) ∨ABa(I) ∨ABa(N).

Analysis must consider retracting one of these three meta-
assumptions. Consider multiple faults. Plan 2 exonerates
B, C and plan 3 exonerates A with no dependence on the
single fault assumption. Therefore, the meta-conflict is:

ABa(I) ∨ABa(N).

Figure 2(b) illustrates the resulting meta-diagnosis lattice.
The system can contain either an intermittent fault or an

interaction fault. For example, component A can be intermit-
tently failing, producing a bad output at time 1 and a good
output at time 3. The system can also contain an interaction
fault. For example, the system can contain the interaction
fault [AB]. An interaction fault is one in which both compo-
nents might individually be working correctly, but produce
faulty behavior when combined. We use [...] to indicate the
interaction fault which occurs only when all of the compo-
nents operate on the same object. Plan 1 is the only plan in
which A and B co-occur, therefore the interaction fault ex-
plains all symptoms.

Meta-Inferences
As in conventional model-based diagnosis, a tentative diag-
nosis is represented by the set of failing components. When
a plan p succeeds the following inferences can be drawn:
• If there are no intermittent faults (¬ABa(I)), then every

component mentioned in the plan is exonerated.
• If there are interaction faults (ABa(N)), then every diag-

nosis containing a interaction fault which contains only
components from p is exonerated.
When a plan p fails the following inferences can be

drawn:
• Every diagnosis not containing a component in p is exon-

erated.
Initially, all subsets of components can be diagnoses. With

the introduction of interaction faults, any combination of
components can also be a fault. Therefore, if a system con-
sists of n components, there are O(22n

) possible diagnoses
(Eiter & Gottlob 1995).

Figure 3 shows a fraction of the diagnosis lattice for a sim-
ple system with components three components: {A, B,C}.
For simplicity we assume non-intermittent faults, but mul-
tiple and interaction faults are allowed. Consider the prior
example again. Plan 1 which used A, B produced a failure.
By the preceeding rules, C alone cannot explain the symp-
tom, neither can [AC], [BC] or [ABC]. The only minimum-
cardinality diagnoses are {A}, {B} and {[AB]}. The suc-
cessful plan 2 exonerates B and C. Therefore any diagnosis
which contains B or C is exonerated. In addition, any di-
agnosis containing the interaction fault [BC] is exonerated.
Finally, when Plan 3 is observed to succeed, A is exonerated.

2

ø

A B C [AB] [AC] [BC] [ABC]

1
1 1 1

1

2

AB AC BC A,[BC]

A

[AC][B,C]

22 2 2 2

3

Only minimal
cardinality
diagnosis

Figure 3: Fragment of diagnosis lattice for the simple 3 com-
ponent system A, B,C. Includes multiple and interaction
faults. The numbers indicate which plan eliminates that di-
agnosis.

The only minimum cardinality diagnosis which explains the
symptoms is the interaction fault [AB].

The very large size of this diagnosis lattice prompts a new
diagnostic algorithm more akin to what a technician would
use when diagnosing the system. It is also much more effi-
cient for on-line diagnosis.

Diagnostic Algorithm
In this section we present a new diagnostic algorithm which
differs from classical model-based diagnostic algorithms in
significant ways. The new diagnostic algorithm maintains
set of mutually exclusive sets: diagnostic foci, good com-
ponents, bad components and unknown components. Intu-
itively, each diagnostic focus represents a set within which
we are sure there is a fault. Technicians will typically ex-
plore one focus at a time. As the printer or manufacturing
line runs continuously there are far too many observations
to record in detail. Therefore, the current foci together with
the set of bad components and unknown components com-
bined with a fixed size buffer will represent the entire state of
knowledge of the faultedness of system components. Some
information from prior observations will be discarded. The
algorithm we describe may take more observations to pin-
point the true fault(s), but it will never miss faults.

Multiple Faults Case
In what follows we discuss an algorithm for diagnosing
multiple simultaneous faults. Our algorithm allows variable
amount of observation data (which can be obtained through-
out execution of plans) to be retained.
A system Sys is a tuple < C,P, Z > where:
• C is the set of all components.
• P is a list of plans. A plan pi = [c1, c2, . . . , cn] is a se-

quence of components involved in the plan.
• Z is a list of observations. A observation zi ∈ {f, s} is

associated with plan pi. We denote a plan failure as f and
a normal plan execution as s.

A state of knowledge SK is a tuple < g, b, x, DF > where:
• g ⊆ C is the set of good components.
• b ⊆ C is the set of bad components.
• x ⊆ C is the set of unknown components which are not

under suspicion.

• DF is the set of diagnosis foci. A diagnosis focus dfi ⊆ C
is a set of suspected components with at least one faulted
component in it.

Algorithm 1: Multiple (Interaction) Faults Algorithm with
Memory

foreach pj : P do
if !multipleFaults(pj,zj) then

memorize(pj, zj, memorysize);
else

evaluateMemorizedPlans();

Algorithm 1 executes Procedure 2 (or for the interac-
tion fault case Procedure 4) for each plan and observation
pair. The algorithm updates the entire state of knowledge
of the faultedness of system components. We focus on high
throughput systems (100s-1000s/min) and therefore the al-
gorithm we describe may take more observations to pinpoint
the true fault(s), but it will never miss faults. We include a
memory extension to mitigate the loss of diagnosis informa-
tion. There are two cases in which the evaluation of an ob-
servation could lead to information loss: (1) two intersecting
plans fail due to different faults or, (2) a failing plan inter-
sects two diagnosis foci. In the first case we might not know
at evaluation time if two intersecting plans fail because of
the same fault or two different faults and therefore we keep
the plan to later re-evaluate it. In the second case we can
not extract any information before we reduce the diagnostic
foci until the failing plan intersects only one diagnosis foci.
Note that this might not be possible. Failing plans of either
case can be helpful if they are re-evaluated later. Note that
we are able to configure the memory size to address memory
limitations.

Let Sys be a simple system with five components C =
{A, B, C,D, E}. Again we assume that we are able to ex-
ecute any combination of components as a plan. Suppose
component B and D are faulted.

In Table 1 we show for each time step t the entire state of
knowledge.

Again note that every component will be a member
of exactly one of the sets of the current SK. Con-
sider the sequence of plans illustrated by Table 1. Plan 1
(ABCDE) fails. Therefore we focus on the fact that one
of {A, B,C, D, E} is faulted. Plan 2 (ABC) fails. There-
fore, we narrow the focus to the fact that one of {A, B, C}
is faulted, and we don’t know anything about {D,E}. Plan 3
(ADE) fails. Therefore the focus narrows to A, while there
may be a fault in {B, C} (But the scope is still {A, B, C}).
Plan 4 (A) succeeds. Therefore, A is exonerated. At this
point we backtrack and move the focus to {B, C}. Plan
5 (ADE) fails. Therefore, given that A is exonerated, we
can introduce a new focus on the fact that one of {D,E} is
faulted. Plan 6 (AC) succeeds. Therefore, C is exonerated
and B is the only component left in focus 1. Therefore we
know B is faulted. We close focus 1. Plan 7 (ADC) fails.
Therefore, given that A, C are exonerated, D is faulted. We
close focus 2 and move the remaining components (here E)

3

Function multipleFaults(plan pj , obs zj)

if zj == f then
rpj = pj − g;
if rpj ∩ b = ∅ then

if |rpj | == 1 then
b = b ∪ rpj ;
foreach dfi : DF do

if dfi ∩ rpj 6= ∅ then
x = (x ∪ dfi)− b;
DF.remove(dfi);

else
if rpj ∩

⋃
k dfk = ∅ then

dfnew = rpj ;
x = x− rpj ;

else
foreach dfi : DF do

if rpj ∩ dfi 6= ∅ ∧ rpj 6= dfi then
if rpj − dfi ⊆ x then

if |rpj | < |dfi| then
x = (x ∪ dfi)− rpj ;
dfi = rpj ;

else
return false;

else
return false;

else
g = g ∪ pj ;
x = x− g;
foreach dfi : DF do

dfi = dfi − g;
if |dfi| == 1 then

b = b ∪ dfi;

return true;

in the unknown set. Plan 8 (ACE) succeeds, thus ACE is
exonerated.

Multiple Interaction Faults Case
Definition: Let X = {x1, . . . , xn} be a set of elements.

• P (X) is the power set over X , e.g.
X = {x1, x2} ↔ P (X) = {{}, {x1}, {x2}, {x1, x2}}.

• X ≡ P (X) represents the power set of X .

• {Y } t {X} ≡

 {Y } : if X ⊆ Y
{X} : if Y ⊆ X

{Y , X} : otherwise

• P (X) ≡
⋃

Y⊆X Y is the set of all power sets over all
possible subsets of X .

• E(X) is the set of all individual components mentioned
in X , e.g. X = {{a, b, c}, {a, d, e}, {g}} ↔ E(X) =
{a, b, c, d, e, g}.

A system Sys is a tuple < C,P, Z > as defined in the mul-
tiple fault case.
A state of knowledge SK is a tuple < g, b, x, DF > where:

• g ⊆ P (C) represents all global good diagnosis candi-
dates. A diagnosis candidate is a set of components that

t p z g b x df1 df2
0 ABCDE
1 ABCDE f ABCDE
2 ABC f DE ABC
3 ADE f DE ABC
4 A s A BC
5 ADE f A BC DE
6 AC s AC B DE
7 ADC f AC BD E
8 ACE s ACE BD

Table 1: System with five components C =
{A, B, C,D, E} where B and D are faulted.

can cause a failure. Let X ⊆ C be a set of compo-
nents, than X ∈ P (C) represents all diagnosis candidates
dc ∈ P (X).

• b ⊆ P (C) is the set of bad diagnosis candidates.
{A, [DE]} denotes that A and the diagnosis candidate
[DE] (interaction fault) are bad.

• x ⊆ P (C) is the set of unknown diagnosis candidates
which are not under suspicion.

• DF is the set of diagnosis foci. A diagnosis focus dfi is a
tuple < sui, lgi > where:
– sui ⊆ P (C) is the set of suspected diagnosis candi-

dates in the diagnosis focus dfi.
– lgi ⊆ P (C) represents all local (relevant) good diag-

nosis candidates.
Consider the following example. Let Sys be a simple sys-

tem with five components C = {A, B,C, D, E}. Suppose
component B and D are faulted. In Table 2 we show walk
through the example.

t p z g b df1 df2
su1 lg1 su2 lg2

1 ABCDE f ABCDE
2 ABC f ABC
3 ADE f ABC
4 A s A BC A

5 ADE f A BC A DE A

6 AC s AC B AC DE A

7 ADC f AC D B AC

8 ACE s ACE D B AC

9 B s ACE,B D [AB][BC] AC, B

10 AB f ACE,B [AB],D

Table 2: System with five components C =
{A, B, C,D, E} where [AB] and D are faulted.

Consider the sequence of plans illustrated by Table 2.
Plan 1 (ABCDE) fails. Therefore we focus on the fact
that one of {A, B,C, D, E} is faulted. Plan 2 (ABC) fails.
Therefore, we can narrow the focus to the fact that one of
{A, B, C} is faulted, and we don’t know anything about
{D,E}. Plan 3 (ADE) fails. Therefore the focus narrows
to A, while there may be a fault in {B, C} (But the scope is
still {A, B,C}). Plan 4 (A) succeeds. Therefore, A is exon-
erated. At this point we backtrack, move the focus to {B, C}
and keep A as a local (relevant) good ({A}). The scope is
now {B, C}. Plan 5 (ADE) fails. Therefore, given that A is
exonerated, we can introduce a new focus on {D,E}, but we
keep A as a local (relevant) good ({A}). Plan 6 (AC) suc-
ceeds. Therefore, A, C,AC are exonerated, denoted as AC.

4

The new global goods are {AC}, because {A} t {AC} =
{AC}. We update the local (relevant) goods in focus 1 to
AC, because A, C,AC are relevant to focus 1. B is the
only diagnosis candidate left in focus 1. Plan 7 (ADC)fails.
Therefore, given that A, C are exonerated, D is faulted, be-
cause it is a minimal diagnosis candidate. We close focus 2.
Plan 8 (ACE)succeeds, thus A, C,E, AC,AE, CE,ACE
are exonerated, denoted as ACE. The new global goods
are {ACE}, because {AC} t {ACE} = {ACE}. Plan
9 (B) succeeds, thus B is exonerated, denoted as B. The
new global goods are {ACE, B}, because {ACE}t{B} =
{ACE, B}. At this point we know that the diagnosis candi-
dates A, B,C, AC relevant to focus 1 are goods. Therefore
generate all minimal diagnosis candidates form the local
goods {[AB], [BC]} and move the focus to them. Plan 10
(AB)fails. Therefore, given that A, B are exonerated, [AB]
is faulted, because it is a minimal diagnosis candidate.

Function multiInteractFaults(plan pj , zj) descripes the al-
gorithm for multiple interaction faults in more detail.

Functioncandidates and minimalCandidates
minimalCandidates(Set<Comps> C,P(Set<Comps>) PC)

Beginn
CA = candidates(C, PC);
minCar = |E(CA)|;
MCA = ∅;
foreach cai : CA do

if |cai| = minCar then
MCA = MCA ∪ cai;

if |cai| < minCar then
MCA = ∅;
MCA = MCA ∪ cai;

return MCA;
Ende
candidates(Set<Comps> C, P(Set<Comps>) PC)

Beginn
CA = P (C);
foreach pci : PC do

CA = CA− pci;
return CA;

Ende

Conclusions
This paper is a first step towards an integrated qualitative di-
agnostic approach to systems which process material such
as manufacturing lines and printers. It presents a novel algo-
rithm for diagnosing multiple interaction faults which is far
more memory efficient than the traditional model-based al-
gorithms. The overall approach is similar to how technicans
address troubleshooting.

References
Collins, J. W., and Forbus, K. D. 1987. Reasoning about
fluids via molecular collections. In AAAI, 590–594.
de Kleer, J., and Williams, B. C. 1987. Diagnosing mul-
tiple faults. Artificial Intelligence 32(1):97–130. Also in:
Readings in NonMonotonic Reasoning, edited by Matthew
L. Ginsberg, (Morgan Kaufmann, 1987), 280–297.

de Kleer, J. 2007. Modeling when connections are the
problem. In Proc 20th IJCAI, 311–317.
Eiter, T., and Gottlob, G. 1995. The complexity of logic-
based abduction. Journal of the ACM 42(1):3–42.
Fromherz, M.; Bobrow, D.; and de Kleer, J. 2003. Model-
based computing for design and control of reconfigurable
systems. The AI Magazine 24(4):120–130.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artificial Intelligence 32(1):57–96.
Shearer, J. L.; Murphy, A. T.; and Richardson, H. H. 1971.
Introduction to System Dynamics. Reading, MA: Addison
Wesley.

Function multiInteractFaults(plan pj , obs zj)

if zj == f then
CAj = candidates(pj, g);
if CAj ∩ b == ∅ then

if |CAj | == 1 then
b = b ∪ CAj ;
foreach dfi : DF do

if CAj ∩ sui 6= ∅ then
DF.remove(dfi);

else
MCAj = minimalCandidates(pj,g);
if CAj ∩

⋃
k suk == ∅ then

foreach c ∈ g do
lgnew = lgnew t (E(c) ∩ pj);

sunew = MCAj ;
else

foreach dfi : DF do
if MCAj ∩ sui 6= ∅ ∧MCAj 6= sui then

if MCAj ∩
⋃

k,k 6=i suk == ∅ then
if |MCAj | < |sui| then

foreach c ∈ g do
lgi = lgi t (E(c) ∩ pj);

sui = MCAj ;
else

return false;

else
return false;

else
g = g t pj ;
foreach dfi : DF do

lgi = lgi t (E(lgi) ∪ E(sui)) ∩ pj ;
sui = minimalCandidates(sui,lgi);
if |sui| == 1 then

CAlgi
= candidates(E(lgi),lgi);

if |CAj | == 1 then
b = b ∪ CAj ;
foreach dfi : DF do

if CAj ∩ sui 6= ∅ then
DF.remove(dfi);

else
sui = minimalCandidates(E(lgi),lgi);

return true;

5

Supporting Conceptual Knowledge Capture Through Automatic Modelling:
A Preliminary Progress Report

Jochem Liem and Hylke Buisman and Bert Bredeweg
Human Computer Studies Laboratory, Informatics Institute, Faculty of Science,

University of Amsterdam, The Netherlands. Email: {jliem,bredeweg}@science.uva.nl, hbuisman@gmail.com

Abstract

Building qualitative models is still a difficult and
lengthy endeavour for domain experts. This paper dis-
cusses progress towards an automated modelling algo-
rithm that learns Garp3 models based on a full qual-
itative description of the system’s behaviour. In con-
trast with other approaches (Bridewell et al. 2008;
Bratko and Šuc 2004), our algorithm attempts to learn
the causality that explains the system’s behaviour. The
algorithm achieves good results when recreating four
well-established models.

Introduction
In this paper we focus on the ground work required to ad-
vance towards an automated modelling program. The input
is considered to have a qualitative representation, i.e. a state
graph that represents the possible situations that can emerge
from a system, and the values of the quantities in each sit-
uation. Furthermore, the input is assumed to have no noise
nor any inconsistencies. The completed algorithm is envi-
sioned to support researchers in articulating their conceptual
understanding. As such it will help to establish theories that
explain the phenomena provided as input data.

QR Model and Simulation Workbench: Garp3
The automatic model building algorithm is implemented in
Garp31 (Bredeweg et al. 2006). Garp3 allows modellers to
represent their knowledge about the structure and the impor-
tant processes in their system as model fragments, which can
be considered formalisations of the knowledge that applies
in certain general situations.

Next to model fragments, different scenarios can be mod-
elled. These represent specific start states of a system.
Garp3 can run simulations of models based on a particular
scenario. The result of such a simulation is a state graph, in
which each state represents a particular possible situation of
the system, and the transitions represent the possible ways a
situation can change into another.

The simulation engine takes a scenario as input, and finds
all the model fragments that apply to that scenario. The con-
sequences of the matching model fragments are added to the

1http://www.garp3.org

scenario to create a state description from which new knowl-
edge can be inferred such as the derivatives of quantities.
Given the completed state description, the possible succes-
sor states are inferred. The complete state graph is generated
by applying the reasoning to the new states.

In Garp3 the structure of a system is represented using
entities (objects) and configurations (relations). For exam-
ple, a lion hunting on a zebra would be represented as two
entities (lion and zebra) and a configuration (hunts).

Quantities represent the features of entities and agents
that change during simulation. A quantity has a magnitude
and a derivative, which represent its current value and trend.
The magnitude and derivative are each defined by a quantity
space that represents the possible values the magnitude and
the derivative can have. Such a quantity space is defined by
a set of alternating point and interval values.

We use Mv(Q1) to refer to the current value of the mag-
nitude of a quantity. Ms(Q1), the sign of the magnitude,
indicates whether the magnitude is positive, zero or negative
(Ms(Q1) ∈ {+, 0,−}). Dv(Q1) refers to the current value
of the derivative of a quantity, which has a value from the
predefined derivative quantity space (Dv(Q1) ∈ {−, 0, +}).
Ds(Q1) refers to the current sign of a derivative. Note that
the predefined values of derivatives completely correspond
to the possible signs of the derivative.

Causality
Garp3 explicitly represents causality using indirect and di-

rect influences. Direct influences are represented as Q1
I+→

Q2. Influences can be either positive (as above) or negative.
The positive influence will increase Dv(Q2) if Ms(Q1) =
+, decrease it if Ms(Q1) = −, and have no effect when
Ms(Q1) = 0. For a negative influence, it is vice versa.

The indirect influences, called proportionalities, are rep-

resented as Q1
P+→ Q2. Similar to influences, proportion-

alities can be either positive or negative. The positive pro-
portionality will increase Dv(Q2) if Ds(Q1) = +, have no
effect if it is stable, and decrease if it is below zero. For a
negative proportionality, it is vice versa.

Other Behavioural Ingredients
Other behavioural ingredients in Garp3 are operators, in-
equalities, value assignments and correspondences. Opera-

tors (+ and -) are used to calculate the magnitude value of
quantities (e.g. Q1 − Q2 = Q3, to indicate Mv(Q1) −
Mv(Q2) = Mv(Q3)). Inequalities can be placed be-
tween different model ingredient types: (1) magnitudes
(Mv(Q1) = Mv(Q2)), (2) derivatives (Dv(Q1) < Dv(Q2),
(3) values Q1(point(Max)) = Q2(point(Max)), (4) oper-
ator relations (Mv(Q1) −Mv(Q2) < Mv(Q3) −Mv(Q4),
(5) combinations of the 1, 2, 3 and 4 (although only be-
tween either magnitude or derivative items). Value assign-
ments simply indicate that a quantity has a certain quali-
tative value (Mv(Q1) = Q1(Plus)). Finally, correspon-
dences indicate that from certain values of one quantity, val-
ues of another quantity can be inferred. There are quantity

correspondences (Q1
Qqs↔ Q2) and value correspondences

(Q1(Plus)
Qv→ Q2(Plus)), which can both be either di-

rected or undirected. The value correspondence indicates
that if Mv(Q1) = Q1(Plus), Mv(Q2) = Q2(Plus). If the
value correspondence is bidirectional, the reverse inference
is also possible. Quantity correspondences can be consid-
ered a set of value correspondences between each consecu-
tive pair of the values of both quantities. There are also in-

verse quantity space correspondences (Q1

Q−1
qs↔ Q2) that in-

dicate that the first value in Q1 corresponds to the last value
in Q2, the second to the one before last, etc.

Algorithm Requirements and Approach
Assumptions and Scoping
The goal of the automatic model building algorithm is to
take a state graph and a scenario as input, and generate the
model that provides an explanation for the behaviour. Our
approach focusses on the generation of causal explanation.
Several assumptions are made to scope the work. In further
research these assumptions can be alleviated. Firstly, input
is assumed to have no noise or inconsistencies. Secondly,
the state graph is assumes to be a full envisionment of the
system’s behaviour.

The second assumption is that a model can be build using
a single model fragment. From a causal explanation point
of view, it is reasonable to assume that influences and pro-
portionalities never disappear, but that their effects are only
nullified when quantities become zero or stable.

Thirdly, the algorithm is focussed on causal explanation
and less on structure. Therefore, the entity hierarchy is as-
sumed known.

Input and Output
The algorithm takes a complete state graph as input, which
includes (1) the quantity names, (2) the quantity spaces, (3)
the magnitudes and derivatives of the quantities in different
states, (4) the observable inequalities, and (5) the state tran-
sitions. Furthermore, the algorithm is provided with the sce-
nario that should produce the state graph, which consists of:
(1) the entities, agents and assumptions involved, (2) struc-
tural information about the configurations between them, (3)
the quantities and their initial values, and (4) the inequalities
that hold in the initial state.

The output of the algorithm is one or more Garp3 qualita-
tive models that explain (are consistent with) the input that
can be immediately simulated.

Algorithm Design Approach
Since the semantics of model ingredients are formally de-
fined, one would assume that it is clear how each ingredient
manifests itself in the simulation results of a model. Other-
wise, how would the implementation of a simulation engine
have been possible? However, in practice, it is hard even for
expert modellers to pinpoint the model ingredients that are
responsible for certain (lack of) behaviour. This has several
reasons. Firstly, a large set of inequalities are derived dur-
ing qualitative simulation, of which the implications (other
inequalities) are difficult to foresee. Secondly, the engine
has a lot of intricacies (such as second order derivatives)
which makes simulation results hard to predict. Thirdly, the
branching in the state graph that results from ambiguity is
difficult for people to completely envision.

For these reasons, an iterative algorithm design approach
is chosen. Well-established models are ordered by complex-
ity, and attempts are made to generate them using their own
output. Each of the models requires a different (and increas-
ingly large) set of considerations that must be dealt with.

The models chosen are Tree and Shade, Communicating
Vessels, Deforestation, Population Dynamics and a set of
other even more complex models2. Tree and Shade is the
least complex model, containing only a few quantities, and
causal dependencies, and no conditions, causal interactions,
inequalities or operator relations. Communicating vessels is
more complex, as it contains causal interactions, an oper-
ator, and inequalities. The deforestation model is different
from the previous models as it contains many clusters linked
to each other by proportionalities. Population dynamics is
again more complex, due to the large amount of quantities,
interactions and conditions.

Causality and Clusters
Causal Paths Important for the algorithm is the concept
of causal paths. These are series of quantities connected by
influences and proportionalities. A causal path is defined as
a set of quantities that starts with an influence, and is fol-
lowed by a arbitrary number of proportionalities. For exam-

ple: Q1
I+→ Q2

P+→ . . .
P−→ Qn−1

P+→ Qn. A quantity that has
no proportionalities leading out of it ends the causal path. If
a quantity has more than one proportionality leading out of
it, multiple causal paths can be defined.

Since each influence represents the causal effect of a pro-
cess, a causal path can be seen as the cascade of effects of
a process. Given this perspective, certain successions of
causal relations become unlikely. For example the causal

path Q1
I+→ Q2

I+→ Q3
P−→ Q4

I+→ Q5 would imply there are
many active processes with short or no cascading effects.

Direction of Causality An important issue in scientific
enquiry is the problem of correlation and causality. This

2The models are available at http://www.garp3.org

issue appears when trying to derive causal relations from the
state graph. For example, Ds(Q1) = Ds(Q2) can be an

caused by Q1
P+→ Q2, Q2

P+→ Q1, or even Q3
P+→ Q1 and

Q3
P+→ Q2. Another example of this is in the communicat-

ing vessels model. Ideally, a model capturing the idea of a
contained liquid would distinguish between Volume, Height
and Bottom pressure, and have a particular causal account

(V olume
P+→ Height

P+→ Bottom pressure). However,
from the model’s behaviour this causality may not be deriv-
able, e.g. when the width of the containers doesn’t change.
As a result, the unique role of the quantities involved can
only be inferred when the required variation for that is ap-
parent in the input state-graph. Therefore, it is considered
the modeller’s responsibility to provide simulation examples
which will allow the algorithm the make these critical dis-
tinctions. However, it can be considered the responsibility
of the tool to indicate to the modeller that the causality be-
tween certain sets of quantities cannot be derived, and that
examples showing these differences should be provided.

Clusters The algorithm makes use of a specific subset of
causal paths called clusters. We define clusters as groups of
quantities that exhibit “equivalent” behaviour. More specif-
ically, a set of quantities constitute a cluster if their val-

ues either correspond (Q1
Qqs↔ Q2) or inversely correspond

(Q1

Q−1
qs↔ Q2) to each other. Additionally, the correspond-

ing derivatives should be equal (Dv(Q1) = Dv(Q2)), while
inversely corresponding derivatives should be each other’s
inverse (Dv(Q1) = −Dv(Q2)).

A further constraint is that the corresponding quantities
(not inverse) in a cluster must be completely equivalent.
Therefore, Mv(Q1) = Mv(Q2) must always hold. If an
inequality holds between two quantities, they are considered
not to belong to the same cluster.

During implementation it became obvious that clusters
are not meaningful when quantities within a cluster belong
to different entities. The reason for this originates from the
idea of ‘no function in structure’. Clusters involving multi-
ple entities would integrate causality across individual struc-
tural units, which is undesired. Therefore, clusters can only
contain quantities that belong to the same entity.

Quantities cannot be a member of more than one cluster.
If Q1 and Q2 are in a cluster, and Q1 and Q3 are in a cluster,
then Q1, Q2 and Q3 must be in the same cluster. After all,
if Q1 and Q2 have equivalent behaviour, and Q1 and Q3

have equivalent behaviour, by transitivity Q2 and Q3 have
to exhibit equivalent behaviour.

Minimal Covering
The key requirement of the model building algorithm is that
it explains the input behaviour. However, a second require-
ment is that the algorithm does not contain redundant depen-
dencies. That is, the algorithm should return the minimal set
of dependencies that explains the behaviour.

Two dependencies are considered substitutionary if they
have the same effect on the simulation result (i.e. remov-
ing one of them would have no effect, however removing

both would). Complementary dependencies are responsible
for different aspects of the behaviour, and both have to be
present to explain the data. The aim is to create an algo-
rithm that is minimally covering, i.e. it should only contain
complementary dependencies.

Algorithm
Finding Naive Dependencies
The goal of this step is to find (non-interacting) dependen-
cies that are valid throughout the entire model (i.e. are not
conditional). These causal relations are called naive depen-
dencies, and provide the basis for the rest of the algorithm.

Consistency Rules Naive dependencies are identified us-
ing consistency rules. Each pair of quantities is checked
using these rules to determine which of them potentially
holds throughout the state graph. These rules make use of
Mv(Qx), Ms(Qx), Dv(Qx), Ds(Qx) of each quantity in a
pair, and inequalities that hold between them. These state-
ments are referred to as the state information of a quantity.

The consistency rules are derived from the semantics of
the causal dependencies (see Section on Garp3). Examples
of rules (that should hold throughout the state graph) are:

Q1
I+→ Q2 if Ms(Q1) = Ds(Q2) (1)

Q1
I−→ Q2 if Ms(Q1) = −Ds(Q2) (2)

Q1
P+→ Q2 if Ds(Q1) = Ds(Q2) (3)

Q1
P−→ Q2 if Ds(Q1) = −Ds(Q2) (4)

Q1(Vx)
Qv↔ Q2(Vy) if

Mv(Q1) = Q1(Vx) =⇒ Mv(Q2) = Q2(Vy)(5)

Q1
Qqs↔ Q2 if ∀Vn(Q1(Vn)

Qv↔ Q2(Vn)) (6)

Redundancy The set of dependencies that are found con-
tain a lot of redundancy, i.e. many dependencies are substi-
tutionary. For example, in the communicating vessels model

height
P+→ pressure, can be substituted by pressure

P+→
height. The remainder of the algorithm selects the correct
substitutionary groups, and uses the selected naive depen-
dencies to derive more complex dependencies.

Determining Clusters
This step tries to determine clusters within the set of naive
dependencies. The algorithm searches for quantities be-
longing to the same entity that exhibit equivalent behaviour,
and tries to expand these candidate clusters by adding other
quantities. Quantities are only added if they exhibit be-
haviour equivalent to the quantities already contained in the
candidate cluster. If no more quantities can be added to a
candidate cluster, the algorithm searches for other candidate
clusters. By only considering models composed of clusters,
the space of possible models is significantly reduced.

The validity of the candidate clusters is checked by deter-
mining if there is overlap between the clusters. All clusters
that overlap are removed. An alternative would be to only
remove clusters until no more overlap is present. However,

in practice no situations were encountered where this was
desirable. An example of a found cluster is volume, height
and pressure in the communicating vessels model. Note that
these clusters are still missing influences (their actuators),
these are determined later in the algorithm.

Generating Causal Paths
This step returns the possible causal orderings within clus-
ters based on the cluster and naive dependencies sets. For
each cluster a valid causal ordering is returned. Through
backtracking other possible orderings are generated.

The quantities in a cluster can be either connected in

a linear fashion (Q1
P+→ Q2

P+→ Q3) or using branching

(Q1
P+→ Q2 and Q1

P+→ Q3). The algorithm prefers linear
branching, as branching does not often occur in practice.
Additionally, the reduction of possible models is a signifi-
cant advantage.

Another constraint that reduces the number of possible
models is requiring clusters that belong to entities of the
same type to have the same causal ordering. For example, if

for one container V olume
P+→ Height

P+→ Pressure, than
for other containers the same causal ordering must hold.

Actuating Clusters
The goal of the actuating clusters step is to connect clusters
by identifying cluster actuations. This step takes the set of
clusters with established causal orderings and the naive de-
pendencies as input.

Clusters can either be actuated by another cluster, or act
as an actuator itself. Furthermore, clusters can be connected
by propagating an actuation. In a model, each cluster should
take part in at least one of these kind of relations such that
all clusters are related in a way. Otherwise, the model would
include two separate non-interacting subsystems.

When one cluster actuates another, there is an influence
relation between the two. Actuations are the most impor-
tant form of connecting clusters, since these connections are
the cause of change in the system. They are also the easiest
to detect, due to the specific way influences manifest them-
selves in the state information. For this reason, actuations
by influences are identified first. Two types of actuations
though influences are distinguished: (1) equilibrium seeking
mechanisms (ESM) and (2) external actuators.

Equilibrium Seeking Mechanisms ESMs are better
known as flows, and are common in qualitative models.
Flows cause two unequal quantities to equalize. The flow
in the communicating vessels model has a non-zero value
when the pressures in the two containers are unequal. The
flow changes the volume of the containers, and thus the pres-
sures to equalize. An ESM holds under the following two
conditions: (1) Q1 = Q2 − Q3, where Q1 ∈ C1, Q2 ∈
C2, Q3 ∈ C3, where the C’s are clusters, and (2) Q4

I−→
Q5 and Q4

I+→ Q6, where Q4 ∈ C1, Q5 ∈ C2, Q6 ∈ C3.
Note that in many cases Q1 = Q4, such as in the communi-
cating vessels model.

Finding Calculus Relations The algorithm reduces the
search space of finding ESMs using four constraints. Firstly,
all quantities involved in the operator should be in differ-
ent clusters (C1, C2 and C3 are unequal). Secondly, the set
of naive dependencies should at least contain one influence
from Q1 (to serve as an actuation). Thirdly, both Q2 and Q3

would be at the end of the causal paths within their cluster,
as in most cases this is the most meaningful interpretation.
Finally, Q2 and Q3 are required to be of the same type, as
only things of the same type can be subtracted.

External Actuators External actuators are causes of
change more at the edges of the system compared to ESMs.
To identify external actuators, the algorithm considers the
influences in the naive dependencies that are not part of an
ESM. Again, the minimal covering principle is applied to
keep the number of dependencies to a minimum. As a result
a cluster will never have more than one incoming actuation.

An actuation is only considered between C1 to C2 if the
set of naive dependencies contains influences between each
possible pair of quantities, such that ∀Qx ∈ C1,∀Qy ∈
C2(Qx

I+→ Qy). This removes the influences in the set of
naive dependencies that are consistent with the behaviour
by chance.

Alternative actuations are returned through backtracking.
In the future, actuations may be chosen based on the struc-
ture of the system, as causal relations are more likely to oc-
cur parallel to structurally related entities.

Feedback A common pattern in qualitative models is
feedback, which is a proportionality originating from the
end of a causal path to the quantity actuating the causal path.
Feedbacks are simply added if the naive dependencies con-
tain one. The algorithm always adds feedback at the end of
causal paths, since this is what happens in the investigated
models. However, it could be the case that feedbacks from
halfway a causal chain are also possible.

Linking Clusters by Propagation
This step connects the clusters that have not yet been con-
nected through proportionalities, based on the naive depen-
dencies. As with clusters, the causal ordering of the clusters
cannot be distinguished. Therefore all possibilities are gen-
erated. Furthermore, the same design choices as with find-
ing causal paths within clusters have been made. Only linear
orderings of clusters are allowed (i.e. no branching).

Setting Initial Magnitudes
An influence has no effect if the magnitude of the quantity
from which it originates is unknown. Therefore this step
assigns initial values to quantities. Note that this step first
generates a set of candidate assignments. When a value can
be derived in another way than through assignment, it is re-
moved from the set of value assignment candidates.

There are six ways to assign initial magnitudes. Firstly, if
a value assignment for the quantity is present in the scenario,
it requires no initialisation. Secondly, if the magnitude can
be derived through a correspondence, the value is known.
Thirdly, the result of a minus operator can be derived if an

inequality between its arguments is known. Based on the
possible magnitudes of the result this inequality can be de-
rived. Either this inequality is present in the scenario, or
multiple inequalities should be made assumable by adding
them as conditions in multiple model fragments. Garp3 au-
tomatically assumes unprovable values and inequalities if
they are conditions in model fragments. Note that generat-
ing the conditional inequalities is currently beyond the scope
of the algorithm, as it involves adding model ingredients to
multiple model fragments. Fourthly, it is possible that a cer-
tain magnitude holds everywhere throughout the state graph.
In this case, a value assignment is added as a (conditionless)
consequence. Fifthly, a value could hold under certain con-
ditions. However, this would require a value assignments
with a conditional inequalities in separate model fragments.
Therefore, it is currently beyond the scope of the algorithm.
Finally, multiple model fragments could be created in which
the magnitudes are present as conditions. Garp3 will gen-
erate the different states that would result by assuming each
of the values. As with the conditional value assignments,
having value assignments as conditions in multiple model
fragments is currently beyond the scope of the algorithm.

Dependency Interactions
This step identifies dependency interactions (influences or
proportionalities) based on the input behaviour. Dependency
interactions are detected in the same way as naive dependen-
cies, i.e. using a set of consistency rules. Interactions are not
found as naive dependencies, as the individual dependencies
are not consistent with the entire state graph (as an interac-
tion results in more behaviour than a single dependency).

The algorithm assumes that the interaction consists op-
posing dependencies, such as birth vs. death and immigra-
tion vs. emigration.

Results3

The tree and shade model is successfully modelled by the
algorithm. It returns two models, representing both possible
directions of causality between Size and Shade. The initial
magnitude assignment correctly finds a conditionless value
assignment on Growth rate. The simulation results of these
models are equivalent to that of the original model.

The dependencies of the communicating vessels model are
correctly found. The algorithm returns 6 models; one for
each possible causal ordering of amount, height and pres-
sure. The algorithm also correctly identifies the ESM-based
actuations of the clusters, by properly finding the min opera-
tor. Furthermore, all necessary causal dependencies and cor-
respondences are identified. Model fragments that allow the
assumption of initial values are missing (due to the fact that
the algorithm generates a single model fragments). Adding
an inequality between the pressures of the containers in the
scenario allows the model to simulate without problems.

The deforestation model (containing entities ’Woodcut-
ters’, ’Vegetation’, ’Water’, ’Land’ and ’Humans’) is suc-
cessfully modelled, including setting initial magnitudes us-
ing conditions. The simulation is equivalent to that of the

3For the models and references go to http://www.garp3.org

original model. The causal ordering does differ, as it does
not capture the branching of the causal paths in the origi-
nal model. The resulting model however, is not considered
wrong by experts, and is arguably better than the original.
Over 2000 models are returned when generating all possible
results, due to the many possible causal orderings.

The population dynamics model generates the correct
models for the open and closed population scenarios. How-
ever, the initial values are not set.

The algorithm does not yet give correct results for the
heating/boiling, R-Star and Ants’ Garden models. For the
heating model this is due to inequalities that hold under spe-
cific conditions, which are not taken care of in the algorithm.
The R-Star and Ants’ Garden are large models that resulted
from specific research projects. As such, these models are
an order of magnitude more complex than the other models.
It is therefore not surprising that the algorithm in its current
form cannot cope with them.

Conclusions & Future Work
This paper presents preliminary work towards an algorithm
that automatically determines a Garp3 qualitative model, us-
ing an enumeration of all possible system behaviour as in-
put. The algorithm uses consistency rules to determine the
causal dependencies that hold within the system. Using the
concept of clusters the search space is significantly reduced.
Accurate results are generated for a set of well-established
models. The results seem to suggests that it is possible to
derive causal explanations from the behaviour of a system,
and that model building support through an automatic model
building algorithm is viable.

There are several algorithm improvements planned. The
first improvement is to have a generalised representation for
the ambiguity within and between clusters. That is, have a
single representation for the complete model space. For sim-
ulation purposes an arbitrary instantiation can be chosen, as
each one has an equivalent result. Secondly, the algorithm
has to be improved to be able to create multiple model frag-
ments in order to deal with conditional model ingredients.
Thirdly, means have to be developed to be able to compare
generated state graphs with the desired state graph.

References
Bratko, I., and Šuc, D. 2004. Learning qualitative models.
AI Mag. 24(4):107–119.
Bredeweg, B.; Bouwer, A.; Jellema, J.; Bertels, D.; Lin-
nebank, F.; and Liem, J. 2006. Garp3 - a new workbench
for qualitative reasoning and modelling. In Bailey-Kellogg,
C., and Kuipers, B., eds., 20th International Workshop on
Qualitative Reasoning (QR-06), 21–28.
Bredeweg, B.; Salles, P.; Bouwer, A.; Liem, J.; Nuttle, T.;
Cioaca, E.; Nakova, E.; Noble, R.; Rios Caldas, A. L.; Yor-
dan, U.; Varadinova, E.; and Zitek, A. 2008. Towards a
structured approach to building qualitative reasoning mod-
els and simulations. Ecological Informatics 3(1):1–12.
Bridewell, W.; Langley, P.; Todorovski, L.; and Dz̆eroski,
S. 2008. Inductive process modeling. Machine Learning
71:132.

A Theory of Depiction for Sketches of Physical Systems

Kate Lockwood, Andrew Lovett, Ken Forbus, Morteza Dehghani and Jeff Usher

Northwestern University, Qualitative Reasoning Group

2145 Sheridan Road Room L359, Evanston Illinois

{kate, andrew-lovett, forbus, morteza, usher}@northwestern.edu

Abstract

Complex spatial and physical concepts are often

communicated using diagrams. For many qualitative

reasoning tasks, it is necessary that computers understand

diagrams in much the same way as their human

collaborators. Here we describe some preliminary work on

basic diagram interpretation based on common depiction

conventions. Using a combination of semantic and

qualitative spatial information we are able to distinguish

relevant regions and edges in sketched diagrams using the

CogSketch sketch understanding system.

Introduction

 Complex physical concepts are often communicated

using a combination of text and diagrams. Often the

diagram illustrates the physical arrangement of a system

and accompanying text or captions describe a process that

happens in that system. For example, consider Figure 1

below taken from Sun Up Sun Down (Buckly, 1979) an

introductory solar energy text.

Figure 1. An example of a diagram and accompanying

text from a solar energy textbook

The caption provides a description of a process, the filling

of a tank with rainwater, while the diagram provides an

illustration of the physical layout of the system (tank,

pipe, etc).

 Parsing the qualitative information in the diagram is

easy for people, but quite complicated for software. For

example people can both recognize the diagram as a full

system and refer to its individual components like “the

water in the tank”. Part of this flexibility is due to our

familiarity with diagrams and their depiction conventions.

Another source of flexibility is our knowledge about how

things like tanks and pipes and water work. We are able

to leverage both types of knowledge when looking at a

diagram.

 To make intelligent systems that can reason and

communicate using diagrams, they must understand

diagrams in ways similar to their human users.

Additionally, systems need to be able to understand not

just polished textbook diagrams, but incomplete, messy

user-sketched diagrams. For intelligent conceptual design

aids and intelligent tutoring systems, being able to

understand informally sketched concepts is paramount.

 Traditional diagram and sketch understanding work is

far from exhibiting the human-like flexibility needed in a

diagram understanding system. Most sketch systems are

focused on recognition. First, they segment images into

lines and then combine the lines into larger objects.

Objects are then matched against a library of known

shapes, with the best match considered as the

interpretation for the object. Such systems can work well

in tightly constrained domains that have a small number

of distinct symbols such as family trees (Alvarado &

Davis, 2004), circuit and diagrams (Alvarado, Oltmans, &

Davis, 2002), x,y plots (Futrelle, 1990) and maps (Reiter

& Mackworth, 1989). Unfortunately, they do not

translate well to diagrams like Figure 1.

 In this paper we are proposing a more integrated

approach to diagram interpretation using CogSketch, an

open-domain sketch understanding system. In our model,

we use a combination of semantic information about the

objects and qualitative spatial relationships between them

to infer relevant depiction conventions. Specifically, our

goal is to correctly assign concepts to edges and regions

in a diagram, consistent with depiction conventions.

The CogSketch approach is based on two insights: (1)

In most human-to-human sketching, recognition is a

catalyst, not a requirement. People use language to

explain their sketches; we provide interface tools for

providing functionally similar ways to conceptually label

glyphs in a sketch. (2) Many of the conceptually relevant

relationships in sketches are qualitative. For example, in

the diagram in Figure 1 the specific details of the objects

depicted does not matter, what matters is the qualitative

relationships: how the objects are connected, what the

level of the water is in the tank is relative to the placement

of the leak, etc. Our approach is to model human visual

and geometric processing of the ink in a sketch, combined

with formal representations of conceptual knowledge

drawn from a large-scale knowledge base, to provide

open-domain sketch understanding abilities. This is very

important for building intelligent systems for open-ended,

 Suppose rain is falling

on the rainwater tray.

The water will flow

down the pipe and start

filling the tank. Some of

the incoming rainwater

will flow into the tank,

and some will flow out

of the leak …

domains, such as engineering design, where the set of

possible objects is extremely broad.

 The rest of this paper describes our method for

modeling this flexible interpretation of depiction

conventions within CogSketch. First we review

CogSketch. Next we describe the spatial extent problem.

Then we describe how we combine semantic and

geometric information to interpret a sketch, using a

detailed example. We finish with related work and future

work.

Sketching

 All diagrams are sketched using CogSketch1.

CogSketch is an open-domain sketch understanding

system built on the nuSketch architecture (Forbus,

Ferguson, & Usher, 2001). In CogSketch, each object

drawn is represented by a glyph. A glyph contains both

the actual ink drawn by the user and a conceptual label.

The conceptual label is supplied by the user and is tied to

a concept in the underlying knowledge base. Currently

we are using a subset of the ResearchCyc2 knowledge

base (including over 30,000 concepts). Users can also

supply a name with which to refer to the glyph. Names

can be any natural language string. For example, Figure 2

shows a screenshot of a diagram drawn in CogSketch. In

this diagram, the cylinder in the sketch is labeled as a

WaterTank using the concept from ResearchCyc and is

named “tank”. This allows the user to refer to the tank

simply as “tank”. Likewise, if there were multiple tanks,

they could each be given different identifying names. In

CogSketch, users determine what ink belongs to a glyph

by clicking a button at the beginning and end of drawing

each glyph. All the ink drawn between button presses is

part of the glyph.

Conceptual labeling allows CogSketch to truly be

domain-independent and allows us to operate in domains

without clear drawing conventions. All sketch

understanding work must strike a balance between

constraints on the user and the depth of interpretation that

is possible. While labeling glyphs does require more

work by the user, in return they gain freedom from

recognition errors and the ability to be supported by more

in-depth reasoning. Aside from manual segmentation, we

place no other restrictions on how users draw each glyph.

For example, they can use as many strokes as they like,

connected or not, and can take as long as they like. This

contrasts with a common practice in multimodal

interfaces of using constraints such as time-outs and pen-

up events to automatically infer segmentation. For our

users, who are often thinking hard about what they are

1 CogSketch is publicly available at

http://spatiallearning.org/projects/cogsketch_index.html

2 http://research.cyc.com/

drawing, time-outs and pen-up constraints are poor

segmentation signals and quite annoying to them.

CogSketch computes a variety of spatial relationships

automatically, including the RCC-8 qualitative topology

(Cohn, 1996) relationships and connected and contained

groups of glyphs (see (Forbus, Tomai, & Usher, 2003) for

details). The digital ink itself is also available in

subsequent processing, re-sampled into constant-spaced

intervals from the original time-stamped pen events.

Figure 2. A screen shot of CogSketch showing a sketch

of a tank of water.

Conceptual Segmentation

We define the task of conceptual segmentation to be the

assignment of conceptual interpretations to regions and

edges within the sketch. As noted above, conceptual

labeling of ink is necessary, but not sufficient, for solving

this problem. Consider the sketch in Figure 2 above

showing a tank filled with water. We will use this

example as an illustration throughout this paper. This

sketch consists of two glyphs: one closed polygon

representing the tank, and one line representing the water.

Figure 3 illustrates.

Figure 3. The two glyphs that make up the sketch in

Figure 2. The glyph on the left is the tank and the glyph

on the right is water.

If we simply use the conceptual labels, the system

would think that the object water in the sketch was the

edge created by the water glyph when in fact it is the area

http://research.cyc.com/

inside the tank underneath the water glyph. The situation

gets even more complex in a sketch like that in Figure 4

below. Here again, the water glyph is a single line, but

this line is discontinuous and spans to different tank

glyphs. The system would also need to infer that the pipe

(another individual glyph) is also filled with water even

though the pipe glyph does not touch the glyph

representing the water.

Figure 4. A two tank system as sketched in CogSketch

One way to address this would be to require users to

draw following specific conventions – for example, have

them trace around the inside of all of the tank/pipe glyphs

so that the water glyph was one continuous closed shape.

However, while we could institute that constraint, it only

addresses this specific situation, and adding new

constraints to address every new situation is untenable.

Additionally, requiring users to trace the full outline of

the water still leaves the situation ambiguous. The system

still doesn’t have a way to figure out if the user intended

just the outline to represent water, or all of the space

contained by the outline. For example, consider the two

sketches in Figure 5 below.

Figure 5. Two sketches, one of the layers of the Earth and

another of a planet orbiting the sun.

 Both sketches contain an outer ellipse. In the sketch

on the left it represents the crust of the earth, and in the

sketch on the right it represents the orbit of Earth around

the sun. The interpretation for the two ellipses is

different. In the sketch on the left the convention is that

everything between the outer ellipse and the next ellipse

is the stuff that makes up the crust. By contrast, in the

sketch on the right, the orbit is actually just the edge

represented by the glyph itself. This is why we need a

combination of semantic and geometric information in

order to make a correct interpretation. There are two

parts to our interpretation process - the gathering of

semantic information and the segmentation of the image.

We are interested in using the fact that we know what

we are drawing and we know about how things are

typically drawn – depiction conventions – to

automatically derive the correct conceptual segmentation

of the sketch. We test its segmentations by asking it to

highlight the region or edge in a sketch representing a

specific entity. If the correct area is highlighted, we

conclude that the system has correctly interpreted that

portion of the sketch.

Using semantic information for depiction

reasoning

Once the appropriate glyph is identified, we access the

conceptual label(s) provided by the user. In our example,

the glyph being considered is labeled with the concept

Water from the ResearchCyc KB. Knowing what the

glyph represents helps us figure out how to interpret the

diagram correctly. For example, ResearchCyc has 335

facts about water. This includes information about its role

in the ResearchCyc ontology and, especially important for

our purposes, some linguistic knowledge about the term.

Backchaining rules are used to ascertain whether a

concept needs a region versus a polyline to depict it. For

example, a concept might contain information that,

linguistically, the word referring to it is a mass noun or a

count noun. Mass nouns refer to entities that can be

viewed as spatially flexible pieces of stuff, such as liquids

and powders, whose boundaries are highly constrained by

containment relationships. The concept Water is

linguistically a mass noun, and consequently the system

infers that it requires a volume to depict it.

Figure 6 below shows an outline of the process we use

to determine the correct depiction for a glyph using both

the conceptual label and the ink. This figure shows the

algorithm as it is currently implemented, as we expand the

number and type of diagrams that we interpret, the

algorithm will be further refined. In the first step, the

conceptual label is accessed and the knowledge base is

queried to determine which category the entity belongs to:

(1) a mass noun or entity that subclasses from the Cyc

concept TangibleStuffCompositionType (2) an

entity that subclasses from Path-Spatial (3) or a

physical object.

Matched glyph

label ink

Stuff/Mass Path-Spatial
Physical
Object

Line Shape Line Container Empty

Find
Bounds

Process
Object

Segment
Polygons

Process
Object

Use Line
Use Glyph

Outline
Fill around

inner glyphs

Figure 6. Outline of the spatial extent identification

algorithm as it is currently implemented

Inferring the geometry of depiction

Once the system has inferred the conceptual category for

a glyph, it attempts to find or construct the appropriate

geometric entity. For the water/tank example (an instance

of the stuff/mass path through Figure 6) it starts by

classifying the geometric properties of the ink for the

glyph, determining if it is a line or a region. For example,

the glyph representing water in Figure 5 is a polyline, not

a region. Since the depiction of water requires a region,

the system has more work to do. If the user had drawn

the water by tracing out a region inside the tank, then the

system would be satisfied with the glyph itself as the

geometric entity.

The next step is to determine if there are other glyphs

which can help constrain the extent of the object. In this

example, the tank glyph constrains the extent. We find

such glyphs by looking for RCC8 relationships, i.e.,

glyphs for which the water is either TPP or NTPP (i.e.,

Tangential Proper Part or Non-Tangential Proper Part).

When these relationships hold, between the tank glyph

and the water glyph, we then do a follow-up check to see

if the water intersects (within a threshold) both sides of

the tank.

Once we have both glyphs (the water and the tank) we

need to find the region representing the part of the tank

where the water is found. This is accomplished by

combining the ink from the two glyphs and segmenting

the ink into edges and edge cycles. Edges are identified

by segmenting the ink at places where one line intersects

another, or where there is a clear corner along a line. Edge

cycles are identified by finding minimal closed cycles

among the edges. In the current example, CogSketch

identifies two edge cycles, one representing the area in the

tank above the water and the other representing the area in

the tank below the water.

For stuff/mass nouns, the system assumes the user has

drawn the uppermost edge of the object, and that the

object descends from there to fill the container below it.

Thus, in the current example, the system looks for a cycle

such that glyph for water overlaps with the top of the

cycle, while the rest of the cycle is made up of points

from the tank glyph. If an appropriate cycle is found, it is

identified as the region that the user is looking for, and it

is then converted to a polygon and processed like a

physical object.

Physical objects (the third path in Figure 6) are checked

to see if they contain other glyphs (containment is one of

the spatial relationships computed automatically by

CogSketch). If the glyph has other objects inside of it, the

algorithm as currently implemented assumes that the

correct segmentation for the glyph is the space around the

inner objects. This is the correct interpretation for

situations like the layers of the earth, or bubbles in soda.

Figure 7 shows the results of the query “mantle” in a

sketch of the layers of the Earth.

Figure 7. The results from the user query “mantle” in a

sketch of the layers of the Earth.

If a physical object has no interior glyphs, the whole area

of the glyph is considered the correct depiction and it is

highlighted in the diagram. Figure 8 shows the results of

our system on the water and tank example when queried

for “water”.

Figure 8. A screen shot of CogSketch showing the results

from the user query “water”. The shaded are represents

the region that the system infers is water.

This approach easily extends to other, more complex

situations. In Figure 9 the sketch is composed of four

glyphs: tank1 (the tank on the left), a pipe, tank2 (the tank

on the right), and one glyph representing the water. Since

our algorithm for locating cycles of edges is flexible

enough to find cycles over multiple glyphs, the two tank

problem is easily handled.

Figure 9. Another result for the query “water”. In this

case the sketch contains four separate glyphs {tank1,

tank2, pipe, water}.

We are also able to handle situations where there are

several glyphs that are conceptually labeled as mass

nouns, even if they are drawn similarly. In Figure 10 the

sketch is a tank with both oil and water in it. When

queried for “oil” our system is able to easily identify the

extent of the area representing oil. Situations like this

would be particularly tricky for template based systems

since both oil and water are drawn with similar glyphs.

Also, while the wavy line is typical of a convention used

to indicate liquid in a sketch, it is by no means a

standardized symbol.

Figure 10. In this example, the system is able to easily

discriminate between the region representing “oil” and

that representing “water” using the same techniques.

The current algorithm for physical objects has been

sufficient for all of the diagrams that we have considered

in this paper, however, when a glyph is a container it isn’t

always the case that you want just the space around the

interior glyphs. For example, consider a glass of water

with a straw in it. When you are determining the spatial

extent of the water, it actually also covers the area

occupied by the straw. We are extending the spatial

extent algorithm to account for situations like this by

further examining the objects in container/contained

groups. This is another example where we will need to

combine conceptual information from the KB with spatial

information from the ink to identify the correct spatial

extent.

The processing for an entity that has been determined

to be an instance of a Path-Spatial proceeds much like the

processing of a mass noun, by first checking to see how

the object is drawn in the sketch. Here we will refer back

to the solar system/orbit example from Figure 5. In this

case, the system checks to see if the path is represented by

a single line, like the orbit in the sketch. This suggests

that the points on the line make up the conceptual entity.

The other option, of course, is that a path is depicted by

multiple lines or polygons such as a drawing of a railroad

track or road. This condition is not currently being

handled by our system, but is in the process of being

added.

Figure 11. A screenshot showing the spatial extent

identified for “orbit” and “Earth” in a simplified drawing

of the solar system. Even though both objects are drawn

similarly, conceptual information provides clues as to

their different interpretations.

Compound Queries

Often the parts of a diagram that need to be referred to are

more complex than just “water”. For example, when

doing problems in physics or chemistry, it may be useful

to be able to refer to the water in one part of the apparatus

only. Our system also handles queries of the form

<object> <relation> <object>. Information about

relations from ResearchCyc is used to understand the

semantics of such queries. Figure 12 illustrates the result

for the query “water in tank1”. The analysis is essentially

that of Figure 9 with the additional specification of “in

tank1” leading to the intersection of the water polygon

and the tank1 polygon.

Figure 12. Screenshot showing the result of the query

“water in tank1”

Related Work

The division of scene elements into edges and regions in

sketches was explored in the Mapsee program of Reiter

and Mackworth (Reiter & Mackworth, 1989). They

proposed a logical framework for depiction that

formalized the mapping between images and scenes of

simple maps containing roads, rivers, shores (represented

as edges in the images) and water and land (represented

by regions in the images). They identified a set of six

visual relations ({tee, chi, bounds, closed, interior, and

exterior}) and provided axioms and constraints which

combined these visual primitives and mapped them to the

scene elements (roads, rivers, etc). Like Mapsee, we are

concerned with modeling how conceptual entities are

depicted. However, Mapsee was designed for one

domain, i.e., maps, and its axioms map visual elements

directly to interpretations in that domain. By contrast, our

model works through an intermediate distinction –

regions versus edges – and performs reasoning over a

large-scale, off-the-shelf knowledge base to identify

depiction constraints. Their task was fundamentally one

of image interpretation, recognizing unlabelled lines as

map elements, whereas our task starts with conceptually

labeled ink.

Alvarado and colleagues (Alvarado & Davis, 2004;

Alvarado, Oltmans, & Davis, 2002) describe a multi-

domain sketch recognition engine. Their systems use a

hierarchical shape description language where low level

shape description (circles, arrows, etc) are defined once in

a domain-independent fashion. Then a separate set of

rules ties a given shape to a domain specific interpretation

(e.g. an arrow represents a child link in a family tree

diagram). This approach can work well in a very tightly

constrained domain with a small number of differentiated

symbols (family trees, circuit diagrams, etc.)

Unfortunately, it does scale to the more open-domain,

unconstrained types of sketches that we are concerned

with.

There could be advantages to incorporating some

carefully restricted low-level shape recognition to our

depiction reasoning, to identify common elements (e.g.,

arrows). For example, in a physics system, it might be

useful to automatically recognize arrows and interpret

them as forces while leaving the types of objects that

those forces can act on unconstrained given the wide

variety of physical objects in the world.

We believe that recognition is not very important for

the sketch understanding tasks we are focused on. Unlike

sketches in engineering design, where later versions will

need to be imported to a formal CAD system, the sketches

produced for student assessments are meant to be short

lived. Also, while the amount of detail can vary greatly,

much of it is superfluous to the pedagogical goals of the

assignment and is not important for the overall

interpretation of student understanding.

Conclusions and Future Work

We have described how to use a combination of semantic

and geometric information to identify one type of

depiction convention in sketched diagrams. Our

interpretation process closely couples semantic and

geometric information to reason about depiction

conventions and to use those conventions to segment the

sketch into meaningful regions and edges.

Our work on depiction conventions is motivated by

several projects. Creating a platform for sketch-enabled

educational software is one of our long-range goals.

Another is the use of sketches in multimodal knowledge

capture. For example, diagrams in educational materials

are accompanied by explanatory text. We are creating a

system that learns from sketched diagrams plus

accompanying simplified English text. Being able to

correctly interpret how entities in the diagram are

depicted is essential for integrating knowledge across

modalities.

We are also interested in studying depiction

conventions which are widely used, but not domain or

situation dependent. For example, call-outs and cut-

aways are two conventions that are used across disciplines

which have important implications for how diagrams (and

the spatial relations in them) should be interpreted.

Figure 13. Example of a cut-away in a diagram

CogSketch is free and available online (the online

version comes bundled with OpenCyc, as opposed to

ResearchCyc which was used for this work). As more

people download and use CogSketch, we are hoping to

amass a large library of sketches. This library will enable

us to more thoroughly survey the conventions used in

sketched diagrams. It will also provide a corpus of

labeled sketches that we hope will be useful to us and to

others in the sketch understanding community.

Acknowledgements

 This work was supported by a grant from the Office of

Naval Research and by the National Science Foundation

under Grant No. SBE-0541957, The Spatial Intelligence

and Learning Center.

References

Alvarado, C., Davis, R. (2004). Sketchread: a multi-
domain sketch recognition engine. Proceedings of the 17th
annual acm symposium on user interface software and
technology.
Alvarado, C., Oltmans, M., Davis, R. (2002). A
framework for multi-domain sketch recognition.
Proceedings of aaai spring symposium on sketch
understanding.
Buckley, S. (1979). Sun Up to Sun Down. New York:
McGraw Hill.
Cohn, A. (1996) Calculi for Qualitative Spatial
Reasoning. In Artificial Intelligence and Symbolic
Mathematical Computation, LNCS 1138, eds: J Calmet, J
A Campbell, J Pfalzgraph, Springer Verlag, 124-143.
Forbus, K., Ferguson, R., & Usher, J. (2001). Towards a
computational model of sketching. IUI’01. January 14-17,
2001. Santa Fe, New Mexico.
Forbus, K., Tomai, E., and Usher, J. (2003). Qualitative
spatial reasoning for visual grouping in sketches.
Proceedings of the 17th International Workshop on
Qualitative Reasoning, Brasilia, Brazil, August.
Futrelle, R. P. (1990). Strategies for Diagram
Understanding: Object/Spatial Data Structures, Animate
Vision and Generalized Equivalence. In 10th ICPR (pp.
403-408): IEEE Press.
Reiter, R. and Mackworth, A.K. (1989). A Logical
Framework for Deptiction and Image Interpretation.
Artificial Intelligence, 41, 125-155.

http://www.qrg.northwestern.edu/papers/papers_by_year.html#start2003
http://www.qrg.northwestern.edu/papers/Files/QVSS_QR03.pdf
http://www.qrg.northwestern.edu/papers/Files/QVSS_QR03.pdf
http://www.qrg.northwestern.edu/papers/Files/QVSS_QR03.pdf

Building and Comparing Qualitative Descriptions of

Three-Dimensional Design Sketches

Andrew Lovett Morteza Dehghani Kenneth Forbus
{andrew-lovett@, morteza@cs., forbus@}northwestern.edu

Qualitative Reasoning Group, Northwestern University

Abstract

We describe a method for constructing qualitative structural
descriptions of hand-drawn sketches of 3D objects. We use
visual grouping and segmentation operations to extract
edges and surfaces, and use line labeling with an extension
of Malik’s (1987) junction catalog to identify three-
dimensional features in order to construct an orientation-
invariant symbolic representation. These symbolic
representations can be used to identify corresponding
surfaces and edges in two different sketches drawn in
different perspectives of the same object. The comparison
process uses the Structure-Mapping Engine, with additional
sketch-specific matching constraints. We evaluate our
techniques with a sketch recognition task, using drawings of
12 objects from an engineering design textbook.

Introduction

Representing and reasoning about human-drawn sketches
presents an interesting problem for AI. Sketches are a
promising input modality for intelligent systems: people
can often draw an object or spatial layout more easily than
they can describe it. However, every person’s drawing
style is different, and most of us are not skilled artists.
This makes accurate interpretation of sketches a difficult
problem. We have argued that one key to reasoning about
sketches intelligently is the use of qualitative spatial
representations (Forbus et al., 2001). The detailed,
quantitative description of ink is laden with accidental
information, whereas a qualitative representation of key
features can concisely summarize the information that was
meant to be conveyed.
 Qualitative representations are particularly important for
tasks where sketches are compared. For example, a system
comparing two users’ sketches of a bucket must contend
with differences in width and orientation of the bucket’s
sides, as well as the presence or absence of water.
Qualitative representations of edges and relationships
between edges can help a system identify commonalities in
the sketches, such as the presence of an ellipse at the top,
two straight edges along the sides, and a straight or curved
edge at the bottom.

 We use CogSketch (Forbus et al., 2008), a publically
available sketch understanding system

1
, to automatically

derive qualitative spatial relations between objects in a
sketch, as well as between edges within an object.
Sketches are compared using the Structure-Mapping
Engine (SME) (Falkenhainer, et al. 1986), a computational
model of similarity and analogy. CogSketch and SME have
been used together to accomplish several spatial reasoning
tasks, including answering geometric Miller Analogy Test
questions (Tomai et al., 2005), matching human
performance on a subset of the Raven’s Progressive
Matrices, a visually-based intelligence test (Lovett et al.,
2007b), and sketch recognition (Lovett et al., 2007a). In
the sketch recognition task, the system was able to
recognize sketches of 8 household objects, including a
bucket and an oven, after being trained on only 2-6
example sketches of each object. In contrast, sketch
recognition systems that rely on quantitative sketch
representations often require at least an order of magnitude
more training examples (e.g., Liwicki and Knipping, 2004;
Sharon and van de Panne, 2006).
 One significant limitation of the (Lovett et al., 2007a)
system was that it required that all of the sketches of a
given object be drawn from the same perspective. Many of
the qualitative relations used were orientation-dependent.
Even a small rotation of a sketched object in 3D changes
the relative positions of the edges and junctions and causes
some to become occluded while others become visible,
causing significant representation changes.
 The key to correctly comparing sketches of objects
drawn at different orientations is to identify and encode
qualitative relations that remain constant across rotations in
space. In this paper, we introduce our approach for
constructing orientation-invariant representations of 3D
objects. Briefly, we begin by segmenting a sketch into
edges and using closures among those edges to identify the
surfaces of the object. Edges are then classified via line
labeling, using an extension of Malik’s (1987) junction
catalog. The edge labels tell the system when an edge
represents a corner between two surfaces and when it is an
edge of one surface occluding the other. With this
information, the system is able to construct a qualitative

1

http://www.spatialintelligence.org/projects/cogsketch_inde

x.html

representation of the spatial relations between edges and
surfaces that remains relatively stable across rotations.
 We start by briefly reviewing SME. The process of
building qualitative sketch representations is explained
next, followed by the sketch matching algorithm. We then
evaluate the system via a recognition task run on a set of
12 sketched objects from an engineering design textbook.
Finally, we summarize related and future work.

Comparison via Analogy

Qualitative representations can be compared using the
Structure-Mapping Engine (SME) (Falkenhainer et al.
1986). SME is a cognitive model based on Gentner’s
(1983) structure-mapping theory of analogy. SME takes as
input two descriptions, a base and a target. Each
description consists of a set of entities, attributes of
entities, and relations. First-order relations directly relate
two or more entities, while higher-order relations take
other, lower-order relations as their arguments

2
. Given the

two descriptions, SME finds one to three mappings
between the base and target by aligning their common
structure. Structural alignment is governed by the
systematicity constraint, i.e., SME prefers mappings in
which higher-order relations align.
 Each mapping returned by SME contains: (1) a set of
correspondences, or match hypotheses (mh’s) between
elements (entities, attributes, and relations) in the base and
elements in the target. (2) the structural evaluation score
(SES), a measure of similarity. Mappings with greater
systematicity, i.e., mappings in which higher-order
relations are aligned, receive a higher SES. (3) candidate
inferences, inferences carried over from the base to the
target based upon their common structure.

The Surface Extraction Algorithm

Surfaces are identified in a sketch via a two-stage process
(Figure 1). In the first stage, the rough sketch is segmented

2
 The notion of order in structure-mapping differs from traditional

logic: it concerns depth of structure. Entities have order zero; the

order of a statement is one plus the maximum order of its

arguments.

into edges. In the second stage, edges are grouped together
to form surfaces.

Segmentation

The representation system begins with a set of polylines,
lists of points representing the lines sketched by the user.
It does not assume that each polyline corresponds with one
edge in the sketch. Rather, it begins by looking for
connections between the polylines (Step 1). If two polyline
endpoints are sufficiently close to each other, the polylines
will be connected by a junction. If one polyline’s endpoint
is near the middle of another polyline, the second polyline
will be split, and all three will be connected by a junction
at the intersection point. If two polylines intersect, they
will be segmented into four connected polylines. The
system searches for connections iteratively at multiple
scales, beginning with a small distance threshold and
increasing the threshold for endpoints that fail to connect
to anything. At the end of this process, any pairs of
polylines that are connected by a junction containing only
two polylines are joined together, since it is possible the
user meant them to both be part of the same edge. The
output of this process is a set of proto-edges, as well as
junctions between proto-edges.
 Proto-edges are then segmented to form the actual edges
of the sketch (Step 2). Possible segmentation points are
identified by finding maximal derivates of the curvature of
each proto-edge. We follow Lowe’s (1989) approach of
parameterizing a proto-edge’s list of points to form x- and
y-functions and convolving each function with a Gaussian
and a derivative Gaussian to calculate the curvature at each
point along the proto-edge. This allows the system to
modify the width of the Gaussian to look for changes in
curvature at different scales, depending on the length of the
proto-edge. Once segmentation points are identified, they
are evaluated by looking at the curvedness and relative
orientation of the edge segments on either side of the point.

Grouping

Here connected edges are grouped together in order to
identify the surfaces of the sketch. All surfaces except the
background possess an exterior, a closed cycle of edges
that surrounds them. However, not every cycle of edges
corresponds to a surface. Our line labeling algorithm
assumes that every edge represents a boundary between
surfaces. Therefore, only the minimal closures, the tightest
possible cycles, correspond to surfaces in the sketch.
 Our system simplifies the process of surface detection
and line labeling by assuming that a given sketch
represents only a single object. It begins by finding the
outer boundary of that object (Step 3). This is done by
shooting a ray from the center of the sketch outward and
identifying the last edge hit by the ray, which must be an
external edge. The system then traces clockwise along the
junctions between edges, always choosing the edge which
is oriented the farthest in the clockwise direction, to
determine the cycle of edges that make up the object’s

Segmentation

1) Identify junctions between polylines, segment

polylines at junctions to form pseudo-edges.

2) Segment pseudo-edges at discontinuities in

curvature to form edges.

Grouping

3) Identify edge cycle that bounds the object.

4) Identify surfaces within the object by finding

minimal closures of edges.

5) Repeat 3 & 4 for internal edges.

Figure 1. The algorithm for finding surfaces

outer boundary. Next, the system traces both clockwise
and counter-clockwise among the inner edges that connect
to these external edges, in order to find both of the surfaces
that meet along each edge (Step 4).
 This method will find all surfaces for the set of edges
that are connected to the outer boundary of the sketched
object. However, there may be other, internal sets of
connected edges that do not connect to these edges. These
internal edges might represent a hole or protuberance on
the object. In order to find surfaces among the internal
edges, the entire process is repeated, beginning with
shooting out a ray to find an edge representing the exterior
of the internal edges (Step 5). Exterior internal edges are
also marked for the larger surface in which the internal set
of edges is found.

Line Labelling

Surface extraction returns a set of surfaces, along with the
cycle of edges that bounds each surface. Line labeling is
used to determine which of these edges are actually part of
the surface and which edges are part of another surface that
is occluding this surface. We use an extension of Malik’s
(1987) line labeling algorithm that handles curved surfaces.
This algorithm labels edges in a drawing as convex corners
between surfaces, concave corners, occluding edges where
one surface occludes another, and limb edges where a
surfaces curves away from the viewer. A junction catalog
specifies, for each type of junction, all possible
combinations of labelings for the edges in it. Constraint
satisfaction is used to solve for all edge labels.
 Malik’s (1987) algorithm and junction catalogue make
several assumptions about the objects that are being
interpreted. Unfortunately, the class of sketches we are
examining, engineering design drawings, violate several of
these assumptions. In the subsections that follow, we
describe each of the assumptions that is violated and how
we have adapted the junction catalog and labeling
algorithm to deal with it. Figure 2 contains several example
sketches. We will refer to specific junctions and surfaces

within this figure by letter. Figure 3 shows the additions
which were made to the junction catalogue.

1) Trihedral surfaces

The junction catalogue assumes that no more than three
surfaces meet at any vertex. However, some of the design
sketches considered contain a type of vertex made up of
four surfaces, +-vertices. +-vertices are formed when two
cuboids are adjacent but not quite aligned (see junction A
in Figure 2). Though they are a meeting of four edges, they
always appear in two-dimensional sketches as T-junctions
(where two collinear edges are bisected by a third edge).
We allow for these types of vertices by adding a new
possible labeling for T-junctions, one in which instead of
both collinear edges being occluding edges, one is an
occluding edge and the other is a concave edge.

2) Piecewise smooth surfaces

Malik’s algorithm assumes that surfaces curve smoothly.
However, our design sketches often contain surfaces with a
discontinuity in their curvature, where they change from
being straight to being curved (see surface B). This type of
surface has two effects. First, curved-L-junctions, where a
straight edge and a curved edge meet, may appear between
edges that lie along the exterior of these types of surfaces.
We expanded the set of labelings for curved-L-junction to
include all the labeling allowed for L-junctions (junctions
between two straight edges) as well as one additional
labeling in which both edges are convex (e.g., junction C).
Second, there is a new type of junction, the curved-away-
L-junction (junction D), in which the orientations of the
straight edge and the curved edge are discontinuous at the
point where they meet. This junction appears where a
surface (such as B) meets another surface at the point
where it changes from straight to curve. Its only possible
labeling is convex for one edge and concave for the other.

3) No curved holes

The existing junction catalogues contain no labellings to

Figure 2. Four of the 12 objects sketched in CogSketch

deal with circular holes. This is a problem for design
sketches because objects are often designed to fit together
around a cylindrical axle, so the objects will contain holes.
Often these holes are drawn as a simple ellipse (junction
E). Other times, they appear as curved-T junctions
(junction F). Because the edge circling around a hole can
vary between convex and occluding, our system simply
assigns all edges around curved holes a new label, hole.
 In theory, an ellipse drawn by the user might indicate a
sphere or a ring, as well as a hole. Our system relies on the
assumption that the user is sketching only one object.
Thus, any interior ellipse must be a hole. Similarly, any set
of connected interior edges whose bounding edges are
connected by only curved-T-junctions must be a hole. In
fact, if a hole is not quite circular, it may also contain
curved-L-junctions (see junction G). Thus, curved-L-
junctions that are located along the bounding edges of an
interior set of edges are reclassified as interior-L-junctions,
and their edges can only be labeled as hole edges. In this
example, a set of connected edges that actually do connect
to the exterior edges are considered interior because all
connections to the exterior edges are through T-junctions
(junctions H and I), indicating that this is probably a set of
interior edges that have been occluded by exterior edges.

4) No accidental viewpoints

Finally, traditional line labeling methods assume that
drawings contain no accidental viewpoints, i.e., there are
no junctions that are distorted by being viewed from just
the wrong viewpoint. However, the design sketches
contain two types of distortions. First, a viewpoint may
place two junctions on top of each other, such that they
appear to be a single junction at which four or more edges
meet (junction J). Our system utilizes the simple expedient
of ignoring any junction with more than three edges during
labeling. Second, two connected edges that are not
collinear in three-dimensional space may happen to line up
in the sketch such that they appear to be collinear, causing
a three-edge junction with them and a third edge to appear
to be a T-junction (junction K). Our system initially looks
for a normal sketch labeling and then, if this fails, looks for
a labeling in which at most one T-junction in the sketch is
ignored. If this fails, it increases the number of ignored T-
junctions. In principle, this approach could result in a
significant loss of efficiency, but in practice we have found
there is never more than one or two distorted T-junctions.

Dealing with ambiguity

One weakness of the line labeling approach is that it can
produce multiple consistent line labellings for a given
sketch. Fortunately, the ambiguity can be decreased
significantly by assuming that all the exterior edges of the

object are occluding the background surface. However,
there will still sometimes be a few possible labelings for
some edges. In such cases, the system simply assumes that
the first labeling found is correct. Unusual junction labels,
such as the new T-junction labeling, are considered last to
decrease the likelihood that they will be included if a
simpler globally consistent labeling is available.

Qualitative Representation

The representations generated by the system contain an
entity for each edge and each surface found in the sketch.
In addition, they contain three types of qualitative spatial
relations between these entities: corners along a surface,
corners along an edge, and parallel surface relations.
Corners are relatively local, and thus are represented as
only first- or second-order relations. Parallel surface
relations are more global, relating large parts of a sketch.

Corners along a surface
Every surface except the background has a cycle of edges
that bound it. The edge labels tell the system which of
these edges actually lie along the surface, rather than
occluding the surface. For each pair of adjacent edges
along a surface, the system asserts a relation describing the
corner between them. Typically, corners are classified as
convex or concave, although several additional
classifications are used for corners that fall along unusual
junctions (e.g., corners where a flat surface and a curved
surface meet). Second-order relations are asserted to
describing adjacent pairs of corners along a surface. See
Figure 4 for a simple example.

Corners along an edge
Each edge labeled either convex or concave is a corner
between two surfaces. Basic, first-order relations are
asserted to describe these corners.

Pseudo-junction | Curved-T-junction | Interior-L-junction

Curved-L-junction | Curved-away-L-junction | T-junction

Figure 3. Additions to the junction catalogue (+ convex, -

concave, ^ occluding, ^+ hole, unlabelled means unknown)

 To simplify the process of representing holes, a single
entity is constructed for a given hole, regardless of the
number of surfaces actually found within the hole. Then,
each of the edges along the hole is represented as a
boundary between the surrounding surface and the hole.
Second-order relations are included to represent pairs of
adjacent edges that lie around a hole. However, none of the
edges lying within the hole are represented. Thus, anything
located along the inside of a hole or visible through the
hole is ignored in the present representation scheme.

Parallel surface relations
The corner relations described thus far are fairly local. An
object may contain a large number of similar-looking
corners. A representation consisting only of a large number
of similar, low-level relations causes problems for SME,
because SME does not perform an exhaustive search for an
optimal mapping. Thus larger-scale, higher-order relations
are required to anchor the match.
 We rely on a heuristic about parallel edges in drawings
to infer higher-order structure. As Varley, Martin, and
Suzuki (2005) observe, parallel lines in a drawing usually
correspond to parallel edges in the three-dimensional
object being drawn. Therefore, if in the sketch one planar
surface has a corner A and another planar surface has a
corner B such that the first edge of corner A is parallel to
the first edge of corner B and the second edge of corner A
is parallel to the second edge of corner B, then the two
surfaces are almost certainly parallel in three dimensions.
 The system asserts three types of parallel surface
relations for surfaces that possess corners with pairs of
parallel edges. The first is for cases when one of the pairs
of edges is actually collinear. In this case, the evidence for
the surfaces being parallel is greatest because collinear
lines in a drawing nearly always correspond to collinear
edges in three dimensions (Varley et al., 2005). The system
asserts a higher-order relation stating that the colinearity of
the two edges supports the two surfaces being parallel.
 The second type of relation is for cases where the
parallel surfaces are each connected to the same third
surface by parallel edges. A higher-order relation is
asserted stating that the fact that the two corners between
the parallel surfaces and the third surface are parallel
supports the belief that the two surfaces are parallel.
 The third type is for all other cases where two surfaces
have corners with pairs of parallel edges. This is the
weakest evidence for parallel surfaces, so the system
simply asserts a first-order parallel surface relation.
 All of the parallel surface relations described thus far
are symmetric relations. A symmetric relation is one in
which the order of the arguments can be reversed. For
example, the relation (parallelSurfaces A B) is identical
to (parallelSurfaces B A). This representation makes no
commitment about the relative position or orientation of
the edges and surfaces being related.
 People clearly use some orientation-specific information
when comparing images, so we include orientation-specific
higher-order relations to aid SME in finding the correct

mapping. The system asserts an orientation-specific
version of the parallel surface relation for collinear edges.
Thus, while a mapping can be found between any pair of
collinear edge relations, there will be a stronger mapping in
cases where the relative position and orientation of the
edges and surfaces is maintained.

Comparing Shapes

Given two sketches in CogSketch, our system generates
qualitative representations of them as described above and
uses SME to find a mapping between them. Given the
nature of sketches, we add two additional constraints to the
matching process. A mapping is coherent if edges that are
connected in the base sketch correspond to edges that are
connected in the target sketch. In cases where two edge
mh’s (match hypotheses between an edge in the base and
an edge in the target) in a mapping are inconsistent, e.g.,
the two base edges are connected while the two target
edges are unambiguously disconnected, both edge mh’s are
removed from the mapping, along with any mh’s between
relations that take those edges as arguments. In cases
where an edge mh is inconsistent with a large number of
other edge mh’s, the entire SME match will be rerun with
the constraint that the faulty edge mh must be excluded
from all mappings. This may allow SME to find a superior
mapping that it failed to find on the first run because of
being distracted by incoherent edge matches.
 A mapping is complete if every edge mh that can be
included in the mapping without violating mapping
coherence is included. This completeness criterion is very
useful when SME is being used to recognize when two
sketches are of the same object. Incomplete edge mh’s are
identified by finding where both the base edge and the
target edge connect to additional edges that have been left
out of the mapping. Note that if, say, only the base edge
connects to additional edges, there is no problem; it may be
that the corresponding edges are occluded in the target.
Completeness is implemented by forbidding incomplete
edge mhs to appear in mappings, along with any mhs
between relations that take those edges as arguments.

Evaluation

We evaluated our system using a set of 12 sketched objects
taken from an exercise in an introductory engineering

Figure 4. Typical corner relations

adjacent corners

convex concave
 corner corner

Edge-A Edge-B Edge-C

First-Order

Relation

Entity

Second-Order

Relation

design textbook (Lueptow, 2007). In the exercise, sets of
four objects were shown in each of three sketching
perspectives (isometric, oblique, and orthographic), and
students were asked to sketch the objects in the other two
perspectives. These sketches were chosen because they
were a beginning exercise, and hence not overly
complicated, while still being representative of the kinds of
3D sketches engineers would be required to make.
 We tested the system’s ability to recognize oblique and
isometric perspective sketches of the same object. The
orientations of these two perspectives are about 45˚
different, resulting in a number of differences in the
sketches. See Figure 2 for examples of four objects; the
top row are sketched at an oblique perspective, and the
bottom row are sketched at an isometric perspective.
 A design student was asked to draw all 12 objects in
both an oblique and and an isometric perspective. Then,
one of the experimenters sketched each of the objects in
CogSketch, using the student’s sketches as a guide but
making corrections where the student had made mistakes,
such as forgetting to draw a hole in a surface.
 Our system computed qualitative representations for all

24 sketches. Because only one of the objects contained

internal edges that were not part of a hole, those edges

were left out of the representation. Each sketch was then

compared to the other 23 sketches using SME. The

measures of success were (a) whether the line labeling

algorithm provided correct results on each sketch, and (b)

whether a given sketch’s closest match was the other

sketch of the same object, based on SME’s mapping score.

Results
The output of the line labeling algorithm yielded correct
results on all edges for 22 of the 24 sketches. The other
two sketches showed minor mistakes; typically the correct
labeling had also been found, but it was not the first
labeling returned by the algorithm.
 The recognition evaluation showed an overall success
rate of 20/24, or 83%. That is, for 20 of the 24 sketches,
the best mapping found by SME was with the other sketch
of the same object. Because there were 22 distractor
sketches, chance performance would be 1/23, or 4%.
 The four mistakes occurred due to the failure of the
system to recognize either of the perspectives of two of the
objects. The rightmost object in Figure 2 is one of these.
These objects contained partially curved edges that proved
difficult to segment consistently. Also, the other problem
object was rotated enough to make a single surface in one
perspective appear to be two surfaces in the other.

Related Work

Most work on sketch recognition focuses on recognizing

objects drawn at the same orientation. Nonetheless,

recognition systems with quantitative representation

systems often require 20-50+ training examples per

category (Liwicki & Knipping, 2005; Sharon & van de

Panne, 2006), or can only be trained and evaluated on

sketches by a single user (Sezgin & Davis, 2007).

 Previous work on constructing three-dimensional

representations of sketches has tended to focused on

recovering frontal geometry (Varley et al., 2005; Kaplan &

Cohen, 2006), i.e., the distance to each point along the

visible surfaces. Because these distances change as

surfaces rotate in space, it is unclear whether this type of

representation would be useful in comparing two sketches

of an object at different orientations.

Discussion and Future Work

In the evaluation, our system demonstrated that it was
capable of constructing qualitative spatial representations
sufficiently robust to recognize two sketches of an object
drawn at different orientations, despite a large number of
distracters. Of the 12 objects being represented, only 2
caused problems for the system. We believe that these
initial results are promising, and that they show it is
possible, using qualitative representations, to accurately
compare different-looking sketches of the same object, at
least within the domain of engineering design.
 However, the system possesses a major limitation.
While it allows for a few junction distortions due to the
viewpoint, it assumes the user has sketched the object
nearly perfectly, allowing a globally consistent line
labeling to be found. This is fine for experts, but for naïve
users, a more flexible line labeling strategy will be needed.
The probabilistic line labeling algorithm developed by
Varley et al. (2004) is one promising option.

Being able to construct robust qualitative 3D
representations from 2D sketches and identify them via
comparison will facilitate using sketch understanding in a
variety of applications. These include education in
engineering, geoscience, and other highly spatial areas,
plus support tools for creative conceptual design. We hope
to explore these in future work.

Acknowledgements

This work was supported by NSF SLC Grant SBE-
0541957, the Spatial Intelligence and Learning Center
(SILC).

References

Falkenhainer, B., Forbus, K., and Gentner, D. 1986. The

Structure-Mapping Engine. In Proceedings of AAAI ’86.

Forbus, K., Usher, J., Lovett, A., Lockwood, K., and

Wetzel, J. 2008. CogSketch: Open-Domain Sketch

Understanding for Cognitive Science Research and For

Education. In Proceedings of Eurographics Sketch-Based

Interfaces and Modeling.

Forbus, K., Ferguson R., and Usher, J. 2001. Towards a

computational model of sketching. In Proceedings of

Intelligent User Interfaces.

Gentner, D. 1983. Structure-Mapping: A Theoretical

Framework for Analogy. Cognitive Science 7(2): 155-170.
Kaplan, M., and Cohen, E. 2006. Producing models

from drawings of curved surfaces. Workshop on Sketch-
Based Interfaces and Modeling.

Liwicki, M., and Knipping, L. 2005. Recognizing and

Simulating Sketched Logic Circuits. In Proceedings of the

9
th

 International Conference on Knowledge-Based

Intelligent Information & Engineering Systems, 588 – 594.

Lovett, A., Dehghani, M., and Forbus, K. 2007a.

Incremental Learning of Perceptual Categories for Open-

domain Sketch Recognition. In Proceedings IJCAI ’07.

Lovett, A., Forbus, K., and Usher, J. 2007b. Analogy

with Qualitative Spatial Representations Can Simulate

Solving Raven’s Progressive Matrices. In Proceedings of

the 29
th

 Annual Conference of the Cognitive Society.

Lueptow, R. M. 2007. Graphic Concepts for Computer

Aided Design. Upper Saddle River, NJ: Prentice Hall.

Malik, J. 1987. Interpreting Line Drawings of Curved

Objects. International Journal of Computer Vision 1: 73-

103.

Sharon, D., and van de Panne M. 2006. Constellation

Models for Sketch Recognition. In 3
rd

 Eurographics

Workshop on Sketch-Based Interfaces and Modeling.

Sezgin, T. M., & Davis, R. 2007. Sketch interpretation

using multiscale models of temporal patterns. IEEE

Computer Graphics and Applications 27(1): 28-37.

Tomai, E., Lovett, A., Forbus, K., and Usher, J. 2005. A

Structure Mapping Model for Solving Geometric Analogy

Problems. In Proceedings of the 27
th

 Annual Conference of

the Cognitive Science Society.

Varley, P. A. C., Martin, R. R., and Suzuki, H. 2005.

Frontal Geometry from Sketch of Engineering Objects: Is

Line Labelling Necessary? Computer-Aided Design 37:

1285-1307.
 Varley, P. A. C., Martin, R. R., and Suzuki, H. 2004.
Making the Most of Using Depth Reasoning to Label Line
Drawings of Engineering Objects. In Proceedings of the 9

th

ACM Symposium on Solid Modeling and Applications.

Temporal Logic Patterns for Querying Qualitative Models
of Genetic Regulatory Networks∗

Pedro T. Monteiro1,2, Delphine Ropers1, Radu Mateescu1, Ana T. Freitas2, and Hidde de Jong1

1INRIA Grenoble - Rhône-Alpes, 655 Av. de l’Europe, Montbonnot, 38334 St. Ismier Cedex, France
{Pedro.Monteiro, Delphine.Ropers, Radu.Mateescu, Hidde.de-Jong}@inrialpes.fr

2IST/INESC-ID, 9 Rua Alves Redol, 1000-029 Lisboa, Portugal
atf@inesc-id.pt

Abstract

Formal verification based on model checking provides
a powerful technology to query qualitative models of
dynamical systems. The application of model-checking
approaches is hampered, however, by the difficulty for
non-expert users to formulate appropriate questions in
temporal logic. In order to deal with this problem, we
propose the use of patterns, that is, high-level query
templates capturing recurring questions which can be
automatically translated to temporal logic. We develop
a set of patterns for the analysis of qualitative models
of genetic regulatory networks, which are sufficiently
generic though to be useful in other application do-
mains. The applicability of the patterns has been in-
vestigated by the analysis of a model of the network of
global regulators controlling the carbon starvation re-
sponse in Escherichia coli.

Introduction
Qualitative simulation provides predictions of the possible
qualitative behavior of a dynamical system (Kuipers 1994).
It is an attractive approach when little or no quantitative in-
formation on parameter values is available, or when one is
interested in the range of possible qualitative behaviors com-
patible with the structure of the system. These conditions
are often met in the analysis of biological systems, which
explains the popularity of qualitative approaches in math-
ematical and theoretical biology (e.g., (Batt et al. 2007;
Bellazzi et al. 2001; King, Garrett, and Coghill 2005;
Thomas, Thieffry, and Kaufman 1995)). An example is
the method for the qualitative simulation of genetic regu-
latory networks described in (Batt et al. 2007). This ap-
proach is based on a class of piecewise-linear (PL) differen-
tial equation models to describe regulatory interactions be-
tween genes, and has been implemented in the computer tool
Genetic Network Analyzer (GNA).

A problem with the use of qualitative simulation is the
potential explosion of the number of qualitative behaviors
when dealing with large and complex systems whose dy-
namics cannot be sufficiently constrained. In order to deal
with this problem, the use of model-checking techniques has
been proposed (Shults and Kuipers 1997). This approach

∗This paper also appears in the proceedings of the Eighteenth
European Conference on Artificial Intelligence, ECAI’08.

was successfully explored for the validation of qualitative
models of genetic regulatory networks, by coupling GNA to
state-of-the-art model checkers (Batt et al. 2005). It allows
model predictions to be verified by experimental observa-
tions expressed as statements in temporal logic.

Formal verification based on model checking provides
a powerful technology to query qualitative models, but it
raises new issues, notably that of formulating good ques-
tions when analyzing a large model. Posing relevant and
interesting questions is critical in modeling in general, but
even more so in the context of applying formal verification
techniques, due to the fact that it is not easy for non-experts
to formulate queries in temporal logic. The response to this
problem proposed by the formal verification community is
the use of patterns, that is, high-level query templates that
capture recurring questions in a specific application domain
and that can be automatically translated to temporal logic
(Dwyer, Avrunin, and Corbett 1999). This approach does
not seem to have received any attention in qualitative rea-
soning thus far.

The aim of this paper is to develop a set of patterns for
the analysis of models of genetic regulatory networks. Its
main contributions are twofold. First, we develop a set of
generic query templates, based on a review of frequently-
asked questions by modelers, and translate these templates
to temporal logic formulas.Although the patterns have been
formulated for the analysis of genetic regulatory networks,
they are sufficiently generic to carry over to other application
domains. Second, we show the interest of the patterns in a
case-study, concerned with the analysis of a large and com-
plex model of the E. coli carbon starvation response. This
model extends a previous model (Ropers et al. 2006) by
taking into account additional regulators of bacterial stress
responses.

Patterns for querying qualitative models
Description of network dynamics
As a basic hypothesis, we assume that the dynamics of ge-
netic regulatory networks can be modeled by means of fi-
nite state transition systems (FSTSs) (Clarke, Grumberg,
and Peled 1999). The latter formalism provides a general
description of a dynamical system that explicitly underlies
GNA (Batt et al. 2007), but the predictions of other qualita-

tive simulators can also be mapped to FTSTs. The general-
ity of the FSTS formalism is important for assuring the wide
applicability of the patterns developed in this section. More-
over, statements in temporal logic are usually interpreted on
FSTSs, so that the latter naturally connect qualitative models
to model-checking tools.

A finite state transition system is formally defined as a tu-
ple Σ = 〈S,AP,L, T, S0〉, where S is a set of states, AP
is a set of atomic propositions, L : S → 2AP is a labeling
function that associates to a state s ∈ S the set of atomic
propositions satisfied by s, T ⊆ S × S is a relation defin-
ing transitions between states, and S0 ⊆ S is a set of initial
states. For our purpose, S describes the possible states of the
genetic regulatory network, each of which is characterized
by a set of atomic propositions, such as that the concentra-
tion of protein P is above a threshold and increasing.

Identification of patterns
The notion of patterns was introduced in the domain of soft-
ware engineering as a means to capture expert solutions to
recurring problems in program design. In the formal verifi-
cation domain they have been introduced in an influential pa-
per (Dwyer, Avrunin, and Corbett 1999), to help non-expert
users formulate their temporal-logic queries. In the latter
context, patterns are high-level descriptions of frequently
asked questions in an application domain that are formulated
in structured natural language rather than temporal logic.
The aim of the patterns is not to cover all possible questions
an expert can think of, but rather to simplify the formulation
of those that are primary.

The difficulty of proposing patterns is to come up with
a limited number of query schemas that are sufficiently
generic to be applicable in a variety of situations, and at
the same time sufficiently concrete to be comprehensible for
the non-expert user. Moreover, the overlap between the pat-
terns should be minimal. We analyzed a large number of
modeling studies in systems biology (starting from the ref-
erences in (Szallazi, Periwal, and Stelling 2006)), as well as
lists of temporal logic queries (e.g., (Chabrier-Rivier et al.
2004)). This bibliographic research allowed us to identify
an open-ended list of questions on the dynamics of genetic,
metabolic, and signal transduction networks. For instance,
“Is the basal glycerol production level combined with rapid
closure of Fps1 sufficient to explain an initial glycerol accu-
mulation after osmotic shock?” (Klipp et al. 2005).

The identified questions were grouped into four cate-
gories, depending on whether they concerned the occur-
rence/exclusion, consequence, sequence, and invariance of
cellular events. For each of these, we developed an appro-
priate pattern, capturing the essence of the question and the
most relevant variants.

Description of patterns
The patterns consist of structured natural language phrases,
represented in schematic form, with placeholders for so-
called state descriptors. A state descriptor is a statement
expressing a state property, and takes the form of (a Boolean
combination of) atomic propositions. Let φ, ψ be state de-
scriptors, then

φ, ψ ::= p1 ∈ AP | p2 ∈ AP | . . .
::= ¬φ | φ ∧ ψ | φ⇒ ψ | . . .

The state descriptors are interpreted on the FSTS, in the
sense that their meaning is formally defined as the set of
states S1 ⊆ S satisfying the state descriptor. In addition
to (Boolean combinations of) atomic propositions, the state
descriptors may be temporal-logic formulas defined on the
atomic propositions AP . However, the precise definition of
the state descriptors depends on the particular type of FSTS
that is used, as the latter determines AP .

Definition 1 (Occurrence/exclusion pattern)

It is possible

is not possible

for a state to occurφ

This pattern represents the concepts of occurrence and its
negation, exclusion (to capture safety properties). It will of-
ten be used during the development of a model to check for
the presence or absence of some property that was experi-
mentally observed. For instance, “It is possible for a state
with a high concentration of protein P1 to occur”. Using this
pattern, we can also check for mutual exclusion, by using
the pattern negative form in combination with a conjunctive
state descriptor. For instance, “It is not possible for a state
to occur in which genes g1 and g2 are highly expressed”.

Definition 2 (Consequence pattern)

If a state occurs,

then it is possibly

necessarily

followed by a state

φ

ψ

The consequence pattern relates two events separated in
time. More precisely, it expresses that if the first state oc-
curs, then it is possibly or necessarily followed by the sec-
ond state. If the latter state necessarily follows, then the
consequence pattern expresses a form of causal relation. An
instance of this pattern is, for example, “If a state occurs in
which the concentration of protein P is below 5 µM, then it
is necessarily followed by a state in which the expression of
gene g is at its basal level”.

Definition 3 (Sequence pattern)

at some time

all the time

preceded

necessarily

possiblyis

A state

by a state

is reachable andψ

φ

The sequence pattern represents an ordering relation be-
tween two events. It ought not to be confused with the con-
sequence pattern, since the conditional occurrence of the
second state which characterizes the latter is absent in the
sequence pattern. It must be possible to observe both the
first and the second state, in that order, for an instance of the
sequence pattern to be true.

Four variants of the pattern are distinguished, depending
on whether the second state follows possibly or necessarily

Occurrence/Exclusion pattern CTL µ-calculus
It is possible for a state φ to occur EF (φ) µX.(φ ∨ ♦X)
It is not possible for a state φ to occur ¬EF (φ) ¬µX.(φ ∨ ♦X)
Consequence pattern
If a state φ occurs, then it is possibly followed by a state ψ AG (φ⇒ EF (ψ)) νX.((φ⇒ µY.(ψ ∨ ♦Y)) ∧�X)
If a state φ occurs, then it is necessarily followed by a state ψ AG (φ⇒ AF (ψ)) νX.((φ⇒ µY.(ψ ∨�Y)) ∧�X)
Sequence pattern
A state ψ is reachable and is possibly preceded at some time by a state φ EF (φ ∧ EF (ψ)) µX.((φ ∧ µY.(ψ ∨ ♦Y)) ∨ ♦X)
A state ψ is reachable and is possibly preceded all the time by a state φ E (φ U ψ) µX.(ψ ∨ (φ ∧ ♦X))
A state ψ is reachable and is necessarily preceded at some time by a state φ EF (ψ) ∧ µX.(ψ ∨ ♦X) ∧

¬E (¬φ U ψ) ¬µY.(ψ ∨ (¬φ ∧ ♦Y))
A state ψ is reachable and is necessarily preceded all the time by a state φ EF (ψ) ∧ µX.(ψ ∨ ♦X) ∧ νY.((φ ∨

AG (¬φ⇒ AG (¬ψ)) νZ.(¬ψ ∧�Z)) ∧�Y)
Invariance pattern
A state φ can persist indefinitely EG (φ) νX.(φ ∧ ♦X)
A state φ must persist indefinitely AG (φ) νX.(φ ∧�X)

Table 1: Rules for the translation of the patterns into CTL and µ-calculus. For each of the four patterns, the translation of all
variants is shown. We use the version of µ-calculus presented in (Kupferman, Vardi, and Wolper 2000), which is interpreted on
classical Kripke structures. The symbol T stands for True.

after the first state, and whether the system is in the first state
all the time or only at some time before the occurrence of the
second state. An instance of this pattern is “A steady state is
reachable and is necessarily preceded all the time by a state
in which nutrient N is absent”.

Definition 4 (Invariance pattern)

must

can persist indefinitelyA state φ

The invariance pattern is used to check if the system can
or must remain indefinitely in a state. In contrast with the
occurrence/exclusion pattern, the question is not whether a
particular state can be reached, but rather whether a particu-
lar state is invariable. An instance of this pattern is “A state
with a basal expression of gene g must persist indefinitely”.

Translation to temporal logic
By defining a temporal-logic translation of the patterns, the
user queries can be automatically cast in a form that allows
the verification of the specified property by means of model-
checking tools. The patterns defined above are independent
of a particular temporal logic, which allows the same high-
level specification of a user query to be verified by means of
different approaches and tools. It is worth noticing though
that some of the patterns we propose have a branching-time
nature (e.g., the consequence and the sequence patterns), and
therefore these are not translatable into a linear-time formal-
ism, such as LTL (Clarke, Grumberg, and Peled 1999).

Two examples of translations of the previously defined
patterns are shown in tabular form: the Computational Tree
Logic (CTL) translation and the µ-calculus translation (Ta-
ble 1). In both CTL and µ-calculus, formulas are built upon
atomic propositions. Also, the usual connectors of propo-
sitional logic, such as negation (¬), logical or (∨), logical
and (∧) and implication (⇒), can be used in both logics. In
addition, CTL provides two types of operators: path quan-
tifiers, E and A, and temporal operators, such as F and G.
Path quantifiers are used to specify that a property p is satis-

fied by some (E p) or every (A p) path starting from a given
state. Temporal operators are used to specify that, given a
state and a path starting from that state, a property p holds
for some (F p) or for every (G p) state of the path. Each
path quantifier must be paired with a temporal operator. In
the case of µ-calculus, two types of operators are provided:
the least (µ) and greatest (ν) fixed points, and the modal op-
erators possibility (♦) and necessity (�). Least and greatest
fixed points specify finite and infinite recursive applications
of a formula, respectively. For instance, given a state and a
path starting from that state, the fact that a property p holds
for some state or for all states of the path is expressed using
a least (µ) or a greatest (ν) fixed point, respectively. Modal
operators are used to specify that, given a state, p possibly
(♦ p) or necessarily (� p) holds on some or all of its outgo-
ing states.

Carbon starvation response in E. coli
Model of carbon starvation response
To test the applicability of the temporal logic patterns, we
have used our approach for the analysis of a model of the
carbon starvation response in the bacterium E. coli. In the
absence of essential carbon sources in its growth environ-
ment, an E. coli population abandons exponential growth
and enters a non-growth state called stationary phase. This
growth-phase transition is accompanied by numerous phys-
iological changes in the bacteria, and controlled on the
molecular level by a complex genetic regulatory network.

The molecular basis of the adaptation of the growth of
E. coli to the nutritional conditions has been the focus of
extensive studies for decades (Gutierrez-Rı́os et al. 2007;
Hengge-Aronis 1996). However, notwithstanding the enor-
mous amount of information accumulated on the genes,
proteins, and other molecules, kinetic parameters and the
molecular concentrations are absent, with some exceptions,
which makes it difficult to apply traditional methods for the
dynamical modeling of genetic regulatory networks.

These circumstances have motivated the development of
a qualitative model of the carbon starvation response net-

P1 Px1

P2P1/P’1

Activation
Fis

P

Synthesis of protein Fis

Active form of protein RssBRssB*

Degraded protein

Inhibition

Legend

Conversion

GyrI

Stable RNAs
(Output)

cAMP

Supercoiled DNARelaxed DNA

CRP

P2P1

P

Fis

ATP

TopA

P

P

P2P1

Carbon

starvation

signal

(Input)

RssB

P

fis from promoter P of gene fis

GyrAB

crp

fis

Cya

gyrI

Cya∗

Export/

topA

gyrAB

rrn

cya

σS

rpoSnlpDP1/P2
rpoSP1

RssB∗

rssB

(a)
ẋgyrAB = κgyrAB (1− s+(xgyrAB , θ2gyrAB) s−(xgyrI , θ1gyrI) s

−(xtopA, θ1topA)) s−(xfis, θ4fis)− γgyrAB xgyrAB
0 < θ1gyrAB < θ2gyrAB < κgyrAB/γgyrAB < max gyrAB (b)

Figure 1: (a) Network of key genes, proteins and regulatory interactions involved in the carbon starvation response network in
E. coli. (b) PL differential equation and parameter inequality constraints for the gyrase GyrAB. The variable xgyrAB denotes
the concentration of GyrAB. The protein is produced at a rate κgyrAB if the DNA supercoiling level is not high, that is,
if the concentration of GyrAB itself is below the threshold θ2gyrAB , and the concentrations of the topoisomerase TopA and
the gyrase inhibitor GyrI are above the thresholds θ1topA and θ1gyrI , respectively. The regulatory logic of gyrAB expression
is modeled by means of step functions. For instance, s+(xgyrAB , θ2gyrAB) evaluates to 1, if xgyrAB > θ2gyrAB (and to 0
otherwise). The protein is degraded at a rate proportional to its own concentration, γgyrAB xgyrAB . The constraint θ2gyrAB <

κgyrAB/γgyrAB < max gyrAB express that the derepression of the gyrAB promoter allows the concentration of GyrAB to reach
a high level, above the threshold θ2gyrAB . Instead of numerical values, the qualitative simulator uses such inequality constraints
to infer behavior predictions (Batt et al. 2007; 2005).

work using a class of piecewise-linear (PL) differential
equations. The PL models, originally introduced on (Glass
and Kauffman 1973), provide a coarse-grained picture of
the dynamics of genetic regulatory networks. They asso-
ciate a protein concentration variable to each of the genes
in the network, and capture the switch-like character of
gene regulation by means of step functions that change their
value at a threshold concentration of the proteins. The
advantage of using PL models is that the qualitative dy-
namics of the high-dimensional systems are relatively sim-
ple to analyze, using inequality constraints on the param-
eters rather than exact numerical values (Batt et al. 2005;
2007). This makes the PL models a valuable tool for the
analysis of the carbon starvation network.

In previous work we developed a PL model that we extend
here by the general stress response factor RpoS and related
regulators (Ropers et al. 2006; Ropers et al., in preparation).
The dynamics of this system are described by nine coupled
PL differential equations, and fifty inequality constraints on
the parameter values.

Qualitative simulation of starvation response
The mathematical properties of the class of PL models used
for modeling the stress response network have been well-
studied (Glass and Kauffman 1973). It was previously
shown how discrete abstractions can be used to convert the
continuous dynamics of the PL system into a FSTS (Batt
et al. 2007). The states S of the FSTS correspond to hy-
perrectangular regions in the concentration space, while the
transitions T arise from trajectories entering one region from
another. The atomic propositionsAP describe, among other
things, the concentration bounds of the regions and the trend
of the variables inside a region (increasing, decreasing, or
steady). The generation of the FSTS from the PL model
has been implemented in the computer tool GNA (Batt et al.
2005). GNA is able to export the FSTS to standard model
checkers like NuSMV (Cimatti et al. 2002) and CADP (Gar-
avel, Lang, and Mateescu 2007), supporting the use of CTL
and µ-calculus, respectively.

The application of this approach to the model of the E.
coli carbon starvation network generates a huge FSTS. The
entire state set consists of approximately O(1010) states,
while the subset of states that is most relevant for our pur-

Properties Response
Occurrence/exclusion pattern: Mutual inhibition of Fis and CRP True

| It | is not possible | for a state | xcrp ≥
k1

crp+k2
crp+k3

crp

γcrp
∧ xfis ≥ θ4fis | to occur | and

| It | is not possible | for a state | xcrp ≤
k1

crp

γcrp
∧ xfis ≤ θ1fis | to occur |

CTL: ¬EF (xcrp ≥
k1

crp+k2
crp+k3

crp

γcrp
∧ xfis ≥ θ4fis) ∧¬EF (xcrp ≤

k1
crp

γcrp
∧ xfis ≤ θ1fis)

µ-calculus: ¬µX.((xcrp ≥
k1

crp+k2
crp+k3

crp

γcrp
∧ xfis ≥ θ4fis) ∨ ♦X) ∧¬µX.((xcrp ≤

k1
crp

γcrp
∧ xfis ≤ θ1fis) ∨ ♦X)

Consequence pattern: Damped oscillations after nutrient upshift True
| If a state | xsignal < θsignal | occurs, then it is | necessarily | followed by a state | isOscillatoryState |
CTL: AG ((xsignal < θsignal)⇒ AF (isOscillatoryState))
µ-calculus: νX.(((xsignal < θsignal)⇒ µY.(isOscillatoryState ∨�Y)) ∧�X)
Sequence pattern: Control of entry into stationary phase by RpoS True
| A state | xrrn < θrrn | is reachable and is | necessarily | preceded | at some time | by a state | xrpoS ≥ θ1rpoS |
CTL: EF (xrrn < θrrn) ∧ ¬E (¬(xrpoS ≥ θ1rpoS) U (xrrn < θrrn))
µ-calculus: µX.((xrrn < θrrn) ∨ ♦X) ∧ ¬µY.((xrrn < θrrn) ∨ (¬(xrpoS ≥ θ1rpoS) ∧ ♦Y))
Invariance pattern: Expression of topA during growth-phase transitions False
| A state | xtopA < θ1topA | can | persist indefinitely |
CTL: EG (xtopA < θ1topA)
µ-calculus: νX.((xtopA < θ1topA) ∧ ♦X)

Table 2: Translation of properties used in the analysis of the E. coli carbon starvation response, following the translation rules
in Table 1. The symbol isOscillatoryState is a predicate attributed by the qualitative simulator to a state and indicating that
the state is part of a cycle in the state transition graph.

pose, i.e. the states that are reachable from an initial state
corresponding to a particular growth state of the bacteria,
still consists of O(103) states. It is clear that FSTSs of this
size cannot be analyzed by visual inspection, and that formal
verification techniques are needed.

In the next section we show how the previously defined
patterns can speed up the querying of these FSTSs, by sim-
plifying the formulation of relevant properties to be tested.

Analysis of carbon starvation response model using
query patterns
Four relevant properties were studied to analyze the E.coli
carbon starvation response model (Table 2). The properties
correspond to the following questions:
• Does the mutual inhibition motif of Fis and CRP (Fis in-

hibits the expression of gene crp, and CRP inhibits the
expression of gene fis) have an effect on the dynamics of
the carbon starvation response network?

• Is a carbon upshift a necessary condition for the occur-
rence of damped oscillations in the concentration of the
regulators of the DNA supercoiling level?

• Is the entry into stationary phase always preceded by the
accumulation of the stress response regulator RpoS?

• Is gene topA expressed in response to carbon source avail-
ability?
The instances of the patterns were translated into CTL fol-

lowing the translation rules of Table 1, and then verified us-
ing the model-checker NuSMV. The results are shown in the
Table 2. By way of illustration we develop the formulation
of the pattern for the third question and interpret the results
of the verification process.

RpoS is a general stress response factor that allows cells
to adapt to and survive under harmful conditions by entering
stationary phase (Hengge-Aronis 1996). Due to its key role,
the concentration of RpoS is tightly regulated, at the tran-
scriptional, translational, and post-translational levels. The
stability of the protein is mainly controlled in our conditions:
while cells grow on a carbon source, RpoS is actively de-
graded through the protein RssB, which binds to RpoS and
targets the factor to an intracellular protease. However, the
depletion of the carbon source inactivates RssB, thus allow-
ing RpoS to accumulate at a high concentration.

Given the importance of RpoS for cell survival, one may
ask whether the entry into stationary phase is always pre-
ceded by the accumulation of RpoS in the cell. We formu-
lated this question using a sequence pattern, where the sta-
tionary phase is represented by a low level of stable RNAs
rrn (Table 2). The latter indicator is motivated by the fact
that stationary-phase cells do not need high levels of these
RNAs, which are necessary for the high translational activ-
ity of the exponential phase. The property is true, which
indicates that the entry into stationary phase cannot occur
before RpoS has accumulated. This points at the central role
of RpoS in the growth adaptation of the bacteria.

Discussion
Formal verification techniques are promising tools for up-
scaling the analysis of qualitative models of genetic regula-
tory networks and other dynamical systems. The widespread
adoption of model-checking approaches is restrained, how-
ever, by the difficulty for non-expert users to formulate ap-
propriate questions in temporal logics. Inspired by work
in the formal verification community (Dwyer, Avrunin, and

Corbett 1999), the first contribution of the paper consists in
the formulation of a set of patterns in the form of query tem-
plates in structured natural language. In addition, we have
provided translations of the patterns to two different tempo-
ral logics, CTL and µ-calculus. The patterns capture a large
number of frequently-asked questions by modelers of regu-
latory networks, as for example listed in (Chabrier-Rivier et
al. 2004). The second contribution of the paper concerns the
instantiation of the patterns for the analysis of the complex
genetic regulatory network involved in the carbon starvation
response in E. coli. We have extended an existing model
of the network with additional global regulators and verified
the effect of the extensions on the predicted network dynam-
ics.

The paper addresses issues we were confronted with when
applying qualitative simulation techniques to a real-world
problem in biology. We have proposed a solution, temporal
logic query patterns for the analysis of large FSTSs, that has
turned out to be useful in our application. However, we also
expect this approach to carry over to other qualitative rea-
soning applications, where similar problems arise. Model
checking is a promising way to analyze the large FSTSs
arising in qualitative simulation (Shults and Kuipers 1997),
but most modelers are not familiar with temporal logics and
have difficulty in expressing their questions by means of
these formalisms. Although meant to capture frequently-
asked questions in biology, the patterns introduced in this
paper are defined for FSTSs in general and seem sufficiently
generic to apply to other problems as well. At the very least,
they form a good starting-point for the formulation of a new
set of query templates, tailored to the specificities of quali-
tative applications in other domains.

Acknowledgments
This work was partially supported by FCT program (PhD
grant SFRH/BD/32965/2006 to PTM) and PDCT program
(project PTDC/EIA/71587/2006). DR, RM, and HdJ are
supported by the European Commission under project EC-
MOAN (FP6-2005-NEST-PATH-COM/043235).

References
Batt, G.; Ropers, D.; de Jong, H.; Geiselmann, J.; Ma-
teescu, R.; Page, M.; and Schneider, D. 2005. Analysis and
verification of qualitative models of genetic regulatory net-
works: A model-checking approach. In Kaelbling, L., ed.,
Proceedings of the Intl. Joint Conf. on Artif. Intel., 370–
375.
Batt, G.; de Jong, H.; Page, M.; and Geiselmann, J. 2007.
Symbolic reachability analysis of genetic regulatory net-
works using discrete abstractions. Automatica 44(4):982–
989.
Bellazzi, R.; R., G.; Ironi, L.; and Patrini, C. 2001. A
hybrid input-output approach to model metabolic systems:
an application to intracellular thiamine kinetics. J. Biomed.
Inform. 34(4):221–48.
Chabrier-Rivier, N.; Chiaverini, M.; Danos, V.; Fages, F.;
and Schächter, V. 2004. Modeling and querying biomolec-

ular interaction networks. Theor. Comput. Sci. 325(1):25–
44.
Cimatti, A.; Clarke, E.; Giunchiglia, E.; Giunchiglia, F.;
Pistore, M.; Roveri, M.; Sebastiani, R.; and Tacchella, A.
2002. NuSMV 2: An opensource tool for symbolic model
checking. In Brinksma, D., and Larsen, K., eds., Proceed-
ings of the 14th Intl. Conf. on Comp. Aided Verif., volume
2404 of LNCS, 359–64. Berlin: Springer-Verlag.
Clarke, E.; Grumberg, O.; and Peled, D. 1999. Model
Checking. Cambridge, MA: MIT Press.
Dwyer, M.; Avrunin, G.; and Corbett, J. 1999. Patterns
in property specifications for finite-state verification. In
Proceedings of the 21st Intl. Conf. on Soft. Eng., 411–20.
Garavel, H.; Lang, F.; and Mateescu, R. 2007. CADP
2006: A toolbox for the construction and analysis of dis-
tributed processes. In Damm, W., and Hermanns, H., eds.,
Proceedings of the 19th Intl. Conf. on Comp. Aided Verif.,
volume 4590 of LNCS, 158–63. Berlin: Springer-Verlag.
Glass, L., and Kauffman, S. 1973. The logical analysis
of continuous non-linear biochemical control networks. J.
Theor. Biol. 39(1):103–29.
Gutierrez-Rı́os, R.; Freyre-Gonzalez, J.; Resendis, O.;
Collado-Vides, J.; Saier, M.; and Gosset, G. 2007. Identifi-
cation of regulatory network topological units coordinating
the genome-wide transcriptional response to glucose in Es-
cherichia coli. BMC Microbiol. 7(1):53.
Hengge-Aronis, R. 1996. Regulation of gene expression
during entry into stationary phase. In F.C. Neidhardt, et al.,
ed., Escherichia coli and Salmonella: Cellular and Molec-
ular Biology, 1497–512. Washington DC: ASM Press.
King, R.; Garrett, S.; and Coghill, G. 2005. On the use
of qualitative reasoning to simulate and identify metabolic
pathways. Bioinformatics 21(9):2017–26.
Klipp, E.; Nordlander, B.; Krüger, R.; Gennemark, P.; and
Hohmann, S. 2005. Integrative model of the response of
yeast to osmotic shock. Nat. Biotechnol. 23(8):975–82.
Kuipers, B. 1994. Qualitative Reasoning: Modeling and
Simulation with Incomplete Knowledge. Cambridge, MA:
MIT Press.
Kupferman, O.; Vardi, M.; and Wolper, P. 2000.
An automata-theoretic approach to branching-time model
checking. J. ACM 47(2):312–60.
Ropers, D.; de Jong, H.; Page, M.; Schneider, D.; and
Geiselmann, J. 2006. Qualitative simulation of the car-
bon starvation response in Escherichia coli. Biosystems
84(2):124–52.
Shults, B., and Kuipers, B. 1997. Proving properties of
continuous systems: Qualitative simulation and temporal
logic. Artif. Intell. 92(1-2):91–130.
Szallazi, Z.; Periwal, V.; and Stelling, J. 2006. System
Modeling in Cellular Biology: From Concepts to Nuts and
Bolts. Cambridge, MA: MIT Press.
Thomas, R.; Thieffry, D.; and Kaufman, M. 1995. Dy-
namical behaviour of biological regulatory networks. Bull.
Math. Biol. 57(2):247–276.

Continuous-Domain Reinforcement Learning
Using a Learned Qualitative State Representation∗

Jonathan Mugan and Benjamin Kuipers
Computer Science Department
University of Texas at Austin

Austin Texas, 78712 USA
{jmugan,kuipers}@cs.utexas.edu

Abstract

We present a method that allows an agent to learn a
qualitative state representation that can be applied to re-
inforcement learning. By exploring the environment the
agent is able to learn an abstraction that consists of land-
marks that break the space into qualitative regions, and
rules that predict changes in qualitative state. For each
predictive rule the agent learns a context consisting of
qualitative variables that predicts when the rule will be
successful. The regions of this context in with the rule is
likely to succeed serve as a natural goals for reinforce-
ment learning. The reinforcement learning problems
created by the agent are simple because the learned ab-
straction provides a mapping from the continuous input
and motor variables to discrete states that aligns with
the dynamics of the environment.

Introduction
Reinforcement learning in continuous domains is difficult
because the agent is unable to gain experience at each indi-
vidual state. This means that the agent must use an abstrac-
tion that allows it to map an infinite number of input and
motor states into a manageable number of abstracted states.
To be useful to the agent, the abstraction must discriminate
states that are different, but if the abstraction makes too
many unnecessary discriminations then learning becomes
inefficient. This balance is often achieved by having a hu-
man create and tune the abstraction.

Our approach to this problem is to use a qualitative state
representation. In (Mugan & Kuipers 2007a; 2007b), we
showed how an agent could build a qualitative representation
of its environment that is not specific to any particular goal.
The agent does this by breaking the world up into qualitative
regions using landmarks and then learning predictive rules
over changes in qualitative state.

In our approach, the agent experiences the world through
a set of continuous input and motor variables. The mo-

∗This work has taken place in the Intelligent Robotics Lab at
the Artificial Intelligence Laboratory, The University of Texas at
Austin. Research of the Intelligent Robotics lab is supported in
part by grants from the Texas Advanced Research Program (3658-
0170-2007), from the National Science Foundation (IIS-0413257,
IIS-0713150, and IIS-0750011), and from the National Institutes
of Health (EY016089).

tor variables and the derivatives of the input variables have
an intrinsic landmark at 0, which creates three qualitative
states for each of those variables. The continuous input vari-
ables themselves have no intrinsic landmarks, and the agent
must learn landmarks on these variables as well as additional
landmarks on the motor variables. A change in the qualita-
tive state of a variable defines an event. The agent searches
for rules that predict when one event will follow another in
time. For each learned predictive rule the agent searches
for regions in the state space where that rule will be reliable
and delimits those regions by creating new landmarks. Each
new landmark defines new events, which make it possible to
learn new predictive rules, and so on.

In this paper we show that this learned qualitative rep-
resentation enables the agent to do reinforcement learning
to perform a simple task. The agent defines its own rein-
forcement learning problems using the learned predictive
rules and landmarks. There has been previous work on
enabling an agent to define its own reinforcement learn-
ing problems. McGovern and Barto (2001) have proposed
a method whereby an agent autonomously finds subgoals
based on bottleneck states that are visited often during suc-
cessful trials. Subgoals have also been found by searching
for “access states” (Simsek & Barto 2004; Simsek, Wolfe,
& Barto 2005) that allow the agent to go from one part of
the state space to another. In this paper we use a differ-
ent approach to identifying goals for reinforcement learn-
ing, we define the goals for reinforcement learning to be the
regions defined by landmarks in which a predictive rule is
reliable. Additionally, there has been work on learning qual-
itative values given a model so that the level of abstraction is
appropriate for the task (Sachenbacher & Struss 2005). Our
work differs from this work because our focus is on learning
the model and the abstraction simultaneously.

In the remainder of this paper we first give an overview
of the qualitative abstraction and rule learning framework.
We then explain how we incorporate reinforcement learn-
ing into this framework. Finally, we evaluate the viability of
this approach by comparing it to a standard method for re-
inforcement learning with continuous variables on a simple
task.

WORLD 1 2: ()do E E⇒C

perceptstate
action

Landmarks (c)
(a)

(b)
Behavior

Learn Landmarks (c)Learn Rules (a)Learn Context (b)
Figure 1: (a) The agent interacts with the world to learn
rules stating that when the agent makes one event E1 oc-
cur, that another event E2 occurs. (b) For each rule the
agent learns a context C that consists of a set of variables
upon which the agent can learn a conditional probability ta-
ble CPT (r) = Pr(succeeds(r)|C) that tells the agent in
which situations it can cause E2 by making E1 occur. (c)
The agent also learns landmarks that determine how it can
perceive and reason about the world. Landmarks are pro-
posed based on the behavior of rules and in turn determine
which rules can be learned (Mugan & Kuipers 2007a).

Learning Agent Architecture
The overview of the learning agent architecture is shown in
Figure 1.

Qualitative State Representation
The raw input and output is represented using three types
of variables: continuous motor variables, continuous in-
put variables, and nominal input variables. Internally, the
agent represents these variables qualitatively based on QSIM
(Kuipers 1994). The agent creates two variables for each
continuous input variable ṽ, a discrete variable v(t) that rep-
resents the magnitude of ṽ(t), and a discrete variable v̇(t)
that represents the direction of change of ṽ(t). And for each
continuous motor variable ṽ, the agent creates a discrete
magnitude variable v(t). The result of this is that the agent
represents its world using four types of discrete (qualitative)
variables: motor variables, magnitude variables, direction of
change variables, and nominal variables.

We now describe how the agent converts continuous val-
ues to qualitative values. A continuous variable ṽ(t) ranges
over some subset of the real number line (−∞,+∞). In
QSIM, this continuous variable ṽ(t) is abstracted to a dis-
crete variable v(t) that ranges over a quantity space Q(v)
of qualitative values. Q(v) = L(v) ∪ I(v), where L(v) =
{v∗1 , · · · v∗n} is a totally ordered set of landmark values, and

I(v) = {(−∞, v∗1), (v∗1 , v
∗
2), · · · (v∗n,+∞)} is the set of

mutually disjoint open intervals that L(v) defines in the real
number line. A quantity space with two landmarks might be
described by (v∗1 , v

∗
2), which implies five distinct qualitative

values, Q(v) = {(−∞, v∗1), v∗1 , (v
∗
1 , v
∗
2), v∗2 , (v

∗
2 ,+∞)}.

Each direction of change variable v̇ has a single in-
trinsic landmark at 0, so its quantity space is Q(v̇) =
{(−∞, 0), 0, (0,+∞)}. Magnitude variables initially have
no landmarks because zero is just another point on the num-
ber line, although landmarks are acquired as the agent learns.
Initially, when the agent knows of no meaningful qualitative
distinctions among values for ṽ(t), we describe the quantity
space as the empty list of landmarks, (). Motor variables
are given an initial landmark at 0, and like magnitude vari-
ables, they can acquire more landmarks as the agent learns.
As an implementation note, because we evaluate the algo-
rithm with a fine-grained discrete-timestep simulator, if v∗1 is
a landmark and ṽ(t−1) < v∗1 and ṽ(t) > v∗1 then v(t) = v∗1
for the purpose of rule learning.

Events
If a is a qualitative value of a discrete variable A, meaning
a ∈ Q(A), then the event At→a is defined by A(t− 1) 6= a
and A(t) = a. That is, an event takes place when a discrete
variable A changes to value a at time t, from some other
value. We will often drop the t and describe this simply as
A→a. We will also refer to an event as E when the variable
and qualitative value involved are not important.

Predictive Rules
We break from previous work (2007a; 2007b) and take in-
spiration from (Pearl 2000) to define predictive rules based
on actions of the agent. A predictive rule r has the form
r = 〈C : do(E1)⇒ E2〉 and states that if the agent executes
a plan to bring about event E1, then event E2 will soon fol-
low. The probability that E2 will indeed soon follow E1 is
given in the context C. For an eventE we define dot(E) as a
predicate that is true when the agent begins executing a plan
at time t to bring about E and is false otherwise.

The predictive rule r = 〈C : do(E1) ⇒ E2〉 consists of
one event E1(t), and another event E2(t′) that takes place
relatively soon after t. That E2 takes place “relatively soon
after” E1(t) is formalized in terms of an integer time-delay
k (in our current implementation k = 5, or about 0.25 sec-
onds)

soon(t, E2) ≡ ∃t′ [t ≤ t′ ≤ t+ k ∧ E2(t′)]

If we define dor,t(E(t′)) to mean that dot(E) = true
and that E occurs at time t′, then we can define a predicate
succeeds(r, t) for the success of rule r as

succeeds(r, t) ≡ dor,t(E1(t′)) ∧ soon(t′, E2)

This means that rule r fails if the agent’s plan to bring
about E1 fails, or if E2 does not soon follow. We shorten
succeeds(r, t) to the predicate succeeds(r), which is true
if r succeeds when activated at an arbitrary time.

Associated with rule r is a context C that consists of a
set of variables. The context induces a conditional probabil-
ity table (CPT) on the predicate succeeds(r). In Bayesian

network terminology, the variables in C are the parents of
succeeds(r). For a rule r = 〈C : do(A→a) ⇒ B→ b〉
we require that the elements of the context be magnitude or
nominal variables and that for event B→b we require that
B be a nominal variable or that B be a direction of change
variable with b 6= [0].

Learning New Predictive Rules
To learn a new predictive rule the agent searches for two
events E1 and E2 such that observing event E1 means that
event E2 is significantly more likely to occur than it would
have been otherwise. When two such events are found the
agent asserts an initial rule 〈∅ : do(E1) ⇒ E2〉 with an
empty context.

The set of rules grows out of the motor variables. To cre-
ate a rule 〈∅ : do(E1) ⇒ E2〉 we require that the agent be
able to predict event E1 using the currently existing rules.

Rule Context Greedy Search
The purpose of the context is to tell the agent when the rule
will succeed and the agent greedily searches for a good con-
text for each rule. A good context C for r is one for which
there is some value for the variables in C for which the rule
has high reliability. Once this is achieved, the agent desires
that the context predict the outcome of the rule in all states.

We formalize the idea of having a value for which the
rule is highly reliable using the notation of best reliability
brel(r). For a context C = {v1, . . . , vn}, we define the
product space of qualitative values:

Q(C) = Q(v1)×Q(v2)× . . .×Q(vn). (1)

With sufficient observations, we then define best reliability
as the maximum over this product space

brel(r) = max
w∈Q(C)

Pr(succeeds(r)|w) (2)

which we can also write as brel(r) = max CPT (r).
Once brel(r) exceeds the threshold θr = 0.7 we deter-

mine that the rule is reliable. At this point the agent turns
its attention to being able to predict the outcome of a rule in
any situation. To do this it seeks to minimize the entropy.
The entropy H(Y) of a random variable is given by

H(Y) = −
∑

j

P (Y = yj) log2 P (Y = yj).

The conditional entropy H(Y |X) of a random variable Y
given X is given by

H(Y |X) =
∑

i

H(Y |X = xi)P (X = xi)

and is the weighted average of the entropy of Y given X =
xi, weighted by the probability P (X = xi). We define the
entropy H(r) of a rule r = 〈C : do(E1) ⇒ E2〉 as the
conditional entropy of succeeds(r) given do(E1) = true
and C. In equation form it is

H(r) = H(succeeds(r)|do(E1)= true, C). (3)

With these definitions we can now describe how the agent
determines if one context is better than another. For each

rule the agent hillclimbs on the quality of the context. For
a rule r = 〈C : do(E1) ⇒ E2〉 with brel(r) < θr we
say that the rule r′ = 〈C′ : do(E1) ⇒ E2〉 with improved
context C′ is a sufficient improvement over r if brel(r′) >>
brel(r). And for a rule r = 〈C : do(E1) ⇒ E2〉 with
brel(r) > θr we say that the rule r′ = 〈C′ : do(E1) ⇒
E2〉 with improved context C′ is a sufficient improvement
over r if H(r′) << H(r), where the operators >> and
<< mean sufficiently less than and sufficiently greater than,
respectively.

Learning a Context for a Predictive Rule
The context for a predictive rule is learned incrementally.
For each rule r = 〈∅ : do(E1) ⇒ E2〉 with an empty con-
text, the agent searches for a magnitude or nominal variable
v1 such that if r is modified to be r′ = 〈{v1} : do(E1) ⇒
E2〉 then r′ is a sufficient improvement.

Using an approach inspired by Drescher (1991), once the
agent has learned a rule r′ = 〈{v1} : do(E1) ⇒ E2〉 it
searches for another discrete magnitude or nominal vari-
able v2 such that if r′ is modified to be r′′ = 〈{v1, v2} :
do(E1) ⇒ E2〉 then r′′ is a sufficient improvement. This
criterion clearly generalizes, but in our current implementa-
tion we limit the size of the context to two.

Learning New Landmarks
Inserting a new landmark x∗ into (x∗i , x

∗
i+1) allows that in-

terval to be replaced in Q(x) by two intervals and the di-
viding landmark: (x∗i , x

∗), x∗, (x∗, x∗i+1). Adding this new
landmark into the quantity spaceQ(x) allows a new distinc-
tion to be made that may transform a rule r into a new rule
r′. A new landmark can be learned either by improving a
predictive rule or by creating an event that reliably precedes
another event.

Landmarks that Improve Rules Landmark candidates
are generated for a rule r = 〈C : do(A→ a) ⇒ B→ b〉
using the success or failure of r as a reward signal. A land-
mark candidate for r is adopted if it sufficiently improves r.
A landmark can improve r by refining the event A→a or by
refining a variable in C.

To learn new landmarks it is not necessary to store the
entire history. Instead, we only store the real values of all the
variables for the last 200 activations of each rule. Landmark
candidates are chosen considering the number of data points
in the interval and the highest gain (Fayyad & Irani 1993).
Depending on the distance from the new landmark x∗ to the
maximum and minimum observed values of x, this search
can result in either a precise numerical value, or a range of
possible values for x∗ on different occasions: range(x∗) =
[lb, ub].

Landmarks Suggested by Events A landmark x∗ is cre-
ated for a variable x if it is estimated that the event x→x∗
will reliably predict some other event E. To find this land-
mark, for each event E a histogram is maintained for each
continuous variable x̃. Each time E occurs the histogram is
updated with the current value of x̃. One or more landmark
candidates is created for x̃ when the distribution of x̃ when

E occurs is significantly different from the background dis-
tribution of x̃. The location of each landmark x∗ is taken to
be the middle of a histogram bucket where the difference is
the greatest.

Acting in the World
The Controller
The controller enables the agent to learn efficiently by ac-
tively choosing rules to test. In Mugan and Kuipers (Mugan
& Kuipers 2007a) active learning was motivated by the de-
sire to achieve certain goals, in this paper the motivation for
active learning is improving the reliability of rules.

Choosing a Rule to Invoke The controller chooses a
rule to invoke based on its weight w. The weight of a
rule r consists of two components w1 and w2, and w =
max(ε, w1w2), where ε = 0.001. If we use the nota-
tion Pr(succeeds(r)|C, s) to mean the probability of suc-
cess of r in the current state s, then the component w1 =
Pr(succeeds(r)|C, s). The component w2 reflects the rate
at which the reliability of the rule is increasing, inspired by
the “curiosity drive” of Oudeyer and Kaplan [2004].

Invoking a Rule Once the rule r = 〈C : do(A→a) ⇒
B→b〉 has been chosen, the agent forms a plan to achieve
A→a. To do this, the controller examines the context C.
We say that the context is satisfied if in the current state
the context says the rule will be sufficiently reliable, where
sufficiently reliable means that Pr(succeeds(r)|C) > θsr,
where θsr = 0.60. There are three cases:

1. The context is satisfied.
2. The context is not satisfied and consists of only one vari-

able.
3. The context is not satisfied and consists of more than one

variable.

If the context is satisfied, the agent sets the goal to be
do(A→a). If the context is not satisfied but consists of only
a single variable V , then the agent sets the goal to be do(V→
v) where v ∈ Q(V) has the highest Pr(succeeds(r)|V =
v). If do(V→v) is successful, the agent then sets the goal to
be do(A→a). If the context is not satisfied and consists of
more than one variable, then the agent sets the goal to be any
member of the set Good(CPT (r)) defined in equation (4)
(if the set Good(CPT (r)) is empty then the context is ig-
nored). Once this goal is achieved the agent sets the goal to
be do(A→a).

Backchaining Actions
Goals of the form do(Y → y) are achieved through
backchaining. The approach to achieve a goal do(Y →y)
depends on the type of variable Y . (1) If Y is a motor vari-
able, then a random real value is picked from the range of the
qualitative value y and the action is complete. (2) If Y is a
direction of change or nominal variable, then the agent looks
for a reliable rule of the form r = 〈C : do(X→x)⇒ Y→y〉
that in the current state is predicted to succeed with relia-
bility θsr and invokes do(X→x). If no such rule is found

{ , }: ([0]) (,0)x y xr c c do d b= → ⇒ → −∞ɺ

r succeeds r failsr fails
()CPT r

(a)(b)
(c) -table :Q × →ℝS A(d)

yc

xc

yc

xc

(())Good CPT r

:r Uπ →C

yc

xc × × ×

: () (())r do Good CPT rπ′ = ∅ ⇒ →C

(e)
(f)

Figure 2: (a) The rule r = 〈{cx, cy} : do(d→[0]) ⇒ ḃx→
(−∞, 0)〉 is an example of a rule learned by the robot. It
states that if the distance d between the hand and the block
goes to 0, then the event ḃx→ (−∞, 0) of the block mov-
ing to the left will occur. The predicted success of this rule
depends on the context variables cx and cy that give the lo-
cation of the hand in the frame of reference of the block. (b)
The agent gathers experience in the world to learn the con-
text values for which r is successful. The agent learns that
the hand must be to the right of and level with the block for
r to be successful. (c) Based on C = {cx, cy} the agent cre-
ates a conditional probability table CPT (r) for r and uses
a threshold to determine the set Good(CPT (r)) of values
of C for which the rule r is likely to succeed. (d) The agent
can then define a simple reinforcement learning problem in
which C defines the state space, andGood(CPT (r)) defines
the goal states. The agent is rewarded for reaching a state in
which the rule r is likely to succeed. To do this, the agent
creates a Q-table that maps S × A to a value R, where A is
the set of primitive actions (defined by the qualitative values
of the motor variables ux and uy). (e) The agent then defines
a policy πr by associating each cell in C with the primitive
action with maximum value. (f) The policy πr can then be
described by a new rule r′ that treats πr as an action leading
to the region Good(CPT (r)) where r is likely to succeed.

or if r fails, then backchaining fails. (3) If Y is a magni-
tude variable then the agent uses a special rule of the form

h1 = 〈do(Ẏ → (0,+∞)) until Y → y〉 if Ỹ (t) < y and
h2 = 〈do(Ẏ →(−∞, 0)) until Y →y〉 if Ỹ (t) > y. Rule
h1 fails if do(Ẏ → (0,+∞)) is not achieved or if after
Ẏ→(0,+∞) an event occurs such that Ẏ 6= (0,+∞) before
Y→y. Rule h2 works similarly. If during backchaining an
eventE occurs more than once, or if events v→(−∞, 0) and
v→(0,+∞) both occur for some variable v, then backchain-
ing fails.

Once a motor variable is reached, its value is main-
tained until event Y →y occurs or one of the rules used in
backchaining fails.

Reinforcement Learning Actions
The agent uses reinforcement learning to achieve goals over
multiple variables. For each rule r = 〈C : do(E1) ⇒ E2〉
with a context of more than one variable, the agent creates
a reinforcement learning problem to enable the agent to get
into a state such that doing event E1 will cause event E2.
The overview of this process is shown in Figure 2.

The type of reinforcement learning we use is Sarsa(λ)
(Sutton & Barto 1998) where λ = 0.9, α is one over the
number of times the state has been visited, and the discount
parameter γ = 0.9. To learn the policy πr the agent learns a
value-action function Q : S,A → R.

The state space S is defined by the qualitative variables in
C and their landmarks. To define the set of primitive actions
A we first define a setQ(U) = Q(u1)× . . .×Q(un) where
u1, . . . , un is the set of motor variables. We can then define
a primitive action a ∈ A as choosing a w ∈ Q(U), taking
random values from the ranges of the qualitative values in
w, and maintaining those values until the state S changes or
the real values underlying the variables that make up S stop
changing.

For the reward function we use a goal-reward representa-
tion (Koenig & Simmons 1996). The reward is based on the
set of goal states Good(CPT (r)) and is determined by the
conditional probability table CPT (r):

Good(CPT (r)) = (4)
{w ∈ Q(C) |Pr(succeeds(r)|w) > θsr}

The agent then learns theQ-table by using ε-greedy action
selection where ε = 0.25. An episode begins when the rule
r is invoked by the controller, and the episode ends when the
agent makes it to a goal state or when 20 primitive actions
have been taken.

Once the Q-table is learned, a policy πr can be created
whereby the agent chooses the best primitive action for each
state. In effect, this in principle leads to a new rule of the
form r′ = 〈∅ : do(πr)⇒ C→Good(CPT (r))〉.

Experimental Evaluation
We evaluate our algorithm using the simulated agent shown
in Figure 3. The evaluation task we have chosen is for the
agent to hit the block in a specified direction. To show
that our representation can effectively be used for reinforce-
ment learning, we compare our method to using a hand-
created reinforcement learning agent trained specifically for
this task. For this evaluation we trained ten agents total, five

Figure 3: A simulated “robot baby” is implemented in Breve
(Klein 2003). It has a torso with a 2-dof orthogonal arm
and is sitting in front of a tray with a block. The robot has
two motor variables ũx and ũy that move the hand in the x
and y directions, respectively. The perceptual system creates
variables for each of the two tracked objects in this environ-
ment: the hand and the block. The hand is described by two
continuous variables h̃x(t), h̃y(t) that represent the location
of the hand in the x and y directions, respectively, and the
Boolean variable ha(t) that represents whether the hand is
in view. The variables corresponding to the block are b̃x(t),
b̃y(t), and ba(t) and they have the same respective meanings
as the variables for the hand. The relationship between the
hand and the block is represented by the continuous vari-
ables c̃x(t), c̃y(t), and d̃(t). The variables c̃x(t) and c̃y(t)
represent the coordinates of the center of the hand in the
frame of reference of the center of the block, and the vari-
able d̃(t) represents the distance between the hand and the
block. The values of all variables are updated by perceptual
trackers at each timestep as the objects move.

autonomous agents described in this paper, and five hand-
created learning agents.

We trained each agent in the environment shown in Fig-
ure 3 for 340,000 timesteps (almost five hours of physical
experience). During this time, the hand-created agents con-
tinually repeated episodes of the task, and the autonomous
agents performed the learning algorithm described in this
paper. During training of the autonomous agents, if the
block fell off the tray, moved out of reach of the agent, or
was not moved for an extended time, the block was moved
to a random location within reach of the agent. For all agents
we stored the state of each agent’s knowledge every 20,000
timesteps during training (corresponding to about sixteen
minutes of physical experience). We then ran the evalua-
tion for each agent using their respective stored knowledge
bases.

Each evaluation consisted of 100 trials. At the begin-
ning of each trial the block was placed in a random location
within reach of the agent and the evaluator picked one of
three goals: hitting the block to the left, hitting the block to
the right, or hitting the block forward. The agent then had
300 timesteps to use its knowledge to hit the block in the
correct direction. A trial was terminated unsuccessfully if
the agent hit the block in the wrong direction. The evalua-

tion metric was the success rate for hitting the block during
the 100 trials.

We tested both types of agents under two goal selection
regimes, uniform and hard. During both uniform and hard
goal selection, the evaluator selects the goal randomly, with
a uniform distribution, and filters out goals that are impossi-
ble to achieve. (For example, if the block is on the far left,
the agent cannot get its hand on the left side of the block to
move it to the right.) During hard goal selection, easy goals
are also filtered out, where a goal is easy if it can be achieved
with a single straight-line motion. (During the training pe-
riod for the hand-created agents, a goal selection regime was
randomly chosen at the beginning of each episode, and then
the goal was chosen based on that regime.)

The Hand-Built Learner
The hand-built reinforcement learning agents used linear,
gradient-descent Sarsa(λ) with binary features (Sutton &
Barto 1998) where the binary features come from tile cod-
ing. We chose this method because tile coding is a standard
method for coping with continuous variables in reinforce-
ment learning (Santamaria, Sutton, & Ram 1997). Tile cod-
ing works by using multiple partitions of the state space such
that each partition (tiling) is offset just a little from the oth-
ers. This allows the agent to generalize more effectively than
using a single partition with higher resolution.

We now explain the details of the tile coding im-
plementation. The motor variables ux and uy were
each divided into 10 equal-width bins, and the direc-
tion of change variables were each divided into 3 bins:
(−∞,−0.05), [−0.05, 0.05], (0.05,∞). The goal was rep-
resented with a discrete variable that took on three values,
one for each of the three goals. The remaining variables
were treated as continuous. There were 16 tilings, the tiling
was done using a hashing function with a memory size of
65,536. The parameter values used were λ = 0.9, γ = 0.9,
and α = 0.1. To prevent the task diameter from being too
high, during both training and testing the agent chose a new
action every 10 timesteps (0.5 seconds). Action selection
was ε-greedy where ε = 0.05.

Results
The results are shown in Figure 4. As the agent gains more
experience in the world its ability to perform the task im-
proves. We also see that the agent has indeed learned the
action as its performance under both the difficult and uni-
form task selection regime is comparable to that of the hand-
created learner.

The hand-created learner enjoys the advantage of only
being trained on the evaluation task. But the hand-created
learner is at an important disadvantage, it does not know
which variables are important for the task. Our agent learns
which variables are important autonomously, and this allows
it to perform comparably even though it learns more than
how to perform the evaluation task. For example, our agent
learns when the block will disappear off the tray. It also
learns the limits of its movement, and it can also move away
from the block instead of towards it. It can use the knowl-
edge learned during one task to learn another. Of particular

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cumulative Experience (x 1,000 timesteps)

R
at

e
of

 S
uc

ce
ss

autonomous agent (uniform)
hand−created agent (uniform)
autonomous agent (hard)
hand−created agent (hard)

Figure 4: Both the autonomous agent and the hand-created
agent improve with experience. The hand-created agent
training only on the task initially has better performance,
but the autonomous agent later matches it. All error bars are
standard error.

importance is that the agent learns a discretization of the ac-
tion space. Each motor variable is initially given a landmark
at 0, but it takes a force of 300 in the simulator to move the
arm in any direction. Our agent finds those important land-
marks and can then use that knowledge when learning a new
task. In contrast, the hand-created learner would need to be
trained from scratch for each new task and would not be able
to use what it learned in previous tasks for future tasks.

Conclusion and Future Work
The agent begins with a simple set of qualitative distinctions.
These distinctions allow it to learn predictive rules. By mon-
itoring the success or failure of these rules, the agent is able
to find natural joints (landmarks) in its environment that al-
low it to discretize its continuous input and motor variables.
Using the rules and the discretization of variables, the agent
is able to define many small reinforcement learning prob-
lems. These reinforcement learning problems lead to poli-
cies that allow the agent to move to the regions of the state
space that maximize the reliability of its learned rules.

In future work we will focus on generalizing the notion
of a rule to include policies learned during reinforcement
learning as shown in Figure 2 (f). This will allow the agent
learn when such policies will be successful and when they
will not. We are also moving towards implementing this on
a physical robot using a camera that watches an arm in a
workspace.

References
Drescher, G. L. 1991. Made-Up Minds: A Constructivist
Approach to Artificial Intelligence. Cambridge, MA: MIT
Press.
Fayyad, U. M., and Irani, K. B. 1993. Multi-interval dis-
cretization of continuousvalued attributes for classification

learning. In Proceedings International Joint Conference on
Articial Intelligence, volume 2, 1022–1027.
Klein, J. 2003. Breve: a 3d environment for the simulation
of decentralized systems and artificial life. In Proceedings
of the International Conference on Artificial Life, 329–334.
Koenig, S., and Simmons, R. 1996. The effect of rep-
resentation and knowledge on goal-directed exploration
with reinforcement-learning algorithms. Machine Learn-
ing 22(1):227–250.
Kuipers, B. 1994. Qualitative Reasoning. Cambridge,
Massachusetts: The MIT Press.
McGovern, A., and Barto, A. G. 2001. Automatic dis-
covery of subgoals in reinforcement learning using diverse
density. In Proceedings International Conference on Ma-
chine Learning, 361–368.
Mugan, J., and Kuipers, B. 2007a. Learning distinctions
and rules in a continuous world through active exploration.
In Proceedings of the International Conference on Epige-
netic Robotics.
Mugan, J., and Kuipers, B. 2007b. Learning to predict the
effects of actions: Synergy between rules and landmarks.
In Proceedings of the International Conference on Devel-
opment and Learning.
Oudeyer, P.-Y., and Kaplan, F. 2004. Intelligent adaptive
curiosity. In Proceedings of the International Conference
on Epigenetic Robotics.
Pearl, J. 2000. Causality: Modeling, Reasoning, and In-
ference. Cambridge: Cambridge University Press.
Sachenbacher, M., and Struss, P. 2005. Task-dependent
qualitative domain abstraction. Artificial Intelligence
162(1-2):121–143.
Santamaria, J.; Sutton, R.; and Ram, A. 1997. Experiments
with Reinforcement Learning in Problems with Continuous
State and Action Spaces. Adaptive Behavior 6(2):163.
Simsek, O., and Barto, A. 2004. Using relative novelty
to identify useful temporal abstractions in reinforcement
learning. Proceedings of the Twenty-First International
Conference on Machine Learning 751–758.
Simsek, O.; Wolfe, A.; and Barto, A. 2005. Identifying
useful subgoals in reinforcement learning by local graph
partitioning. Proceedings of the Twenty-Second Interna-
tional Conference on Machine Learning 816–823.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing. Cambridge MA: MIT Press.

Interval analysis based learning for fault model identification.
Application to control surfaces oscillatory failures.

Renaud Pons∗, Carine Jauberthie†∗ , Louise Travé-Massuyès∗, Philippe Goupil‡

{rpons,cjaubert,louise}@laas.fr philippe.goupil@airbus.com
∗LAAS-CNRS ‡Airbus France

∗Université de Toulouse Flight Control System department
†Université Paul Sabatier 316, route de Bayonne

7, avenue du Colonel Roche 31060 Toulouse CEDEX 09
F-31077 Toulouse France

France

Abstract

Interval models may be seen as a trade-off between numeri-
cal and qualitative models. They have been often referred as
semi-qualitative models. The interval algebra is indeed a spe-
cific qualitative algebra with advantageous algebraic proper-
ties. This paper presents the application of an interval based
parameter estimation method, which is used for learning fault
models supporting the detection of Oscillatory Failure Cases
(OFC) in Electrical Flight Control System (EFCS) of civil air-
planes. The interval estimation method results are guaranteed
and computations are performed in finite time. Failures are
identified using the fault models which are checked against
system input and output measurements.

Introduction
Model based reasoning relies on the soundness of the models
supporting the reasoning. This is particularly true for model
based fault detection and diagnosis. Nevertheless building
models turns out to be an awkward task. At some stage of
the process, one may face two kinds of uncertainties. On one
side,unstructureduncertainties mean that deriving a com-
plete equational model from the physical phenomena is im-
possible. On the other side, when the structure of the equa-
tions is known but some of the parameters are not, uncer-
tainties are said to bestructured. In addition to these uncer-
tainties, it is not always possible to get informations about
disturbances and noises acting on the system. In such cases,
assuming bounded uncertainties may be a solution.

Considering structured uncertainties, an interesting way
to go is then to use guaranteed estimation methods, which
learn the state and/or parameters of the models from data.
These methods rely oninterval analysisthat first appeared
in (Moore 1966). They are now subject of a growing inter-
est in various communities and are applied for many tasks
(Alamo, Bravo, & Camacho 2005; Armengolet al. 2001;
Guerra, Puig, & Ingimundarson 2006; Jaulinet al. 2001; Ki-
effer & Walter 1998; Kieffer, Jaulin, & Walter 2002; Lesecq,
Barraud, & Dinh 2003; Ribot 2006; Ribot, Jauberthie, &
Travé-Massuyès 2007).

Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This paper presents a fault detection method using interval
parameter estimation. Parameters of the model are estimated
from the input and output measurements of the system. The
consistency of this estimation is then checked against param-
eters computed from a theoretical (possibly faulty) model of
the system. Computations use the set inversion algorithm
SIVIA (Jaulin & Walter 1993; Jaulinet al. 2001). The re-
sults are approximated but are bounded in a guaranteed way.
The method is applied to detect Oscillatory Failure Cases
(OFC) in Electrical Flight Control System (EFCS) of civil
airplanes.

The article is organised as follows. Next section positions
interval models with respect to qualitative models. Then sec-
ond section provides an overview of interval analysis, its
original purpose and its use for fault detection. The error
bounded context is then presented more precisely with para-
metric estimation using intervals in the fourth section. In
fifth section, the case study is presented: we describe what
are OFC, and their consequences on the aircraft control sur-
faces, why such failures must be detected in time and one
of the methods currently used on Airbus aircrafts for OFC
detection. In sixth section the application and the obtained
results are analyzed. Finally some conclusions are outlined
in last section.

Qualitative versus interval models
Providing models representing physical systems is a com-
mon concern spread over all scientific and engineering com-
munities. Modelling depends on the available knowledge
about the physical system. This is why pure numerical mod-
els are sometimes disregarded to the benefit of qualitative
models which naturally cope with uncertain and inaccurate
knowledge. Within the qualitative framework, numerical
values are replaced by qualitative values that can be seen
as (absolute)orders of magnitude1.

Absolute orders of magnitudeare based on partitioning
the real lineR into a finite set of basic qualitative val-

1Relative orders of magnitude refer to different formalisms
based on binary relations used to compare quantities (Dague1993a;
1993b; Travé-Massuyèset al. 2005).

ues. Considering the order relation given by set inclu-
sion, it allows one to build the whole set of qualitative val-
ues, organised along to a high semi-lattice (Travé-Massuyès
& Piera 1989; Travé-Massuyès, Ironi, & Dague 2003).
As an example, (De Kleer & Brown 1984; Forbus 1984;
Kuipers 1984) introducedsign algebrafor which a param-
eter or a variablex takes values in{−, 0, +, ?} depending
on whether it is negative, zero, positive, or undetermined.
Unfortunately, many operations,e.g. (+) − (+), lead to
an undetermined result. Absolute order of magnitude alge-
bras were proposed to hinder this problem (Travé-Massuyès,
Ironi, & Dague 2003). The real line partitioning defines
the quantity spaceof a variable thanks tolandmark values
(Kuipers 1994). It captures the intuition that there are only a
few qualitative important values associated to different qual-
itative behaviors. Whatever partitioning is chosen, an alge-
bra and arithmetical operations can be defined.

The interval algebra can be seen as an extreme case in
which the partition elements are provided by every real num-
ber and intervals are closed and connected subsets ofR. In-
terval analysis may then be interpreted as a specific case of
order of magnitude reasoning.

Interval analysis

Preamble

The key idea of interval analysis is to reason about intervals
instead of real numbers and boxes instead of real vectors.
The first motivation was to obtain guaranteed results from
floating point algorithms and it was then extended to vali-
dated numerics (Moore 1959). Let us recall that in comput-
ers real numbers can only be represented by a floating point
approximation, hence introducing a quantification error. A
guaranteed resultmeans first that the result set encloses the
exact solution. The width of the set,i.e. the result precision,
may be chosen depending on various criteria among which
response time or computation costs. Secondly, it also means
that the algorithm is able to conclude on the existence or not
of a solution in limited time or number of iterations. The first
significant work is due to Moore in its Phd thesis which was
the early beginnings of his reference book (Moore 1966).

Main concepts

The matter is to wrap the sets of interest into boxes or union
of boxes for which computations may be easier. There are
three fundamental operations on intervals which are briefly
explained after the definition of an interval.

Interval A real interval[u] = [u, u] is a closed and con-
nected subset ofR whereu represents the lower bound of
[u] andu represents the upper bound. The width of an in-
terval [u] is defined byw(u) = u − u, and its midpoint by
m(u) = (u + u)/2.

The set of all real intervals ofR is denotedIR.
Two intervals[u] and[v] are equal if and only ifu = v and

u = v. Real arithmetic operations are extended to intervals
(Moore 1966).

Arithmetic operations on two intervals[u] and[v] can be

defined by:

◦ ∈ {+,−, ∗, /}, [u] ◦ [v] = {x ◦ y | x ∈ [u], y ∈ [v]}.

An interval vector (or box)[X] is a vector with interval
components and may equivently be seen as a cartesian prod-
uct of scalar intervals:

[X] = [x1] × [x2] × . . . × [xn].

The set ofn−dimensional real interval vectors is denoted
by IR

n.
An interval matrix is a matrix with interval components.

The set ofn×m real interval matrices is denoted byIR
n×m.

The widthw(.) of an interval vector (or of an interval matrix)
is the maximum of the widths of its interval components.
The midpointm(.) of an interval vector (resp. an interval
matrix) is a vector (resp. a matrix) composed of the midpoint
of its interval components.

Classical operations for interval vectors (resp. interval
matrices) are direct extensions of the same operations for
punctual vectors (resp. punctual matrices) (Moore 1966).

Wrappers Consider a setU and a setV of subsets ofU.
V is a set of wrappersfor U if U and each singleton ofU
belong toV andV is closed by intersection.

The figure 1 showsf([u]) which is the direct image of a
box [u] in IR

2 by a functionf , a possible wrapper[f]([u])
and the optimal wrapper[f]∗([u]). f([u]) is called therange
of f over[u] and is given by:

f([u]) = {f(x) | x ∈ [u]}.

[u] [f]([u])

[f]∗([u])

f([u])

Figure 1: Range off over[u] and wrappers.

Inclusion function Given[u] a box ofIRn and a function
f from IR

n to IR
m, theinclusion functionof f aims at get-

ting an interval containing the image of[u] by f .
An inclusion function off can be obtained by replacing

each occurrence of a real variable by its corresponding in-
terval and by replacing each standard function by its interval
evaluation. Such a function is called the natural inclusion
function. In practice the inclusion function is not unique,it
depends on the syntax off .

Inclusion test Given a subsetS of Rn, we test if[x] be-
longs toS, more precisely if[x] ⊂ S or [x] ∩ S = ∅. These
tests are used to prove that all points in a given box satisfy a
given property or to prove that none of them does.

Contractor The last operation is thecontractionof [x]
with respect toS. This means that we search a smaller box
[z] such that[x] ∩ S = [z] ∩ S. If S is the feasibility set of
a problem and[z] turns out empty, then the box[x] may not
contain the solution (Jaulinet al. 2001).

These operations are used to test if a box can or cannot be
removed from the solution set. When no conclusion can be
drawn, the box may be bisected and each of the sub-boxes
can be tested in turn (this corresponds tobranch-and-bound
algorithms).

SIVIA: Set Inversion Via Interval Analysis
Consider the problem of determining a solution set for the
unknown quantitiesu defined by

S = {u ∈ U | Φ(u) ∈ [y]},

= Φ−1([y]) ∩ U,
(1)

where[y] is known a priori,U is an a priori search set for
u andΦ a nonlinear function not necessarily invertible in
the classical sense. (1) involves computing the reciprocal
image ofΦ. This can be solved using the algorithmSIVIA,
which is a recursive algorithm that explores all the search
space without loosing any solution. This algorithm makes it
possible to derive a guaranteed enclosure of the solution set
S as follows:

S ⊆ S ⊆ S. (2)
The inner enclosureS is composed of the boxes that have

been proved feasible. To prove that a box[u] is feasible
it is sufficient to prove thatΦ([u]) ⊆ [y]. Reversely, if it
can be proved thatΦ([u]) ∩ [y] = ∅, then the box[u] is
unfeasible. Otherwise, no conclusion can be reached and
the box[u] is said undetermined. The latter is then bisected
in two sub-boxes that are tested until their size reaches a
user-specified precision thresholdε > 0. Such a termination
criterion ensures thatSIVIAterminates after a finite number
of iterations.

The algorithm is formally presented below. The functions
L(.) andR(.) return respectively the “left” and “right” parts
of their interval vector argument once it has been bisected.
This bisection may be made using different strategies such
as round robin, largest first or random.

Algorithm 1 SIVIA (in: Φ, [y], [u], ε, inout: S, S)

1: if [Φ]([u]) ∩ [y] = ∅ then
2: return
3: end if
4: if [Φ]([u]) ⊂ [y] then
5: S := S ∪ [u]
6: S := S ∪ [u]
7: return
8: end if
9: if width([u]) < ε then

10: S := S ∪ [u]
11: end if
12: SIVIA (Φ, [y], L([u]), ε, S, S)
13: SIVIA (Φ, [y], R([u]), ε, S, S)

Fault detection using intervals
Set membership detection uses these concepts to perform
state estimation and parameters estimation. In state esti-
mation, a nonlinear dynamical model is approximated by
a Taylor expansion (Rihm 1994; Berz & Makino 1998;
Nedialkov, Jackson, & Pryce 2001) to compute a box en-
closing all possible trajectories of the solution between two
successive time stepstj andtj+1.

The fixed point and Picard-Lindelöf theorems prove the
existence and uniqueness of the solution (Rihm 1994). The
interval solution becomes obviously wider and wider at
each iteration step: this drawback is known as thewrap-
ping effect. Numerous methods may circumvent this pes-
simism: among them one is to use high order Taylor ex-
pansion, mean value forms, matrices preconditioning and
a predictor-corrector approach (Corliss 1994; Nedialkov
1999; Neumaier 1990; Raïssi, Ramdani, & Candau 2004;
Ramdani 1995; Rihm 1994).

Parameter estimation in a bounded error
context

Parameters and state estimated from experimental measures
are usually obtained within a stochastic framework in which
known distribution laws are associated to interferences and
noisy measurements. Oppositely, in the bounded error con-
text measures and modeling errors are supposed to be un-
known but to stay within known and acceptable bounds.

Errors between measured and predicted outputs may rely
on many factors, among them: limited sensors accuracy,
interferences, noise, structured uncertainties, . . . Someare
quantifiable, some are not. We consider here the quantifi-
able errore, which is added to the model outputy. The
experimental outputsyexp are given by:

yexp(tj) = y(tj) + e(tj), 1 ≤ j ≤ n. (3)

In our context, the errore is supposed to be within an in-
terval whose lower bound isemin and upper bound isemax.
An allowable error setE may be defined as a set of con-
straints

E = {e(tj) | emin ≤ e(tj) ≤ emax}. (4)

These bounds may be considered constant over time as well
as variable. They may be established from data given by
constructors for electronic parts for example.

Our system has unknown but bounded initial conditions
while input and output values are available at any time. The
initial conditions belongs to a set, hence the model outputy
is also a set denoted[y], as well as the errore which is a set
[e] that must be in the domainE.

In the same way than for[e], we define an allowable do-
mainY for model output[y] such than

Y = {[y] | [y] ⊂ [yexp]},

= {[y] | [y] ⊂ [y − emax, y − emin]}.
(5)

Interval analysis is used to reject models that are not consis-
tent with data and error bounds.

Numerous approaches have been tested with linear mod-
els: ellipsoid shaped methods (Milanese & Vicino 1991;

u System

Model

yexp

+

-

y

[e]

Figure 2: System and model.

Durieu & Walter 2001; Lesecq, Barraud, & Dinh 2003),
parallelotopic and zonotopes (Alamo, Bravo, & Camacho
2005).

Consider a nonlinear parametric model described by the
following set of equations















ẋ(t, p) = f(x(t), u(t), p),

y(t, p) = g(x(t), u(t), p),

x0 ∈ X0,

p ∈ P0,

(6)

where

• f andg are continuous nonlinear known functions,

• x(t) ∈ Rn is the state vector at timet,

• u(t) ∈ Rm is the input vector at timet,

• y(t) ∈ Rp is the output vector at timet,

• X0 is an a priori known set enclosing the initial condition
x0,

• P0 is the a priori known set enclosing the searched param-
eter vectorp.

A parameter vectorp is acceptable if and only if the error
betweenyexp and the model output[y] is bounded in a known
way. To estimate system parameters, we have to get the set
P of all parametersp enclosed in the a priori search setP0

such that error between real data and model outputs denoted

[e(p)] = yexp− [y(p)] (7)

belongs to the allowable error setE whose boundsemin and
emax are known:

P = {p ∈ P0 | [e(p)] ∈ E} ,

= {p ∈ P0 | emin ≤ [e(p)] ≤ emax} .
(8)

The characterization of the setP may be defined as a
set inversion problem (Raïssi, Ramdani, & Candau 2003;
Kieffer & Walter 2005):

P = [e−1](E). (9)

A guaranteed approximation ofP may be computed using
the SIVIA algorithm presented previously.

Case study
Problem
One of the tasks devoted to flight control computer is to slave
the position of the control surfaces. The control surface
motion is driven by an actuator in active or damped mode.

There are generally two actuators for one control surface. A
mastercomputer performs control by sending a command
on the active actuator. The other one is set in damped mode
and follows the surface motion without opposition. When
the master computer detects a failure, it switches the active
actuator to damped mode and gives control to aslavecom-
puter that controls the second actuator which is now in active
mode.

All parts in the control chain that contain electronic de-
vices may generate interference signals. These signals make
the control surface swing. This is called anOscillatory Fail-
ure Case (OFC). In this paper, only OFC located in the
servo-loop control of the moving surfaces are considered,
that is, between theFlight Control Computerand the control
surface, including these two elements (cf. Figure 3). When
an OFC occurs within the actuator bandwidth , it may have
the following consequences:

• coupled with the aeroelastic behaviour of the aircraft, it
may lead to unacceptably high loads or vibrations, the
worst case corresponds to resonance phenomena with air-
craft natural modes ;

• it speeds up actuators stress and reduces their lifetime ;

• it lowers passengers comfort.

The plane is designed to take into account these faults in a
limited way, depending on oscillation frequency and range.
Taking design actions to counteract these faults would in-
deed require heavily and costly structure reinforcement. It
is then very much advisable to detect them using the flight
control computers. Monitoring must be performed to ensure
that failures stay within predefined limits. Classical moni-
toring (e.g. position monitoring, runaway monitoring, etc.)
does not guaranty such detections, so specific mechanisms
must be added.

When an OFC is detected, the flight computer looses reg-
ulation over elevators control. As seen previously, another
waiting computer ensures surface control with a redundant
servo which switches from damped to active mode.

The problem to solve is to detect in the control loop some
OFC with a minimal given range within a given number of
periods (the maximal overload does not immediately occur
on the structure but after some periods of oscillation). The
goal is to detect 1° failures within 3 periods, on a frequency
range from 0.2 to 5 Hz. This goal has been chosen for this
paper. In real cases, it depends on the aircraft type.

Liquid vs. solid failures
Two different kinds of OFC may occur: liquid or solid ones.
As shown in the scheme of figure 4, a liquid failure is a
interference signal added to the control loop signal. A solid
failure is a signal which replaces the control loop one.

In both cases, a failure is a periodic sinus shaped signal
whose frequency, range and phase obey to an uniform law.
For both cases of failure, residuals corresponding to esti-
mated position subtracted from real position are shown in
Figure 5.

These residuals are used to detect the OFC. The cur-
rent method used in A380 flight control computers relies

Figure 3: Position control chain.

Real position

Estimated position

Residual position

Real position

Estimated position

Residual

Figure 5: Residuals: liquid failure case on the left side, solid failure case on the right side.

(b)

signal

failure

"polluted" signal

"polluted" signal
(a)

signal

failure

Figure 4: Liquid (a) vs. solid (b) failures.

on residual evaluation by oscillation counting inside spec-
tral subband (Goupil 2007).

Application
In the following section, we address the case of liquid failure
with the bounded error parameter estimation method pre-
sented previously and use this estimation for detecting OFC.
The results are analyzed with respect to the currently used
detection method.

Our goal is to perform parameter estimation of the liquid
failure model. This fault model defines the shape of the po-
sition signal as either a sinus or a triangle. The system to
monitor is a simple model of a control surface whose mo-
tion is ensured by a hydraulic servo command as presented
in figure 6.

In this model,o(n) is the position control signal at time
n. The control errorε is given by:

ε(n) = o(n) − ŝ(n − 1). (10)

It is the difference between the position controlo at timen
and the estimated position̂s at timen − 1. The estimated
current̂i(n) is proportional to the error:

î(n) = Kε(n) (11)

whereK is the constant control gain. A saturation is then ap-
plied to the current hence limiting its value within predefined
bounds. It is then converted to speedv̂(n) by interpolation
with data stored in a look-up table. Finally, the estimated
control surface position̂s(n) at timen is computed by inte-
gration of the speed.

We ran tests introducing oscillatory failures in the control
loop. Two fault models, triangle shaped and sinus shaped,
were used. Parameters were estimated over one period of
the signal.

Sinus shaped fault
A high noisy sinus-shaped liquid fault signal with a range
A = 1° and a frequency off = 0.5Hz is introduced in the
control surface model. The initial parameter box is given by
A × f = [0, 3] × [0, 10].

Figure 7 shows the results provided by the set inversion
algorithm when the fault model is supposed to be sinus-
shaped. Range parameterA is showed on the horizontal

axis while frequencyf is on the vertical one. Blue boxes
have been rejected, yellow ones have a length inferior to the
stop condition set in the algorithm. The red boxes represent
the solution. We notice that they concentrate around the real
parameter values.

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

0.525

0.53

Figure 7: Sinus shaped fault.

When the fault model is triangle-shaped, the algorithm
stops after a few iterations and its conclusion is the non-
existence of a solution.

Triangle-shaped fault
In this example, the fault is triangle-shaped with a range2°
and a frequency off = 0.5Hz, with a still highly noisy
signal. The inital parameter box is nowA × T = [0, 3] ×
[0, 5], with T = 1/f .

Figure 8 exhibits the obtained results with a triangle-
shaped fault model. The parameterA is on the horizontal
axis and the periodT on the vertical axis. One can notice
that the estimation results are fully in accordance with the
injected fault.

With a sinus-shaped fault model, the algorithm concludes
again to the non-existence of a solution.

Discussion and conclusion
In this paper we presented a method for failure detection us-
ing fault models and an error bounded estimation method.
The method is based on interval analysis which provides
guaranteed results in an error bounded context. It has been
applied to solve plane control surfaces oscillatory failures.

The tests show good results for confirming a fault. Now,
the real advantage of the method with respect to others is
that it is very efficient to prove the non-existence of the so-
lution, that is to discard specific kinds of failures in the real
system. In the two case study scenarios, the invalidation of
the triangle-shaped (sinus-shaped) fault model is obtained
within a few iterations. We should notice that a stochastic
method would not invalidate the non relevant fault model but
it would conclude to the existence of a solution with a wide
confidence range, which is much more difficult to interpret.

s
1

K1 1

Current / Speed
Conversion

Current Saturation

Rod Position
EstimationIntegrationGain

Command

o(n) ε(n) î(n) v̂(n) ŝ(n)

Figure 6: Control surface position estimation model.

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

1.7

1.8

1.9

2

2.1

2.2

2.3

Figure 8: Triangle shaped fault.

Future work will consist in improving the fault model
method by studying its properties : response time, false
alarm rate, non detection rate and robustness. More simu-
lation tests using alternate fault models against real datawill
also be performed.

Another direction to go is to use alternate detection meth-
ods under the condition to have proper surface control loop
models. State estimation and parity state methods, both us-
ing interval analysis, should be tested.

References

Alamo, T.; Bravo, J.; and Camacho, E. 2005. Guaranteed
state estimation by zonotopes.Automatica41(6):1035–
1043.

Armengol, J.; Vehi, J.; Travé-Massuyès, L.; and Sainz,
M. A. 2001. Application of modal intervals to the gen-
eration of error-bounded envelopes.Reliable Computing
7(2):171–195.

Berz, M., and Makino, K. 1998. Verified integration
of odes and flows using differential algebraic methods on
high-order taylor models.Reliable Computing4:361–369.

Corliss, G. 1994. Guaranteed error bounds for ordinary
differential equations. InLectures notes at the VI-th SERC
Numerical Analysis Summer School.

Dague, P. 1993a. Numeric reasoning with relative orders

of magnitude. In11th National Conference on Artificial
Intelligence, AAAI’93, 541–547.
Dague, P. 1993b. Symbolic reasoning with relative orders
of magnitude. InInternational Joint Conference on Artifi-
cial Intelligence IJCAI’93, 1509–1514.
De Kleer, J., and Brown, J. S. 1984. A qualitative physics
based on confluences.Artificial Intelligence24:7–83.
Durieu, C., and Walter, E. 2001.Identification des sys-
tèmes. Paris: Hermès. chapter Estimation ellipsoidales à
erreur bornée.
Forbus, K. D. 1984. Qualitative process theory.Artificial
Intelligence24:85–168.
Goupil, P. 2007. Oscillatory failure case detection in a380
electrical flight control system by analytical redundancy.In
17th IFAC Symposium on Automatic Control in Aerospace.
Guerra, P.; Puig, V.; and Ingimundarson, A. 2006. Ro-
bust fault detection with state estimators and interval mod-
els using zonotopes. In17th International Workshop on
Principles of Diagnosis, DX’06, 109–116.
Jaulin, L., and Walter, E. 1993. Set inversion via interval
analysis for nonlinear bounded-error estimation.Automat-
ica 29(4):1053–1064.
Jaulin, L.; Kieffer, M.; Didrit, O.; and Walter, E. 2001.Ap-
plied Interval Analysis, with examples in parameter and
state estimation, Robust control and robotics. Londres:
Springer.
Kieffer, M., and Walter, E. 1998.In A.C. Atkinson, L. Pron-
zato, H.P. Wynn, Advances Model-Oriented Data Analy-
sis and Experimental Design. Heidelberg: Physica-Verlag.
chapter Interval Analysis for guaranteed nonlinear param-
eter estimation, 115–125.
Kieffer, M., and Walter, E. 2005. Interval analysis for guar-
anteed non-linear parameter and state estimation.Math-
ematical and Computer Modelling of Dynamical Systems
11(2):171–181.
Kieffer, M.; Jaulin, L.; and Walter, E. 2002. Guaran-
teed recursive nonlinear state bounding using interval anal-
ysis. International Journal of Adaptative Control and Sig-
nal Processing6:191–218.
Kuipers, B. 1984. Commonsense reasoning about causal-
ity: deriving behavior from structure.Artificial Intelligence
24:169–203.
Kuipers, B. 1994. Qualitative reasoning, modeling and
simulation with incomplete knowledge. Cambridge, Mas-
sachusetts: The MIT Press.

Lesecq, S.; Barraud, A.; and Dinh, K. T. 2003. Numer-
ical accurate computations for ellipsoidal state bounding.
In 11th IEEE Mediterranean Conference on Control and
Automation, MED’03.
Milanese, M., and Vicino, A. 1991. Estimation theory for
non-linear models and set membership uncertainty.Auto-
matica27(2):403–408.
Moore, R. E. 1959. Automatic error analysis in digital
computation. Technical Report LMSD-48421, Lockheed
Missiles and Space Co, Palo Alto, CA.
Moore, R. 1966. Interval Analysis. Englewood Cliffs:
Prentice-Hall.
Nedialkov, N. S.; Jackson, K.; and Pryce, J. 2001. An ef-
fective high-order interval method for validating existence
and uniqueness of the solution of an ivp for an ode.Reli-
able Computing7(6):449–465.
Nedialkov, N. 1999.Computing rigorous bounds on the
solution of an initial value problem for an ordinary differ-
ential equation. PhD University of Toronto.
Neumaier, A. 1990.Interval methods for systems of equa-
tions. Cambridge, UK: Cambridge University Press.
Raïssi, T.; Ramdani, N.; and Candau, Y. 2003. Parame-
ter estimation for nonlinear continuous-time systems in a
bounded error context. In42nd IEEE Conference on Deci-
sion and Control, CDC2003.
Raïssi, T.; Ramdani, N.; and Candau, Y. 2004. Set
membership staet and parameter estimation for systems de-
scribed by nonlinear differential equations.Automatica
40:1771–1777.
Ramdani, N. 1995. Méthodes ensemblistes pour
l’estimation. Habilitation à diriger des recherches.
Ribot, P.; Jauberthie, C.; and Travé-Massuyès, L. 2007.
State estimation by interval analysis for a nonlinear differ-
ential aerospace model. InEuropean Control Conference,
ECC’07, 4839–4844.
Ribot, P. 2006. Estimation d’état et de paramètres en util-
isant l’analyse par intervalles. Master recherche smis-eeas,
Université Paul Sabatier, Toulouse, France.
Rihm, R. 1994. Interval methods for initial value problems
in odes. In Herzberger, J., ed.,Topics in Validated Com-
putations. IMACS-GAMM. International Workshop on Val-
idated Computations. Amsterdam, New York: University
of Oldenburg.
Travé-Massuyès, L., and Piera, N. 1989. The order of mag-
nitude models as qualitative algebras. In11th International
Joint Conference on Artificial Intelligence IJCAI’89.
Travé-Massuyès, L.; Prats, F.; Sanchez, M.; and Agell, N.
2005. Relative and absolute order-of-magnitude models
unified. Annals of Mathematics and Artificial Intelligence
45:323–341.
Travé-Massuyès, L.; Ironi, L.; and Dague, P. 2003. Mathe-
matical foundations of qualitative reasoning.AI Magazine
24(4):91–106. Special Issue on Qualitative Reasoning.

Challenges in Presenting Argumentation Results

Laura Rassbach, Elizabeth Bradley

 University of Colorado
Department of Computer Science

Boulder, CO 80309-0430
laura.rassbach@colorado.edu, lizb@cs.colorado.edu

Abstract
We present the initial user interface for the Calvin system.
Despite designing for ease-of-use and simplicity, users had
significant problems with this initial interface. Possible
solutions to these problems are also presented.

1. Introduction

Displaying the results of a qualitative reasoning system to
users in a useful and understandable way is almost as
important as creating a system that generates the right
results in the first place. Even when a system is capable of
significantly aiding users with some task, they will tend to
choose not to use it when the interface is baffling or
impossible to use. However, designing a clear and
comprehensible user interface is hardly a trivial task. We
encountered significant challenges while designing a user
interface for Calvin, an argumentation system for problems
in cosmogenic isotope dating (a geological field). Although
we believed that Calvin’s initial interface would be clear
and easy to use, we found that users struggled to
understand the interface and did not use it as intended.
Significant changes are now required to our initial
interface. This paper discusses these challenges and our
ongoing plans for improving the user experience with
Calvin.

2. Calvin

Experts in cosmogenic isotope dating frequently need to
identify what geologic processes are most likely to have
affected a set of data they are examining. This process is
difficult and time consuming, requiring significant
amounts of expertise. Calvin is a qualitative reasoning
system aimed at automating portions of this process. The
nature of isotope dating (very little data and few
unassailable interpretations of any data) makes it difficult
to arrive at a definitive answer for any dataset, so Calvin
generates a complete argument for each possible process.
An argument is similar to a proof in first-order logic, but
typically contains both evidence for and against the

conclusion in question. Calvin is able to make judgments
about which argument is ‘best,’ but it is not our goal to
remove the expert from decision-making. Instead, we
intend for the expert to be able to carefully examine
Calvin’s reasoning and make a final judgement about the
process. Calvin’s judgments about the best arguments are
intended to guide experts’ attention to the most likely
possibilities.

Internally, the argument for a particular process is a
collection of trees. The nodes in each tree are created from
rules in Calvin’s knowledge base, with every rule used in
the argument represented as a node in one or more trees.
The root of every tree in the collection for a particular
process is a rule directly referring to that process. Because
these argument trees are different from proofs in that they
are defeasible, Calvin needs some way to judge the relative
strengths of different support for a conclusion. Calvin uses
a system of 2-element confidence vectors. The first
element of the vector is called a ‘match’ and indicates how
closely the current set of data matches Calvin’s rule base.
Match values are further composed of a truth and a degree.
The ‘truth’ can be either true or false (matches or doesn’t
match the rule base) and the ‘degree’ refers to how far the
actual data is from any threshold in the rule. For instance,
if Calvin’s rule base states that elevation greater than
10,000 feet is evidence for snow cover (one possible
geologic process), elevation values of 1,000, 8,000, 11,000,
and 15,000 feet would all generate different match values.
The other dimension of confidence is a quality measure,
and can be ‘poor,’ ‘okay,’ ‘good,’ or ‘definite.’ High
elevation is only poor quality evidence for snow cover,
whereas ages correlated with boulder size is good evidence
(because smaller boulders will be covered with snow for
more of the year).

3. User Interface 1.0

Figure 1 shows a screenshot of our initial user interface.
We designed the initial user interface to display the
complete set of arguments for each process in a simple and
intuitive way. We expected this task to be relatively simple
because experts quickly grasp Calvin’s underlying logic
when it is explained to them in an informal setting. When
Calvin completes its analysis of a dataset, it brings up a
window from which the user can access all the arguments

it has generated. The first argument displayed is the one
with the highest overall confidence.

The display for an individual argument includes the top-
level conclusion being argued about (for instance, whether
snow cover is a factor for this dataset) and the overall
confidence in that conclusion. This confidence is converted
directly into text from its internal representation (a typical
confidence might read ‘very true match to okay quality
knowledge’). Evidence for and against the conclusion is
sorted into two separate columns, sorted from strongest to
weakest. Every piece of evidence contributes an individual
confidence to the overall confidence in the conclusion.
This contribution is displayed in two ways: as a color-
coded block with each piece of evidence and as text
available as a tooltip. Users can examine sub-arguments by
clicking on their summary; they are displayed in the same
format as the top-level arguments. Users can also get a
more detailed description of any complex calculations
performed by Calvin. For example, Calvin’s rule base
sometimes needs to determine whether a set of data points
falls on a straight line. Users can click on this piece of
evidence to get a description of how closely the points fit a
line, the statistical significance of the fit, and a graph of the
points and the best-fit line.

In the center of the argument display is a final
representation of how the individual evidence items
contribute to the Calvin’s confidence in the overall
argument conclusion. This representation is a grid with a
location for each possible confidence value. Matches are
listed from left to right, most extreme false through most
extreme true, and quality is listed from top to bottom
highest to lowest quality. Calvin sizes each of the grid cells

according to the number of pieces of evidence it has at the
corresponding confidence level for the argument. The cells
are the same color as the block displayed with the evidence
items.

4. Interface Weaknesses and Solutions

Observing experts using this initial interface has revealed a
number of problems. The first and most obvious of these
problems is that experts refer to Calvin’s highest-
confidence argument as the ‘answer’ and do not perform
any further analysis when this answer is wrong. In
particular, even when the confidence in the initially
displayed argument is ‘somewhat true match to poor
quality knowledge’ (the lowest possible ‘true’ confidence),
users do not appear to make the inference that Calvin was
unable to generate any good arguments for any process
with the current data. Instead, they report a wrong answer
and appear to make the inference that Calvin is quite
certain of this answer.

An extension to this issue occurs when Calvin is able to
generate quite good arguments for several processes. This
often happens in datasets with very few samples. In this
case, experts have expressed concern with the fact that
Calvin came up with any answer at all, since there is quite
good evidence for many processes. Instead of looking at
the other arguments generated by Calvin, they look only at
the best one, and appear to assume that all other arguments
generated by Calvin must have been sufficiently inferior to
reject them completely. Experts using Calvin appear
generally uninterested in looking at the full spectrum of
arguments it has generated.

Figure 1: Screenshot of Calvin's initial user interface. Calvin’s user interface has several components. A single screen is intended to
describe the entirety of Calvin’s knowledge about a particular conclusion. At the top of the screen is the conclusion under consideration
and a gestalt of Calvin’s confidence in that conclusion. Evidence related to the conclusion is divided into evidence against, on the left, and
evidence for, on the right. This split is somewhat more apparent in the original because items on the left have red color markings and items
on the right are green, however, in this screenshot colors have been replaced with textures for printing. Each distinct piece of evidence is
enclosed in a box with text describing Calvin’s reasoning. Every box and every text item has a tooltip allowing the user to view Calvin’s
confidence in these individual items. Users can also click on some text items to get more detail about Calvin’s reasoning (either a
subargument or the results of a simulation). Finally, the grid in the center provides a visual display of how many items of evidence Calvin
has found at each ‘level’ of confidence: larger boxes represent more items.

We intend to address both of these problems by presenting
a summary of all the arguments generated by Calvin. This
will serve as the initial user view, rather than the single
best argument generated. This will permit users to get a
sense of perspective before viewing individual arguments
in more detail.

Even while viewing a single argument in isolation, experts
do not use Calvin’s interface as intended. In particular,
they seem almost uninterested in the evidence that has led
Calvin to draw a specific conclusion. Although they appear
to glance briefly at it, they seem not to understand it or to
think critically about it without prompting. When using
Calvin independently, experts did not choose to examine
sub-arguments by clicking on them.

It is not yet clear precisely why users behave in this way.
We believe that the size and color of the labels may make
them difficult to read, and their positioning on the screen
makes them less prominent. In addition, it has been
observed by non-expert users that the text actually
displayed in these labels is somewhat obscure and difficult
to follow. We plan to make these descriptions of evidence
physically easier to read and less obscure, but expect to
need more iterations before experts are examining them
closely and critically.

Finally, experts observed that the confidence system was
somewhat confusing. This is especially true because
understanding the report of a confidence level requires
understanding Calvin’s internal representation of
confidence. However, even after discussing the meaning of
various confidence values, experts seemed to have
difficulty understanding what a specific confidence meant.
Users did appear able to understand the centered, colored
grid displaying the confidence contributed by all the
evidence after an explanation of its purpose.

Clearly we need to alter Calvin’s interface to make
confidence more approachable to the user. We are
considering a number of changes. The first and most
simple is obviously to ‘tweak’ the language used to
describe a confidence value to the user so it is more
natural. If this proves to be impossible or insufficient, we
may attempt to map Calvin’s 2-dimensional confidence
values onto a single dimension (e.g. ‘no evidence,’ ‘little
evidence,’ ‘some evidence,’, etc.). In addition, we plan to
experiment with the idea of never combining the
confidence in evidence against some conclusion with
evidence for it. Instead, confidence in the evidence for and
against a conclusion could be presented separately. Doing
this might have the additional benefit of encouraging users
to examine the actual evidence that has produced these
confidences.

5. Conclusion

Creating a usable and intuitive user interface for displaying
the results of a qualitative reasoning system is an
interesting challenge. Even when the underlying system is
comparatively intuitive, conveying its results in a way that
users understand is more complicated than simply placing
them in a graphical interface. Despite our efforts, Calvin’s
user interface will require significant changes to meet our
usability goals.

A Definition of Entropy based on Qualitative Descriptions

Llorenç Roselló and Francesc Prats and Mónica Śanchez
Polytechnical University of Catalonia, Barcelona, Spain

e-mail:{llorenc.rosello, francesc.prats, monica.sanchez}@upc.edu

Núria Agell ∗

Esade, Ramon Llull University, Barcelona, Spain

e-mail: nuria.agell@esade.edu

Abstract

A new concept of generalized absolute orders of magnitude
qualitative spaces is introduced in this paper. The new struc-
ture makes it possible to define sets of qualitative labels of
any cardinality, and is consistent with the classical struc-
ture of qualitative spaces of absolute orders of magnitude
and with the classical interval algebra. In addition, the al-
gebraic structure of these spaces ensures initial conditions for
adapting measure theory to a qualitative environment. This
theory provides the appropriate framework in which to intro-
duce the concept of entropy and, consequently, the opportu-
nity to measure the gain or loss of information when working
within qualitative spaces. The results obtained are significant
in terms of situations which arise naturally in many real ap-
plications when dealing with different levels of precision.

INTRODUCTION

Qualitative Reasoning (QR) is a subarea of Artificial Intelli-
gence that seeks to understand and explain human beings’
ability for qualitative reasoning (Forbus 1996), (Kuipers
2004). The main objective is to develop systems that permit
operating in conditions of insufficient numerical data or in
the absence of such data. As indicated in (Travè-Massuyès
and Dague 2003), this could be due to both a lack of infor-
mation as well as to an information overload.

A main goal of Qualitative Reasoning is to tackle problems
in such a way that the principle of relevance is preserved;
that is to say each variable has to be valued with the level
of precision required (Forbus 1984). It is not unusual for a
situation to arise in which it is necessary to work simulta-
neously with different levels of precision, depending on the
available information, in order to ensure interpretability of
the obtained results. To this end, the mathematical struc-
tures of Orders of Magnitude Qualitative Spaces (OM) were
introduced.

∗This work has been partly funded by MEC (Spanish Ministry
of Education and Science) AURA project (TIN2005-08873-C02).
Authors would like to thank their colleagues of GREC research
group of knowledge engineering for helpful discussions andsug-
gestions.

The wordinformationappears constantly in QR. However,
its meaning is as yet undefined within a qualitative context.
The implicit and explicit use of the term and concept ad-
dresses the need to define and, perhaps paradoxically, to
quantify them.

In this work it is presented a way of measuring the amount
of information of a system when using orders of magnitude
descriptions to represent it. Taking into account that the en-
tropy can be used to measure the information, this work is
intended to be a first step towards this measure by means of
orders of magnitude qualitative spaces.

The concept of entropy has its origins in the nineteenth cen-
tury, particularly in thermodynamics and statistics. Thisthe-
ory has been developed from two aspects: the macroscopic,
as introduced by Carnot, Clausius, Gibbs, Planck and
Caratheodory and the microscopic, developed by Maxwell
and Boltzmann (Rokhlin 1967). The statistical concept
of Shannon’s entropy, related to the microscopic aspect,
is a measure of the amount of information (Shannon
1948),(Cover and Thomas 1991).

In order to define the concept of information within the QR
framework, this paper adapts the basic principles of Measure
Theory (Halmos 1974), (Folland 1999) to give OM a struc-
ture in which to define the concept of entropy, and, conse-
quently, the concept of information.

Section 2 defines the concept of generalized absolute orders
of magnitude qualitative spaces. In Section 3, the algebraic
structure of these spaces is analyzed in order to ensure ini-
tial conditions in which to adapt the Measure Theory. A
measure and the concept of entropy in the generalized abso-
lute orders of magnitude spaces are given in section 4 and
5 respectively. The paper ends with several conclusions and
outlines some proposals for future research.

GENERALIZED ABSOLUTE ORDERS OF
MAGNITUDE QUALITATIVE SPACES S∗

g

The classical version of the qualitative orders of mag-
nitude that appears in (Travè-Massuyès and Dague
2003) is an abstraction of intuitive concepts of “very
small ”,“small”,“big”, or “very hot”, “hot”, etc., i.e. an ab-
straction of concepts with which human beings reason. This
abstraction is done through the introduction ofqualitative
labelsin a way that defines a finite and discrete set of labels
representing the above concepts. This paper proposes a fur-
ther step towards the generalization of qualitative ordersof
magnitude. This generalization makes it possible to define
orders of magnitude as either a discrete or continuous set of
labels, providing the theoretical basis on which to developa
Measure Theory in this context.

Definition 1 LetX be a non-empty set,I a subset ofR, and
B : I → P(X) an injective function. Then eachB(t) =
Bt ⊂ X is a generalized basic label onX and the setS of
generalized basic labels onX is

S = {Bt | t ∈ I}.

Note that ift 6= t′, thenBt 6= Bt′ .

Definition 2 If i, j ∈ I, with i < j, the generalized non-
basic label[Bi, Bj) is defined by

[Bi, Bj) = {Bt | t ∈ I, i ≤ t < j}.

In the casei = j ∈ I, the convention[Bi, Bi) = {Bi} will
be used. If necessary,[Bi, Bi) = {Bi} can be identified
with the basic labelBi.

Definition 3 If i ∈ I, the generalized non-basic label
[Bi, B∞) is defined by

[Bi, B∞) = {Bt | t ∈ I, i ≤ t}.

Note thatB∞ is a symbol, not a basic label.

Definition 4 The set ofGeneralized Orders of Magnitude
S∗

g is:

S∗
g = {∅}∪{[Bi, Bj) | i, j ∈ I, i ≤ j}∪{[Bi, B∞) | i ∈ I}.

In this definition ofS∗
g the basic labelBi has been identified

with the singleton{Bi}.

It is important to remark that the functionB : I → P(X)
determines the elements ofS and S∗

g , and the cardinal of
the setI ⊂ R determines the cardinal ofS and therefore the
cardinal ofS∗

g .

Theclassical orders of magnitude qualitative spaces(Travè-
Massuyès and Dague 2003) verifies the conditions of the
generalized model that has just been introduced. This model
are build from a set of ordered basic qualitative labels deter-
mined by a partition of the real line.

Let X be the real interval[a1, an), and a partition of this set
given by{a2, . . . , an−1}, with a1 < a2 < . . . < an−1 <
an. The set of basic labels is

S = {B1, . . . , Bn−1},

where, for1 ≤ i ≤ n − 1, Bi is the real interval[ai, ai+1).
The set of indexes isI = {1, 2, . . . , n − 1}.

a1 a2 an−1 an. . .

B1 Bn−1

Figure 1. Classical aualitative labelsSn

For1 ≤ i < j ≤ n − 1 the non-basic label[Bi, Bj) is:

[Bi, Bj) = {Bi, Bi+1, . . . , Bj−1},

and it is interpreted as the real interval[ai, aj).

For1 ≤ i ≤ n − 1 the non-basic label[Bi, B∞) is:

[Bi, B∞) = {Bi, Bi+1, . . . , Bn−1},

and it is interpreted as the real interval[ai, an).

The complete universe of description for the Orders of Mag-
nitude Space is the set

Sn = { [Bi, Bj) | Bi, Bj ∈ S, i ≤ j}∪{ [Bi, B∞) | Bi ∈ S},

which is called the absolute orders of magnitude qualitative
space with granularityn, also denotedOM(n). In this case,
S∗

g = {∅} ∪ Sn .

There is a partial order relation≤P in Sn “to be more precise
than”, given by:

L1 ≤P L2 ⇐⇒ L1 ⊂ L2.

The least precise label is denoted by? and it is the label
[B1, B∞), which corresponds to the interval[a1, an).

BiB1 ... BnBj

?

p

r

e

c

i

s

i

o

n

... ...

[Bi,Bj)

a

b

s

t

r

a

c

t

i

o

n

.

Figure 2. The spaceSn

This structure permits working with all different levels of
precision from the label ? to the basic labels.

In some theoretical works, orders of magnitude qualitative
spaces are constructed by partitioning the whole real line
(−∞, +∞) instead of a finite real interval[a1, an). How-
ever, in most real world applications involved variables do
have a lower bounda1 and an upper boundan, and then val-
ues less thana1 or greater thanan are considered as outliers
and they are not treated like any other.

The classical sign algebraS = {−, 0, +} was the first
absolute orders of magnitude space considered by the QR
community. It corresponds to the caseS = {B−1 =
(−∞, 0), B0 = {0}, B1 = (0, +∞)}. The sign alge-
bra is obtained via a partition of the real line given by an
unique landmark0. The classical orders of magnitude qual-
itative spaces are built from partitions via a set of landmarks
{a2, . . . , an−1}, and the classical interval algebra is built
from the finest partition of the real line whose landmarks
are all real numbers.

It is important to remark the significance of the presented
mathematical formalism in the sense that it permits to lump
together a family ofS∗

g forming a continuum from the sign
algebraS = {−, 0, +} to the interval algebra corresponding
to S = R.

THE MEASURE SPACE (P(X), Σ(S∗
g
), µ∗)

To introduce the classical concept of entropy by means of
qualitative orders of magnitude spaces, Measure Theory
is required. This theory seeks to generalize the concept
of “length”, “area”and “volume”, understanding that these
quantities need not necessarily correspond to their physical
counterparts, but may in fact represent others. The main use
of the measure is to define the concept of integration for or-
ders of magnitude spaces. First, it is necessary to define the
algebraic structure on which to define a measure.

Definition 5 A class of setsℑ is called asemi-ring if the
following properties are satisfied:

1. ∅ ∈ ℑ.

2. If A, B ∈ ℑ, thenA ∩ B ∈ ℑ.

3. If A, B ∈ ℑ, A ⊂ B, then ∃n ∈ N, n ≥ 1 and
∃D1, D2, . . . , Dn such thatA = D0 ⊂ D1 ⊂ . . . ⊂
Dn = B, with Dk − Dk−1 ∈ ℑ, ∀k ∈ {1, . . . , n}.

Proposition 1 S∗
g is a semi-ring.

Proof:

1. ∅ ∈ S∗
g by definition.

2. If [Bi, Bj), [Bk, Bl) ∈ S∗
g , it is trivial to check that

[Bi, Bj) ∩ [Bk, Bl) ∈ S∗
g , taking into account the rel-

ative position between the real intervals[i, j) and[k, l).
Analogously, in the case of intersections[Bi, Bj) ∩
[Bk, B∞) or [Bi, B∞) ∩ [Bk, B∞).

3. If [Bi, Bj), [Bk, Bl) ∈ S∗
g such that [Bi, Bj) ⊂

[Bk, Bl), then two cases are considered:

(a) If Bk = Bi or Bl = Bj , it suffices to takeD0 =
[Bi, Bj) andD1 = [Bk, Bl).

(b) Otherwise, takeD0 = [Bi, Bj), D1 = [Bi, Bl) and
D2 = [Bk, Bl).
The cases[Bi, Bj) ⊂ [Bk, B∞) and [Bi, B∞) ⊂
[Bk, B∞) are proved in a similar way.

Definition 6 A classA of subsets of a non-empty setX is
called analgebrawhen it contains the finite unions and the
complements of its elements. If finite unions are replaced by
countable unions, it is called aσ-algebra.

The smallestσ-algebra that containsS∗
g ⊂ P(X) is called

theσ-algebra generated byS∗
g , denoted byΣ(S∗

g).

Definition 7 LetX be a non-empty set andC ⊂ P(X), with
∅ ∈ C. A measure onC is an applicationµ : C → [0, +∞]
satisfying the following properties:

1. µ(∅) = 0.

2. For any sequence(En)∞n=1 of disjoint sets ofC such that
∪+∞

n=1En ∈ C, then

µ(

+∞
⋃

n=1

En) =

+∞
∑

n=1

µ(En).

Any measureµ on the wholeP(X), when it is restricted to
S∗

g , gives a measure onS∗
g .

Definition 8 Letµ be a measure onS∗
g . Theouter measure

on an arbitrary subsetA of X is defined by:

µ∗(A) = inf{
∑

k∈N

µ([Bsk
, Btk

)), A ⊂
⋃

k∈N

[Bsk
, Btk

)}.

Carathéodory theorem (Halmos 1974) assuresµ∗ of defini-
tion 7 is a measure onΣ(S∗

g), and(P(X), Σ(S∗
g), µ∗) is

called a measure space. It is proved that, sinceS∗
g is a semi-

ring,µ∗
| S∗

g
= µ.

In this measure space an integration with respectµ∗ can be
defined. Because of the fact thatµ∗

| S∗

g
= µ, in any integra-

tion on S∗
g the measureµ∗ can be replaced byµ.

ENTROPY BY MEANS OF S∗
g

Once the integration inS∗
g has been defined, entropy can

then be considered. To introduce the concept of entropy by
means of qualitative orders of magnitude, it is necessary to
consider the qualitativization function between the set tobe
qualitatively described and the space of qualitative labels,
S∗

g .

To simplify the notation, let us express with a calligraphic
letter the elements inS∗

g ; thus, for example, elements
[Bi, Bj) or [Bi, B∞) shall be denoted asE .
Let Λ be the set that represents a magnitude or a feature
that is qualitatively described by means of the labels ofS∗

g .
SinceΛ can represent both a continuous magnitude such as
position and temperature, etc., and a discrete feature suchas
salary and colour, etc.,Λ could be considered as the range
of a function

a : I ⊂ R → Y,

whereY is a convenient set. For instance, ifa is a room
temperature during a period of timeI = [t0, t1], Λ is the
range of temperatures during this period of time. Another
example can be considered whenI = {1, . . . , n} andΛ =
{a(1), . . . , a(n)} aren number of people whose eye colour
we aim to describe. In general,Λ = {a(t) = at | t ∈ I}.

The process of qualitativization is given by a function

Q : Λ → S
∗
g ,

whereat 7→ Q(at) = Et = minimum label (with respect
to the inclusion⊂) which describesat, i.e. the most precise
qualitative label describingat. All the elements of the set
Q−1(Et) are ”representatives” of the labelEt or “are qual-
itatively described” byEt. They can be considered qualita-
tively equal.

The functionQ induces a partition inΛ by means of the
equivalence relation:

a ∼Q b ⇐⇒ Q(a) = Q(b).

This partition will be denoted byΛ/ ∼Q, and its equivalence
classes are the setsQ−1(Q(aj)) = Q−1(Ej), ∀j ∈ J ⊂ I.
Each of these classes contains all the elements ofΛ which
are described by the same qualitative label.

Definition 9 Letµ be a measure onS∗
g such that

∫

⋃

i∈I

{Bi}
dµ = 1.

The entropyH with respect the partitionΛ/ ∼Q is the inte-
gral:

H(Λ/ ∼Q) = −

∫

Q(Λ)

log µ dµ, (1)

whereQ(Λ) is the set of labels mapped by Q (logarithms are
to the base 2).
The expression (1) can be written as:

H(Λ/ ∼Q) = −
∑

j∈J

log(µ(Ej))µ(Ej). (2)

As in most definitions of entropy, it gives a measure of the
amount of information. In Definition 9 entropy can be in-
terpreted as the measure of the amount of information that
provides the knowledge ofΛ by means ofQ.

Nevertheless, the inner features of the orders of magnitude
structure considered introduce some differences between the
entropy defined in (1) and the entropy defined by Rokhlin
(Rokhlin 1967) and Shannon (Shannon 1948), as can be seen
in the following example:

Example 1 Suppose thatQ maps each element ofΛ to the
same labelE ∈ S∗

g ; then the induced partitionΛ/ ∼Q con-
tains only one class equal toΛ and the entropy defined in
equation (1) isH(Λ/ ∼Q) = −µ(E) log µ(E). In the clas-
sical interpretation of the entropy, the knowledge aboutΛ
induced by this particularQ will lead to an entropy equal to
zero, because in the given situation it is understood that this
trivial partition of Λ provides no information at all. On the
contrary, in the approach that has been presented in this pa-
per, althoughQ map the whole set to the same label it could
give a certain information aboutΛ: the intrinsic information
provided by the measure of the label itself.

Two different measures that show this fact are considered
in the following examples. On the one hand, the first dif-
fers from Shannon’s classical interpretation of entropy as
noted in Example 1: althoughQ map each element ofΛ
to the same labelE ∈ S∗

g entropy is not equal to zero . On
the other, the entropy corresponding to Example 3 behaves
like the classical interpretation of Shannon and Rokhlin, in
the sense just discussed. Example 2 takes into account the
lengths of the intervals corresponding to the labels, and Ex-
ample 3 is related to the cardinality of the set of representa-
tives of each label.

Example 2 Let us define a particular measureµ on {∅} ∪
Sn as follows:
For the basic labelsBi = [ai, ai+1), whith i = 1, . . . , n−1,
let

µ(Bi) =
ai+1 − ai

an − a1

.

This measure is proportional to the knowledge of impreci-
sion about the magnitude and it is normalized with respect
to the “basic” known range given by the lengthan − a1. For
non-basic labels the measure is, fori, j = 1, . . . , n− 1, i <
j:

µ([Bi, Bj)) =

j−1
∑

k=i

µ(Bk) =
aj − ai

an − a1

,

and fori = 1, . . . , n − 1:

µ([Bi, B∞)) =

n−1
∑

k=i

µ(Bk) =
an − ai

an − a1

.

Elements ofΛ represented by quite precise labels will pro-
vide a bigger contribution to entropyH than those who are
represented by less precise labels. Considering the particu-
lar case in whichQ maps all the elements ofΛ to the same
label: Q(Λ) = {E}, thenΛ/ ∼Q= Λ andH(Λ/ ∼Q) =
−µ(E) log(µ(E)) 6= 0.

Example 3 Another interpretation of the entropy defined in
equation (1) is obtained by defining another measureµ over
{∅ ∪ Sn as follows: For eachEt ∈ {∅} ∪ Sn ,

µ(∅) = 0, µ(Et) = card(Q−1(Et))/card(Λ).

This case recovers the classical interpretation of Shannon
and Rokhlin in the sense that ifQ maps all the elements of
Λ to the same label, then the partition does not give informa-
tion of Λ because the entropy isH(Λ/ ∼Q) = −1 · log 1 =
0. Moreover, the entropy reaches its maximum when differ-
ent elements ofΛ are mapped to different labelsEt ∈ Sn ,
i.e., whenQ is an injective map fromΛ onto Sn . This max-
imum isH(Λ/ ∼Q) = log(cardΛ).

CONCLUSION AND FUTURE WORK

This paper introduces the concept of entropy by means of
absolute orders of magnitude qualitative spaces. This en-
tropy measures the amount of information of a system when
using orders of magnitude descriptions to represent it.

In order to define the concept of entropy within Qualitative
Reasoning framework, this paper adapts the basic principles
of Measure Theory to give the space of absolute orders of
magnitude the necessary structure. With the presented struc-
ture, we obtain a family of qualitative spaces forming a con-
tinuum from the sign algebra to the classical interval algebra.

From a theoretical point of view, future research could fo-
cus on two lines. On the one hand, it could focus on the
comparison of

the given entropy with the macroscopic concept of
Caratheodory entropy. On the other hand, the adaptation
of Measure Theory provides the theoretical framework in
which developing a rigorous analytical study of functions
between orders of magnitude spaces. The continuity and
differentiability of these functions will allow the dynamical
study of qualitatively described processes.

Within the framework of applications, this work and its re-
lated methodology will be orientated towards the modeliza-
tion and the resolution of financial and marketing problems.
Regarding financial problems, the concept of entropy will
facilitate the study of the evolution and variation of the finan-
cial ratings. On the other hand, entropy as a measurement of
coherence and reliability is useful in group decision-making
problems arising from retail marketing applications.

Moreover, the introduced entropy will allow defining a con-
ditional entropy in this framework, which in turn will al-
low considering the Rokhlin distance to be used in decision-
making problems of ranking and selection of alternatives.

References

Cover, T. M., and Thomas, J. A. 1991.Elements of Infor-
mation Theory. Wiley Series in Telecomunications.
Folland, G. 1999. Real Analysis: Modern Techniques
and Their Applications. Pure and Applied Mathematics:
A Wiley-Interscience Series of Texts, Monographs, and
Tracks. John Wiley & Sons, Inc.
Forbus, K. 1984. Qualitative process theory.Artificial
Intelligence24:85–158.
Forbus, K. 1996.Qualitative Reasoning. CRC Hand-book
of Computer Science and Engineering. CRC Press.
Halmos, P. R. 1974.Measure Theory. Springer-Verlag.
Kuipers, B. 2004. Making sense of common sense knowl-
edge.Ubiquity4(45).
Rokhlin, V. 1967. Lectures on the entropy of eeasure ere-
serving eransformations.Russian Math. Surveys22:1 – 52.
Shannon, C. E. 1948. A mathematical theory of communi-
cation.The Bell System Technical Journal27:379 – 423.
Travè-Massuyès, L., and Dague, P., eds. 2003.Modèles et
raisonaments qualitatifs. Hermes Science (Parı́s).

Qualitative Modeling for Diagnosis of

Machines Transporting Rigid Objects

 Peter Struss, Axel Kather, Dominik Schneider, Tobias Voigt

Technische Universität München
 Arcisstr. 21, D-80333 Munich, Germany

struss@in.tum.de

Abstract
We present models of various elements of a plant that
involves the transportation of lumped material. An
application context is provided by a project on diagnosing
disturbances in food packaging plants and, more
specifically, bottling plants. While there exist models of
flow of homogeneous matters, such as liquid material in a
hydraulic system, based on simultaneous equations of
Kirchhoff/Ohm type, in our project we need to cope with
non-negligible transportation time of objects and capture
phenomena like the tailback of units (if transportation is
blocked) or the propagation of gaps in the flow of units.
Because the application context requires compositionality of
the model, i.e. local, context-free models of the individual
transportation elements, we are also facing the problem that
whether or not a single element produces an output flow (or
accepts an input flow) cannot be determined solely by the
model of this element, but only through modeling the
interaction with the subsequent element, which may block
the output (or the previous one not providing the input).
This issue is addressed by modeling the potential of an
existing flow distinctly from the actual occurrence of a flow,
an idea which also can enhance models of continuous flow.

1. Introduction

Modeling the flow of some matter in a system is quite
widespread in model-based systems, e.g. in model-based
diagnosis of hydraulic or pneumatic systems. At least
under certain simplifying assumptions, mathematical first
principles models exist, and it appears to be
straightforward to abstract them into adequate input to a
model-based problem solver.
Typically, such models assume that the flowing matter is
continuous and homogeneous and does not have to be
modeled as an object or in its detailed structure. And they
usually incorporate the analogies to Kirchhoff’s and Ohm’s
Laws, which leads to simultaneous equations that imply
instantaneous propagation of pressure and disregard time
needed by the matter to be transported through the system.
There are classes of application domains that involve a
flow of objects through a plant and, hence, suggest the use
of some flow model, but require dropping some of the
simplifying assumptions mentioned. One instance of this
class is given by food packaging plants, which are subject
to a diagnosis project we are carrying out, and, more

specifically, by bottling plants, which we will use as an
example in this paper. Such plants involve streams of
objects of different types, bottles, crates, and pallets being
the most prominent ones. On the one hand, modeling the
transportation of individual objects is prohibitive or
useless. On other hand, the abovementioned flow models
of a homogeneous matter fail to capture essential features,
such as gaps in the flow or the creation of a tailback by
some blockage and its propagation through the plant in
finite time. Furthermore, an inflow and outflow of a single
transportation element of a line cannot definitely be
predicted by a local model of this element, because they
depend also on the supply of the previous element and the
intake capacity of the following one, resp. As a
consequence, we had to develop a model that

• includes transportation times,
• covers interrupted flows,

• handles the exchange of flows between neighboring
elements appropriately.

The paper focuses on presenting a base model addressing
the requirements (section 3), its validation through
simulation (section 4) and a qualitative diagnosis model
obtained from it (section 5). The diagnosis engine will be
presented in a separate paper.
The following section presents an application context of
this work, namely bottling plants

2. An Application Domain: Bottling Plants

Food packaging at industrial scale is carried out in high
output packaging lines consisting of specific machines and
conveyors. There are different machines for specific
packaging tasks, such as primary packaging of food or
beverages (e. g. with foil packs, pouches, or containers),
secondary packaging (boxes, multipacks, crates, etc.), and
tertiary packaging (e. g. pallets or displays). Additionally,
machines for de-palletizing and unpacking of returnable
bottles, cleaning, inspection and sorting out improper
objects may be involved. Plant constellations are
configured using one machine of a specific type or several
ones in parallel. Machines of different types are connected
by conveyors. Because of the high speeds and output rates
(up to 100.000 packages per hour), machines and

conveyors are failure-sensitive with an availability degree
of 92-98 percent.
As a specific example for packaging plants, our project
considers bottling plants for beverages (e.g. the one shown
in Fig 1).
In order to fill beverages into returnable bottles, the
material flows of pallets, crates, and bottles (plus labels,
glue, etc.) need to be coordinated. This leads to complex
line configurations comprised of machines that remove
crates from pallets and bottles from crates, process, inspect,
or sort objects, and package different types of objects (Fig.
2 shows an abstract, but typical example).
To prevent oxygen intake ore microbiological
contaminations of the beverage, the filling process should
not be interrupted. Therefore transportation by consecutive
machines needs to be decoupled. Otherwise, each
individual failure would inevitably cause downtime of the
entire plant: In particular, this would stop the filling
process and decrease the efficiency of the entire
production. To prevent this, the conveyors of bottling
plants are designed as transporting buffers like the abstract
bottle conveyor shown in Fig. 3.
Transporting buffers perform two tasks. One is to carry the
objects from one machine to the next one. The other is to
store objects in order to be able to compensate for a
downtime of the upstream machine and to prevent the
immediate propagation of a tailback in case of a downtime
of the downstream machine. In addition, the machines
located upstream and downstream w.r.t. the filling machine
work with higher output rates than the filler. This enables
full upstream buffers and receptive downstream buffers to
compensate for short downtimes of single machines.
These design principles help achieving a continuous
operation of the filling machine. However, in practice, they

cannot guarantee avoidance of unwanted idle time of the
filler, and (unplanned) downtime of the plant can lie in the
range of 10-30 percent.
Machine failures of significant duration, gaps caused by a
large number of objects being sorted out, stoppages caused
by toppled or jammed objects, or just mistakes of the
operators result in downtime of the filling machine and
decrease the availability of the entire plant. Because of the
interlaced flows of the various object types, time offsets,
and the large scale of the plants, the reasons for such plant
downtimes can be difficult to identify by the plant
operators, particularly since their number has been
progressively reduced over the past years. In consequence,
bottle filling and packaging industries is highly interested
in an automated diagnosis tool for their plants.
There are a number of requirements and challenges to
automated diagnosis raised by this application task. A
fundamental economical condition is the fact that many of
the potential end users, e.g. breweries, are small or medium
enterprises, which could not afford spending many
resources on the establishment or adaptation of a tailored
diagnosis system for their plant. Another practical
requirement is to cheaply accommodate frequent changes
in the structure of the line, due to rearrangement or
addition of machines. Both issues suggest a model-based
solution to diagnosis (see [Struss 08]), which allows
performing adaptation by simply (re-)specifying the plant
structure.
Additional arguments for such a solution stem from the
facts that usually a plant is a combination of machines
from various manufacturers with different instrumentation
and available data and that there may be temporarily
missing data due to technical problems. This requires a
flexible solution that derives the best diagnosis from
whatever data is available (in contrast, for instance, to
decision trees based on a fixed set of observables).
Heterogeneity and changes of the set of machines also
establishes a requirement on the model: firstly, it has to be
machine-centered and compositional; secondly, it has to

M1 Depalletizing

M2 Unpacking

M3 Bottle Cleaning

M4 Bottle Inspection,

Filling and Capping

M5 Labeling

M6 Packing

M7 Palletizing

BP0 Pallet feeding

BP1 Pallet transport

incl. magazin

BP7 Pallet releasing

BC1 crate conveyor
BC2 empty crate conveyor incl.

cleaning and magazin

BC6 crate conveour

BF2-5 bottle conveyours

M1

BP0

BC1

BP7

M4

M2

M3

M7

M6

M5

BF5

BF4BF3

BF2

BC6

BC2

BP1M1

BP0BP0

BB

BP7BP7

M4

M2

M3

M7

M6

M5

BF5BB5

BF4BB4BF3BB3

BF2BB2

BB

BP1BP1

Figure 2. Generic structure of a bottling plant for returnable
bottles

Figure 1. Conveyors of a bottling plant for returnables

Figure 3. A three step transporting buffer for bottles

be stated at a level of abstraction that covers types of
machines, independently of specificities and the
manufacturer.
Besides these fundamental characteristics, the model has to
be capable of properly predicting the propagation of gaps
in the stream of objects (potentially causing a lack in
supply to subsequent machines) and tailbacks caused by
blockages, as well the propagation of special features and
deficiencies of the transported objects, which may be
caused by improper performance of one machine (e.g.
improper cleaning) and may affect the (mis-)behavior of
another element downstream (e.g. an inspection machine).
The available data is inherently incomplete and imprecise.
Even balance equations do not necessarily hold, because
bottles may have been removed by an operator (for
inspection or because they blocked the flow) or simply
have fallen off the belt.

3. Models of Transportation Elements

3.1 Previous Work
The only similar work we are aware of (except for discrete-
event-simulation models used for validation of the control,
which do not lend themselves easily to model-based
diagnosis) is in the domain of transport of paper in a
copier. [Gupta-Struss 95] presents a process-oriented
model, and [Fromherz et al. 03] develop a component-
oriented model for control generation. Both models are
compositional, but focus on the motion of individual
sheets, rather than the more abstract perspective of flow of
objects.

3.2 Modeling Assumptions
We first list the most important assumptions underlying the
transportation models presented here, which are fulfilled in
our project domain (under normal conditions), but should
also apply to a much broader class of problems.

• The transported objects are rigid bodies with fixed spatial
extensions and are not significantly deformed through
transportation.

• They are transported with a fixed orientation (like crates),
or the orientation does not affect transportation times
significantly (e.g. due to a symmetric cross-section, as
for bottles).

• There is no interaction among the objects or between
objects and the components that has a significant impact
on the transportation process (such as bouncing).

• Objects can move only in the direction of the motion of
the transportation means (or not at all), although not
necessarily with the same speed.

3.3 A Model of a Transportation Element with
Buffer
In order to present the essentials of the modeling approach,
we consider some sort of archetype of model, which can be

specialized or extended to accommodate other kinds of
machines. This is a machine that

• has one input and one output with vin, vout being the
respective speeds of the means for transportation (e.g.
belts),

• possibly transforms or modifies one kind of object (as,
for instance, cleaning of bottles), but does not
amalgamate several objects to form a new one,

• has a buffer with a (constant) capacity C.
The process of buffering the objects can be fairly random,
as illustrated by the bottle conveyor in Figure 3, where
bottles may gather in bulks. However, it is assumed, that
(under normal behavior) no object is prevented from
approaching the output unless it is blocked by other objects
ahead, waiting for output. For instance, within the bottle
conveyor, its shape and several parallel belts with different
speeds ensure that bottles are not left in some corner, but
pushed towards the “ ideal” fastest belt, if there is space.
The intuition behind the model can be best described in
terms of three fundamental concepts and five “behavior
rules” , each of which is first introduced informally and
then turned into equations. As stated before, one of the
problems to be solved stems from the fact that a local
machine model in isolation cannot determine whether an
actual flow occurs at its input and output. But it can and
has to express the limits on the machine’s potential to take
in or output objects. This is reflected by

Concept 1 The potential input and output flow, in.qpot
and out.qpot, represent the maximal flow the machine can
accept or generate, dependent on its internal state.

The actual flows are represented by two different
variables, in.qact and out.qact. The first restriction is
determined by

Rule 1 The potential input flow is given by the input
speed of the transportation element, unless the buffer is
full. In this case, it cannot be higher than the actual output
flow.

In the mathematical model (see Fig. 4), this rule is
formalized by equation 1, where d denotes the diameter of
the object cross-section and B is the filling degree of the
buffer (in terms of number of objects). It involves the
assumption that an actual outflow generates the potential
for intake instantaneously, which is not true in practice
and, hence, another reason for expressing tolerance
intervals with values and time. Note that we take all speeds
and flows as positive, as their sign is determined by their
association with the intrinsic direction of the transportation
element. Computing B is straightforward:

Rule 2 The change in the total number of buffered objects
is determined by the actual input and output flows.

The respective equation 2 indicates that B will be
computed by integrating the difference of the actual flows.
Setting up the model fragments for the potential output
flow is based on the second key idea:

Concept 2 Bout denotes the number of buffered output
objects at time t, i.e. the number of objects that can
possibly be subject to output at this time.

Before we clarify this crucial concept, we use its intuitive
understanding and the third concept for formulating the
rule for the potential output flow.

Concept 3 The minimal transportation time, td, is the
time an object needs to get directly from the input to the
output, i.e. if it is not delayed by other objects that are
piling up.

In case of the bottle conveyor, this means that the bottle
stays on the fastest (innermost) belt.

Rule 3 The potential output flow is determined solely by
the output speed, if there is more than one buffered output
object. Otherwise, it cannot be higher than the actual input
flow at the time reduced by the minimal transportation
time.

One should be aware that in the second case, each single
object may (potentially) leave the output with the speed
vout. However, if the input flow at the time when it entered
was lower, there will be a gap occurring after the output of
the object, which makes the (average) flow lower than vout.
As a special case, the potential output flow becomes zero,
if the actual input flow was zero at the respective time.
Again, the respective equation 3 in Figure 4 formalizes
this. Computing Bout also involves the minimal
transportation time td. If an object entered the
transportation element later than time t - td, it cannot
possibly reach the output at time t and, hence, cannot
become part of the buffered output objects. If it entered
earlier, it may or may not have already left the output
before t, depended on how the actual output flow reduced
Bout. This consideration is captured by

Rule 4 The change in the number of buffered output
objects at time t is determined by the actual input flow at
time t - td diminished by the actual outflow at time t.

Hence, also Bout is obtained by integration according to
equation 4, which completes the model of the
transportation element with buffer. Note, that Bout is not
necessarily the number of objects that form a contiguous
pile in front of the output. It could be less, because the last
objects that joined the pile entered later than t - td.

3.4 Interaction of Transportation Elements
What remains to be done is determining the actual flows
from the potential flows of connected machines. This
interaction is captured by a model of a generic connector
used for connecting all types of transportation elements.
The respective rule and equation 5 (Fig. 4) are
straightforward:

Rule 5 The actual output flow of a machine is limited by
both its own potential output flow and the potential input
flow of the following machine (and equal to the actual
input flow of this machine).

3.5 Other Features and Transportation Elements
The buffer model leaves options for different use and
specialization. Due to lack of space, we can only sketch
some important cases, many of which are fairly
straightforward. For instance, vin and vout could be different
as for the entire bottle conveyor shown in Figure 3. In this
case, the minimal transportation time td needs to be
calculated or estimated based on varying speeds along the
“ ideal path”. Alternatively, the same conveyor can be
considered as an aggregation of several buffers in series
each with one unique speed on its fastest belt, which eases
the computation of td. Note that the speeds are subject to
control and may vary dynamically. Therefore, in case of a
unique speed, td is determined by the equation

()�
−= t

tt d
dvl ττ ,

Transportation Element with Buffer
State variables
B(t) # objects in buffer
Bout(t) # objects buffered for immediate output
vin(t) velocity of input transportation means
vout(t) velocity of output transportation means
td(t) minimal transportation time

Parameters
d0 diameter of transported object (in transportation plain)
C Capacity (as number of objects)

Interface variables
in.qpot(t) potential inflow [objects/s]
out.qpot(t) potential outflow [objects/s]
in.qact(t) actual inflow [objects/s]
out.qact(t) actual outflow [objects/s]
Equations
(1) in.qpot(t) = vin(t) / d0 if B(t)<C
 in.qpot(t) = min (vin(t) /d0, out.qact(t)) if B(t)=C
(2) dB/dt = in.qact(t) - out.qact(t)
(3) out.qpot(t)= vout(t) /d0 if Bout(t)� 1
 out.qpot(t)= min (in.qact(t - td) , vout(t) /d0) else
(4) dBout(t) /dt = in.qact(t - td) - out.qact(t)

Connector between Transportation Elements
Interface variables
TEn+1.in.qpot(t) potential inflow of upstream element TEn+1
TEn.out.qpot(t) potential outflow of downstream element TEn
TEn+1.in.qact(t) actual inflow of upstream element TEn+1
TEn.out.qact(t) actual outflow of downstream element TEn

Equations
(5) TEn.out.qact(t) = min (TEn+1.in.qpot(t) , TEn.out.qpot(t))
 TEn.out.qact(t) = TEn+1.in.qact(t)

Figure 4. Equations of buffer and connector

where l is the length of the “ ideal path” and v(t) its time-
varying speed.
Gates may sit at the input or output of transportation
elements and are controlled in a binary manner in order to
block the flow entirely i f necessary. This is captured by
multiplying the respective speed with a factor of (1 –
stategate), if stategate is 1 for a closed gate and 0 otherwise.
While the bottle conveyor has no fixed relation between
the speed of the belts and the motion of the bottles, which
may slide, other machines, such as the filler, transport
objects by locking them to certain sockets. This is obtained
as a specialization of the buffer model with a unique speed
and the capacity given by the number of sockets that can be
occupied by objects while processing them.
Some elements, such as the bottle cleaning unit, may have
n inputs of the same type of objects). To accommodate this
feature in the model, we simply have to replace the actual
input flow by the sum of several individual input flows.
Elements having several outputs (for objects of the same
type) usually require some modeling of the mechanism that
distributes the objects among the various outputs, e.g.
evenly (i f possible) or according to some criteria. An
example for the latter case is given by inspection machines
ejecting objects that fail to pass some test.
Another class of machines produces an output by
combining objects of different kinds, as for instance the
packaging of 20 bottles in a crate. The ratio of the number
of different objects participating in this combination is
usually not arbitrary, but exactly specified. This ratio links
the various potential and actual inflows and the outflow,
which is then limited by the “slowest” input flow (relative
to the ratio of the respective object type).
The counterpart to this very generic combination element
is the separation element, with unpackers being a
subclass, in which the slowest actual outflow of a
decomposition result limits the potential inflow of the
composite object.

This set of fairly generic model types turns out to cover the
variety of machines in a bottling plant and, more generally,
also in the food packaging plants that we encountered.

4. Validation of the Base Model

In order to validate the component models described above
we implemented them as numerical simulation models in
MATLAB/SIMULINK® [MathWorks 08] and compared
the simulated behavior (using the solver \ode4" (Runge-
Kutta) with a fixed-step size of one second) with the one of
real plants.
Every component was modeled using the equations
introduced above and tested in isolation to check whether it
was adequate of and stated in a context-independent
manner, which is a prerequisite for compositionality. In a
second step, a model of a complete plant was configured
using the validated components.
In testing the individual components, values of single
parameters and variables were varied, and the response of
the simulated behavior was monitored. For example, the
predicted changes in the buffered material B of a
component for different values of the input speed vin and
the output speed vout are shown in Figure 5. It depicts that
the buffer fills as long as the input speed is higher than the
output speed (assuming a sufficient supply), whereas with
the input speed reduced to its minimum 0.1 and the output
speed being still high, the amount of buffered objects
decreases.
Because of the minimal transportation time, td, of the
component, the buffer is not completely emptied, as long
as there is input available. Furthermore, only the objects
represented by the variable Bout determine the existence of
an output flow. Another real characteristic behavior can be
reproduced when increasing the input speed while
maintaining the output speed constant. Although vin is still

Figure 5. Plots showing the changes of the buffer (lower) in response to variation of input and output speeds (upper)

higher than vout, the buffer filling degree remains constant
after a certain time, because it is limited by the maximum
capacity of the component.
Similar results were achieved by testing the other
component type models, providing evidence that the
models capture the features relevant to the diagnostic task
and do not violate context-independence.
The second challenge was validation by comparing the
simulated behavior of a plant model with the behavior of a
real plant. Several test cases were constructed, based on
real-world downtimes scenarios of the bottling plant whose
topology is shown in Fig. 6.
The simulated plant consists of a primary flow of bottles
and a secondary object flow of crates. In one test case, the
downtime propagation of a failure of the crate washer was
simulated and analyzed. This failure interrupts both object
flows. After some delay, missing input occurs at the crate
packer. Also the unpacker stops at some point, due to its
output being blocked. The details of the propagation of
failure depend on the capacities and filling degrees of the
various buffers connecting the machines. For instance, if
the crate magazine is empty and all other buffers are filled
with a sufficient degree, the lack of crates will rapidly
reach the crate packer. This causes a blockage of the
labeling machine and the bottle filler (because the packer is
not able to process the bottles) before the lack of bottles in
the primary flow (caused by the inoperable unpacker)
reaches the filling machine. In contrast, if the crate
magazine is completely full, the crate packer keeps
working for some time, and the filling machine will be
stopped due to a lack of bottles.
Even for this complex scenario, the simulation model
reproduces the behavior of the real world plant. Similarly,
the characteristics of fault propagation occurring in real
plants were predicted for other relevant scenarios.

5. Abstraction to Qualitative Diagnosis
Models

Using the model presented above directly for diagnosis is
not appropriate. Firstly, as for all numerical models, its
accuracy is only a pretended one in many respects, e.g. in
assuming conservation laws to hold and in ignoring the
imprecision in the available data, e.g. when flows are
determined via counters or the speed of belts. Secondly, the
diagnostic task requires the analysis of qualitative, rather
than arbitrarily small numerical deviations from the
nominal behavior and, hence, needs to be addressed by an
appropriate level of abstraction in the model.
The level of model abstraction depends on the intended
goal of the diagnosis: we first focused on “hard” failures
(stop of the filling machine, that is) caused by hard faults
(blockage of another machine), which can be based on
distinguishing zero from non-zero flow only. For capturing
“soft” faults (deviating behaviors) that lead, perhaps in
combination, to a hard failure or a non-optimal behavior, a
different model is required.

5.1 Sign-based Absolute Model
The total interruption of the flow requires distinctions
between zero and non-zero flows only. Sign abstraction of
the numerical model yields the qualitative constraints on
the variables shown in Fig. 7 (we omit equations (2) and
(4), which are difficult or impossible to exploit because
neither B(t) nor Bout(t) can be observed properly) together with
the respective finite relations. (Remember that flows and speeds
cannot be negative).
The abstraction of combination elements (such as the crate
packer) outlined in section 3.5 will include the application
of the three model fragments of Fig. 7 to all individual
inflows as well as a constraint simply stating the qualitative
equality of all inflows (the ratio of the flows drops out,
because it is a positive number):
 [in1.qpot(t)] = [in2.qpot(t)] = … = [ink.qpot(t)].
This captures, for instance, the fact that one lacking input
will stop all other inputs, as well. The dual applies to
separation elements.
This model has been validated using the diagnosis tool
RAZ’R [Raz’ r 08] on several scenarios, including the one
described at the end of section 4, which involves a fault in
the washer. (Because the current version of RAZ’R does
not support the required temporal indexing of the
predictions, the temporal information was stripped off and
cyclic prediction was prevented in order to avoid spurious
inconsistencies due to different values occurring at
different times). The model is consistent with a lack of
crates for the packer, which propagates backwards to a
potential stop of the unpacker, which in turn may be caused
by the inoperability of the washer.
We briefly demonstrate that the inferential power of the
model suffices for handling the considered class of faults
and failures despite its simplicity: assume that a
transportation element TEn with a single speed, vin(t) =

Figure 6. The structure of one of the test plants

vout(t), produces an output, i.e. [TEn.out.qact(t)] = +, but has
no inflow, [TEn.in.qact(t)] = 0. Then the constraints yield:

 [TEn.out.qact(t)] = + (5) � [TEn.out.qpot(t)] = +

 (3) � [TEn.vout(t)] = [TEn.vin(t)] =+

 [TEn.out.qact(t)] = + ∧ [TEn.vin(t)] = +

 (1) � [TEn.in.qpot(t)] = +

 [TEn.in.qpot(t)] = + ∧ [TEn.in.qact(t)] = 0

 (5) � [TEn-1.out.qpot(t)] = 0

If TEn-1 is operational, which implies [TEn-1.vout(t)] = +,
then

 [TEn-1.out.qpot(t)] = 0 ∧ [TEn-1.vout(t)] = +

 (3) � [TEn-1.in.qact(t - td)] = 0 .

This means, even without information about the buffers,
the lack is propagated backwards across the models of

correct elements (but will be consistent with a “block”
mode, for instance) as expected.

5.3 Qualitative Deviation Model
The base model can also be used as the starting point for an
abstraction that allows analyzing more subtle problems: the
filling machines may not always be forced to stop
operation, but, perhaps, run at reduced speed due to
insufficient supply. For this purpose, the base model can be
transformed into one that captures the propagation of
deviations from some reference along the lines of [Struss
04]). A deviation of a variable x is defined as

 ∆ x = [xact – xref],

i.e. the difference between the actual and some reference
value, which may remain unspecified. Usually, the latter
represents some optimal or nominal value. This definition
plus the sign-based abstraction for deviation variables and

Transportation Element with Buffer
(1) ∆ in.qpot(t) = ∆ vin(t) ∨ ∆ in.qpot(t) = ∆ out.qact(t)

 ∆ in.qpot(t) ∆ vin(t) ∆ out.qact(t)
 0 0 *
 - - *
 + + *
 0 * 0
 - * -
 + * +

(3) ∆ out.qpot(t) = ∆ vout(t) ∨ ∆ out.qpot(t) = ∆ in.qact(t - td)

 ∆ out.qpot(t) ∆ vout(t) ∆ in.qact(t - td)
 0 0 *
 - - *
 + + *
 0 * 0
 - * -
 + * +

Connector between Transportation Elements
(5) ∆ TEn.out.qact(t) = ∆ TEn+1.in.qpot(t)
 ∨ ∆ TEn.out.qact(t) = ∆ TEn.out.qpot(t)

 ∆ TEn.out.qact(t) ∆ TEn+1.in.qpot(t) ∆ TEn.out.qpot(t)
 0 0 *
 - - *
 + + *
 0 * 0
 - * -
 + * +

Figure 8. Qualitative deviation models of buffer and
connector. ∆ x = [xact – xref] is the qualitative deviation of a
variable from a reference value (e.g. nominal or “ healthy”

value). “ * ” in a row represents “ no restriction” and, hence,
the entire row multiple tuples.

Transportation Element with Buffer
(1) [in.qpot(t)] = [vin(t)] if C-B(t) > 0
 [in.qpot(t)] = min ([vin(t)] , [out.qact(t)]) if C-B(t) = 0

 [in.qpot(t)] [vin(t)] [out.qact(t)] [C-B(t)]
 0 0 * +
 + + * +
 + + + 0
 0 0 + 0
 0 + 0 0

(3) [out.qpot(t)] = [[vout(t)] if Bout(t)-1� 0
 [out.qpot(t)] = min ([in.qact(t - td)] ,[vout(t)]) if Bout(t)-1<0

 [out.qpot(t)] [vout(t)] [in.qact(t - td)] [Bout(t)-1]
 0 0 * 0
 0 0 * +
 + + * 0
 + + * +
 0 0 + -
 0 + 0 -
 + + + -

Connector between Transportation Elements
(5) [TEn.out.qact(t)] =
 min ([TEn+1.in.qpot(t)] , [TEn.out.qpot(t)])
 [TEn.out.qact(t)] = [TEn+1.in.qact(t)]

 [TEn.out.qact(t)]

 [TEn+1.in.qpot(t)] [TEn.out.qpot(t)]
 0 0 +
 0 + 0
 + + +

Figure 7. Sign-based qualitative models of buffer and
connector. [x] denotes the sign of x. “ * ” in a row represents
“ no restriction” and, hence, the entire row multiple tuples

dropping B(t) and Bout(t) transforms the base model into
the deviation model of Fig. 8. Both the domain abstraction
to signs and the projection that eliminates the buffer
variables establish a true abstraction of the original model.
Besides the analysis of reasons for suboptimal
performance, such a model may be useful or even
necessary for the diagnosis of filler stoppages, as well. The
reason is that the filler may be stopped not because its
inflow is zero for a long time interval, but because the
available inflow is less than the flow requested by its
speed, i.e. vin(t) /d0, and, hence, there is a gap in the supply
and the filler is not supplied with a bottle for each socket,
as required.
This model has not yet been validated in the diagnostic
setting. However, we provide again some evidence for its
inferential power. The “soft version” of the previous
example states that the output and the speed of TEn do not
deviate, but its inflow is too low. We obtain

 ∆ TEn.out.qact(t) = 0 ∧ ∆ TEn.vin(t) = 0

 (1) � ∆ TEn.in.qpot(t) = 0

 ∆ TEn.in.qpot(t) = 0 ∧ ∆ TEn-1.out.qact(t) = -

 (5) � ∆ TEn-1.out.qpot(t) = -

 ∆ TEn-1.out.qpot(t) = - ∧ ∆ TEn-1.vout(t) = 0

 (3) � ∆ TEn-1.in.qact(t - td) = - ,

i.e. again, the deviation is propagated upstream.

6. Summary and Outlook

The validation has provided evidence that the models
really capture the essential features of plant behavior we
are interested in from a diagnostic perspective. However,
we do not only have to cope with inaccurate values of
quantities, such as flows, speeds etc. due to the actual
process and the available measurements. Also the temporal
inferences are not crisp. For instance, from zero output
flow of a normally behaving machine during some time
interval i1, an earlier time interval i0 can be inferred, in
which zero input flow must have occurred. This means, in
contrast to other temporal propagation schemes, the
prediction cannot state that the flow was zero during the
entire interval i0, but only that there exists a subinterval
i’ 0 ⊆ i0 with zero flow, which has to be taken into account
in the consistency check. Furthermore, propagation will
lead to progressively larger time intervals, which prompts
for an approach that uses observations interleaved with
prediction to narrow down the intervals.
There are also different types of diagnostic tasks, such as
our current focus, off-line post-mortem diagnosis (through
analysis of stored data), on-line post-mortem diagnosis,
and predictive diagnosis.
Finally, the project aims at a contribution to improving the
general conditions through standardization of the data
acquisition. Partners of the consortium are the originators

of an existing standard that has now been widely accepted
for bottling plants. This has now been extended on the one
hand regarding data relevant to diagnosis and on the other
hand generalizing it for food packaging plants. This will
significantly improve the conditions for effective and
easily adaptable diagnostic solutions.

References

[Fromherz et al. 03] Fromherz, M., Bobrow, D., and de
Kleer, J.: Model-based Computing for Design and Control
of Reconfigurable Systems. In: Bredeweg, B. and Struss P.
(eds), Qualitative Reasoning. Special issue of AI
Magazine, Winter 2003, 24(4), AAAI Press, Menlo Park,
USA

[Gupta-Struss 95] Gupta, V., Struss, P.: Modeling a
Copier Paper Path: A Case Study in Modeling
Transportation Processes. In: QR-95, Working Papers of
the Ninth International Workshop on Qualitative
Reasoning, Amsterdam, 1995.

[MathWorks 08] http://www.mathworks.com/products
[Raz’r 08] http://www.occm.de/
[Struss 04] P. Struss: Models of Behavior Deviations in
Model-based Systems. In: Proceeding of the 16th European
Conference on Artificial Intelligence (ECAI04), 2004

[Struss 08] P. Struss: Model-based Problem Solving.
In: van Harmelen, F., Lifschitz, V., and Porter, B. (eds.).
Handbook of Knowledge Representation, Elsevier, 2008

Integrating Open-Domain Sketch Understanding with Qualitative Two-

Dimensional Rigid-Body Mechanics

Jon W. Wetzel and Kenneth D. Forbus

Qualitative Reasoning Group, Northwestern University

2145 Sheridan Road, Evanston, IL 60208-0834 USA

{jw, forbus}@northwestern.edu

Abstract

Sketching is a powerful modality for thinking through, and
communicating about, mechanical designs. Qualitative
mechanics reasoning has been applied to sketched input
before but not without succumbing to limitations of domain-
based recognition or requiring complex annotation and
additional explicit knowledge from the user. This paper
presents solutions to three problems in integrating
qualitative mechanics reasoning with a sketch understanding
platform: identifying objects and forces, discovering regions
of interaction between them, and understanding the effects
of these interactions. We show how the spatial knowledge
available in a conceptually labeled sketch is sufficient to
solve the first two problems and enables the use of
qualitative mechanics to solve the third. Examples from an
implemented system are used for illustration. This system is
the first step in a plan to create a sketch understanding
system capable of providing corrective feedback for
sketched engineering designs.

Introduction

Sketching is a valuable way to work through ideas and
communicate them to others. This is especially true in
conceptual design, when the feasibility of basic ideas is
under consideration. Qualitative reasoning seems a natural
fit for such tasks, since precise details are typically
unavailable during this stage of design. However, existing
sketch understanding systems do not currently provide
much support for these tasks. Some existing systems rely
on animation for feedback. In (Alvarado & Davis 2007),
ink recognition is used to set up input for a mechanics
simulator, much the way that Quickset (Cohen et al 1997)
was used to set up scenarios for a military simulator.
Unfortunately, it is not clear how useful such animated
output is for design tasks: If a student’s design doesn’t
work, all of the knowledge about why something failed is
hidden within the procedures of the off-the-shelf physics
engine. In contrast, qualitative causal models can be used
to provide explanations, both to designers and especially to
engineering students learning to design. The SketchIt
approach of Stahovich et al (1998) provides qualitative
reasoning about sketches of mechanical systems that seems
to be more useful in such tasks. However, SketchIt
required the human user to identify surfaces of interest and
describe the range of their interaction manually. This is

tedious for experienced designers and not feasible for
novice designers.

This paper describes how we are using a combination of
qualitative mechanics and open-domain sketch
understanding to enable software to reason about forces,
mechanical constraint, and motion from hand-drawn
sketches. We begin with our motivating context, coaching
entering engineering students in how to use sketches to
communicate. We then summarize CogSketch, the sketch
understanding system we are using as a platform, and the
qualitative mechanics theories we are building upon. We
describe how we are embedding qualitative mechanics
reasoning into sketch-based representations. We identify
and present solutions for three problems in carrying out
this integration: identifying objects and forces, discovering
regions of interaction between them, and understanding the
effects of these interactions. We describe some examples
of our system’s reasoning, and close with related and
future work.

Helping Students Learn to Communicate

Communication is an important skill for engineering
students. At Northwestern, 1

st
 and 2

nd
 year engineering

students take Engineering Design and Communications,
which teaches both skills in an integrated manner.
Students working in teams of three or four tackle problems
for real clients. Examples include patients at the
Rehabilitation Institute in Chicago, who need new tools to
help them achieve everyday tasks, like chopping
vegetables or trimming their nails, despite physical
handicaps. Students build prototypes of their designs to
explore particular issues, with regular feedback from
potential users. Conversations with instructors revealed
that one significant problem they had was helping students
learn to use their sketches to communicate ideas, both
within the team and to clients. We are creating a sketch-
based system to address this problem.

The idea of the Design Buddy, as we are calling it, is to
be a “crash test dummy” for students to practice explaining
their designs. They will sketch their ideas, explain the
parts, what they are made of, their intended behaviors, and
the intended functional roles of the parts. The system will
reason through the possible behaviors itself, based on its
understanding of qualitative mechanics, materials, and

everyday actions. It will compare its predictions of
behaviors with the student’s intended behaviors, and ask
the student questions about discrepancies. These may
include the student not mentioning some critical aspect of
the behavior in their explanation, or predicting a behavior
that the system does not think is possible. This is a very
challenging task, for three reasons: (1) The qualitative
mechanics reasoning must be very general and robust. The
design projects change constantly, and a wide range of
problems arise. (2) The interface must be both sufficiently
natural to not be a distraction, and must incidentally help
the student learn to explain things in terms that practicing
engineers would use. (3) The coaching software must have
enough strategies to provide students with effective help in
learning how to think about their particular design and the
design process itself. This paper focuses on a particular
aspect of the problem (1), namely, doing robust qualitative
mechanics reasoning in a sketch-based environment.

Background

We briefly review the relevant aspects of CogSketch,
our sketch understanding system, and prior work on
qualitative mechanics.

CogSketch

The platform we are using is CogSketch, a publicly
available sketch understanding system built on the
nuSketch architecture (Forbus et al. 2004). CogSketch is
an open-domain system. Most sketch understanding
systems equate understanding ink with classifying it as a
symbol drawn from a fixed vocabulary of items. By
contrast, nuSketch systems treat recognition as a catalyst,
not a necessity. Pieces of ink (called glyphs) can be
labeled by the user with concepts drawn from a large
underlying knowledge base

1
. CogSketch automatically

computes a number of visual relationships between glyphs,
such as topological relationships (using RCC8 (Cohn,
1996)) and positional relationships (e.g., above, left, etc.).
CogSketch can also analyze the ink within a glyph,
identifying straight-line segments within the ink, corners,
and so forth.

Annotation glyphs are used to provide additional
information about other glyphs. Examples of annotation
glyphs include applied forces, axes of rotation, and centers
of mass. Arrows are automatically recognized when
drawing annotation glyphs, so that, for example, the
orientation and position of application of force can be
automatically computed.

1
 We use the contents of OpenCyc, containing over 58,000

concepts, plus our own group’s extensions for qualitative

reasoning and analogy.

Qualitative Mechanics

Our model of qualitative mechanics is based on work done
by Nielsen (1989) and Kim (1993). Nielsen’s work
represents direction and orientation in terms of qualitative
vectors (q-vectors). For a 2-d space, there are 8
translational q-vectors (right, up, left, down and one for
each quadrant in between) and two rotational q-vectors
(clockwise and counter-clockwise). All forces/torques and
movements are expressed in these directions.
 Objects are represented as sets of surfaces. Each surface
has a parent object, a direction outward from the object
(surface normal) and a direction towards the center of
rotation of the object. Representations for translational and
rotational freedom and constraint are used to state if/when
an object can move or rotate. Forces and motion are
transmitted from object to object through their surface
contacts, with the net force and net motion determining the
final motion of the object in a given state.
 Nielsen’s representations supported envisionment of a
variety of mechanical systems, including clocks (Forbus et
al 1991). Kim’s work adds several more representations to
Nielsen’s, including notions of bounded stuff and flow
fields. This enabled Kim’s system to reason about non-
rigid bodies. The end result was a system which could
understand lift pumps, laminar flow over surfaces, and
automobile engines. However, neither of these systems
dealt with hand-drawn inputs. Kim’s system assumed
predicate calculus input representations. Nielsen’s system
could accept as input scanned images of parts, and
automatically simplify the configuration space it computed
to handle noise. For example, it was able to change
resolution to see a gear train as having only one degree of
freedom, despite noise in the scanned input. However,
scanned photographs are far more accurate than hand-
drawn sketches, making hand-drawn sketches an even
harder problem. Adapting these qualitative mechanics
ideas to work with hand-drawn sketches is the challenge
this paper addresses.

In this paper, we restrict ourselves to a subset of
qualitative mechanics, namely rigid-body mechanics
involving 2D polygonal bodies. This is an important first
step, because it allows for a wide variety of test cases while
requiring only a subset of the qualitative mechanics.

Interpreting Rigid-Body Sketches

In this section we begin with an overview of the three main
problems we encountered when integrating qualitative
mechanics with a sketch understanding system. We
explain our solutions to these problems through our
system. This includes an overview of the sketching
process, an explanation of how the sketch is translated into
a qualitative representation, and how inference is used to
answer questions about the sketched system.

Issues with Integrating Sketched Input

The three main problems we encounter when interpreting
rigid-body sketches are: identifying objects and forces,
discovering regions of interaction between them, and
understanding the effects of these interactions. The first
problem has often been approached before using
recognition. However, in a completely open domain (even
limited to two-dimensional polygons) this is not an option.
Rather, we must make do with other clues that a human
would understand from looking at a sketch. This includes
the knowledge that arrows are not objects themselves but
rather information that describes or affects the objects in
the sketch.
 Identifying how objects in a sketch interact has been
approached by annotations—for instance, specifying
objects be drawn with terminals connecting them. In a 2-d
rigid-body system the “terminals” are surface contacts. At
first this appears trivial, but as demonstrated in Error!
Reference source not found. work must be done to
disambiguate the exact nature of the interaction in a
surface contact. As Nielsen (1988) showed, the
decomposition of a surface into qualitatively distinct
regions depends upon mechanical constraints beyond just
the surface shape.

 The problem of understanding the effects of these
interactions is more easily solved if the representation
generated by the first two steps provides the appropriate
qualitative decomposition of surfaces. Next we explain
how we help users generate sketches, how we construct the
decompositions of surfaces, and how qualitative mechanics
is applied to these representations to answer questions
about the sketched mechanism.

The Sketch

The user draws the forces and objects of their mechanism
as CogSketch glyphs. They label the glyphs with concepts
from its knowledge base. Our system looks for four labels
of glyphs in particular:
 RigidPhysicalObject

Because we are working in a rigid-body domain, this
category identifies all objects of interest.

 FixedPhysicalObject
This category represents objects that are completely
constrained from moving or rotating (e.g. the surface
of the earth, walls).

 ForceArrow
Force arrows are used to indicate external forces
acting on the system. This includes global forces such
as gravity.

 RotOrigin
An annotation glyph, marking the point around which
its parent object is free to rotate. An object with a
RotOrigin is prevented from translating in all
directions.

 From a user interface perspective this might seem like a
lot of required labeling. However, our system makes some
simplifying assumptions. First, we take advantage of
CogSketch’s arrow recognition and assume any two or
three stroke arrow glyph is a ForceArrow. Any annotation
glyph that is not an arrow is assumed to be a RotOrigin for
its parent glyph. Finally, all remaining glyphs are assumed
by default to be RigidPhysicalObject. Thus the only
specific labeling required of the user is the annotation
glyph distinction and labeling fixed objects as
FixedPhysicalObject.
 After they are done drawing their sketch, the user can
perform any of the following queries:

 Will object x move?
 Will object x rotate?
 What forces are on object x?
 Is the sketched system stable? (Will any object

move?)
Performing a query begins the translation process.

Translation to QM Representation

When prompted with a query, the system begins
interpreting the sketch. It is here we solve the first two of
the three problems addressed in this paper: identification of
objects, forces, and their properties, and discovering
regions of interaction.

Figure 2: Blocks in a raw sketch (top left) are

decomposed into idealized edges (bottom right),

simplifying surface contact detection.

Figure 1: Slightly different positions of contact allow

very different motions.

Identifying Objects Forces, and their Properties. The
first step is to know what objects and forces are depicted in
the sketch, and determine their specific properties. For
forces, these properties include direction and the objects
they directly affect. For each object this includes
identifying the surfaces of that object, and determining
whether the object is fixed, fixed-axis, or free to move. If
the object is fixed-axis then its center of rotation must be
located.
 First we check the labeling for each glyph in the sketch
to see if they are a rigid object and/or a fixed rigid physical
object. This gives us the fixed property. Then, each glyph
representing a rigid object is decomposed into edges
(Figure 2), and each edge becomes reified as one or more
surfaces in our predicate representation. Every surface
also has a normal vector pointing outward from the object
and a q-vector towards the object’s axis of rotation. The
system is limited to processing polygons, so every edge
will be a line segment. Thus we can infer that each edge
will have only one normal but may have multiple vectors
towards the axis of rotation. Since the edge is a line
segment there will be up to five surfaces per edge. The
cases of one, two, and three edges are demonstrated in
Error! Reference source not found..

 If the axis of rotation is not given in the sketch, we
assume a uniform density and choose the center of area of
the shape as the axis of rotation. While multiple axes of
rotation may exist over the course of a mechanism’s
operation, our system currently only analyzes one instant
of time. Thus, we choose the axis active at the current
moment indicated by the sketch and ignore the others.
 Having finished with objects, we move on to forces. The
force represented by each force arrow in the sketch is
reified as either a force or a torque. If the force is global
then a force is reified with a qvector matching the direction
of the arrow. If the force arrow is on a specific surface
then whether it creates a force or torque depends on the
OriginDir of that surface. If the arrow is the inverse of its
surface normal then a force is applied, otherwise a torque
is applied in the appropriate direction. In Error!
Reference source not found. applying a leftward force

arrow to the top-right surface would create a counter-
clockwise torque. Applying the same force arrow to the
surface just below that would create a leftward force.
 If the force arrow is an annotation glyph, a force or
torque is added for each object that glyph annotates. If it is
not an annotation glyph, the force is added for all objects in
the sketch. This allows for global forces such as gravity to
be input easily.

Discovering Regions of Interaction. This problem entails
finding all surface contact relationships. This is done by
first identifying all rigid objects which may be in contact.
This step is straightforward since CogSketch automatically
computes topological relations for each pair of glyphs in
the sketch. For each pair of intersecting or connected
objects, their edges are checked pairwise for contact. If
two edge are nearly parallel, in close proximity to each
other, and overlap by a significant amount (that is, not
merely in a line one after another), they are considered in
contact. If the edges contain multiple surfaces, the overlap
is calculated and surface contact is only reified for the two
surfaces which contain share the midpoint of the overlap.
 Once all of the surfaces, surface contacts, and forces
have been identified, the system is ready to make the
inferences required to answer the user’s query.

Answering User Queries

After the qualitative representation is complete, the system
begins finding the answer to the user’s query. We now are
at the problem of understanding the effects of the
interacting regions. The user query is passed to our
backchainer, whose rules are an implementation of QM
theory. These rules are written as Horn clauses in which
the first statement is the consequent and the conjunction of
the remaining statements is the antecedent. Some of the
rules are listed here:

Constraining translation for fixed objects:
(<== (transConstraint ?obj ?dir)

 (isa? obj FixedPhysicalObject))

Determining motion constraint in a particular half-plane:
(<==(sufficientlyConstrained ?obj ?dir)

 (transConstraint ?obj ?dir1)

 (transConstraint ?obj ?dir2)

 (transConstraint ?obj ?dir3)

 (openHalfPlane ?dir ?dir1)

 (openHalfPlane ?dir ?dir2)

 (openHalfPlane ?dir ?dir3)

 (different ?dir1 ?dir2 ?dir3))

An open half-plane is defined in Nielsen’s work as the set
of qvectors within 90 degrees of a given direction,
excluding those at exactly 90 degrees. So for direction
Left, the open half-plane would contain directions Quad1
and Quad4 but not Up or Down. The above rule defines
“sufficiently constrained” in a direction if motion is
constrained in all directions in that direction’s half-plane.

Figure 3: Straight edges of objects can be divided

into up to five qualitative surfaces, each with a

different q-vector in the direction of the axis of

rotation.

Tranferring constraint through surface contacts:
(<== (transConstraint ?obj1 ?dir)

 (hasSurface ?obj1 ?s1)

 (hasSurface ?obj2 ?s2)

 (surfaceContact ?s1 ?s2)

 (surfaceNormal ?s1 ?sn)

 (sufficientlyConstrained ?obj2 ?sn)

 (openHalfPlane ?sn ?dir))

Object 1 cannot move in direction dir if object 2 is
constrained in all directions in that dir’s half-plane.
Otherwise object 2 can move in one of those directions,
allowing object 1 to move in dir.

Freedom is the absence of constraints:
(<== (transFreedom ?obj ?dir)

 (isa ?obj RigidOb)

 (isa ?dir 2DQVector)

 (evaluate ?x

 (CardinalityFn

 (TheClosedRetrievalSetOf ?dir

 (transConstraint ?obj ?dir))))

 (equals ?x 0))

Force + Freedom causes motion:
 (<== (transMotion ?obj ?dir)

 (force ?obj ?dir)

 (transFreedom ?obj ?dir))

The force predicate here is the net force on the object. In
the current version this must be specified by the user when
the direction of the net force is ambiguous.

Transfer of translation across surfaces:
(<== (transMotion ?obj2 ?d2)

 (hasSurface ?obj1 ?s1)))

 (hasSurface ?obj2 ?s2)))

 (surfaceContact ?s1 ?s2)))

 (surfaceNormal ?s2 ?sn)))

 (inverseVector ?sn ?invsn))

 (openHalfPlane ?invsn ?d1))

 (transMotion ?obj1 ?d1))

 (openHalfPlane ?invsn ?d2))

 (transFreedom ?obj2 ?d2)))
This rule stipulates conditions in which object 2 will move
because of contact with another moving object, object 1.
The openHalfPlane relation means that the two directions
are within 90 degrees of each other. This allows an object
to transfer motion through multiple directions if necessary.

Force applied to a surface via surface contact:
(<== (forceApplied ?s ?sn ?obj1)

 (force ?obj1 ?dir)

 (hasSurface ?obj1 ?s1)

 (surfaceContact ?s1 ?s)

 (surfaceNormal ?s1 ?sn)

 (openHalfPlane ?sn ?dir))

Force applied to a surface causing force on object:
(<== (force ?obj ?dir)

 (hasSurface ?obj ?s)

 (forceApplied ?s ?dir ?c))

Forces are also translated through other objects. In
general, every force applied through a surface contact gets
applied to the next object as a translational force if both of
the following conditions hold:

1) The object is free to translate.
2) The inward normal of the contact surface points

towards the object's axis of rotation.
In the version presented here, it is up to the user to resolve
ambiguities in the forces. The work in progress includes
rules that try to find the resultant vector of a set of forces,
and resolve ambiguities by asking the user which forces
are larger or by using the magnitude field of the force
annotation in CogSketch.
 Torque propagation is not yet implemented in the
current version of the system but it will follow the same
principles. These and other qualitative mechanics
principles are all defined as rules. By backchaining
through these rules, the system deduces what forces are
acting on objects and whether they will move.

Examples

Here we present some examples that the system is
currently able to handle. In the following figures the
system has already idealized and segmented the edges of
the objects, making them appear straighter than a typical
free-hand sketch and colored by edge.

The example shown in Figure 4 is based on an equivalent
one in Nielsen’s work. The sketch contains a ramp with
two blocks stacked one upon another and one arrow
pointing downward, drawn off to the left. The arrow is not
an annotation glyph, and the ramp is labeled as a
FixedPhysicalObject. When the user asks for the motion
of all the objects in this sketch, the system begins to build
its QM representation. First, each of the three non-arrow
glyphs is decomposed into their respective edges, which
become their surfaces. Since the force arrow is not

Figure 4: Two free blocks stacked on a fixed ramp.

The arrow on the right represents a global
downward force affecting all three objects. The

result is the small triangular block moves down and
right (quad 4) and the square block moves down.

annotating a specific glyph, its downward force is assumed
to be affecting all glyphs in the sketch.
 Next, the system searches for surface contacts by
checking each pair of objects for contact or overlap. Using
the topological relations calculated by CogSketch, the
system finds overlap between the ramp and the triangular
block and between the triangular block and the square. For
both pairs it performs a line-line proximity comparison
between their surfaces to find the surface contacts.

Tower remains immobile in the presence of a

gravitational force.

 With the surface contacts reified and the forces applied,
the system begins backchaining to find any motion that
each object possesses at the moment pictured. The ramp is
a FixedPhysicalObject so it is stationary. The square
block has a downward force on it, and because the
triangular block is not completely constrained from
moving in the downward half-plane, the square block will
begin moving downward. The triangular block has a
downward force and is free to move in the down-right
direction; consequently, it does. Adding a stop block to the
above example (see Figure 5) prevents the triangle from
moving, and thus prevents the square block from moving.

 Error! Reference source not found. shows more
transfer of motion constraints. The constraint is
propagated upward from the fixed base to the topmost
block. If the user were to draw this and query for motion,
the system would return no motion. In this way, one can
test a design for stability.

Related Work

Our approach of using shape edge decomposition, RCC8
relations, line-line proximity and overlap calculation is a
novel solution to the problem of discovering and analyzing
surface interactions between rigid bodies. Kurtoglu and
Stahovich (2002) used line-line and other proximity pairs
in a system to identify the type of connection between two
sketched objects, with the goal of classifying those objects
in categories such as rigid body or electric motor. Our
system goes two steps further for rigid bodies, breaking
them down into their individual surfaces and then
determining exactly how the position and size of an
overlap of two surfaces affects their motions.
 Prior sketching systems for mechanical reasoning have
relied on human input for the analysis of surface contacts.
The QM theory on which our system is based had full
propositional representations as its input. (Nielsen 1989;
Kim, 1993) Later systems such as SketchIT (Stahovich
et.al. 1998) required the designer to mark the important
surfaces and build state machines describing their
interactions. In the example in Figure 4 SketchIT would
require the user to highlight the contact surfaces.

Progress has also been made in the area of automatically
recognizing the objects in sketches (Alvarado & Davis,
2004; Kurtoglu & Stahovich, 2002). By eliminating the
need for extra human input we have moved closer to a
sketch-understanding system that can reason deeply about
hand-drawn sketches.

Discussion and Future Work

This work represents a first step towards fully embedding

qualitative mechanics in systems that reason with hand-

drawn sketches. This required tackling the problems of

identifying objects, forces, and their properties;

discovering the interactions between said objects and

forces; and finally, computing the exact effects of these

interactions. The advances which enabled us to do this

include using a combination of shape decomposition,

RCC8 relations, and line-line proximity and overlap

calculation, allowing us to identify the different surfaces of

two-dimensional objects, their areas of contact, and

compute the consequences of those interactions.
 Our goal is to have a complete, robust qualitative
mechanics reasoner that can operate over a wide range of
hand-drawn sketches. We see two key next steps. First,
handling curved surfaces is important for many kinds of
designs. This presents new challenges to segmentation.
Second, the system currently only reasons about

Figure 6: A stable tower of blocks on a fixed

platform.

Figure 5: The two free blocks (Figure 4) are now

constrained by an additional block, labeled as fixed.

instantaneous force/motion transfers. Reasoning about
motion over time, including automatically deducing
plausible changes in contacts (cf. Nielsen 1988), is also
important. Longer term, we plan to extend the system to
handle 3D shapes, flexible bodies, laminar flow situations,
and fluids as well as rigid bodies.

Acknowledgements

This work was supported by NSF SLC Grant SBE-

0541957, the Spatial Intelligence and Learning Center

(SILC).

References

Alvarado, C., Davis R. 2004. Multi-domain sketch
understanding. Massachusetts Institute of Technology,
Cambridge, MA.

Alvarado, C., Davis R. 2007. Resolving ambiguities to

create a natural computer-based sketching environment.
In International Conference on Computer Graphics and
Interactive Techniques ACM SIGGRAPH 2007 courses.
San Diego, California.

Cohen, P., Johnston, M., McGee, D., Oviatt, S., Pittman, J.,

Smith, I., Chen, L. and Clow, J. 1997. QuickSet:

Multimodal interaction for distributed application. In

Proceedings of the Fifth Annual International

Multimodal Conference, 31-40. Seattle, WA.

Cohn, A. 1996. Calculi for Qualitative Spatial Reasoning.

In Calmet J., Campbell J. A., Pfalzgraph J., Verlag S.
(Eds.), Artificial Intelligence and Symbolic
Mathematical Computation, LNCS 1138, 124-143.

Forbus, K., Nielsen, P., and Faltings, B. 1991. Qualitative

spatial reasoning: The CLOCK project. In Artificial
Intelligence, 51(1-3).

Forbus, K., Lockwood, K., Klenk, M., Tomai, E., and

Usher, J. (2004). Open-domain sketch understanding:

The nuSketch approach. Proceedings of the AAAI Fall

Symposium on Making Pen-based Interaction Intelligent

and Natural, October, Washington, D.C.

Kim, H. (1993). Qualitative reasoning about fluids and

mechanics. Ph.D. dissertation and ILS Technical Report,

Northwestern University. Evanston, IL.

Nielsen, P.E. (1988). A qualitative approach to rigid body

mechanics. (Tech. Rep. No. UIUCDCS-R-88-1469;

UILU-ENG-88-1775). Urbana, Illinois: University of

Illinois at Urbana-Champaign, Department of Computer

Science.

Stahovich T.F., Davis R., Shrobe H. 1998. Generating

multiple new designs from a sketch. In Artificial

Intelligence 104 (1998) 211–264.

Kurtoglu T., Stahovich T.F., 2002. Interpreting Schematic

Sketches Using Physical Reasoning, In AAAI Spring

Symposium on Sketch Understanding, AAAI Technical

Report SS-02-08, 78-85.

Learning Qualitative Models from Image Sequences

Jure Žabkar and Ivan Bratko
University of Ljubljana,

Faculty of Comp. and Inf. Science,
Tržaska 25,

SI-1000 Ljubljana, Slovenia

Gregor Jerše
University of Ljubljana

Faculty of Mathematics and Physics
Jadranska 19,

SI-1000 Ljubljana, Slovenia

Johann Prankl and Matthias Schlemmer
Vienna University of Technology,
Automation and Control Institute,

Gusshausstrasse 27-29 / E376,
A-1040 Vienna, Austria

Abstract

In this paper, we describe the autonomous learning
of qualitative models with a robot’s on-board vision.
Those models are used to describe spatio-temporal
qualitative relations between observed objects. There-
fore, the algorithm QING is described which extracts
the necessary qualitative relations between the objects
from the sequence of images. The robot uses these fea-
tures together with other sensory data to learn about the
environment.

Keywords: qualitative (spatial) reasoning, cognitive vision,
cognitive robotics

Introduction
In this paper we tackle certain problem from the field of cog-
nitive robotics, namely how the robot can use its on-board
vision for autonomous learning. This problem is highly con-
nected to the field of cognitive vision as the robot should
somehow reason about the information it gets from im-
age sequences. Following the definition of (Vernon 2008),
“A cognitive vision system can achieve the four levels of
generic computer vision functionality of detection, local-
ization, recognition, and understanding.” Whereas classi-
cal computer vision is mainly concerned with the first three
points, the last issue affords interdisciplinary work in or-
der to integrate higher-level reasoning functions. This work
aims at incorporating a specific machine learning technique
in order to qualitatively reason about the arrangement of ob-
jects. The abstraction from quantitative pixel data to a more
qualitative layer seems to be of great importance to cogni-
tive vision. In this abstraction step, the vision part is con-
cerned with segmenting the image to proto-objects (group-
ings of pixels that are likely to belong to the same object). In
this paper, we are mainly concerned with the learning part,
therefore the proto-object grouping is assumed to be given.
However, higher-level qualitative reasoning is highly rele-
vant for providing feedback to the vision part, as its ability
to predict the existence and the arrangement of proto-objects
in the subsequent image(s) can support low-level image pro-
cessing.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

From a roboticist’s perspective, a qualitative model at any
layer can help interpreting a given situation. This paper tries
to bridge this link for one of the lowest, namely the percep-
tual layer, providing a model for visual scene interpretation.
Motivation for this work comes from the European project
XPERO, in which a robot should gain insights about the real
world by experimenting and meaningfully relate it’s intero-
and exteroceptive information so to arrive at a level of qual-
itatively understanding its environment.

The main idea of this paper is to apply the algorithm
QING (see corresponding Section) to extract qualitative
spatio-temporal features from an image sequence and use
them together with other sensory data for autonomous learn-
ing about the concept of occlusion. In this paper we present
an artificial scenario in which the robot circles around two
balls of different colour and builds a qualitative model in
the form of a qualitative non-deterministic finite automaton
(qNFA). The robot learns autonomously without any exter-
nal intervention. The final model enables us as well as the
robot to reason about the occlusion, e.g. it tells us that it is
not possible to go from the state of non-occlusion directly
to the state of total occlusion but rather through the state of
partial occlusion. Our basic goal is to build a system which
the robot could use for reasoning about its visual input and
based on this reasoning improve its visual perception, e.g.,
detecting regions of interest. Our system can discover qual-
itative relations between the objects in the images and how
these relations change over time. Currently, it is capable of
discovering topological relations.

As this paper focuses on the use of QING for learning the
relations, we will not describe the vision part. We must men-
tion though that the extraction of the “interesting” colour
blobs from the images can be motivated by a simple curios-
ity mechanism. For a robot tuned to learn about sensory in-
put it has not seen before, colour is a strong cue. More elab-
orate techniques, such as the bottom-up Grouping of line
features, as described in the next Section, can be applied as
well.

Algorithm QING
QING (Žabkar et al. 2007) is an algorithm for qualita-
tive analysis of continuous class variablef w.r.t. given at-
tributes(x1, . . . , xn), wheren is the dimension of the at-
tribute space. For simplicity we will in this short descrip-

bc

bc

b b

1

Figure 1: Qualitative field forf(x, y) = xy. The arrows
point in the direction of function decrease.

tion restrict ourselves to two attributes. Theoretically,QING
works for any dimensionn, but is practical forn ≤ 5 due to
the complexity of triangulation.

To be more illustrative, we accompany the description
of the algorithm with a simple examplef(x, y) = xy de-
fined on an orthogonal mesh (see Fig. 1) on the domain
[−10, 10] × [10, 10]. Learning examples are represented as
points in the attribute space, each point having assigned a
value of its class variable. The domain is triangulated in
order to be analysed with discrete Morse theory. Critical
points, i.e. maxima, minima and saddles, are reconstructed
using the algorithm of (King, Knudson, & Mramor Kosta
2005). The output of QING is a qualitative field (Fig. 1), a
set of critical points and a labeled qualitative graph (Fig.2),
which is a visualisation of the qualitative model. Detailed
definitions of these terms are given in (Žabkaret al. 2007).
The main difference between QING and other algorithms
for induction of qualitative models is in attribute space parti-
tioning. Unlike algorithms that split on attribute values (e.g.
trees, rules), QING triangulates the space (domain) and con-
structs a qualitative field which for every learning example
tells the directions of increasing/decreasing class.

The example image, in the experiment that we describe
in the next Section, is processed in a similar way. However,
to capture the time, we need to connect the neighboring im-
ages in the sequence. To do this, we use parametric Morse
theory with time as a parameter and we follow the critical
simplices through the slices as described in (King, Knudson,
& Mramor Kosta 2007).

Experiments
We performed the experiments on artificial data in a domain
in which the robot circles around a red and a blue ball as

Figure 2: Qualitative graph forf(x, y) = xy.

shown in Fig. 3. The robot uses an overview camera to mea-
sure the distances to the balls (bdred andbdblue) and it uses
an on-board camera to observe the balls and collect the data
for learning a qualitative model.

Figure 3: The robot circles around the balls and observes
them with its on-board camera.

The robot is also aware of its polar coordinates, so it
knows about its angle and the radius. Its actions areleft
(clockwise) andright (counter clockwise along the circle as
shown in Fig. 3). The robot observes the qualitative change
of its distances to the red and the blue ball w.r.t. the action.
For example, if the robot resides at(ϕ = 0 ◦, r) and chooses
to go right, i.e.ϕ increases, the distance to the red ball would
increase while the distance to the blue ball would decrease,
bdred = Q(+ϕ) andbdblue = Q(−ϕ). The robot can ob-
serve similar relations in the image sequence. The relations
that it can detect on a simple image of two balls are the fol-
lowing (see also Fig. 4):

• the red ball and the blue ball do not touch

• the balls touch

• only the red ball is visible

• only the blue ball is visible

Inside QING algorithm, the objects are distinguished by
their colour and each colour is represented by a unique nu-
merical value. In our example, we define that the value 1

Figure 4: The images from the on-board camera where the
balls don’t touch (top) and when they overlap (bottom).

stands for the blue color and the value 2 stands for the red
one. The background has value 0. QING constructs a dis-
crete vector field in a 3-dimensional space (2D image and
time) and assigns the appropriate values to each pixel, ac-
cording to the color of the pixel. Although QING can handle
noise well, there was no noise in our artificial data. To ob-
tain the qualitative relations QING computes extreme points
in this space and uses the discrete vector field to track the
movement of these extrema over time.

When the balls don’t touch, QING finds two maxima with
values 1 and 2 (we mark such a state with ’12’). If only one
of the balls is visible, it finds either 1 (for blue) or 2 (for
red), while if they touch it finds one maximum with value
2. In our image sequence, the changes are rare since most
of the time the image at angleϕi is the same asϕi+1. This,
we denote as ’o’, meaning there is no change, i.e. steady.
Considering the type of the qualitative relation in each image
andbdred = Q(+ϕ) andbdblue = Q(−ϕ) from above we
build a class value for each learning example, e.g. 12o +-,
meaning that the balls stay separated, the distance to the red
ball increases (the first sign) and the distance to the blue ball
decreases (the second sign).

Results
The learned model is in the form of qualitative non-
deterministic finite automaton (NFA) as shown in Fig. 5.
Its states are qualitative descriptions of the observations de-
rived from the image features and other available attributes,
i.e. distances to both balls and the angleϕ. The transitions
explain the possible changes of states given an action. Non-
determinism is hidden in the fact that the same action ap-
plied in the same state may result in the same state or the
neighbouring one, i.e. self transitions are always possible.
This is due to the qualitative descriptions of the states. How-
ever, such NFA gives us enough information to reason qual-
itatively about the system. We can observe that total occlu-
sions (ϕ = 90 or ϕ = 270, changes of+,− signs) may only
happen from partial occlusions (states with2o).

Related work
Many authors have addressed the problem of qualitative spa-
tial or spatio-temporal reasoning. (Cui, Cohn, & Randell
1992) describes an envisionment-based qualitative simula-
tion program that can reason about space and time, con-
sidering the topological relations between objects. Learn-
ing temporal patterns from unannotated video data is pre-

Figure 5: The learned qualitative NFA describing how
the robot can change its states with the chosen actions
(right...green arrows; left...black arrows). The red signs
stand forbdred = Q(sϕ) and the blue signs arebdblue =
Q(sϕ).

sented in (Fleischman, Decamp, & Roy 2006). Well known
theoretical approaches to qualitative spatio-temporal reason-
ing are described in (Cohn & Hazarika 2001) and (Ran-
dell, Witkowski, & Shanahan 2001). The latter is espe-
cially interesting for us as it considers spatial occlusion.
(Cao, Mamoulis, & Cheung 2005) discovers sequential pat-
terns in a spatio-temporal series of movements of mobile ob-
jects. An interesting approach to mining temporal patterns
in multivariate time series, using Unification-based Tempo-
ral Grammars is described in (M̈orchen & Ultsch 2004). It
only considers the temporal dimension but there seems to
be no reason against applying a similar technique to spatial
dimensions. On the other hand, (Bailey-Kellogg & Zhao
2004), (Lundell 1994) and (Faltings 1995) study only quali-
tative spatial reasoning.

Concerning the vision part, literature on computer vision
is extremely diversified, wherefore we are focusing here on
low-level algorithms powerful enough to support the task at
hand as well as State-of-the-Art attempts to fuse qualitative
reasoning with computer vision.

For grouping pixels to likely objects (so-called proto-
objects), a recent work is (Zillich 2007). In this work, edges
are grouped based on Gestalt principles, e.g., continuity and
proximity. Using a parameter-free anytime algorithm, this
tool is capable of delivering the most likely locations of
proto-objects in terms of closures and ellipses very fast. Al-
ternatively, colour-based segmentation can be used, for ex-
ample the graph-based method of (Felzenszwalb & Hutten-
locher 2004).

Work on fusing qualitative reasoning with vision tech-
niques has been done by (Bennettet al. 2008). In this paper,
the authors recognise and track multiple objects throughout
a scene (e.g., basketball players) supported by a reasoning
about the spatio-temporal continuity. (Huang & Essa 2005)
are tracking multiple objects through complex occlusion sit-
uations, where a colour blob tracker is backed by a reason-
ing step of where currently unseen objects are. Their task is
very similar to ours except they are using genetic algorithms
to match the objects from one image to the next one while

we use parametric discrete Morse theory to do this.

Discussion and future work
The above work shows a promising direction towards an au-
tonomous robot system with on-board vision that could learn
from the vision input as well as improve on visual perception
using qualitative models. We believe that our approach can
help the robot extract dynamic features from its vision sys-
tem and use them in qualitative models. Using these features
the robot can detect the region of interest in its environment.
The latter is especially interesting combined with the task
of embodied learning by experimentation where regions of
interest may drive the robot to interact with the world.

From the technical perspective, our future work will in-
clude further improvement of the QING algorithm. We
would also like to investigate how the vision part can make
use of qualiative models, e.g. to improve the image segmen-
tation.

Acknowledgment
The work described in this article has been funded by the
European Commission’s Sixth Framework Programme un-
der contract no. 029427 as part of the Specific Targeted Re-
search Project XPERO (“Robotic Learning by Experimenta-
tion”).

References
Bailey-Kellogg, C., and Zhao, F. 2004. Qualitative spatial
reasoning extracting and reasoning with spatial aggregates.
AI Magazine24(4):47–60.
Bennett, B.; Magee, D. R.; Cohn, A. G.; and Hogg, D. C.
2008. Enhanced tracking and recognition of moving ob-
jects by reasoning about spatio-temporal continuity.Image
Vision Computing26(1):67–81.
Cao, H.; Mamoulis, N.; and Cheung, D. W. 2005. Mining
frequent spatio-temporal sequential patterns. InICDM, 82–
89. IEEE Computer Society.
Cohn, A., and Hazarika, S. 2001. Continuous transitions
in mereotopology.
Cui, Z.; Cohn, A. G.; and Randell, D. A. 1992. Qualitative
simulation based on a logical formalism of space and time.
In National Conference on Artificial Intelligence, 679–684.
Faltings, B. 1995. Qualitative spatial reasoning using alge-
braic topology. InCOSIT, 17–30.
Felzenszwalb, P., and Huttenlocher, D. 2004. Efficient
graph-based image segmentation.International Journal of
Computer Vision59(2):167–181.
Fleischman, M.; Decamp, P.; and Roy, D. 2006. Mining
temporal patterns of movement for video content classifi-
cation. InMIR ’06: Proceedings of the 8th ACM interna-
tional workshop on Multimedia information retrieval, 183–
192. New York, NY, USA: ACM.
Huang, Y., and Essa, I. 2005. Tracking multiple objects
through occlusions. InCVPR ’05: Proceedings of the 2005
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05) - Volume 2, 1051–
1058.

King, H. C.; Knudson, K.; and Mramor Kosta, N. 2005.
Generating discrete morse functions from point data.Exp.
math.14(4):435–444.
King, H. C.; Knudson, K.; and Mramor Kosta, N. 2007.
Birth and death in discrete morse theory.Preprint.
Lundell, M. 1994. Qualitative reasoning with spatially dis-
tributed parameters. InInternational Workshop on Quali-
tative Reasoning about Physical Systems, 13–20.
Mörchen, F., and Ultsch, A. 2004. Mining hierarchical
temporal patterns in multivariate time series. In Biundo,
S.; Fr̈uhwirth, T. W.; and Palm, G., eds.,KI, volume 3238
of Lecture Notes in Computer Science, 127–140. Springer.
Randell, D. A.; Witkowski, M.; and Shanahan, M. 2001.
From images to bodies: Modelling and exploiting spatial
occlusion and motion parallax. InIJCAI, 57–66.
Vernon, D. 2008. Cognitive vision –
the development of a discipline. online at:
http://www.eucognition.org/ecvision/about
ecvision/Cognitive Vision.pdf.

Žabkar, J.; Jerše, G.; Mramor, N.; and Bratko, I. 2007. Induction
of qualitative models using discrete morse theory. InProceedings
of the 21st Workshop on Qualitative Reasoning.

Zillich, M. 2007. Making Sense of Images: Parameter-Free Per-
ceptual Grouping. Ph.D. Dissertation, Vienna University of Tech-
nology.

Learning Qualitative Models by an Autonomous Robot

Jure Žabkar and Ivan Bratko
AI Lab, Faculty of Computer

and Information Science,
University of Ljubljana,

SI-1000 Ljubljana, Slovenia

Ashok C Mohan
University of Applied Sciences

Bonn-Rhein-Sieg
Grantham-Allee 20,

53757 Sankt Augustin, Germany

Abstract

In this paper we present a qualitative exploration strat-
egy for an autonomous robot that learns by experimen-
tation. Particularly, we describe a domain in which a
mobile robot observes a ball and learns qualitative pre-
diction models from its actions and observation data. At
all times it uses these models to predict the results of the
actions that it has decided to execute and to design new
experiments that would lead it to learn a better model of
the world, and for planning of the execution of these ex-
periments. We experimentaly evaluate the exploration
strategy.

Introduction
The idea of autonomous robots that are capable of learning
by themselves, without any human intervention is one of the
most fundamental goals of AI. Among several paradigms of
learning, learning by experimentation demands no teacher,
but rather learns autonomously, interacting with the real
world. In this paper we present a showcase in which an au-
tonomous robot is learning qualitative models by conducting
experiments in its environment.

There are several ways of how the robot chooses its ac-
tions, designs and plans experiments. In order to learn effi-
ciently, the strategy which it uses to explore its environment
is very important. We propose a qualitative exploration strat-
egy for autonomous robot learning. We evaluate our strategy
by comparing it to random strategy. The results show that
using our strategy, the robot is learning faster and it learns
better models. We consider learning ofqualitativemodels
an important aspect. Qualitative models are easier to learn
and sufficient to design and plan the experiment. They re-
duce the complexity of numerical models considerably and
also enable humans to easily understand what the robot has
learned.

The robot has no prior knowledge about its environment.
In particular, it has no knowledge regarding the relations be-
tween its actions and observations. Its task is collecting the
data and gradually learning a model which it immediately
uses for moving and designing new experiments. Its goal
is to learn a model that would relate its actions to its obser-
vations. At each step, the robot decides on one of several

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

possible actions. It then uses its current model to predict
the result of its action, executes the action and collects ob-
servations. It then compares its prediction with the actual
observations. The result of this comparison leads to further
experiments that helps to revise the model.

In the setting just described, we apply a new method,
called parametric Padé, for learning qualitative models in
dynamic domains. We present the method itself elsewhere
but we provide a short description of the method in section
“Parametric Pad́e” to keep this paper self contained.

Learning qualitative models by
experimentation

Our task is to equip the robot with an exploration strategy
that would enable the robot to learn without any external
intervention. Further, we want the robot to learn qualitative
models so that its insights would be easily comprehensible to
humans. The robot is restricted to learn by experimentation
and to use self generated models for moving and designing
new experiments. The robot’s motivation for learning is a
part of the built-in algorithm. The idea is simple - since the
robot depends on its own model, the robot wants to optimize
the model’s prediction accuracy. To improve the model in
time requires collecting new observation data, particularly
data most useful for the improvement of the model. Hope-
fully, if all goes well, after some time the robot will come
up with a model whose predictions are always correct, i.e.
the robot has learned everything about its actions and their
effects in the given environment.

Experimental domain
Our problem domain consists of a mobile robot, a ball and
an overview camera, as shown in Fig. 1. The robot uses the
overview camera to observe its distance to the ball (ball dis-
tance, denoted bybd) and the angle between its orientation
and the ball (ball angle, denoted byba).

The robot is of differential drive type and moves by set-
ting the speeds of the left and the right wheel (L andR re-
spectively). In our case,L andR are always positive, and
the robot was restricted to choose between speeds 4 and 5
only. So the robot can move straight ahead (L = R = 5),
right (L = 5, R = 4) and left (L = 4, R = 5), as shown in
Fig. 2. The robot is not aware of any coordinate system. It

ball distance
ball angle

robot
orientation

Figure 1: The robot and the ball.

is only aware of the actions it performs (L andR) and the
observations from the sensors (bd andba).

R R R

R

left(L)
straight(S)

right(R)

Figure 2: The actions of the robot.

The overall goal that we want the robot to achieve is that
it learns a qualitative model describing the relations between
its actions and observations. By densely sampling the whole
space of above mentioned variables and learning a qualita-
tive tree we obtained an “almost ideal” model of our domain.
Note, that we did not use this model in any other way than
to see for ourselves what the robot should eventually learn.
This “almost ideal” qualitative tree for our domain is shown
in Fig. 5. The model is explained in the next section.

We have performed all the experiments in the simulator
Simon which is a part of the machine learning framework
Orange (Zupan, Leban, & Dem̌sar 2004).

Exploration algorithm
At the begining, i.e. at timet0, the robot has no knowl-
edge about the effects of its actions. For example, it does
not know how its actions from the current state influence its
observations in the next step. Namely, there are no relations
known to the robot between actions (L andR) and observa-
tions (ba andbd).

Without a model the robot can only move by applying ran-
dom actions, i.e. randomly choose the speed of each wheel.
Doing so it collects some data and after a certain time period
it learns from the collected data. The learning is supervised.
The attributes are robot’s actions and observations. The class
variable is defined by qualitative relations (described later)
between the actions and observations.

my :

?

ba=0

ba=90 ba=-90
Q(+bd)

Q(-bd)Q(-bd)

Q(+bd)

Q(+ba)

Q(+ba)

Q(-ba)

Q(-ba)

ba=180 ba=-180

Figure 3: The various angles when robot is turning left and
right from ba = 0

?ba=180 ba=-180

ba=-90ba=90

m �-

ba=0 ba=0

Q(+bd)Q(-ba)

Q(-bd)

Q(-ba)

Q(+bd)Q(+ba)

Q(-bd)

Q(+ba)

Figure 4: The various angles when robot is turning left and
right from ba = 180 or ba = −180

L/R

ba

< 0.9

ba

< 89.76

−− ++

≥ −90.31

+ + ++

< −90.31

+ + ++

≥ 89.76

ba

≥ 0.9

+ + −−

≥ 90.62

ba

< 90.62

−−−−

≥ −89.78

+ + −−

< −89.78

Figure 5: The “almost ideal” model of the robot in our do-
main.

The robot learns its first model from a small dataset col-
lected by random movement. This initial model is not very
accurate and useful. Nevertheless, it enables the robot to use
it for making predictions about further actions.

The ability to make predictions enables the choice among
learning strategies. A learning strategy determines the next
action. The most primitive learning strategy is random strat-
egy, in which the robot chooses one of its three possible ac-
tions at random. Random movement is thus defined by ac-
tions rather than by robot’s positions. The latter is not even
possible since in our case the robot is not aware of its co-
ordinates and can not choose to navigate in any coordinate
system.

The robot is supposed to learn the relations between its
actions and observations. In our simple example, the robot
has two actions (L andR) and two observation variables (ba
andbd), so it should learnbd = Q(sSL), bd = Q(sSR),
ba = Q(sSL) andba = Q(sSR), where signs is + or −
andL = ṠL, R = ṠR, whereSL andSR are the paths of the
left and the right wheel respectively. In these equations,Q
stands for qualitative relation as described in section Para-
metric Pad́e. In the paper, we use a shorter notation, e.g.
”+ + −−”, giving only the signss in the above mentioned
order. So ”++−−” means:bd = Q(+SL), bd = Q(+SR),
ba = Q(−SL) andba = Q(−SR). In words: ball distance
is increasing whenSL andSR are increasing (i.e.L,R > 0),
and ball angle is decreasing whenSL andSR are increasing.
We define the classC of this domain as a 4-tuple of signs as
just described. Figures 3 and 4 clearly shows the regions of
different values of classC.

Qualitative models that the robot is learning are in
the form of qualitative trees (qtree) and qualitative non-
deterministic finite automata (envisionment). The robot uses
algorithm pPad́e with decision trees to learn qualitative trees
while it builds an envisionment from the temporal sequence
of its actions and observations. The initial set of attributes
includesL, R, ba, bd and the classC. To this set, pPad́e adds
a newly constructed attributeL/R, obtained by the chain
rule, dividing the derivatives of each wheel’s path w.r.t. time.
The attributeL/R describes the qualitative relation between

both speeds and can, as we shall see, explain the left and
right turns. Using the chain rule for attribute construction
is a general principle and is not specifically added to this
domain.

There is no relation between the qualitative tree and the
envisionment. They are merely a different perspective to the
same data. While the qualitative tree is used for prediction,
the envisionment is used for planning new experiments for
the robot to explore new and less explored regions. Similar
to a qualitative tree, the envisionment is gradually learned
by the robot.

+ + −−

+ + ++ −−−−

−− ++

L,S,R

L,S,R

L,S,R

L,S,R

S,R

L,S

L,S

L,S,R

Figure 6: The envisionment learned by the robot.

Exploration strategies

The robot’s exploration algorithm includes three strategies
that strive to guide the learning towards the final goal. First
and most primitive is therandom strategy. Using this strat-
egy, the robot moves randomly choosing the actions from
its set of available actions. The second strategy we calluni-
form strategy; it is used when the robot wants to sample the
actions so that their distribution is uniform. Uniform distri-
bution of actions assures that the robot is not biased towards
one of the actions, e.g. going straight ahead all the time. At
first glance it may seem that uniform and random strategies
are the same, but the difference lies in the fact that uniform
strategy also accounts for the action executed using persis-
tent strategy. The third strategy is calledpersistent strategy.
The robot, using this strategy, keeps executing the same ac-
tion for some time. Doing so it is collecting more learning
examples of the same kind.

The robot uses random strategy only for its first ten moves
when it has no knowledge about its environment and the ran-
dom choice is the best it can make. After it collects the first
ten learning examples it can already build a first model and

start using it. At this time, it changes the strategy touni-
form and enters the main loop in which it is updating and
improving the model.

The main loop starts with choosing the next action based
on the current strategy (either uniform or persistent). Af-
ter the robot picks the action it uses the current qualitative
tree to make the prediction using the current state and the
action. When it makes the prediction it executes the action
and observes the result. It compares its own prediction with
the actual observation. If they match, the robot continues
with persistent strategy, otherwise the robot is “surprised”
and motivated for further exploration of the unknown be-
haviors. The reason for the mismatch is the false prediction
of qualitative behavior, i.e. the signs in the class value were
predicted wrongly. The robot updates the envisionment with
a new state and transition and also updates the qualitative
tree. After it updates the model, the robot starts designing
a new experiment and planning its actions so that it could
carry out the designed experiment. For this purpose it main-
tains a frequency table of class values and it observes the
difference between the number of examples in the current
envisionment state and the one with the lowest frequency in
the table. If the number of examples in the current envi-
sionment state is greater than a threshold, it selects uniform
strategy and picks persistent otherwise. This finishes one
iteration of the loop and starts a new one.

ba

+ + ++

< 179.74

+ + −−

≥ 179.74

Figure 7: The model created by the robot after 19 steps.

bd

+ + −−

< 562.33

ba

≥ 562.33

−−−−

< 90.44

+ + −−

≥ 90.44

Figure 8: The model created by the robot after 1000 steps.

Results
The exploration algorithm from the previous section enables
the robot to learn by experimentation in an efficient way. To
confirm the latter, in this section we compare our approach
to the pure random strategy. Again, we stress that random
strategy does not mean random sampling of the coordinate
space but rather choosing the actions randomly.

L/R

ba

< 0.9

ba

≥ −90.93

−− ++

< 89.68

+ + ++

≥ 89.68

+ + ++

< −90.93

ba

≥ 0.9

+ + −−

< −89.42

ba

≥ −89.42

−−−−

< 90.44

+ + −−

≥ 90.44

Figure 9: The final model created by the robot after 2674
steps.

In random strategy we use a parameterduration which
defines the frequency for choosing a random action. Ifdu-
ration = 1 the action is chosen randomly on each simulation
step while forduration= n it is chosen only eachn-th step
and maintained the same in between. The latter is actually
not a pure random strategy but rather a mixture of random
and persistent. We use it for comparison anyway since the
pure random strategy performs extremely poor.

We ran 3 runs of each random strategy, varyingduration
and 9 runs with different initial positions of the robot with
our exploration algorithm. We manually determined the
point at which the robot learned the desired model. We mea-
sured the time it had needed to learn the model in the number
of steps it performed until that state. Table 1 presents the re-
sults over different runs, the averages and standard errors.

The results show that the robot learns significantly bet-
ter and faster with our exploration algorithm as opposed
to the pure random strategy or random-persistent strategies.
We have no formal proof to explain why persistent strategy
works. Nevertheless, it is clear from the way humans exper-
iment that we pursue one direction until there arises a reason
or motivation to change it.

Parametric Padé
Algorithm Pad́e, as described in (Žabkar, Bratko, & Dem̌sar
2007), discovers monotonic relations in static domains. It
does so by computing partial derivatives from numerical
data and is used together with an appropriate machine learn-
ing algorithm, e.g. decision trees, to build a qualitative
model. However, it is quite limited in the diversity of the
domain types it can handle. For example, it can not handle a
temporal data set well. Here, we introduce a motivation for
a complementary method which we call parametric Padé,
abbreviated pPadé. The parameter in pPadé is time which
allows pPad́e to learn in dynamic domains. We should note
here that Pad́e also works with other parametrizations but
time. We only give here time as an example.

Time is not always an important attribute. For example,
it is always true that “the larger the piece of ice, the heavier

Random our exploration strategy
Run Stepsize Steps taken to reach best modelStepsize Steps taken to reach best model

1
1

Not until 30000 1 2674
2 Not until 30000 1 3685
3 Not until 30000 1 1991
4

10
Not until 30000 1 2078

5 Not until 30000 1 3530
6 Not until 30000 1 3254
7

100
15967a 1 7317

8 Not until 30000 1 4866
9 27654b 1 2843

aEven this does not result in the ideal model, but very close to it
bThis resulted in a model separated at the root byL instead ofL/R

Table 1: Comparison between random action selection and ourexploration strategy presented here.

it is”. In Pad́e’s notation this qualitative proportionality is
written asweight = Q(+volume). However, a lot of things
change over time and for these time obviously is important.
Yet, it should not be treated as any other attribute but rather
as a parameter, i.e. the temporal dimension is somehow hid-
den. For example, it is well known that parametric equa-
tions x(t) = cos(t), y(t) = sin(t) represent a unit circle
for t ∈ [0, 2π]. While we observe the circle inxy-plane,
parametert remains hidden. Derivatives w.r.t. time can take
advantage of the chain rule:

dy

dx
=

dy

dt

dt

dx
=

ẏ

ẋ
In temporal data sets, it is possible to compute the deriva-
tives of the attributes w.r.t. timet and by using the chain
rule, obtain the derivatives w.r.t. other variables as well.
Doing so, we overcome the problem of high dimensional-
ity. As opposed to ordinary Padé, where the derivatives are
computed in the space of dimensionalityn (n = number of
attributes), all the derivatives in parametric Padé are com-
puted w.r.t. time.

The input for pPad́e is a temporal data set, e.g. a set of
points inxy-space (Fig. 10(a)) each having a time stamp.
The first four columns of Table 2 present the example data
set which we use to illustrate how pPadé works.

The goal in this toy example is to obtain the qualitative
behavior of the class variablec w.r.t. attributex.

The temporal diagram of attributesx andy is shown in
Fig. 10(b). First, pPad́e computeṡx, ẏ andċ. pPad́e approx-
imates the derivativėx at ti as:

ẋi =
xi+1 − xi

ti+1 − ti
.

Simple divided differences can be substituted with more
robust, noise resistant linear regression, localy weighted
regression (LWR) (Atkeson, Moore, & Schaal 1997) or
LOESS (Cleveland 1979; Cleveland & Devlin 1988). How-
ever, a machine learning algorithm that is subsequently ap-
plied to these approximations also tends to eliminate noise.

pPad́e uses the chain rule to computedc/dx as ċ/ẋ and
similarly of dc/dy. Table 2 presents the computed deriva-
tives and qualitative behavior ofc w.r.t. attributesx andy.

The signs ofdc/dx are also shown in Fig. 10(c). On the
other hand, Figure 10(d) shows why it is not possible to cor-
rectly asses the desired derivatives inxy-plane, namely the
points’ neighbors do not respect the time but rather the Eu-
clidean distance in the plane alone.

Related work
The problem we tackled in this paper is addressed in many
different research fields which include but are not limited to
robotics, AI, psychology and cognitive sciences. We only
mention those that are directly related to model building.

Similar to our approach, (Modayil & Kuipers 2007)
present an algorithm for learning qualitative models from
robot’s actions and observations, but their qualitative mod-
els are in the form of object control laws while we use qual-
itative trees and envisionment. An interesting approach us-
ing probability estimates is described in (Hart, Grupen, &
Jensen 2005). Work by (Barto, Singh, & Chentanez 2004)
in intrinsically motivated learning shows how reusable rules
can be learned, but only in a playroom domain with much
more data than we require. (Kuiperset al. 2006) describes a
methodology that bootstraps knowledge from low-level sen-
sorimotor primitives and then uses this knowledge to navi-
gate in its environment. (Stoytchev 2005) proposes a novel
approach to representing and learning tool affordances by a
robot by pushing objects, but with very limited and specific
exploratory behaviors.

Conclusion and further work
We showed a simple example of a robot that is capable of
learning by making experiments in its environment. The ex-
ploration algorithm that we presented proved to be a useful
tool for the autonomous learner that has to design, plan and
execute the experiments in order to obtain some knowledge
about how its actions influence its observations in the given
world. One of the contributions in our opinion is the use of
qualitative models only and the combination of qualitative
tree and the envisionment. Both models do not only suf-
fice to support the robot in its actions, but also offer insights
into the knowledge that the robot acquired in the learning

process. Further, we believe that our approach can be gener-
alized to other more complex domains and that it can scale
well due to the simplicity of learning the qualitative models.

The algorithm for autonomous learning can be further im-
proved by elaborating the planning part and the design of
experiments. Applying this procedure in other domains and
with real robots may give rise to new ideas for further devel-
opment. We are already very close to running a real robot
with this algorithm.

Acknowledgment
The work described in this article has been funded by the
European Commission’s Sixth Framework Programme un-
der contract no. 029427 as part of the Specific Targeted Re-
search Project XPERO (”Robotic Learning by Experimenta-
tion”).

References
Atkeson, C.; Moore, A.; and Schaal, S. 1997. Locally
weighted learning.Artificial Intelligence Review11:11–73.
Barto, A. G.; Singh, S.; and Chentanez, N. 2004. In-
trinsically motivated learning of hierarchical collections of
skills. International Conference on Developmental Learn-
ing.
Cleveland, W., and Devlin, S. 1988. Locally weighted
regression: An approach to regression analysis by local
fitting. Journal of the American Statistical Association
83:596–610.
Cleveland, W. 1979. Robust locally weighted regression
and smoothing scatterplots.Journal of the American Sta-
tistical Association74:829–836.
Hart, S.; Grupen, R.; and Jensen, D. 2005. A relational rep-
resentation for procedural task knowledge. InProc. 20th
National Conf. on Artificial Intelligence.
Kuipers, B.; Beeson, P.; Modayil, J.; and Provost, J. 2006.
Bootstrap learning of foundational representations.
Modayil, J., and Kuipers, B. 2007. Where do actions come
from? autonomous robot learning of objects and actions.
AAAI Spring Symposium Series 2007, Control Mechanisms
for Spatial Knowledge Processing in Cognitive / Intelligent
Systems.
Stoytchev, A. 2005. Behavior-grounded representation
of tool affordances. InIEEE International Conference on
Robotics and Automation (ICRA).
Žabkar, J.; Bratko, I.; and Dem̌sar, J. 2007. Learning qual-
itative models through partial derivatives by pad. InPro-
ceedings of the 21th International Workshop on Qualitative
Reasoning.
Zupan, B.; Leban, G.; and Demšar, J. 2004. Orange: Wid-
gets and visual programming, a white paper.

0 0.5 1.0 1.5
0

0.5

1.0

x

y

b
1

b
2

b
3

b
4 b

5
b
6

b
7

b
8

b
9b

10
b
11

b
12

b
13

b
14

b
15

b
16

(a) Sampled parametric curve:x(t) = sin(3t) cos(t)+
.7, y(t) = sin(3t) sin(t)+ .7, class variablec takes the
values at specified points from1, . . . , 16.

0 0.5 1.0
0

0.5

1.0

1.5

t

x(t)

y(t)
bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc
bc

ut

ut
ut ut

ut

ut

ut

ut

ut
ut

ut

ut

ut

ut

ut

ut

(b) Attributesx andy as functions oft.

0 0.5 1.0 1.5
0

0.5

1.0

x

y

b +

b +
b + b +

b +

b +

b +

b −

b −
b −b −

b −

b −

b −

b −

b −

(c) Derivatives’ signs ofdc/dx for each point consid-
ering time, calculated using parametric Padé.

0 0.5 1.0 1.5
0

0.5

1.0

x

y

b

b

b b

b

b

b

b

b
b

b

b

b

b

b

b

(d) Delaunay triangulation of the attribute space. Each
point’s neighbors could be defined by connections in
this graph. So defined neighbors are not good for calcu-
lating the derivatives because real neighbors are implied
by time.

Figure 10: Illustration of parametric Padé.

t x y c ẋ ẏ ċ ċ/ẋ ċ/ẏ ẏ/ẋ c = Q(x) c = Q(y)
-0.25 0.039 0.868 1 2.30 -1.03 10 4.34 -9.64 -0.44 + -
-0.15 0.269 0.765 2 2.80 -0.57 10 3.56 -17.38 -0.20 + -
-0.05 0.550 0.707 3 2.98 0 10 3.35 ∞ 0 + o
0.05 0.849 0.707 4 2.80 0.57 10 3.56 17.38 0.20 + +
0.15 1.130 0.765 5 2.30 1.03 10 4.34 9.64 0.44 + +
0.25 1.360 0.868 6 1.54 1.28 10 6.47 7.76 0.83 + +
0.35 1.514 0.997 7 0.63 1.26 10 15.68 7.87 1.99 + +
0.45 1.578 1.124 8 -0.28 0.96 10 -34.79 10.34 -3.36 - +
0.55 1.549 1.221 9 -1.10 0.41 10 -9.06 24.30 -0.37 - +
0.65 1.439 1.262 10 -1.70 -0.31 10 -5.87 -31.41 0.18 - -
0.75 1.269 1.230 11 -2.01 -1.11 10 -4.96 -8.97 0.55 - -
0.85 1.068 1.118 12 -2.00 -1.85 10 -4.97 -5.40 0.92 - -
0.95 0.867 0.933 13 -1.71 -2.41 10 -5.83 -4.14 1.40 - -
1.05 0.695 0.692 14 -1.19 -2.69 10 -8.34 -3.70 2.25 - -
1.15 0.576 0.422 15 -0.56 -2.65 10 -17.78 -3.76 4.71 - -
1.25 0.519 0.157 16 -0.56 -2.65 10 -17.78 -3.76 4.71 - -

Table 2: The input data (columns 1-4) and the output of parametric Pad́e (columns 5-12).

	Brandl
	Dehghani
	Dias-Salles
	Falomir-Escrig
	Friedman
	Gruchalla
	Hofbaur-Rienmueller
	Horiguchi
	Ironi-Panzeri
	Kim
	Klenk
	Kuhn-DeKleer
	Liem
	Lockwood
	Lovett
	Monteiro
	Mugan-Kuipers
	Pons
	Rassbach
	Rosello
	Struss
	Wetzel
	Zabkar-QING
	ZabkarMohanBratko

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

