
The Dynamics of Point-Vortex Data Assimilation

by

Natalie Ross

B.S., University of Texas at Austin, 1999

M.S., University of Colorado, 2004

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2008

This thesis entitled:
The Dynamics of Point-Vortex Data Assimilation

written by Natalie Ross
has been approved for the Department of Computer Science

Prof. Elizabeth Bradley

Prof. Jean Hertzberg

Date

The final copy of this thesis has been examined by the signatories, and we find that
both the content and the form meet acceptable presentation standards of scholarly

work in the above mentioned discipline.

iii

Ross, Natalie (Ph.D., Computer Science)

The Dynamics of Point-Vortex Data Assimilation

Thesis directed by Prof. Elizabeth Bradley

The standard grid-based approach to modelling fluid flows—termed direct nu-
merical simulation (DNS)—achieves impressive accuracy for most flows. However, DNS
simulations are very compute-intensive, so they are currently impractical for real-time
application domains such as flow control. Several reduced-order modelling techniques
are available that make various approximations to the Navier-Stokes equations govern-
ing fluid dynamics. The point-vortex method is one such technique that achieves a
reduction in complexity by making simplifying assumptions about the vorticity distri-
bution and representing the entire flow with a collection of point vortices. The resulting
dynamics are governed by an ordinary differential equation, which simplifies the physics
significantly. These simplifications are not without penalty—point-vortex simulations
are typically much less accurate than DNS schemes. However, if the point-vortex model
could be corrected with observations of the physical system—a process known as data
assimilation—the resulting simulation might be sufficiently accurate for modelling and
control applications. Care must be taken to ensure that the computational costs of the
data assimilation scheme do not destroy the speed advantages of the point-vortex model.
In this thesis, we evaluate point-vortex data assimilation to determine the most efficient
and effective assimilation strategy. We have proposed several dynamics-informed ap-
proaches that attempt to use the system dynamics to determine when the model needs
a correction. The goal is to avoid the computational cost of correction when the model
is performing well. We compare our dynamics-informed techniques to the standard ap-
proach in which the model is corrected at periodic intervals. Numerical experiments
with several different vortex configurations and assimilation algorithms facilitate this
comparison. The dynamics-informed techniques work very well for some vortex con-
figurations, with a significant decrease in computational cost as compared to periodic
correction. For other configurations, we identified some patterns in the vortex dynam-
ics that can degrade the performance of dynamics-informed techniques. To ensure that
our results apply to real-world flows, we have also performed a thorough analysis of
assimilation using data from a laboratory planar air jet.

Dedication

To my mother, Martha Rooney and my daughter, Zoe Ross

v

Acknowledgements

First and foremost, I would like to thank my entire family for their continual
love and support. My mother, Martha Rooney, has always provided motivation and
encouragement for all of my academic endeavors. My husband, Michael, has also been
incredibly supportive, especially during times when I have doubted myself. My daugh-
ter, Zoe, is a continual source of amazement; I hope my accomplishments will give her a
sense of the importance of perserverance and commitment in acheiving your goals. Last
but not least, I am so appreciative of everything my mother-in-law, Hui Suk, has done
for us over the last couple of years.

My advisors throughout this process have been amazing. Liz Bradley is a won-
derful person who inspires others. She has spent countless hours helping me with every
aspect of my research, and she has also been so caring and supportive on a personal
level. I would also like to thank Jean Hertzberg and Jeff Anderson, who were much
more involved in my work than typical secondary advisors. Jean has spent many hours
helping me to understand fluids concepts, listening to practice talks, and generally being
a good friend and supporter. Jeff has taken the time to meet with me many times to
help with my DART research, and I have appreciated his caring and genuine approach
to advising. I am also grateful to Tim Hoar at NCAR, who supported me in using the
coral computing cluster, which significantly speeded my progress.

Finally, I would like to thank some of my colleagues at InfoPrint Solutions Com-
pany. Betsy Hicks, Steve Gebert, and Jim Crowell provided crucial management support
for my PhD work, allowing me to use some company time to work on my research. Ne-
nad Rijavec has always been willing to assume an additional workload to enable me
to make progress. I would also like to thank Arianne Hinds for her positive attitude,
encouragement, and example.

Financially, my thesis was supported by the Advanced Learning Assistance Pro-
gram at IBM and then InfoPrint Solutions Company. I also received a Chancellor’s
Fellowship from the Graduate School at the University of Colorado. I am very grateful
for this monetary support.

vi

Contents

Chapter

1 Introduction 1

2 Background and Related Work 7

2.1 Numerical Modelling . 7

2.2 Data Assimilation . 11

3 Laboratory Planar Air Jet and PIV Measurements 26

3.1 Vortex Extraction . 30

3.2 Validation and Evaluation of Vortex Extraction 40

3.3 Quantization of Large Vortices . 45

4 Numerical Experiments 51

5 Dynamics-Informed Data Assimilation 62

5.1 Gradient-Based Methods . 65

5.2 Runge-Kutta Test Step Method . 67

6 Evaluation and Comparison of Assimilation Methods 69

7 Noise-Free Results for von Karman and Symmetric 74

8 Adding Observational Noise to von Karman and Symmetric 82

vii

9 Random Vortex Configuration 88

10 Newtonian Nudging 96

11 Data Assimilation Research Testbed 102

12 Initial Conditions Derived from PIV Measurements 116

12.1 Decomposition of the Initial Condition into Smaller Vortices 123

13 A Real-World Assimilation Experiment 128

14 Conclusions and Future Work 137

Bibliography 142

Appendix

A Point-Vortex model mod.f90 code for DART 152

viii

Tables

Table

3.1 Quantitative velocity field comparison. For each of the velocity fields

presented in Figure 3.6, we computed the range of the horizontal and

vertical components of the velocity field as well as the range of the mag-

nitude of the velocities. We can compare these dynamic ranges to gauge

how successful our vortex extraction techniques were. 42

3.2 Comparison of extraction techniques. For each of the velocity fields pre-

sented in Figure 3.6, we computed the mean-squared error between the

reconstructed velocity field and the original PIV velocity data. Based

on this error metric, vorticity thresholding appears to be more successful

than the Okubo-Weiss technique. 44

3.3 Quantitative velocity field comparison. For each of the velocity fields

presented in Figure 3.8, we computed the range of the horizontal and

vertical components of the velocity field as well as the range of the mag-

nitude of the velocities. We can compare these dynamic ranges to gauge

how successful our vortex extraction techniques are. 48

ix

3.4 Decomposition of large vortices. After applying our algorithm to decon-

struct the large vortices from Figure 3.5 into smaller point vortices, we

again computed the induced velocity field for each vortex configuration.

We then computed the mean-squared error between the reconstructed

velocity field and the original PIV velocity data. If we compare these

results to those in Table 3.2, it appears that vortex quantization does

not improve the ability to reproduce the original velocity field. 49

6.1 Thresholds for dynamics-informed techniques. Each entry in this table

describes how thresholds were varied for a particular dynamics-informed

assimilation experiment. The dynamics-informed technique is listed in

the left column and the initial conditions are along the top row. The

format of each entry is [minimum Tc, maximum Tc]:Tc increment. 72

9.1 Thresholds for dynamics-informed techniques. Each entry in this table

describes how thresholds were varied for a particular dynamics-informed

assimilation experiment. The dynamics-informed technique is listed in

the left column and the format of each entry is [minimum Tc, maximum

Tc]:Tc increment. 92

11.1 Experimental setup for DART. This table displays the time steps, sim-

ulation lengths, and correction settings for each of the initial conditions

studied with DART. A table entry of the form [a, b, c] indicates that the

relevant experimental parameter was varied from a to b in increments of c.108

x

12.1 Thresholds for dynamics-informed techniques. Each entry in this table

describes how thresholds were varied for a particular dynamics-informed

assimilation experiment. The dynamics-informed technique is listed in

the left column and the format of each entry is [minimum Tc, maximum

Tc]:Tc increment. 120

12.2 Thresholds for dynamics-informed techniques. Each entry in this table

describes how thresholds were varied for a particular dynamics-informed

assimilation experiment. The dynamics-informed technique is listed in

the left column and the format of each entry is [minimum Tc, maximum

Tc]:Tc increment. 125

13.1 Thresholds for dynamics-informed techniques. Each entry in this table

describes how thresholds were varied for a particular dynamics-informed

assimilation experiment. The dynamics-informed technique is listed in

the left column and the format of each entry is [minimum Tc, maximum

Tc]:Tc increment. 133

xi

Figures

Figure

2.1 Data assimilation cycle. A numerical model is used to generate a forecast

or “background state” from a best-guess initial condition. Data assim-

ilation is then used to combine the background state with the available

observations, each weighted according to its expected accuracy. The re-

sult is an “analysis state”, which is used as the initial condition for the

next assimilation cycle. 12

3.1 A planar air jet. (a) is a photograph of the experimental apparatus

that is used to house the jet. (b) is a schematic of the structures that

condition the flow prior to its exit at the narrow slit. The purpose of the

conditioning and the narrow slit is to ensure the uniformity of the flow

along the length of the slit and enable an assumption of two-dimensional

flow for any cross-section. 28

3.2 A planar air jet. Reynolds number ≈ 70. Synthetic jet actuator on one

side at 1.94 KHz, modulated at 10 Hz. Vortices are clearly visible in this

photograph of the jet. 28

3.3 PIV measurements of the planar jet at approximately (a) 22.5 ◦ (b) 90 ◦

(c) 202.5 ◦ and (d) 292.5 ◦ into its cycle. 31

xii

3.4 Vorticity fields from PIV data. (a)-(d) show velocity field data collected

using particle image velocimetry at the times indicated in Figure 3.3. (e)-

(h) are the corresponding vorticity fields, computed by taking the curl of

the velocity field in the left column. 33

3.5 Vortex extraction. (a) vorticity fields from Figures 3.4(e) and 3.4(g). (b)

“connected components” where absolute vorticity exceeds a threshold

value (as described in Step (2) of the vorticity thresholding algorithm).

The small white squares inside each “component” indicate the position

where the point vortex was placed. The strengths of the vortices (in top

to bottom order) were -0.0012, 0.0063, -0.0085, 0.012, and -0.0058 for

the data set on top and 0.0030, -0.0069, 0.011, -0.012, and 0.0034 for

the data set on bottom. (c) “Connected components” where the Okubo-

Weiss criterion was positive. The strengths of the vortices (in top to

bottom order) were -0.0015, 0.0063, -0.0081, 0.0011, and -0.0035 for the

data set on top and 0.0028, -0.0063, 0.0097, -0.011, and 0.0013 for the

data set on bottom. 37

3.6 Evaluating vortex extraction. (a) and (d) are the velocity fields captured

with our PIV system at 22.5◦ and 202.5◦ phase shifts. (b) and (e) are

velocity fields induced by the point vortices extracted from (a) and (d)

via the vorticity thresholding method. (c) and (f) are the velocity fields

induced by the point vortices extracted from (a) and (d) using the Okubo-

Weiss method. 43

xiii

3.7 Quantization of vortices. We reproduce the data from Figure 3.5 and

display how our quantization algorithm would place multiple vortices

with fixed strengths to represent each large-scale vortex. (a) Vorticity

fields from Figure 3.4(e) and (g). (b) “Connected components” where

absolute vorticity exceeds a threshold value, as described in Step (2) of

the vorticity thresholding algorithm on page 35. The small white squares

inside each “component” indicate the position(s) where each point vortex

was placed. The strength quantum chosen for the vortices was ±0.00059

for the data set on top and ±0.0015 for the data set on bottom. (c)

“Connected components” where the Okubo-Weiss criterion was positive.

The strength quantum chosen for the vortices was ±0.00075 for the data

set on top and ±0.00067 for the data set on bottom. The point-vortex

strength for each data set was chosen such that the weakest vortex region

would be assigned two point vortices. 47

3.8 Evaluating vorticity quantization. (a) and (d) are the velocity fields cap-

tured with our PIV system at 22.5◦ and 202.5◦ phase shifts. (b) and (e)

are velocity fields induced by the point vortices in column (b) of Fig-

ure 3.7. (c) and (f) are velocity fields induced by the point vortices in

column (c) of Figure 3.7. 49

4.1 Vortex configurations. Initial conditions in (a) are derived from the sta-

bility condition for a von Karman vortex street. Vortices are spaced 1 unit

apart in the x-direction and b = 1/0.281 units apart in the y-direction.

Similarly, an x-spacing of 1 and a y spacing of 3.6 are used to obtain the

symmetric configuration displayed in (b). In both cases, the vortices in

the left column have strength -1 (counter-clockwise rotation), and those

in the right column have strength 1 (clockwise rotation). 54

xiv

4.2 Results of a 5400s simulation with a 0.1 second timestep starting from

the von Karman initial condition. Figure 4.1(a) is a closeup of the square

region in the lower right corner of (a). Images display instantaneous

positions of the vortices at the times indicated below the figures. 56

4.3 Results of a 200s simulation with a 0.0001 second timestep starting from

the symmetric initial condition. Figure 4.1(b) is a closeup of the square

region in (a). Images display instantaneous positions of the vortices at

the times indicated below each figure. Note that this is a much shorter

simulation than in Figure 4.2, as this configuration is far more unstable. 57

4.4 Full trajectories of (a) “truth” and (b) “model” simulations starting from

the initial conditions in Figure 4.1(a). Part (a) shows a 5400 second simu-

lation with a 0.1 second timestep and (b) shows a 5400 second simulation

with a 50 second timestep. Note that there are 10 vortices in these simu-

lations; each “arm” in (a) and (b) is actually a pair of vortices travelling

very close together. In our numerical experiments, we use the more-

accurate trajectories from (a) to correct the vortices in (b). It is difficult

to see the differences between the vortex trajectories in (a) and (b) due

to the large scale of the plots. In (c) and (d), we provide closeups of the

lower and upper pairs of vortices, respectively. Here, the solid paths are

taken from the “truth” simulation in (a) and the black + + ++ paths

are the corresponding trajectories from (b). These lower plots show the

subtle differences between these two simulations. 59

xv

4.5 Full trajectories of (a) “truth” and (b) “model” simulations starting from

initial conditions in Figure 4.1(b). Note that these plots are not to scale;

we have zoomed in on the x-range to make it easier to see the interesting

dynamics. Part (a) shows a 200 second simulation with a 0.0001 second

timestep and (b) shows a 200 second simulation with a 1 second timestep.

In our numerical experiments, we use the more-accurate trajectories from

(a) to correct the vortices in (b). 60

5.1 Assimilating data into the point-vortex model: The numerical results

of Figure 4.5(a) are used to correct the vortices in the simulation of

Figure 4.5(b). The solid line and the + + + + + path are the true and

corrected trajectories, respectively; the data-assimilation scheme corrects

the latter to the former at the points indicated by the black squares. (a)

displays the results when no correction is applied to the + + + + + path

(b) displays the results of periodically correcting the simulation at 25s

intervals and (c) is a closeup of the middle section of (b). The mean-

squared error was 61.7 in (a) and 1.12 in (b) and (c). 63

7.1 Comparison of dynamics-informed and periodic assimilation using the

initial conditions in Figure 4.1(a). 75

7.2 Velocity gradient norms as a function of time for vortex (a) 1 (b) 4 (c) 7

(d) 10 for a simulation starting from the initial conditions in Figure 4.1(a). 78

7.3 Comparison of dynamics-informed and periodic assimilation using the

initial conditions in Figure 4.1(b). 79

7.4 Velocity gradient Jacobian norms as a function of time for vortex (a) 1

(b) 4 (c) 7 (d) 10 for a simulation starting from the initial conditions in

Figure 4.1(b). 81

xvi

8.1 Effects of observational noise: simulations starting from the von Karman

initial conditions from Figure 4.1(a). Each point in these plots shows the

MSE when a single simulation is corrected with noisy observations; the

goal is to compare periodic and dynamics-informed correction when the

same amount of noise is added. The plots display the MSE results for

the four targeted correction techniques that performed best in the first

round of experiments: the norm increase, norm decrease, norm change,

and Runge-Kutta test step algorithms. The standard deviation of the

zero-mean Gaussian noise added to the observations was (a) 0.001 (b)

0.01 (c) 0.1 (f) 0.5 . 83

8.2 Noise destroys dynamics-informed correction: simulation starting from

the von Karman initial conditions from Figure 4.1(a) and corrected based

on the norm change technique with Tc = 0.03. The paths outlined by

solid dots are the “true” trajectories for the 10 vortices in the simulation;

the plus paths are the corrected trajectories. Corrections are applied at

the first 6 timesteps at the positions indicated by the black squares. Cor-

rections are not applied as vortices fly off in pairs, so the noise accumulates. 85

8.3 Effects of observational noise: simulations starting from the symmetric

initial conditions from Figure 4.1(b). Each point in these plots shows the

MSE when a single simulation is corrected with noisy observations; the

goal is to compare periodic and dynamics-informed correction when the

same amount of noise is added. The plots display the MSE results for the

four targeted correction techniques that performed best in the first round

of experiments: the norm change and Runge-Kutta test step algorithms.

The standard deviation of the zero-mean Gaussian noise added to the

observations was (a) 0.001 (b) 0.01 (c) 0.1 (f) 0.5 87

xvii

9.1 Randomly distributed vortices. To produce this initial condition, vortices

were randomly placed in [0, 1]×[0, 1] and randomly assigned a strength of

either −1 or 1. Vortices 0,3,4,5, and 7 have strength −1 and the rest have

strength 1. We use this initial condition to explore symmetry-breaking

issues. 89

9.2 Simulations of point-vortex equations starting from the initial condition

in Figure 9.1. Both simulations are 50s in length. (a) “Truth” simulation

with a 0.00001s timestep (b) Correction simulation with a 0.01s timestep 90

9.3 Comparison of dynamics-informed and periodic assimilation using the

initial conditions in Figure 9.1. Each point in this figure, again, represents

a single data-assimilation run; the MSE is plotted as a function of the

number of corrections. Each curve is labelled with the correction strategy

used to generate the results. 91

9.4 Velocity gradient norms as a function of time for vortex (a) 1 (b) 4 (c) 7

(d) 10 for a simulation starting from the initial condition in Figure 9.1. 94

10.1 Newtonian nudging von Karman: simulations starting from the von Kar-

man initial conditions from Figure 4.1(a). 98

10.2 Newtonian nudging symmetric: simulations starting from the von Kar-

man initial conditions from Figure 4.1(b). 99

11.1 Analysis of DART Results. (a) Time series for the x position of a vortex

in a representative simulation. The blue trajectory is the true state and

the green trajectories display the priors for 20 of the ensemble members.

The red curve shows the mean estimate. We can see that the assimilation

is not working very well in the sense that the prior mean estimate is not

tracking the true state. An example of filter divergence is illustrated in

(b), where the mean estimate spikes downward. 106

xviii

11.2 DART assimilation is working. This figure shows time series plots for

vortices (a) 1 and (b) 4 from a symmetric simulation that was corrected

every 5 seconds with observations having error variance 0.000001. The

top and middle time series show the evolution of the x and y coordinates,

respectively. The bottom plots display the vortex strengths. 110

11.3 Noise level and correction frequency impact accuracy. (a) shows a simu-

lation that was corrected every 12s and (b) shows a simulation in which

the observations have a larger error variance of 0.01. In both cases, we

can see that the ensemble mean is not tracking the true state nearly as

well as in Figure 11.2. 111

11.4 DART: simulations starting from the von Karman initial conditions from

Figure 4.1(a). Each point in these plots provides the MSE when a single

simulation is corrected with noisy observations; the goal is to compare

periodic and dynamics-informed correction when the same amount of

noise is added. The plots display the MSE results for spread-based, norm

change, and periodic correction. The variance of the zero-mean Gaussian

noise added to the observations was (a) 0.000001 (b) 0.0001 (c) 0.01 (f)

0.25 . 113

11.5 DART: simulations starting from the symmetric initial conditions from

Figure 4.1(b). Each point in these plots provides the MSE when a single

simulation is corrected with noisy observations; the goal is to compare

periodic and dynamics-informed correction when the same amount of

noise is added. The plots display the MSE results for spread-based, norm

change, and periodic correction. The variance of the zero-mean Gaussian

noise added to the observations was (a) 0.000001 (b) 0.0001 (c) 0.01 (f)

0.25 . 114

xix

12.1 Experimental data initial condition. Vortices were extracted from the

PIV measurement of the planar air jet shown in Figure 3.3(c). The vor-

ticity thresholding technique was used to determine the vortex positions

and strengths. Recall that the white square in each figure is the location

where each point vortex was placed by the extraction algorithm. The

strengths of the vortices (in top to bottom order) 0.0030, -0.0069, 0.011,

-0.012, and 0.0034 . 118

12.2 Simulations starting from the initial conditions in Figure 12.1. Both sim-

ulations are 50s in length (a) “truth” simulation with a 0.0001s timestep

(b) correction simulation with a 0.01s timestep 119

12.3 Comparison of dynamics-informed and periodic assimilation using the

initial conditions in Figure 12.1. Each point in this figure represents a

single simulation; the MSE is plotted as a function of the number of

corrections. Each curve is labelled with the correction strategy used to

generate the results. 121

12.4 Velocity gradient norms as a function of time for vortex (a) 1 (b) 2 (c)

3 (d) 4 (e) 5 for a simulation starting from the initial conditions in Fig-

ure 12.1. 122

12.5 Decomposition of large vortices. We divided the large vortices from Fig-

ure 12.1 into smaller point vortices of equal strength. Recall that the

white squares are the locations where the point vortices were placed by

the extraction algorithm. The strength of each point vortex in this initial

condition was ±0.0015. 124

12.6 Simulations starting from the initial conditions in Figure 12.5. Both sim-

ulations are 20s in length (a) “truth” simulation with a 0.0001s timestep

(b) correction simulation with a 0.01s timestep 125

xx

12.7 Comparison of dynamics-informed and periodic assimilation using the

initial conditions in Figure 12.5. Each point in this figure represents a

single simulation; the MSE is plotted as a function of the number of

corrections. Each curve is labelled with the correction strategy used to

generate the results. 127

12.8 Velocity gradient norms as a function of time for vortex (a) 2 (b) 4 (c)

14 and (d) 17 for a simulation starting from the initial conditions in

Figure 12.5. 127

13.1 PIV measurements of the planar jet at approximately (a) 22.5 ◦ (b) 90 ◦

(c) 202.5 ◦ and (d) 292.5 ◦ into its cycle. 130

13.2 Vortices extracted from the PIV measurements and used to correct the

model at times (a) 0.0035s (b) 0.0070s (c) 0.0105s (d) 0.0140 (e) 0.0175

(f) 0.0210 (g) 0.0245 and (h) 0.0280. 131

13.3 Vortices extracted from the PIV measurements and used to correct the

model at times (a) 0.0315s (b) 0.0350s (c) 0.0385s (d) 0.0420 (e) 0.0455

(f) 0.0490 (g) 0.0525 and (h) 0.0560. 132

13.4 Real-World Data Assimilation. Comparison of dynamics-informed and

periodic assimilation using the initial conditions in Figure 13.2(a). Each

point in this figure represents a single simulation; the MSE between the

simulation and the observations is plotted as a function of the number of

corrections. Each curve is labelled with the correction strategy used for

the assimilation. 134

13.5 Point-vortex simulation starting from the initial conditions in Figure 13.2(a).

Simulation length in each case was 60 ms with a timestep of 0.0001; (a)

was not corrected at all over the course of the simulation and (b) was

corrected whenever observations were available, every 3.5 ms. 136

Chapter 1

Introduction

Fast and accurate numerical models are critical for the tracking, prediction, and

control of fluid flows. Traditional grid-based modelling techniques, though highly accu-

rate, are often too slow for these purposes. So-called reduced-order models—which track

abstract flow structures, rather than the details of fluid velocities at every point—are

much faster, but the inherent coarseness of their modeling approximation makes them

inaccurate. However, correcting a reduced-order model with observations of the fluid—a

process known as data assimilation—could produce a model that has both the speed

and accuracy required for real-time applications. We explore this hypothesis using the

point-vortex model, which tracks only the vortices in the flow. Our primary goal in this

exploration is to determine the best assimilation strategy for correcting this solver’s mis-

takes with minimal computational effort. To achieve this goal, we compare traditional

assimilation strategies to new dynamics-informed techniques that use knowledge about

the system dynamics to determine when the corrections will be most effective and when

they are not required. We have performed several numerical experiments with vari-

ous data sets and assimilation algorithms to determine when and why one approach

works better than another. In particular, we have identified some patterns in the norms

of induced velocity gradients that indicate when dynamics-informed techniques might

fail. More sophisticated data assimilation schemes such as ensemble Kalman filtering

can be used to overcome some of these difficulties, and we have explored this assimi-

2

lation strategy using the Data Assimilation Research Testbed (DART), comparing our

dynamics-informed techniques to periodic and spread-based correction—an existing en-

semble correction timing strategy that has been shown to perform as well as or better

than periodic correction.

These numerical experiments are a useful first step, but evaluation in the context

of a real fluid flow is needed to ensure that these techniques are practical for real-world

applications. To this end, we have tested our assimilation strategies with experimental

data from a planar air jet. This is a break from most traditional data assimilation

research, in which numerical experiments are the norm. To enable this research, we im-

plemented some techniques for extracting vortex data from velocity field measurements

of the jet. In Section 3.1, we present an analysis of vortex extraction techniques and

explore different ways of assigning point-vortices to the vortices identified in the flow.

Initial results using these observations of the planar jet show some promise, but it is

clear that we need to improve our vortex extraction techniques and extend our model

to include boundary conditions for this flow. In the remainder of this section, we in-

troduce the concepts that are central to this thesis—numerical modelling of fluid flows

and data assimilation—and provide an overview of our dynamics-informed strategies

and laboratory testbed.

The current state-of-the-art in computational modelling of fluid flows is direct

numerical simulation (DNS). DNS models discretize the flow physics by covering the

domain with a fine grid and tracking the quantities of interest at each grid point. To

evolve the system, DNS models perform a direct integration of the Navier-Stokes equa-

tions. This approach works remarkably well, especially at high resolution, and DNS

models are used successfully in a variety of important applications, including numeri-

cal weather prediction and fundamental studies of combustion, vascular flows, vehicle

aerodynamics, and ink jet dynamics, but these models require enormous computational

effort and cannot be used in real time.

3

The development of faster and more-abstract modelling techniques has been a

significant research focus in the fluid dynamics community for many years. We review

this literature in Section 2.1. One suprisingly successful technique is the point-vortex

method, which tracks only the vortices in a flow and ignores all other dynamics. In this

method, the vorticity field is idealized as being concentrated into a collection of delta

functions, with each point called a point-vortex. The dynamics of these point vortices

are governed by an ordinary differential equation, so the resulting computational model

is very fast. However, the abstractions and approximations necessary to achieve this

simplification do come at a cost: a point-vortex model is not nearly as accurate as a

DNS model. As a result, point-vortex modelling is typically not practical in tracking

and control applications. If we could correct the solver’s mistakes, however, we could

capitalize on its speed advantages in these difficult application domains.

One way to improve the accuracy of the point-vortex model is to correct it with

measurements of the target system—a process known as data assimilation. Data as-

similation is not a new field; it was invented by meteorologists in the 1950s for correct-

ing numerical weather prediction models with atmospheric observations. In these and

other geophysical applications, researchers use complex, parameterized DNS models to

produce a state estimate. This estimate is then periodically corrected with available

observations of the system. These observations are typically sparsely distributed over

the domain and are obtained via a wide array of different types of observing equipment

with varying noise characteristics. The majority of data assimilation research, which

is reviewed in Section 2.2, focuses on the development of algorithms that statistically

weight the assimilated observations based on their relative accuracy compared to the

model state estimate.

A primary goal of this thesis is to analyze and evaluate assimilation strategies

to determine the most efficient method for achieving accurate point-vortex simulations

without destroying the speed advantages of using a reduced-order model. If we could

4

use data assimilation to produce point-vortex simulations that are competitive with

DNS models in accuracy but significantly faster, our simulations could enable real-time

fluid modelling and control applications. The costs associated with any assimilation

algorithm can be divided into two categories: the complexity of the algorithm itself and

the costs of gathering and processing the observations for each assimilation time. This

thesis focuses on reducing the time required for the latter. In most traditional data

assimilation applications, the observations are assimilated at periodic intervals. If we

could instead detect when the model is likely to need a correction and correct only at

these critical moments, we might be able to achieve greater simulation accuracy at a

lower cost. Our approach, which shares some similarities with the targeted observing lit-

erature reviewed in Section 2.2, is to use the system dynamics to dictate when correction

is necessary. In Section 5, we describe several techniques for doing so, including tracking

changes in induced velocity gradients, thresholding for large eigenvalues or large shear,

and examining differences between test steps in the Runge-Kutta integration. We have

applied these techniques in numerical experiments with several different point-vortex

configurations, comparing them to each other and to periodic correction. The results

of these explorations are described in detail in Sections 7, 9, and 12.

In our initial numerical experiments, we used the simplest possible approach for

correcting the point-vortex model—at each assimilation time, we simply replaced the

model state variables with the observed values. One problem with this approach is that

it does not consider the relative accuracy of the model’s state estimate compared to

the observations. The observations are taken as the “truth” no matter how inaccurate

they are. In Section 8, as we increased the noise in the observations, we found that it

was difficult to maintain the accuracy of the simulations. We identified some patterns

in the vortex dynamics that can make it difficult for dynamics-informed techniques to

work well.

These difficulties led us to explore more-sophisticated data assimilation schemes

5

that consider the observational error in the correction algorithm. The first of these—

Newtonian nudging—is a simple technique for weighting the observations based on their

noise characteristics. The model state vector is “nudged” a fraction of the distance

toward the observations at each assimilation time. We confirmed in Section 10 that a

larger nudge is more appropriate for more accurate observations. The second technique

we considered was ensemble Kalman filtering, a significantly more-complex technique

that is very popular in the meteorological and geophysics research communities. We used

the Data Assimilation Research Testbed (DART) framework from the National Center

for Atmospheric Research to facilitate these experiments. Although ensemble filtering

may be too computationally intensive for real-time purposes, it is still worthwhile to

analyze the results that can be achieved with a state-of-the-art assimilation algorithm.

Also, we are the first to explore ensemble filtering using the point-vortex model, and

we have confirmed that it works well for the data sets we studied. This is an important

contribution, as many atmospheric and oceanic applications are well-suited for point-

vortex modelling. The results of our DART analyses are presented in Section 11.

Although numerical experiments are a useful first step, their results rarely gener-

alize to real-world applications. In our research, we have also analyzed point-vortex data

assimilation techniques using real experimental data. This is in contrast to most data

assimilation studies, which rely on “Observing System Simulation Experiments”—in

which simulated observations are generated by the computational models under study—

to evaluate new correction techniques. Real-world experiments are rare, because it is

usually very difficult to collect and process experimental data from complex systems.

We have chosen a much more controlled enviroment in which to study data assimilation:

a planar air jet in our laboratory. Observations of this system are collected by particle

image velocimetry, which provides velocity field data over the entire domain. Given this

velocity field, we can extract vortex positions and strengths to use for the assimilation.

In Section 3.1, we describe and compare some existing vortex extraction techniques and

6

develop two different approaches for assigning point-vortices to the vorticity field. The

resulting point-vortex observations are then used in numerical experiments and also in

a “real-world” assimilation. Although the initial results presented in Section 12 and 13

are promising, it is clear that our model will need to be enhanced to include boundary

conditions for vortex entry and dissipation. Refining the model and the assimilation of

real data will be an important component of our future work.

Chapter 2

Background and Related Work

2.1 Numerical Modelling

Perhaps the canonical example of a complex system that engineers and scientists

need to model is the fluid flow. Real-world fluids problems simply do not admit analyt-

ical solutions, so one has to model them numerically, and their inherent spatiotemporal

complexity makes this very hard. One traditional solution to this, termed direct nu-

merical simulation or DNS, involves discretizing the flow quantities using finite-order

approximations of time and space [102]. To get the flow details right in face of this

discretization, the grids and timesteps involved may need to be very fine. A fine grid

translates to an extremely large state vector and/or a multiscale coupled-models ap-

proach in the simulation of complicated flows. The algorithmic methods used in many

codes to solve problems like this—e.g., successive over-relaxation—can have sensitive

numerical dynamics that do not always converge. For all of these reasons, DNS sim-

ulations of even fairly simple fluids problems require hours of CPU time on powerful

machines with large memories.

If a coarser representation could be used to model the dynamics of the system, the

resulting numerical solver would be simpler, and hence much faster, than DNS models.

There are many ways to reduce the number of state variables that a model uses to

capture the dynamics. Current approaches use knowledge about the flow to decompose

it in various meaningful ways: e.g., into its spectral modes [23] or using spatial basis

8

functions like Proper Orthogonal Decomposition (POD) [15] or wavelets [46, 47]. One

can also use various kinds of averaging techniques on the fundamental fluids equations to

select the spatial scale of the model; the current frontrunners in this class of approaches

are the LANS-α [25, 61, 100] and RANS models [132]1 . Large-eddy simulation (LES)

methods use spatial filtering to select the modeling scale [55, 88, 101].

Proper Orthogonal Decomposition (POD), also known as Karhunen-Loeve de-

composition [81, 90], is the most popular reduced-order modelling approach in the flow

control community [12, 122, 54, 123, 129]. The basic idea is to project the Navier-Stokes

equations onto a reduced subspace of order m, where the subspace is chosen such that

the error in the projection is minimized. In this subspace, the state of the flow at time

t, xm(t), is a linear combination of basis vectors, or “POD modes”, φi:

xm(t) =
m
∑

i=1

ai(t)φi .

Galerkin projection of the Navier-Stokes equations onto the subspace defined by the set

{φi} produces the ordinary differential equations that describe the time evolution of the

coefficients, ai(t). Data from numerical simulations (or, less commonly, experiments) is

used to obtain—via the method of “snapshots” [130]—the appropriate POD basis for

the flow being modelled. Note that the POD basis is flow dependent, and the snapshots

used to obtain it must contain a representative sample of all flow dynamics, including

the effects of any control action. If this is not the case, the resulting POD basis will

prove insufficient for model-based control. Several researchers have investigated ways

to ensure that the POD modes are capable of representing the large-scale coherent

structures in the flow [57, 76, 95, 105, 106].

Given a set of representative POD modes and an ODE describing their dynamics,

one can use the resulting model in a closed-loop control setting. Experimental measure-

ments of fluid properties—typically, velocity or surface pressure—are used to estimate

1 Lagrangian- and Reynolds-averaged Navier-Stokes, respectively; the α represents the scale of the
method.

9

the current full state of the flow in terms of the POD basis functions. This is typically

accomplished via linear or quadratic stochastic estimation [3], but Kalman filters have

also been used for this task [121]. This state estimate is used as an initial condition for

the ODE that governs the evolution of the coefficients ai(t). Solving the ODE provides

a prediction of the coefficients at some later time, which can be compared with the

desired values to determine the appropriate control action. This is essentially a simple

form of data assimilation, in which the model state variables—the coefficients ai(t)—are

updated periodically based on the experimental sensor data.

One drawback to using POD models in data assimilation research is that they

are very sensitive to the empirical data used to obtain the modes, and the resulting

model can “overfit” the input data [35]. The POD model is also flow-dependent, which

makes it difficult to generalize the results from one flow to another. Because of these

limitations, we have chosen to use a different model—the point-vortex model—in our

data assimilation studies in the hopes that the results can be applied to a wider variety

of fluid flows.

The point-vortex model [127] is an approximation to the Navier-Stokes equations

that is flow-independent and does not require any data to determine its structure. The

approximation is based on the coherent vortices in the flow, structures whose dynamics

are easily modelled and whose dynamics are a good basis for describing the flow physics.

The model is inherently grid-free, and the state variables are meaningful flow quantities

that are helpful in understanding its dynamics. And, unlike DNS solvers, which depend

critically on accurate specification of detailed initial and boundary conditions across

the simulation region, the point-vortex model can be easily warm-started, with less

information and no initial transient artifacts.

The details of the method are straightforward. Vorticity is a field vector quantity

defined as the curl of the velocity; it represents the angular momentum of the fluid. A

vortex is a local peak or concentration in the vorticity; circulation, Γ, is the integral

10

of vorticity around a curve enclosing an area of fluid. In the point-vortex model, all

vorticity is idealized as being contained at specific points, which move with the flow

field. State variables in the point-vortex model are the positions (x, y) and strengths Γ

of these point vortices. The dynamics are the fluid-mechanical analog of point masses

evolving under the mutual interaction of Newtonian gravity: a vortex is treated as

creating a swirling velocity field around itself, and other entities—vortices, passive tracer

particles—move or “advect” with that velocity. The magnitude of the induced velocity

falls off as 1/r2 with the distance r from the corresponding vortex core. The point-

vortex equations use superposition to combine the effects of multiple point vortices. In

schematic form, the equations for the evolution of the state of the ith point vortex are:

~̇Xi

Γ̇i

=

~f(Γj , ~Xj , j 6= i)

0

, (2.1)

where ~Xi = (xi, yi)
T , the 2D position of the ith vortex, and ~f is a vector-valued function

whose ith component computes the distances || ~Xi − ~Xj ||2 from the ith vortex to each

of the j others, calculates their influence at that distance (via the 1/r2 law, scaled

by the strength Γj), rotates to the tangential direction, and does a vector sum of the

results. These equations are a form of the well-known Biot-Savart equations describing

point-vortex motions [84]. One can solve the system (2.1) with any ordinary differential

equation (ODE) solver, such as Runge-Kutta.

The point-vortex model is highly idealized; it is a 2D model that assumes that the

flow is inviscid and that the vorticity field is discretized into isolated points. These sim-

plifying assumptions are what makes it fast, but idealization also introduces inaccuracy.

Real vortices are not concentrated at a single point, and only higher Reynolds number

flows can be treated as inviscid. More typically, vorticity is distributed throughout the

flow, and it is created and destroyed as the flow evolves. Nonetheless, the point-vortex

method works remarkably well [18] if the flow is dominated by isolated regions of high

vorticity, the fluid surrounding those regions is basically irrotational, and viscosity is

11

small—assumptions that are valid for many interesting flows. There are many ways to

extend the point-vortex model to handle cases where these assumptions are not valid

[4, 11, 24, 29, 50, 67, 119]. It is important to note that vortex dynamics in 3D are

very different than in 2D, so Equation 2.1 cannot simply be extended to handle 3D

effects2 . The target application for this project is a planar jet, so the 2D assumption

is reasonably valid here. The other improvements mentioned in this paragraph do not

play roles in our research, since the solver itself is not our focus. The goal of this the-

sis is to figure out whether data assimilation can improve the accuracy of the original

point-vortex algorithm and present a proof-of-concept example that it works.

2.2 Data Assimilation

In order to combat the small- and large-scale errors introduced by any numerical

modelling approximation, one can correct the solver with experimental measurements

of the fluid under investigation—a process known as data assimilation (see [33, 136] for

an overview). Most data-assimilation research occurs in the atmospheric and oceanic

communities; an important atmospheric application with very widespread impact is nu-

merical weather prediction. All of the major operational weather forecasting centers use

data assimilation to improve the accuracy of their forecasts [30, 93, 112, 117]. Figure 2.1

shows a schematic of the correction process, and depicts what is typically referred to

as a data assimilation cycle. The steps in the process are as follows. In the first cycle,

one must specify the initial conditions for the model integration. One approach is to

initialize the model using prior observations of the system. For example, in atmospheric

applications, one can use climatology—the average weather observed in the model do-

main over some historical period [14]. Once the initial conditions have been specified,

the model is run for a specified time interval (cycle length) to produce a forecast or

2 DNS schemes, in contrast, can easily be extended to 3D, or to handle viscosity; the local velocity
interactions that they model are invariant under rotation, and viscosity just adds a term to the equation
for each grid point.

12

Figure 2.1: Data assimilation cycle. A numerical model is used to generate a forecast
or “background state” from a best-guess initial condition. Data assimilation is then
used to combine the background state with the available observations, each weighted
according to its expected accuracy. The result is an “analysis state”, which is used as
the initial condition for the next assimilation cycle.

13

background state. This forecast step is represented by

xf(ti+1) = Mi[x
f(ti)] ,

where Mi is the model dynamics operator and xf(ti) is its state vector at time ti. Fi-

nally, observations of the dynamical system are combined with this background state to

produce a new model state known as the analysis. Depending on the analysis algorithm

and the model, it may be necessary to apply initialization techniques to the analysis

to ensure that it satisfies dynamic balance conditions. There are many approaches to

the initialization problem, including dynamic initialization [99, 104, 137], normal mode

initialization [40, 96, 141], and variational techniques [42, 124]. The analyzed/initialized

state is then used as the initial condition to start the model forecast for the next data

assimilation cycle.

This seemingly simple data assimilation cycle is rich with interesting and chal-

lenging problems. Some of the research in this field is devoted to the analysis step,

i.e., determining what algorithm should be used to update the model variables, based

on the available observations. One naive approach to this is to simply throw out the

simulated variable values and replace them with the measured ones (where they exist).

We will refer to this method as “direct replacement.” One can also use a proportional

control strategy, known as “Newtonian nudging” in the meteorological community [34],

to perform the correction. This technique corrects the model state by shifting it to-

ward the observations, with the size of the shift based on the relative accuracy of the

background forecast compared to the observations. This is a simple way to weight the

observations based on their noise characteristics. However, neither Newtonian nudging

nor direct replacement attempts to explicitly model the effects of observational and

modelling errors.

Observational and modelling errors confound the state estimation problem, and

developing realistic representations of these errors is a major challenge for data assimi-

14

lation researchers [20, 36, 37]. Observations of a dynamical system can be represented

by the equation

yo
i = Hi[x

f(ti)] + εo
i ,

where yo
i is a vector of observations (indicated by the superscript o) at time ti, xf

is the model forecast state, H is an observation operator that maps from the model

state space to the observation space, and εo
i is a noise term. Note that εo

i contains

both instrument error and errors of representativeness, which result from the inability

of any discrete model to resolve small-scale processes in continuous dynamics. Errors

of representativeness are much more difficult to quantify than instrument error [115].

Also, H may be a time-dependent nonlinear operator, which can introduce additional

computational complexity into the assimilation process.

In addition to these observational difficulties, data-assimilation schemes must also

consider the model error εM in the following evolution equation:

xt(ti+1) = M [xt(ti)] + εM
i . (2.2)

Here, xt(ti) is the discretized true state (indicated by the superscript t) of the dy-

namical system at time ti. Recall that M is the model dynamics operator, which is

generally nonlinear. The term εM
i quantifies both the errors that result from the dis-

cretization inherent in a computational model as well as more-serious errors caused by

incorrect parameters or dynamics in the model. Many data assimilation algorithms

make a perfect-model assumption and ignore the model error.

More-complex data assimilation techniques that attempt to account for these

various sources of error can be derived based on the conditional probability of the

model state given the set of observations to be assimilated [28, 74]. Ideally, we would

like to solve for the true state of the sytem at a particular time ti, denoted by xt(ti). Let

O(tk) = {o(t1),o(t2), · · · ,o(tk)} denote the set of observations available up to time tk.

The probability density function p(xt(ti)|O(tk)) provides the complete solution to the

15

data assimilation problem at time ti. Unfortunately, as our only knowledge of the true

system state comes from imperfect (and typically, sparse) observations, it is impossible

to obtain an exact solution for the full probability. Thus, data assimilation techniques

approximate various statistical properties of the distribution—for example, mean, mode,

and variance characteristics. There are different classes of assimilation methods that

depend on which set of observations are chosen. Filtering methods attempt to estimate

p(xt(ti)|O(ti))—i.e, they estimate the true state using all available observations up

to the time of the analysis. The most commonly used technique in this class is the

Kalman filter [78], which provides an estimate of the conditional mean and covariance

of this probability density. Smoothing methods, in contrast, attempt to capture the

current state that best describes a set of observations up to some future time, i.e.,

p(xt(ti)|O(ti+L)). Four-dimensional variational assimilation [42], which estimates the

conditional mode for this probability density, is a popular approach that falls into this

class.

Kalman filtering has been widely used for state estimation applications since its

introduction in 1960 [78, 79]. As mentioned in the previous paragraph, the Kalman filter

provides an estimate of the mean and covariance of the probability density p(xt(ti)|O(ti)).

Estimates of this mean state and its covariance matrix are computed in each analysis

step. On the next data assimilation cycle, they are propagated forward in the forecast

step to the next analysis time. Following the notation in [70], the Kalman equations

that govern the forecast step are

xf(ti) = Mi−1[x
a(ti−1)] (2.3)

Pf(ti) = Mi−1P
a(ti−1)M

T
i−1 + Q(ti−1) (2.4)

Here, Mi describes the model dynamics operator at time ti. Equation (2.3) starts the

data assimilation cycle by running the model forward in time, starting with the analysis

state from the previous data assimilation cycle xa(ti−1) as the initial condition. The

16

result is the forecast state xf(ti). In the equations above, Pa(ti−1) is the estimated

covariance matrix from the previous analysis step. Equation (2.4) forecasts this covari-

ance matrix forward to the next analysis time. In the derivation of this equation, an

assumption has been made that the model error denoted εM in Equation (2.2) is a Gaus-

sian process with zero mean and covariance matrix Q; this is the model error term that

appears above. Once the forecasts xf(ti) and Pf(ti−1) have been obtained, the following

equations are used to perform the analysis step using the available observations:

xa(ti) = xf(ti) + Kidi (2.5)

Pa(ti) = (I − KiHi)P
f(ti) (2.6)

where di is known as the innovation vector and Ki is the Kalman gain:

di = yo
i − Hi[x

f(ti)] (2.7)

Ki = Pf(ti)H
T
i [HiP

f(ti)H
T
i + Ri]

−1 (2.8)

Recall that Hi is the observation operator that maps from the model state space to

the observation space. In this derivation, observational errors have been assumed to be

Gaussian with zero mean and covariance matrix R.

The derivation [28, 33, 74, 134] and application of the Kalman filter equations

include several other simplifying assumptions. This method provides an optimal, mini-

mum variance state estimate only if the dynamics, M , and observation operator, H, are

linear. It must also be the case that the model and analysis error statistics are Gaussian.

The well-known extended Kalman filter (EKF) [53, 56] attempts to overcome the linear-

ity assumption. In the EKF, M and H are linearized about the instantaneous trajectory

xa,f(ti). Unfortunately, the resulting update equations for the error covariance matrix

suffer from a closure problem: they involve a recursive calculation that requires knowl-

edge of all higher-order statistical moments. Typically, these higher-order moments are

neglected, and as a result, the resulting EKF can fail to appropriately predict the error

17

characteristics [44, 52, 97]. More-sophisticated closure schemes involving higher-order

moments have better results [49, 85, 86, 97], but the computational cost of storing these

moments is prohibitive. A newer technique, known as the unscented Kalman filter

(UKF) [77], has been shown to produce better results in highly nonlinear systems and

can handle non-Gaussian error statistics.

The Ensemble Kalman Filter (EnKF) [45] was introduced in 1994 to overcome the

limitations of the EKF. This Monte-Carlo approach is based on the theory of stochastic

dynamic prediction [43]. It begins with a single initial condition obtained from clima-

tology or some other best guess; this state is termed the central forecast. An ensemble

of initial states is then created with mean equal to the central forecast and variance

based on knowledge of the uncertainty in the initial condition. For grid-based models,

this amounts to generation of pseudo-random fields with a specific mean and variance;

the details of this process are given in [45]. The data assimilation cycle depicted in

Figure 2.1 is then applied to each of the N ensemble members, with the Kalman filter

(or some variant) used in the forecast and analysis steps. In 1998, [21] and [63] found

that it was also necessary to use “perturbed” observations to model the uncertainty due

to observational error. These perturbations are required in order for the Monte Carlo

algorithm to converge to the Kalman Filter solution for linear/Gaussian problems as

the ensemble size gets large. Others have also used parameter perturbations to sample

the model error characteristics [62].

The crux of the EnKF method is the assumption that the sample of model states

will provide meaningful statistics about the conditional probability density of the true

state given the available observations, p(xt(ti)|O(ti)). In sampling such a probability

density, a larger number of samples will generally provide better statistical estimates.

However, for most atmospheric and oceanic models, the high computational cost of

the analysis for a single model trajectory places a limit on practical ensemble sizes.

One result of a small sample size can be an underestimate of the computed sample

18

covariance, which causes the filter to apply too little weight to the observations in the

analysis. When this occurs, the analysis will diverge from the true state—a situation

known as filter divergence. The core issue here is that with an ensemble size of N , the

sample covariance is nondegenerate in only N −1 directions. If the covariance structure

of the joint probability distribution cannot be adequately represented in this subspace,

information is lost on each assimilation cycle [7, 87, 97]. A common solution to this

problem is covariance inflation [7, 59, 140], in which the sample covariance is simply

multiplied by a scalar value larger than one on each assimilation cycle. The appropriate

inflation factor is typically chosen using numerical experiments: a search is conducted to

find the value that produces a minimum ensemble mean rms error [7]. As an alternative,

one can use an adaptive method to vary the inflation factor as needed throughout the

course of a simulation [6].

Another likely result of the rank problem described above is spurious correlations

between model variables and observations. As a result, a distant observation with a

spurious correlation may overwhelm the impact of the closer observations that are truly

correlated with the state variable. To overcome this problem, a cutoff radius is usually

applied to localize the impact of an observation; state variables outside this cutoff will

not be updated by the observation [59, 63, 64, 140]. Applying such a cutoff also improves

the likelihood that the linearity assumptions are valid for the local region.

Some additional computational simplifications to the data assimilation cycle have

been introduced in the context of the EnKF. Houtekamer and Mitchell [64] and Bishop

[17] have shown that observations with uncorrelated error can be assimilated one at a

time, which reduces the innovation vector in Equation (2.7) to a scalar value. Ander-

son [8] provides an algorithm that also permits a serial update of the state variables

in the model. Using these modifications, each update step in the EnKF is simplified:

complex filtering computations can be performed with scalar values instead of matri-

ces. Ensemble techniques can also be easily parallelized to further reduce the required

19

computational expense [82].

The Data Assimilation Initiative [1] at NCAR has created a software package

called the Data Assimilation Research Testbed (DART) that employs some of these

techniques. Each analysis update in DART is an update of a single state variable using

one observation. The forward operator H is applied to each ensemble member to map

from the model state space to the observation space; the result is a distribution of ob-

servation values. The next step is to determine how this ensemble sample of observation

values should be incremented to more closely match the actual observation and its error

distribution. The result is a set of observation increments. DART then applies linear re-

gression to obtain the relationship between these observation increments and the state

variable that is being updated. There are various algorithms available in DART for

determining how to compute the observation increments, including the perturbed ob-

servation methods mentioned previously [21, 63] and the Ensemble Adjustment Kalman

Filter [7]. DART also contains tunable parameters for addressing the filter divergence

problems discussed above.

While ensemble techniques have become very popular in recent years, in part

due to their ease of implementation, they cannot yet compete with the current state of

the art in weather forecasting—four-dimensional variational assimilation (4DVAR) [42].

This method provides an estimate of the conditional mode of the probability density

function, p(xt(ti)|O(ti+L)); this is a maximum likelihood estimate. The basic idea of

4DVAR is to find the model trajectory that most closely matches the observations.

Since the model is deterministic, specification of an initial condition for the model will

define such a trajectory. Solving for this initial condition amounts to minimization of a

cost function which can be derived from an idealized Bayesian probability analysis [92].

J [x(t0)] =
1

2
[x(t0) − xb(t0)]

TB−1
0 [x(t0) − xb(t0)] +

1

2

∑

i=0

n(yi − yo
i)

TR−1
i (yi − yo

i) ,

where yi = Hi[x(ti)]. The first term represents the deviation of the state estimate

20

from its forecasted value from the previous assimilation cycle. Here, B approximates

the error covariance matrix of xb; that is, it weights the first term according to the

expected accuracy of the background forecast estimate. The second term measures de-

viations from the observations. Here again, H is the forward operator that maps from

the model state space to the observation space and R is the error covariance matrix

for the observations. Other strong or weak constraints [124] can be specified to enforce

various “balance” conditions that must be satisfied (for example, geostrophic balance

in atmospheric models) or to eliminate other undesirable characteristics in the solution.

Under certain conditions, the cost function can be minimized using Gauss-Newton iter-

ation [60] or quasi-Newton methods [38]. Adjoint methods are more commonly used for

geophysical problems [31, 39, 42, 89, 135]. The adjoint technique solves for the gradient

of J by integrating the model forward in time, then integrating the adjoint of the model

backward in time. The difficulty in implementing this is that, in order to perform this

backward integration, one must have available the adjoints of the linearized model dy-

namics and observation operators M and H. The mathematics in the derivation of the

adjoint can be complex; an example derivation for a simple model based on the shallow

water equations is provided in [41]. However, once these adjoint operators have been

obtained, the assimilation algorithm is relatively efficient compared to Kalman filter-

ing and, especially, extended Kalman filtering. But, 4DVAR is not necessarily efficient

compared to ensemble Kalman filtering techniques.

In addition to the analysis algorithm, another major challenge in data assimilation

research is determining how to obtain and leverage the observations in a way that will

most improve the accuracy of the model forecast. In typical geophysical applications,

there are many different types of observations available (e.g., satellite, radiosonde, radar,

and surface measurements). Researchers must start by determining which observations

should be discarded due to, for example, instrument malfunctions. This seemingly

simple process, known as quality control, is a difficult research issue [9, 51, 73, 91]. Then,

21

for each type of observation to be assimilated, one must develop a separate observation

operator H that maps the model state to the observation space. H is often complex

and nonlinear, but it can occasionally be simplified by preprocessing the observations to

more-closely match the state variables in the model. One must strike a balance in this

trade-off between the amount of observation pre-processing and the complexity of H.

Each type of observation also has different error characteristics, resulting in a different

error covariance matrix R in the Kalman gain equation and the 4DVAR cost function.

All of these challenges need to be addressed once the observations have been gathered

and before they can be useful in assimilation.

One can also use more intelligent strategies in the observation gathering process;

i.e., make an advance determination of what observations will be most useful. This field

of study is known as targeted or adaptive observing; see [17] for an overview. Adap-

tive observing attempts to determine an optimal way of distributing observations, in

both time and space, so as to improve the forecast in some “verification” region. For

example, if a convective system were currently moving toward San Francisco, meteorol-

ogists might be interested in improving the forecast over that region at a time two days

from now. Targeted observing could be used to determine which flight paths sensor-

equipped airplanes should take to obtain the most-influential measurements. Most

targeted observing strategies attempt to find regions that are either “dynamically con-

nected” to the verification region or that provide the greatest reduction in the error

covariance of the state estimate. Existing approaches include the singular vector tech-

nique [19, 110], model adjoint sensitivity techniques [10, 13], and ensemble-based meth-

ods [16, 17, 59, 94]. For ensemble filtering assimilation algorithms, for example, one can

use the ensemble spread to determine where the model is most uncertain [83]. So far,

targeted observing strategies have had mixed results [103]. And, to our knowledge, no

one has studied targeted observing using point-vortex models.

All of the aforementioned data assimilation techniques have been developed in

22

the context of DNS simulations of large-scale atmospheric and oceanic systems; data

assimilation into point-vortex models has received much less attention. Ide et al. [71, 72]

have done some interesting work in this field. The algorithm developed by Ide et al.

deduces the vortex positions by inverting the velocity superposition arguments that are

built into the point-vortex equations and then assimilates that data into point-vortex

models using Kalman filters. They have tested this strategy extensively in numerical

simulations. They also developed a unique hybrid assimilation method that assimilates

data about both the positions and strengths of vortices and the paths that tracer parti-

cles take through a flow. The basic idea is to augment the point-vortex equations (2.1)

with a set of tracer advection equations that model the dynamics of particle movement

[72]. The key here is that the fundamental link between velocity and vorticity couples

these equations, so corrections made to one will “percolate” into the other. That is, one

can assimilate tracer particle data into the advection equations and the cross-coupling

term will naturally carry those corrections into the point-vortex equations. Ide et al.

have studied this approach in simulations [72], but it has not yet been implemented

with experimental data.

There has also been some prior work by Chen and Snyder[26] on ensemble assim-

ilation of vortex positions and stregnths into a two-dimensional barotropic model. This

group used vortex data provided by the National Severe Storms Laboratory (NSSL)

and the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS). NSSL

extracts vortex positions and strengths from Doppler velocity data using a multi-step

classification method that starts by searching for a particular shear profile in one di-

mension and then applies horizontal and vertical association techniques to identify two-

dimensional and three-dimensional patterns that indicate vortex dynamics[98, 133].

CIMMS uses artificial intelligence techniques to identify vortices in infrared satellite

imagery[108].

The data-assimilation schemes described in this section all use a periodic or con-

23

tinuous correction approach. That is, observations are assimilated either at prespecified

intervals or whenever they become available. No attempt is made to determine when

corrections might be most beneficial to the simulation, or when they are not useful. In

the context of the real-time flow control applications that we are targeting, collecting

and processing observations can be prohibitively expensive and/or invasive. If one could

reduce this burden by collecting observations only when the system dynamics indicate

that such observations are necessary for the accuracy of the simulation, it would be

a major win. This thesis proposes and evaluates such a strategy and compares it to

existing work.

Our work has some similarities to targeted observing: we are trying to use the

dynamics of the system to determine when and where the model is likely to go astray.

However, the goals of our research are quite different from those of adaptive observing.

In adaptive observing, a fixed observing network is augmented with supplementary ob-

servations as dictated by the methods described in the previous section. The essential

elements of the data assimilation approach, however, are unchanged by the information

gleaned from the targeted observing strategies. That is, both the fixed and supple-

mentary observations are still assimilated periodically or continuously. The dynamical

information used to obtain the supplementary observations is not used to decide when

to correct the model. Our approach is to use this dynamical information to intelligently

adapt the correction timing in the point-vortex model.

In important contrast to this thesis work, most data assimilation research is not

performed in a laboratory context. Geophysicists often rely on Observing System Sim-

ulation Experiments (OSSEs) to investigate new assimilation strategies. In OSSEs, a

long model run is used to generate the observations, which are then modified to achieve

the desired observational error characteristics. While these numerical experiments are

a useful first step, there are many additional challenges in using real data. We are also

starting with OSSEs, as described in Section 4, but we also study point-vortex data

24

assimilation using experimental data obtained from a planar air jet in our laboratory.

These results are presented in Sections 12 and 13.

One of our first challenges in using the experimental data was to determine how

to correct our model variables (vortex positions and strengths) with the velocity field

data we collected in the lab. One approach to this problem is to preprocess the velocity

data to extract vortex positions and strengths. A great deal of research has been

devoted to techniques for doing just this. Most of the research in this field attempts to

distinguish vortices from other types of coherent structures. One major problem is that

vortices are surprisingly difficult to define [114, 138]. The obvious solution of simply

thresholding the vorticity, for instance, picks out many different kinds of flow structures,

not just vortices—particularly shear layers. Methods that search for local extrema in the

vorticity field are somewhat more effective, but still prone to mis-identification [138].

The work of Jeong & Hussain [75] provides a cornerstone for much of the debate in

the fluids literature about this topic, along with a useful definition that decomposes

the velocity gradient tensor ∇~v into symmetric (S) and anti-symmetric (Ω) parts, the

latter of which is an effective measurement of vorticity in an incompressible flow. Thus,

searching for regions in which the norm of Ω dominates the norm of S can be an effective

technique for identifying vortices; this is the Q-criterion of [68]. For two-dimensional

flows, the Q-criterion is the elliptic version of the Okubo-Weiss criterion [107, 139] A

variety of other approaches use ∇~v in different ways; [2] and [27], for instance, take its

imaginary eigenvalues as evidence of local swirling motion. More recently, Haller has

proposed a frame-independent method that releases numerical tracer particles in the

flow, calculates their paths with an ODE solver, then computes the strain acceleration

tensor at every point along each path. Particle paths that remain wholly in “elliptical”

regions, where the flow does not stretch out, are then classified as vortices [58]. Many

groups have worked out ways to fit velocity data to various analytical forms, such as

wavelets [22, 46, 126] or orthogonal and Fourier decompositions [47, 109, 116], and then

25

use those decompositions to find the vortices.

Our problem is slightly different from the research described in the preceding

paragraph. We are interested in vortex extraction for the purposes of correcting a point-

vortex model. The goal in point-vortex modelling is to approximate the entire vorticity

field with a collection of point-vortices. So, unlike the research described above, if shear

layers were present in our flow, we would want point-vortices in our model to represent

the vorticity in those layers. With this in mind, it is possible that a simple technique

such as vorticity thresholding may work well for our purposes. In the next section, we

explore and compare vorticity thresholding with the Okubo-Weiss method.

Chapter 3

Laboratory Planar Air Jet and PIV Measurements

The specific aim of this thesis is to investigate data assimilation into a point-vortex

model and to develop and evaluate new targeted-observing strategies. Recall that the

goal of targeted observing is to identify the times and locations where a correction will

have a significant impact on simulation accuracy. We have devised several new targeted

assimilation techniques that use information about the system dynamics to guide the

correction process. The bulk of this thesis is devoted to analyzing these new strategies

and comparing them to the traditional periodic correction approach to determine when

and why one technique works better than another. Recall that for our target application

domain—real-time modelling and control of fluid flows—computational cost is a vey

important component of this analysis. We hope to develop a data assimilation technique

that will enable us to sufficiently improve the accuracy of a point-vortex simulation

without destroying its speed advantages by introducing an unecessary computational

burden.

Although numerical experiments, such as the “Observing System Simulation Ex-

periments” described on page 23 form an important component of our investigations,

we are very interested in the real-world applicability of our results. With this in mind,

our research group developed an experimental fluid flow in the laboratory1 —a planar

air jet [113]. We used this flow as the motivating example for the work presented in

1 This laboratory setup was in place prior to the start of this thesis

27

this thesis, and data collected from the jet was used to generate initial conditions for

our numerical experiments. The laboratory setup and our data collection algorithms

are described in detail in the following section.

Our experimental apparatus consists of a planar air jet and a set of actuators

that can be used to selectively perturb the boundary layer of its flow field. Figure 3.1

is a schematic and a photograph of the jet. Compressed air is squirted into the bottom

of the jet via a collection of hoses, five of which are visible in Figure 3.1. The air flows

vertically through a plenum (the aluminum tower sections) and a contraction (the black

piece on top) and emerges through a rectangular slit with dimensions of 2.50 ± 0.01

mm by 400 mm, giving an aspect ratio of 160:1. The plenum contains a variety of

flow-conditioning devices that serve to reduce the turbulent intensity in the flow; the

contraction is designed to further suppress turbulence and reduce non-uniformities in

the velocity profile. Because the resulting jet is so long in the transverse direction, the

flow field may be considered two-dimensional across its central cross-section; because it

is so narrow, the entire jet is really a paired free shear layer.

Using actuators at the base of the jet [131], we can force the flow to assume one

of its two unstable modes. Vortices are well-defined in both the sinuous and varicose

modes, which makes the forced jet a good candidate for point-vortex modelling. There

are different types of actuators that can provide the necessary forcing, including loud-

speakers, piezoelectric actuators, or MEMS flaps [113]. For the data presented in this

thesis, a single loudspeaker connected to a function generator was used to excite the

varicose mode of the jet. This was accomplished by driving the loudspeaker at the

natural frequency of the jet (16.83 Hz) [113]. A picture of the jet in its varicose mode

is displayed in Figure 3.2.

We also have a mechanism for gathering velocity data from this flow—particle im-

age velocimetry (PIV) [118]. A PIV system works by taking two successive photographs

of a flow seeded with particles and cross-correlating these photographs to determine the

28

(a) (b)

Figure 3.1: A planar air jet. (a) is a photograph of the experimental apparatus that is
used to house the jet. (b) is a schematic of the structures that condition the flow prior
to its exit at the narrow slit. The purpose of the conditioning and the narrow slit is to
ensure the uniformity of the flow along the length of the slit and enable an assumption
of two-dimensional flow for any cross-section.

Figure 3.2: A planar air jet. Reynolds number ≈ 70. Synthetic jet actuator on one side
at 1.94 KHz, modulated at 10 Hz. Vortices are clearly visible in this photograph of the
jet.

29

displacements of the particles. Using these displacements and the time lag between the

photographs, a velocity field can be constructed. To enable PIV measurements, some of

the air that flows into the jet is seeded with theater fog. Then, a laser situated perpen-

dicular to the jet slit is used to illuminate a cross-section of the flow. Theoretically, this

cross-section should be the same along the length of the slit; this is the approximation

that enables us to assume the flow is two-dimensional. The PIV camera equipment is

directed at the front of the slit, so that it captures a photograph of the illuminated

cross-section. For more details on the experimental setup, please see [48].

For our data-assimilation experiments, we would like to obtain a sequence of

velocity field measurements in time. Note that when the jet is forced into one of its

modes, the flow behavior is periodic, so an ideal sequence of measurements would include

several different points in a single cycle of the flow. However, our observing equipment

is much slower than the jet’s natural frequency, so we are forced to take phase-averaged

data [69]. For a single measurement, we set a particular phase shift relative to actuator

timing for the measuring equipment, so that it measures the velocity field at the same

offset in each forcing cycle for several cycles of the flow. Since the flow is periodic, we

expect these measurements to be very similar, and we approximate a single velocity field

measurement with the average of several hundred of these phase-locked fields. This is a

common practice in the fluid dynamics community because it enables more fine-grained

measurements of a rapidly changing flow than the observing equipment would permit.

Figure 3.3 shows the phase-averaged data that we collected at four different points

in the flow cycle, each computed by averaging 480 PIV measurements. The time lag

between each image is approximately 15 milliseconds. The value of 480 was chosen using

a convergence test: we kept doubling the number of fields used to compute the average

until the RMS difference between averaged fields was not changing significantly. Given

the 480 vector fields, we computed standard deviations for U and V at each gridpoint.

These standard deviations ranged from roughly 0.01 m/s to 0.3 m/s, with a majority

30

of the values being <= 0.1 m/s. This gives us an approximate uncertainty in our PIV

measurements of the velocity field.

It is interesting to consider how phase-averaged measurements affect the error in

the resulting velocity fields. In a single PIV measurement, errors in the cross-correlation

of particles in the PIV images are likely to manifest as spurious vectors in the flow field—

vectors that differ significantly from the local velocity field [118, 128]. The process of

averaging several hundred of these flow fields significantly reduces the impact of these

spurious vectors. For our purposes, we will be using these flow fields to extract vortex

positions and strengths, so we are interested in errors made in extracting these quantities

from the phase-averaged data. One such error will occur because the vortices will be in

slightly different positions in each of the 480 vector fields that we average to produce

the images in Figure 3.3. This phenomenon is known as phase jitter, and the result

is that a vortex in the averaged velocity field will be slightly larger and weaker and

will have smoother edges than a vortex in single measurement. In Section 8, this error

analysis will inform the assimilation experiments in which we add noise to simulated

observations: knowledge about the types of errors we expect in our measurements will

enable us to determine a reasonable expectation for the noise in our extracted vortex

positions.

3.1 Vortex Extraction

After collecting the PIV measurements from the planar jet, our next step was

to process the velocity fields into a format that could be used to correct the point-

vortex model. As mentioned on page 21, we had two options here. We could use the

velocity field observations to correct the model—performing the correction by mapping

the model’s point vortices into the observation space. Or, we could extract the vortex

positions and strengths from the velocity field data and use that information to update

the point-vortex state variables directly. We chose the latter approach because we felt

31

(a) (b)

(c) (d)

Figure 3.3: PIV measurements of the planar jet at approximately (a) 22.5 ◦ (b) 90 ◦ (c)
202.5 ◦ and (d) 292.5 ◦ into its cycle.

32

that performing the assimilation in the natural state space of the model would isolate

our exploration of the dynamics of data assimilation from the complications introduced

by mapping back and forth between state spaces. Also, reasoning about the flow field

at a more-abstract level—in terms of its coherent vortices—simplifies the physics and

makes it easier to understand the flow behavior.

As discussed on page 24, vortex extraction is a difficult problem, and there is a

wealth of literature devoted to the topic. Some of this research attempts to distinguish

vortices from other structures that have high vorticity, such as shear layers (e.g., [114,

138]). Others address the identification of vortices in a frame-independent fashion—

something that is important for rotating flows and flows with interacting vortices [58].

Our problem is much simpler—we are working with a planar flow and phase-averaged

observations in which the vortices are very well defined. Also, there are no shear layers

present in our velocity observations. It is worth mentioning, however, that if shear

layers were present, we would want our extraction technique to identify them. This is

in stark contrast to the goals of the vortex extraction community, but it makes sense

considering that the point-vortex model is modelling the entire vorticity field—not just

the vortices. So, it is desirable to have point vortices distributed along a shear layer to

accurately model the vorticity there. Given the well-defined, clearly separated vortices

and the lack of shear layers in our PIV data, a fairly simple vortex extraction technique

should be sufficient for our work.

In the paragraphs that follow, we evaluate two of the simplest techniques for two-

dimensional vortex extraction: vorticity thresholding and the Okubo-Weiss method

[107, 139]. Both of these techniques perform an analysis on the vorticity field. Recall

that to compute the vorticity field we simply take the curl of the velocity field. In Fig-

ure 3.4, we reproduce the velocity fields from Figure 3.3 and display the corresponding

vorticity field for each data set. Given the vorticity field, the vorticity thresholding

technique applies the following algorithm to obtain the positions and strengths of the

33

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 3.4: Vorticity fields from PIV data. (a)-(d) show velocity field data collected
using particle image velocimetry at the times indicated in Figure 3.3. (e)-(h) are the
corresponding vorticity fields, computed by taking the curl of the velocity field in the
left column.

34

point vortices:

(1) Take the absolute value of the vorticity field and find its maximum value. Label

this gridpoint (x, y).

(2) Let V represent the set of points that encapsulate a particular vortex. Initially,

we set V = {(x, y)}. Then, starting from position (x, y), we construct a “con-

nected component” for which all points in the component have absolute vorticity

above the chosen threshold. For this analysis, a point is considered connected

to four “neighbors”—one above, one below, one to the left, and one to the right.

Label these points (x, y + 1), (x, y − 1), (x − 1, y), and (x + 1, y), respectively.

We recursively check these neighboring points and include a given point in the

component if the absolute vorticity at the point exceeds the threshold. That is,

if |ω| at (x, y + 1) > T then V = V ∪ {(x, y + 1)}

if |ω| at (x, y − 1) > T then V = V ∪ {(x, y − 1)}

if |ω| at (x − 1, y) > T then V = V ∪ {(x − 1, y)}

if |ω| at (x + 1, y) > T then V = V ∪ {(x + 1, y)}

where |ω| is the absolute vorticity and T is the chosen vorticity threshold.

(3) Compute the average vorticity for the points identified in (2) by summing the

vorticity at all points and dividing by the number of points. Mathematically,

ωav =

∑

(a,b)∈V ω(a,b)

|V|

where ωav is the average vorticity over the region and ω(a,b) is the vorticity at

gridpoint (a, b). Multiply this by the area covered by the points in (2) to get

an approximate circulation, or strength, for the vortex.

(4) Place a point vortex at the location identified in (1) with the strength computed

in (3).

35

(5) Remove the points identified in (2) from consideration and repeat the process

to find the next vortex.

Note that Step (3) amounts to an application of Gauss’s theorem to obtain an approxi-

mation of the vortex circulation[32, 111]. Recall that the circulation is the line integral

of the velocity field around a closed curve. Gauss’s theorem allows us to instead take

the surface integral of the vorticity to calculate the strength. We use the resulting

approximation that

ωav =
Γ

A

where ωav is the average vorticity in the region identified in (2), A is the area of the

region, and Γ is the circulation or strength of the vortex enclosed by the region.

Step (2) of the vorticity thresholding algorithm requires that we define a threshold

value T for the vorticity. We chose

T = |0.15 [max(ω) − min(ω)]|,

where max(ω) and min(ω) are the maximum and minimum values of vorticity over all

gridpoints in the data set. We stopped “growing” the connected component when the

absolute vorticity at a particular location was relatively close to zero. For the results

presented in this section, the threshold was chosen by hand-tuning T until the results

looked reasonable—i.e., we chose a threshold for which the vortex boundaries identified

by the algorithm were similar to the vortex boundaries we might draw by hand on the

vorticity plots—and our choice of threshold is obviously fairly arbitrary. The point is

to choose a threshold that will enable the connected component algorithm to include

as much area as possible for each vortex without accidentally grouping two distinct

vortices together. An underlying assumption here is that the vortices are well-separated

by regions of low vorticity. Note that this is the case for our planar jet PIV data, but

may not be true for other types of vorticity data. However, our goal here is not to

provide a vortex extraction result that is fully generalizable; rather, the focus of this

36

thesis is to use the extracted vortex positions to correct the point-vortex model and

study data-assimilation dynamics.

Vorticity thresholding is an obvious technique for locating high-vorticity regions,

but it is not so clear how to define the vortex boundaries after the threshold has been

applied. Recall that our objective is to distill the information in the vorticity plots

into a set of point-vortex positions and strengths for the point vortex model. Many

of the vortex extraction techniques described on page 24 provide sophisticated ways of

distinguishing vortices from other parts of the flow, but the goal is usually to plot the

results and demonstrate visually that the method identifies vortices appropriately. None

of these references discusses how to partition the data into individual vortices and assign

strengths. Our approach to this problem, described in Step (2), is to define a single

vortex by searching for a connected-component of high vorticity. This approach calls on

our previous work in using connected components for topological signal separation [120].

The Okubo-Weiss criterion [107, 139] is a more-reliable means of vortex iden-

tification in the sense that it is invariant in translating frames of reference (Galilean

invariance). It is also more computationally intensive than the vorticity thresholding

technique. The Okubo-Weiss algorithm looks for regions where the squared rate of

rotation, |Ω|2, dominates the squared rate of strain, |S|2, where

Ω =
1

2
[(5v) − (5v)T]

S =
1

2
[(5v) + (5v)T].

In these regions, the flow behavior is “elliptical” in nature; outside these regions, the

fluid motion is “hyperbolic.” It is worth mentioning that Haller’s method [58] also

identifies elliptical regions and is invariant under any type of coordinate change. Haller’s

method works by sprinkling fluid “particles” throughout the flow and measuring which

of their trajectories stay in the identified elliptic regions. There are also higher-order

37

(a) (b) (c)

Figure 3.5: Vortex extraction. (a) vorticity fields from Figures 3.4(e) and 3.4(g). (b)
“connected components” where absolute vorticity exceeds a threshold value (as de-
scribed in Step (2) of the vorticity thresholding algorithm). The small white squares
inside each “component” indicate the position where the point vortex was placed. The
strengths of the vortices (in top to bottom order) were -0.0012, 0.0063, -0.0085, 0.012,
and -0.0058 for the data set on top and 0.0030, -0.0069, 0.011, -0.012, and 0.0034 for the
data set on bottom. (c) “Connected components” where the Okubo-Weiss criterion was
positive. The strengths of the vortices (in top to bottom order) were -0.0015, 0.0063,
-0.0081, 0.0011, and -0.0035 for the data set on top and 0.0028, -0.0063, 0.0097, -0.011,
and 0.0013 for the data set on bottom.

38

corrections to the Okubo-Weiss criterion that include acceleration terms [65, 66]. And,

the Okubo-Weiss method has been shown to be inaccurate if the velocity gradient tensor

is time-varying [125]. Although incorporating higher-order correction terms or using

Haller’s method might yield higher accuracy, the additional computational cost that

would be incurred is not justified for our planar jet PIV data. We are working with a

two-dimensional flow with very well-defined irrotational vortices.

The specific steps in our implementation of the Okubo-Weiss algorithm are similar

to the vorticity thresholding algorithm:

(1) Compute W = [|Ω|2 − |S|2]. Remove from consideration any gridpoints (a, b)

for which

W(a,b) ≤ 0.05 [max(W) − min(W)].

These points are removed from consideration by setting W(a,b) = 0.

(2) Search for the maximum positive value of W .

(3) Starting from the point identified in (2), compute the “connected component”

where W > 0 (as described in Step (2) of the vorticity thresholding algorithm).

(4) Compute the average vorticity for the points identified in (3) by summing the

vorticity at all points and dividing by the number of points. Multiply this by the

area covered by the points in (3) to get an approximate circulation, or strength,

for the vortex.

(5) Place a point vortex at the location identified in (2) with the strength computed

in (4).

(6) Remove the points identified in (3) from consideration and repeat the process

starting with Step (2) to find the next vortex.

The Okubo-Weiss criterion defines a vortex as any region where W > 0. How-

ever, we remove some of these points from our vortex extraction algorithm in Step (1).

39

Specifically, we remove any points where W is less than 5% of its dynamic range. The

purpose of doing this is to distinguish the vortices from one another. In our data sets,

some of the vortices are very close together, and the elliptical regions identified in the

Okubo-Weiss algorithm can run together. Setting this threshold for W prevents the

algorithm from grouping two separate vortices into a single connected component in

Step (3).

Since algorithmic speed is a major concern for our application domain, a com-

parison of the computational complexity of the vorticity thresholding and Okubo-Weiss

algorithms is in order. Notice that the algorithms share some similarities. For each vor-

tex identified, they compute a maximum value and then find a connected component

that defines the vortex. The maximum computation has O(nm), where n is the number

of gridpoints in the x direction and m is the number of gridpoints in the y direction.

The complexity of the connected component algorithm for vortex i has order equal

to the number of gridpoints in its connected component—label this gi. The connected

components covered by all of the vortices are never larger than the entire domain, which

has size nm, so
p
∑

i=1

gi ≤ nm,

where we have let p equal the number of vortices identified by the algorithm. So, the

overall complexity of the vortex identification loop for both algorithms is dominated by

the maximum computation and is equal to O(pnm). However, the Okubo-Weiss algo-

rithm also requires an additional computation of the gradients dU/dx, dU/dy, dV/dx,

and dV/dy. These computations are each O(nm), so in traditional complexity theory,

this extra work would get absorbed into the O(pnm) of the algorithm. However, for our

special application domain—real-time flow control—the extra O(4nm) incurred by the

gradient computation may make a significant difference2 . Especially for flows like the

2 Notice here that we have purposely not dropped the constant 4 from the big-Oh notation because
this multiplier might be significant, as well.

40

planar jet, where p is equal to four or five, the gradient computation basically doubles

the cost of the algorithm.

We applied the vorticity thresholding and Okubo-Weiss algorithms described

above to two of the vorticity fields from Figure 3.4; the results are presented in Fig-

ure 3.5. The connected components and point vortex positions identified by Okubo-

Weiss appear to be a fairly close match to the results of the vorticity thresholding algo-

rithm. How can we tell which technique is better? If the results of vorticity thresholding

technique are comparable to the Okubo-Weiss method, we can avoid the additional com-

putational cost incurred by Okubo-Weiss. In the next section, we consider quantitative

evaluation methods for these vortex extraction techniques.

Although the vorticity thresholding and Okubo-Weiss techniques are well-known

vortex identification schemes, we are not aware of any research that uses these tech-

niques to extract vortex positions for use in point-vortex modelling. And, as mentioned

previously, we have augmented these techniques with a topological approach [120] to

defining the vortex boundaries. Perhaps most importantly, few research groups have

explored using vortex extraction techniques to collect data for point-vortex data assim-

ilation. These are all interesting and important contributions of this thesis.

3.2 Validation and Evaluation of Vortex Extraction

Now that we have extracted point-vortex information from the laboratory PIV

observations, it is worthwhile to perform some analysis on the results. First, we can

consider how accurately a given collection of point vortices represents the true flow

dynamics. A natural way to measure this accuracy is to compare the velocity field

induced by the collection of point vortices to the original PIV velocity field. Recall from

Section 2.1 that, given a collection of point vortices, we can compute the velocity at any

point in the domain by summing over the velocities induced by the individual vortices.

To compute the velocity (U, V) induced at location (x, y) from a single point vortex at

41

position (x1, y1), we could use the point-vortex equations:

U(x, y) =
x1 − x

2πr2

V (x, y) =
y − y1

2πr2

where r2 = (x − x1)
2 + (y − y1)

2. However, in our connected component algorithm, we

have calculated the vorticity of each point vortex by summing vorticities over a region

of space. So, when we reconstruct the velocity field, it makes sense to give each point

vortex a small “radius”. There is also a singularity at (x, y) = (x1, y1) in the point-

vortex equations3 . To address these two issues, we use a “blob model” to compute

the induced velocity field. The blob model introduces a radius, rc, for each vortex. For

points outside this radius, the induced velocity is given by the point vortex equations

above; inside the radius, the dynamics are treated as equivalent to solid body rotation,

i.e.,

U(x, y) =
r

rc

x1 − x

2πr2
c

V (x, y) =
r

rc

y − y1

2πr2
c

Basically, r/rc is a linear attenuation function on the growth of the velocity near the

vortices. The velocity attains its maximum value at r = rc and then linearly decreases

to zero at the center of the vortex blob. For the results presented in this section, we

chose rc = 0.005, which roughly approximates the radius of the vortices observed in

our PIV data. To determine this radius, we measured the distance between the center

of each vortex and the location where the transverse velocity induced by that vortex

attains its maximum value. This is a rough approximation that was obtained by visually

inspecting vortices present in the PIV velocity fields.

In Figure 3.6, we present the results of using the blob model equations to compute

the velocity field induced by the point vortices identified in Figure 3.5. Again, the point

3 The induced velocity approaches infinity as (x, y) → (x1, y1).

42
Figure Data Source U Range V Range |U2 + V2| Range

3.6(a) PIV [-0.614,0.408] [-0.266,1.18] [0.00261,1.22]

3.6(b) Vort. Thresh. [-0.339,0.375] [-0.299,0.483] [0.000878,0.517]

3.6(c) Okubo-Weiss [-0.325,0.334] [-0.283,0.418] [0.000436,0.434]

3.6(d) PIV [-0.392,0.383] [-0.233,1.11] [0.00144,1.16]

3.6(e) Vort. Thresh. [-0.364,0.314] [-0.275,0.572] [0.00182,0.584]

3.6(f) Okubo-Weiss [-0.295,0.295] [-0.244,0.489] [0.00462,0.536]

Table 3.1: Quantitative velocity field comparison. For each of the velocity fields pre-
sented in Figure 3.6, we computed the range of the horizontal and vertical components
of the velocity field as well as the range of the magnitude of the velocities. We can com-
pare these dynamic ranges to gauge how successful our vortex extraction techniques
were.

here is to see how well our vortex extraction algorithms reproduce the original velocity

field. In the left column, we display the velocity fields from the PIV system. The middle

and right columns display the velocity fields induced by the point vortices extracted

using the vorticity threhsolding and Okubo-Weiss algorithms, respectively. Our first

step in comparing these results was to perform a simple sanity check for our vortex

extraction algorithms by comparing the dynamic range of the velocities in each data

set. Table 3.1 displays the range of velocity magnitudes for the six data sets presented

in Figure 3.6. The velocity magnitudes in each of the three cases are fairly comparable

for the two data sets we studied. We do not expect them to be exact because reducing

the vorticity field to five point vortices is a significant approximation. However, recall

that the standard deviations for U and V for the set of 480 averaged velocity fields were

in the range 0.01 m/s to 0.3 m/s. For the U velocities, the maximum and minimum

values in the induced velocity data sets are within one standard deviation of the PIV

maximum and minimum. For the V velocities, the minimum values are close between

the data sets, but the maximum values in the induced velocity fields are too low. That

is, we are underestimating the vertical velocity in some cases. This is likely due to

our approximation of the entire vorticity field as a collection of three or four “blob”-

vortices. In comparing the velocity fields in Figure 3.6, we can see that the induced

43

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Evaluating vortex extraction. (a) and (d) are the velocity fields captured
with our PIV system at 22.5◦ and 202.5◦ phase shifts. (b) and (e) are velocity fields
induced by the point vortices extracted from (a) and (d) via the vorticity thresholding
method. (c) and (f) are the velocity fields induced by the point vortices extracted from
(a) and (d) using the Okubo-Weiss method.

44
Figure Data Source U MSE V MSE |U2 + V2| MSE

3.6(b) Vort. Thresh. 0.0104 0.0779 0.0828

3.6(c) Okubo-Weiss 0.00991 0.0835 0.0874

3.6(e) Vort. Thresh. 0.00772 0.0741 0.0749

3.6(f) Okubo-Weiss 0.00777 0.0845 0.0853

Table 3.2: Comparison of extraction techniques. For each of the velocity fields pre-
sented in Figure 3.6, we computed the mean-squared error between the reconstructed
velocity field and the original PIV velocity data. Based on this error metric, vorticity
thresholding appears to be more successful than the Okubo-Weiss technique.

velocity fields do not replicate the stream characteristics of the jet. This suggests that

we may need to improve our approximation of the vorticity field by adding more point-

vortices. In Section 3.3, we explore one technique for doing this; refining the point-vortex

distribution will also be an important component of our future work.

The velocity ranges presented in Table 3.1 do not provide much information about

which vortex extraction technique works better. It is more meaningful to compute a

mean-squared error measure between the PIV data and the induced velocity fields from

each method; the results of these computations are presented in Table 3.2. We can again

compare these values to the range of standard deviations for the phase averaged velocity

fields, 0.05 m/s to 0.3 m/s. Since the RMS error for each induced velocity field measure

falls within these ranges, we can conclude that we are reproducing the original velocity

field fairly well. Also, in comparing vorticity thresholding to the Okubo-Weiss method,

we see that the MSE measures for the two methods are very similar. Any difference

in the two methods is negligible when you consider the uncertainty introduced by the

arbitrary thresholds defined in the two algorithms. Still, for the type of observations we

have from the planar jet, we can conclude that simple vorticity thresholding is adequate

for vortex extraction. This is a positive result for our work, because we can save the

additional computational costs of computing the gradients required by the Okubo-Weiss

method. This cost savings may not be significant in many applications, but for real-time

45

modelling and control of fluid flows, it might be critical.

3.3 Quantization of Large Vortices

It may be the case that distilling the vorticity fields in Figure 3.4 down to five point

vortices is too crude an approximation even with the added power of data assimilation.

We can obviously improve the approximation by distributing more point vortices—in

fact, if we place a point vortex at each gridpoint, we can model the discretized vorticity

field exactly. However, an increase in the number of point vortices translates to an

increase in the number of state variables in our point-vortex model, so we are faced

with a computational cost versus accuracy tradeoff. A reasonable middle ground is to

distribute several smaller point vortices in the vicinity of each vortex such that their

superposition models the large-scale vortex. There are several ways to accomplish this—

for example, we could take each vortex region in Figure 3.5(b) and assign a point vortex

to each gridpoint in the region, with the strength equal to the vorticity value at that

gridpoint. Or, we could choose a fixed quantum for the strength of each point vortex and

distribute as many as are required to represent the local vorticity field. We chose the

latter approach because keeping the strength of the point vortices fixed has some positive

implications for point-vortex modelling. First, working with a fixed vortex strength

allows us to remove 1/3 of our state variables, decreasing our computational costs and

storage requirements. Also, since the vortex strengths are fixed in the two-dimensional

point-vortex model, sprinkling smaller point vortices throughout the domain allows the

model to move vorticity around at a more fine-grained level.

Our approach to assigning the fixed-strength point vortices was implemented as

follows. Recall that the vortex extraction techniques of Section 3.1 identify a connected

component for each large-scale vortex. We chose the weakest vortex to determine a

strength quantum for our point vortices, selecting a value that would enable us to assign

two point vortices to the weakest vortex. We then applied the following algorithm to

46

each vortex component:

(1) Find the maximum value of absolute vorticity in the area covered by the vortex.

(2) If there is not already a point vortex at location (1), place one there. If there

is, find the closest uncovered point (by Euclidean distance) and place the point

vortex there.

(3) Subtract the vortex quantum from the absolute vorticity at the location in (1)

and repeat

Quantization of the vorticity field into small point vortices enables the point-

vortex model to advect the vorticity at a more fine-grained level than could be accom-

plished without such quantization. Since the two-dimensional point-vortex equations

do not change the strength of the point-vortices in the simulation, having more point-

vortices provides the ability to achieve more-realistic vorticity distributions. The quan-

tization approach that is common in the fluids literature is to place one point vortex

at each gridpoint in the discretized vorticity field. However, this is exactly what we

are hoping to avoid, because we are interested in the point-vortex model for its speed

advantages and small state vector. As we increase the number of point vortices in our

simulation, we lose these advantages. Our quantization scheme is an attempt to reach

a compromise between accuracy and computational cost. We integrated our quanti-

zation approach into both the vorticity thresholding and Okubo-Weiss algorithms; the

placement of the point vortices for each case are shown in Figure 3.7. Note that the

number of vortices depends both on the quantum determined for each data set and on

the strength of the vortices identified in the vortex extraction algorithm.

To analyze these point-vortex distributions, we again computed the induced ve-

locity fields for each data set and compared them to the PIV velocity fields. The induced

fields were computed using the blob model as described on page 41. Side-by-side plots

of these velocity fields are presented in Figure 3.8; the original PIV data is in the left

47

(a) (b) (c)

Figure 3.7: Quantization of vortices. We reproduce the data from Figure 3.5 and dis-
play how our quantization algorithm would place multiple vortices with fixed strengths
to represent each large-scale vortex. (a) Vorticity fields from Figure 3.4(e) and (g).
(b) “Connected components” where absolute vorticity exceeds a threshold value, as de-
scribed in Step (2) of the vorticity thresholding algorithm on page 35. The small white
squares inside each “component” indicate the position(s) where each point vortex was
placed. The strength quantum chosen for the vortices was ±0.00059 for the data set
on top and ±0.0015 for the data set on bottom. (c) “Connected components” where
the Okubo-Weiss criterion was positive. The strength quantum chosen for the vortices
was ±0.00075 for the data set on top and ±0.00067 for the data set on bottom. The
point-vortex strength for each data set was chosen such that the weakest vortex region
would be assigned two point vortices.

48
Figure Data Source U Range V Range |U2 + V2| Range

3.6(a) PIV [-0.614,0.408] [-0.266,1.18] [0.00261,1.22]

3.7(b) - top Vort. Thresh. [-0.261,0.303] [-0.231,0.414] [0.000475,0.455]

3.7(c) - top Okubo-Weiss [-0.265,0.279] [-0.223,0.364] [0.000773,0.378]

3.6(d) PIV [-0.392,0.383] [-0.233,1.11] [0.00144,1.16]

3.7(b) - bottom Vort. Thresh. [-0.318,0.255] [-0.232,0.519] [0.000787,0.531]

3.7(c) - bottom Okubo-Weiss [-0.243,0.219] [-0.188,0.459] [0.00116,0.476]

Table 3.3: Quantitative velocity field comparison. For each of the velocity fields pre-
sented in Figure 3.8, we computed the range of the horizontal and vertical components
of the velocity field as well as the range of the magnitude of the velocities. We can com-
pare these dynamic ranges to gauge how successful our vortex extraction techniques
are.

column and the vorticity thresholding and Okubo-Weiss results are in the center and

right columns, respectively. Visually comparing these induced velocity fields to those

in Figure 3.6, it does not seem that the quantization into smaller point vortices has a

significant impact on the induced velocity fields. However, the velocity fields induced

by the quantized point-vortices do seem to replicate slightly more of the detail in the

original PIV data.

We can also perform a quantitative analysis on the quantized point-vortex data.

Table 3.3 provides a comparison of the velocity dynamic ranges for each of the data

sets in Figure 3.8, and Table 3.4 provides the MSE measures between the induced

velocity fields and the original measured field. Interestingly, comparing these values

to those in Tables 3.1 and 3.2, one sees very little improvement in accuracy. Purely

for accuracy reasons, it does not seem worth the effort to quantize the large vortices.

However, as mentioned previously, quantization does have modelling implications as

well. In Section 12, we explore these issues with the data set in Figure 3.3(c) via

some numerical experiments with the vorticity thresholding technique. In particular,

we perform experiments with both the large point vortices and the smaller clusters of

vortices described in this section, to determine whether the modelling implications of

a finer-grained vorticity distribution justify the costs of increasing the number of point

49

(a) (b) (c)

(d) (e) (f)

Figure 3.8: Evaluating vorticity quantization. (a) and (d) are the velocity fields captured
with our PIV system at 22.5◦ and 202.5◦ phase shifts. (b) and (e) are velocity fields
induced by the point vortices in column (b) of Figure 3.7. (c) and (f) are velocity fields
induced by the point vortices in column (c) of Figure 3.7.

Figure Data Source U MSE V MSE |U2 + V2| MSE

3.7(b) - top Vort. Thresh. 0.0106 0.0787 0.0837

3.7(c) - top Okubo-Weiss 0.0107 0.0824 0.0879

3.7(b) - bottom Vort. Thresh. 0.00766 0.0750 0.0752

3.7(c) - bottom Okubo-Weiss 0.00869 0.0823 0.0848

Table 3.4: Decomposition of large vortices. After applying our algorithm to deconstruct
the large vortices from Figure 3.5 into smaller point vortices, we again computed the
induced velocity field for each vortex configuration. We then computed the mean-
squared error between the reconstructed velocity field and the original PIV velocity data.
If we compare these results to those in Table 3.2, it appears that vortex quantization
does not improve the ability to reproduce the original velocity field.

50

vortices.

Chapter 4

Numerical Experiments

Our ultimate goal is to use the laboratory setup described in the preceding sec-

tions to evaluate point-vortex data assimilation with real observations and determine

the best strategy for correcting this type of model with data from these kinds of flows.

The work presented in this thesis takes several important steps toward attaining that

goal. First, we have devised and performed several numerical experiments to analyze

and compare various point-vortex data-assimilation strategies. These initial experi-

ments provide an opportunity to explore the dynamics of point-vortex data assimilation

without addressing the inevitable complexities of using real data. The results of this

exploration are presented in Section 7. Next, we augmented our numerical experiments

with observational noise in anticipation of one of the more significant challenges of using

real data. In Section 8, we present a detailed analysis of the effects of this observational

noise on the data-assimilation schemes we have developed. As part of this analysis, we

consider whether it is necessary to use a more-sophisticated assimilation algorithm to

mitigate the negative effects of the noise. We explore Newtonian nudging–a very sim-

plistic scheme for weighting observations–in Section 10. A more-sophisticated scheme

that has gained popularity in the meteorological and geophysics communities is ensem-

ble Kalman filtering. In Section 11, we present an analysis of targeted observing using

ensemble Kalman filtering with the point-vortex model. This analysis was performed

using NCAR’s Data Assimilation Research Testbed (DART). Finally, in Section 13,

52

we present preliminary results for a simulation that uses the experimental data in the

assimilation.

In the initial stages of our research, we devised several numerical experiments to

facilitate our study of point-vortex data assimilation and targeted observing. The basic

idea here is common in the numerical computing community: use one simulation as an

ansatz for the “true” behavior of the system—call this simT—and correct a “modified”

simulation—simM—using “observations” extracted from the truth run. The goal is to

construct the parameters of these two simulations so that the difference between them is

a reasonable estimate of the difference between the real world and our model of it. This

is very difficult in practice because (1) the model is imperfect, so there is no way to get

a simulation that accurately represents the real world and (2) we do not have a detailed

understanding of how the model misrepresents the real world, so we do not know how

to make simM differ from simT in a physically meaningful way. The standard approach

is to simplify this problem by making an assumption that the model is perfect and that

observations have additive, zero-mean, Gaussian noise. With these assumptions, simT

is generated by running the model from a representative initial condition, I. Noise is

added to observations collected from this truth run, and these observations are used to

correct simM, which is initialized by perturbing the initial condition I (usually by adding

Gaussian noise). This technique is referred to in the data-assimilation literature as a

“perfect-model experiment” or “Observing System Simulation Experiment” (OSSE).

Another approach, which we will refer to as an “imperfect-model experiment”, is

to attempt to generate a simple representation of model error and incorporate it into the

design of the assimilation experiment. Our approach is as follows: run a high-resolution

simulation to represent the “truth”, simT, and a coarser-resolution simulation as the

“model”, simM. Using a larger timestep for simM introduces numerical errors into the

simulation, causing it to differ significantly from simT. This is much like what happens

when a simulation diverges from reality, as floating-point error and physical noise have

53

many of the same effects, and the numerical errors in both cases are compounded

by the model integration. It is our opinion that an imperfect model experiment is

a more stringent test of any data-assimilation algorithm, so most of our numerical

experiments have been performed using this technique. However, we have also conducted

some perfect model experiments using the ensemble Kalman filtering software package,

DART. These results are presented in Section 11.

Another challenge in improving realism in any numerical experiment is to find

appropriate initial conditions for the simulations. Ideally, these initial conditions should

be derived from measurements of the physical system under study. In our case, we could

use the point-vortex data extracted from our PIV measurements of the planar air jet.

In the initial stages of this thesis work, these PIV measurements were not available,

so we attempted to construct realistic initial conditions that were similar to what we

expected to observe with the PIV equipment; these are displayed in Figure 4.1. Much

of our analysis in the rest of this section was performed with these initial conditions.

Once we obtained real data from the PIV system, we were able to extend our analysis

to vortex configurations obtained directly from the PIV measurements; the results of

this exploration are the subject of Sections 12 and 13.

Figure 4.1 displays two model vortex configurations that mimic the symmetric

and antisymmetric modes of the jet. We used these configurations as initial conditions

for all of the simulations described in this section. The vortex configuration displayed

in Figure 4.1(a) is derived from the well-known von Karman vortex street. Von Kar-

man proved [84] that two infinitely long parallel rows of vortices will remain stable if

two conditions are satisfied: (1) the strength of each vortex is identical, with vortices

in the left column having opposite vorticity from those in the right column and (2)

the spacing between vortices satisfies a/b = 0.281 , where a and b are labelled in Fig-

ure 4.1(a). It is worth noting that the vortices in the antisymmetric mode of our planar

jet (see Figure 3.4) are arranged in an antisymmetric configuration similar to the von

54

(a) (b)

Figure 4.1: Vortex configurations. Initial conditions in (a) are derived from the stability
condition for a von Karman vortex street. Vortices are spaced 1 unit apart in the x-
direction and b = 1/0.281 units apart in the y-direction. Similarly, an x-spacing of
1 and a y spacing of 3.6 are used to obtain the symmetric configuration displayed in
(b). In both cases, the vortices in the left column have strength -1 (counter-clockwise
rotation), and those in the right column have strength 1 (clockwise rotation).

55

Karman street, but the measured spacing is approximately a/b = 0.5. Although the an-

tisymmetric mode measured in the laboratory is slightly different from the von Karman

configuration, it is still a worthwhile vortex pattern to study because it arises naturally

in many physical systems. Clearly, in our numerical experiments, we cannot use an

infinitely long vortex street, but even with a finite number of vortices, we expect the

von Karman arrangement to result in relatively stable dynamics. In contrast, the sym-

metric pattern displayed in Figure 4.1(b) is highly unstable. We have also been able to

realize the symmetric mode in our laboratory jet, but only briefly and after very careful

tuning of the forcing. Thus, these two vortex configurations provide two very different

contexts—both of which are physically realistic—in which to study data-assimilation

methodologies. The images in Figures 4.2 and 4.3 display snapshots of the dynamical

evolution of each system.1

Starting from these initial conditions, we conducted a comprehensive set of the

imperfect model experiments described above. Recall that our approach was to use a

high-resolution simulation as the “truth” and apply observations of the truth to correct

a coarser-timestep simulation. Each simulation in our experiments was a fourth-order

Runge-Kutta integration of the Biot-Savart equations from Section 2.1, starting from

one of the initial conditions described in the previous paragraph. To produce the “truth”

simulation, we ran the numerical integration with a very small timestep, chosen using

a convergence test—i.e., starting with a fairly large timestep, say 1s, and decreasing

it until the differences between vortex trajectories in each successive simulation were

less than 10−5. This method yielded a timestep of 0.0001s for the symmetric intial

conditions and a timestep of 0.1s for the von Karman experiments. Figures 4.2 and 4.3

display snapshots of the truth simulations for these experiments. The timesteps for the

larger-timestep “model” simulations were chosen based on the resulting mean-squared

1 Note that Figure 4.3 displays a much shorter simulation.

56

012
345
678
9

0
1

23
45
67

89

0
1

23

45

67

89

(0s) (200s) (400s)

0
1

23

45

67

89

0
1

23

45

67

89

0
1

23

45

67

89

(600s) (800s) (1000s)

Figure 4.2: Results of a 5400s simulation with a 0.1 second timestep starting from the
von Karman initial condition. Figure 4.1(a) is a closeup of the square region in the
lower right corner of (a). Images display instantaneous positions of the vortices at the
times indicated below the figures.

57

01
23
45
67
89

01
23
45
67
89

01
23
45

67
89

01

23
45

67
89

(0s) (25s) (50s) (75s)

01

23
45

67

89

01

23

45
67

89

01

23
45
67

89

01

23
45

67

89

(100s) (125s) (150s) (175s)

Figure 4.3: Results of a 200s simulation with a 0.0001 second timestep starting from the
symmetric initial condition. Figure 4.1(b) is a closeup of the square region in (a). Images
display instantaneous positions of the vortices at the times indicated below each figure.
Note that this is a much shorter simulation than in Figure 4.2, as this configuration is
far more unstable.

58

error (MSE) between the model and truth simulation2 . We chose a timestep of 1s for the

symmetric experiments, which resulted in a MSE difference of 84.9 length units. This

value is roughly comparable to the distance that the vortices travel in the y-direction

over the course of the 200s simulations depicted in Figure 4.5. Thus, on average, each

vortex has an error equal to the square root of the total distance travelled. This choice

is fairly arbitrary, but we have found that the errors introduced are significant enough

to permit a useful exploration of the data-assimilation process. The simulation length

and large timestep for the von Karman experiments were chosen to produce a similar

value for the MSE between the truth and model simulation. A simulation length of

5400s and a timestep of 50s results in an MSE of 61.8 between the simulations depicted

in Figures 4.4(a) and (b).

The final step in this preliminary evaluation of our data-assimilation strategies

was to use the “truth” simulations of Figures 4.2(a) and 4.3(a) to correct the “model”

ones in Figures 4.2(b) and 4.3(b). We first attempted a direct, continuous assimilation

approach, simply replacing the simulated variables in the “model” run with the “true”

values at various intervals. This is the standard “periodic correction” approach used

in most of the data-assimilation research reviewed in Section 2.2. With this strategy,

the appropriate correction interval must be chosen in advance, keeping in mind that

more corrections will most likely result in a more-accurate simulation. We applied

this technique to our numerical experiments as follows. The simulation displayed in

Figure 4.5(b) is 200 seconds in length with a 1 second timestep, so we could examine

correction intervals ranging from 1 second to 200 seconds. A simulation that is corrected

at every timestep (every 1s), then, will be identical to the reference simulation displayed

in Figure 4.5(a), whereas a simulation corrected every 25 seconds will only be corrected

8 times over the course of the 200 second model run. Similarly, for the von Karman

2 The MSE was computed by summing over the errors for each vortex at each timestep and dividing
by the number of vortices and the number of timesteps. More information on our MSE calculations can
be found in Section 6.

59

(a) (b)

(c) (d)

Figure 4.4: Full trajectories of (a) “truth” and (b) “model” simulations starting from
the initial conditions in Figure 4.1(a). Part (a) shows a 5400 second simulation with a
0.1 second timestep and (b) shows a 5400 second simulation with a 50 second timestep.
Note that there are 10 vortices in these simulations; each “arm” in (a) and (b) is actually
a pair of vortices travelling very close together. In our numerical experiments, we use
the more-accurate trajectories from (a) to correct the vortices in (b). It is difficult to
see the differences between the vortex trajectories in (a) and (b) due to the large scale
of the plots. In (c) and (d), we provide closeups of the lower and upper pairs of vortices,
respectively. Here, the solid paths are taken from the “truth” simulation in (a) and the
black ++++ paths are the corresponding trajectories from (b). These lower plots show
the subtle differences between these two simulations.

60

(a)

(b)

Figure 4.5: Full trajectories of (a) “truth” and (b) “model” simulations starting from
initial conditions in Figure 4.1(b). Note that these plots are not to scale; we have
zoomed in on the x-range to make it easier to see the interesting dynamics. Part (a)
shows a 200 second simulation with a 0.0001 second timestep and (b) shows a 200
second simulation with a 1 second timestep. In our numerical experiments, we use the
more-accurate trajectories from (a) to correct the vortices in (b).

61

type simulation displayed in Figure 4.4(b), we can select any correction interval that is a

multiple of the 50 second timestep. We use this standard periodic correction approach

as a baseline against which to compare other techniques that use more-sophisticated

correction timing.

Chapter 5

Dynamics-Informed Data Assimilation

Much data-assimilation research is devoted to improving the algorithms used to

assimilate the observations. It is perhaps equally important to examine how much new

information is provided by the observations that are assimilated. When the model is

highly accurate, the relative information content in the observations is fairly low—i.e.,

the assimilated observations do not impart a significant change to our prior knowledge

of the system. In contrast, when the model is failing to track the true dynamics, the

observations can—potentially—drastically improve the simulation. If we can detect

when the model might be diverging from reality, then, we can intelligently select when

to correct it. This is a difficult task, as one does not know the true state of the system in

practical data-assimilation applications. Fortunately, we do know that solver algorithms

are based on interpolations and extrapolations, and they make mistakes in regions where

the system derivative varies rapidly. A small numerical error in the calculation of a

vortex position will be amplified if the landscape of the surrounding velocity field is

“steep”.

Figure 5.1(b) shows an example of this phenomenon. This image displays the

“true” trajectory as a solid line and the trajectory from the coarser time step simulation

as a series of + symbols. The latter is corrected to the former at the locations indicated

by the black squares. In the middle section of (b), shown magnified in (c), notice

how the model loses track of the true dynamics in a region where the forces acting on

63

(a) (b) (c)

Figure 5.1: Assimilating data into the point-vortex model: The numerical results of
Figure 4.5(a) are used to correct the vortices in the simulation of Figure 4.5(b). The
solid line and the + + + + + path are the true and corrected trajectories, respectively;
the data-assimilation scheme corrects the latter to the former at the points indicated by
the black squares. (a) displays the results when no correction is applied to the +++++

path (b) displays the results of periodically correcting the simulation at 25s intervals
and (c) is a closeup of the middle section of (b). The mean-squared error was 61.7 in
(a) and 1.12 in (b) and (c).

64

the vortex are rapidly changing, as evidenced by its abrupt change in direction. An

algorithm that chooses to apply the correction in this sensitive location could produce a

simulation that tracks the “true” dynamics much more faithfully. Note that traditional

data assimilation techniques disregard the system dynamics, although ensemble methods

register dynamically sensitive regions via the ensemble spread. Explicitly using the

dynamics to inform the correction timing is uncommon in the literature.

The analysis presented in the preceding paragraphs led us explore some new data

assimilation schemes that are based on our hypothesis that the dynamical stability of the

system should dictate the correction timing. We will refer to any technique in this class

of methods as a dynamics-informed assimilation algorithm. One way to evaluate the

dynamical stability of the system is to analyze the spatial gradients of the induced veloc-

ity at each vortex position. We evaluated six targeted observing strategies—described

in Section 5.1 below—that each apply a different metric to these velocity gradients in

order to make a correction decision. A seventh approach makes use of the Runge-Kutta

test steps to determine if the system is in a region where error growth is likely; this

technique is described in Section 5.2.

For each of these techniques, the decision criterion is applied separately to each

vortex. So, at a given timestep, any number of the vortices can be in a “dangerous

region” where the associated dynamical condition is satisfied. We have tried correcting

only the identified vortices as well as correcting all vortices, and we found, not sur-

prisingly, that correcting all of the vortices resulted in more-accurate simulations. So,

correcting all vortices is the strategy used in the experiments presented in this thesis.

Of course, there is an associated computational load here, and correcting fewer vor-

tices would be preferable. In our future work, we will explore techniques for achieving

accurate simulations when correcting only a subset of the vortices.

Each of the dynamics-informed techniques outlined below requires the specifica-

tion of a threshold Tc that is used in the correction decision. In general, choosing the

65

correct value of Tc for a particular data assimilation experiment requires some domain

knowledge and hand tuning to achieve a desired correction frequency. For our purposes,

we are exploring the performance of the method, so we varied Tc to analyze a wide

range of dynamical correction timings. Recall that the value chosen for Tc dictates how

many corrections are applied to the simulation. So, we can effectively compare the per-

formance of any dynamics-informed method to that of periodic correction by evaluating

the success of each method when the same number of corrections is performed. In our

future work, we will explore a more-quantitative approach to selecting the threshold Tc,

and possibly implement an adaptive technique.

5.1 Gradient-Based Methods

For all of the methods that rely on a measure of the induced velocity gradients,

we performed the same velocity gradient computations on each timestep. Our approach

was as follows: we computed the components of the Jacobian of the induced velocity

field at the location of each vortex using divided differences—that is,

J =

∂U
∂x

∂U
∂y

∂V
∂x

∂V
∂y

where U and V are the induced velocities in the x and y directions, respectively. The

divided-difference method calculates dU
dx

as follows:

dU

dx
=

U(x + h) − U(x − h)

2h
,

where we chose h using a convergence test1 for each set of initial conditions studied.

For the von Karman conditions, we used h = 1e−6 and for the symmetric case, we used

h = 1e−7. The other components of the Jacobian were computed similarly.

The idea behind gradient-based assimilation is to correct the vortices only when

1 We started with h = 1 and iteratively set h = h/10 until the MSE difference in induced velocities
from one iteration to the next was less than 10−5.

66

the induced velocity gradients indicate that the system is in a dynamically sensitive

region. We explored several methods for making this determination:

• Norm of Jacobian above a threshold. Here, we compute the norm of the

Jacobian and correct the system if the norm exceeds a pre-determined threshold,

Tc. We chose to use the L1 norm for the analysis in this thesis; a comparison of

the L1, L2, and L∞ norms for our test cases showed very little variation, so any

choice of norm should provide roughly the same results (although computation

of the L∞ norm can be numerically ill-conditioned). Recall that the L1 norm

calculates the maximum column sum of a matrix, i.e.,

||J || = max

{∣

∣

∣

∣

dU

dx

∣

∣

∣

∣

+

∣

∣

∣

∣

dV

dx

∣

∣

∣

∣

,

∣

∣

∣

∣

dU

dy

∣

∣

∣

∣

+

∣

∣

∣

∣

dV

dy

∣

∣

∣

∣

}

• Change in Norm of Jacobian. In this class of methods, we compare the L1

norm of the Jacobian at the current time step, ||J ||t, to the norm computed

on the previous timestep, ||J ||t−1. We tried three different correction schemes

using these two values: correcting when

(1) ||J ||t was a certain percentage larger than ||J ||t−1

(2) ||J ||t−1 was a certain percentage larger than ||J ||t

(3) ||J || either increased or decreased by the thresold percentage.

The mathematics for each decision criterion are:

(1) ||J ||t−||J ||t−1

||J ||t−1
> Tc

(2) ||J ||t−1−||J ||t
||J ||t

> Tc

(3) | ||J ||t−||J ||t−1 |
||J ||t−1

> Tc

• Positive eigenvalues above a threshold. The stability of a fixed point or

equilibrium point in a dynamical system can be determined by computing the

67

eigenvalues of the Jacobian matrix. If the eigenvalues are positive, the system

dynamics at the point are unstable. We use this same approach to analyze

each vortex location to determine if the local dynamics are unstable. If the

eigenvalues of the Jacobian for any vortex exceed a pre-determined positive

threshold Tc, we correct the system.

• Shear rate. Shear rate is a measure of the rate of change of velocity of one

layer of fluid passing over an adjacent layer. This is another measure of the

local velocity gradients in the fluid at the location of each point vortex. It is

calculated as follows:

γ̇xy =
∂U

∂y
+

∂V

∂x

where U and V are the induced velocities in the x and y directions respectively.

In this method, we apply the correction when γ̇xy exceeds a pre-determined

threshold Tc.

5.2 Runge-Kutta Test Step Method

All of the gradient-based methods described above incur a significant computa-

tional cost in computing the Jacobian of the induced velocity gradients at each vortex

position. It would be preferable to find a method that uses some information that is

more readily available in the simulation. Conveniently, we can glean some dynamical

information from the numerical integration process. The fourth-order Runge-Kutta al-

gorithm that we use to integrate the point-vortex Biot-Savart equations takes four “test

steps”, computing the induced velocities at each test location. These test steps can be

co-opted to provide a picture of how dynamically sensitive the point-vortex system is

at the current time in the simulation. Specifically, if the induced velocities at the test

locations (which are “nearby” in time and space) differ significantly from each other,

we can conclude that the induced velocity gradients must be large. Stated differently,

68

the higher order derivatives in the Runge-Kutta expansion are too large to ignore. This

indicates that error growth is likely, because the model integration will be less accurate

than the dynamics. We use this information as a trigger for correcting the model by

computing a mean-squared error measure on the test steps as follows. Let k1, k2, k3, k4

denote the four Runge-Kutta test steps. In our application, these vectors represent

induced velocity gradients at each vortex position. For each vortex, i, we find the

minimum and maximum induced velocity values and compute the squared difference

between them. We sum these values and divide by the number of vortices to obtain the

MSE:

MSE =

(

n
∑

i=1

max{k1[i], k2[i], k3[i], k4[i]} − min{k1[i], k2[i], k3[i], k4[i]}

)

/n,

where n is the number of vortices in the simulation. If the MSE exceeds the threshold

Tc, we correct the model.

This technique of comparing solver test steps is not as generalizable as the

gradient-based methods described in the previous section because it only applies to

simulations that use a particular type of solver, namely Runge-Kutta. Clearly, the

technique would not work with Euler methods because only one system derivative is

considered in advancing the model at each timestep. However, comparing solver steps

might work well for other types of solvers that use more than one data point to move

the simulation forward in time. For example, multistep methods keep track of more

past values in computing the next value of the system. Comparing the MSE between

values in the recent past might provide some information about the local dynamics, as

long as the timestep is small enough. However, this would require storage of past values,

increasing the memory requirements for the assimilation. An evaluation of whether or

not this correction technique will work well with other numerical solvers is outside the

scope of this thesis, but it will be interesting to explore in our future work.

Chapter 6

Evaluation and Comparison of Assimilation Methods

When evaluating new data-assimilation methods, one can use various metrics for

success. Perhaps the two most important are the accuracy of the simulation and the

computational cost of the algorithms. In order to measure the accuracy of the simu-

lation, we considered three different error metrics. The simplest is the mean-squared

error between the reference simulation and the data-assimilation model run. That is, we

computed the square of the distance between the true and corrected positions of each

vortex at each timestep, summed the results, and divided by the length of the simula-

tion and the number of vortices. This mean-squared-error measure captures our visual

interpretation of the accuracy of the simulation in Figure 5.1, where our eyes register

the accrued differences between the + + ++ path and the solid line. A second method

that we evaluated measures how often the simulated vortex positions are close to their

respective reference positions—that is, how often the simulated position is within an

ε-disc around its “true” location. To compute this, we simply summed the number of

timesteps in which the vortices satisfied this criterion and took the mean of this count

over simulation length and number of vortices. For simulations in which some small

amount of error is acceptable, the user may wish to know how often the model is within

the desired distance from the truth, and this metric captures that information. A third

error metric measures how long the correction keeps the vortex “on-track.” For each

vortex, we counted how long the simulated vortex position remains within an ε-disc

70

around the associated “true” vortex position after each correction. Note that another

correction could be applied during this measurement. The final error measure was also

normalized over the number of vortices and the number of corrections applied during

the simulation. Note that this is different from the previous metric in that it specifically

measures how long after a correction the simulation remains within an acceptable error

tolerance. This provides some information about the sensitivity of the system. If the

simulation is quickly going astray after each correction, the underlying dynamics are

clearly very sensitive to small numerical errors. Note that the second and third error

metrics require a choice of ε, which may be fairly arbitrary and/or application-specific.

Thus, in this thesis, we will primarily use the mean-squared-error metric to compare

the accuracy achieved by various data-assimilation methods.

When considering the computational cost of a data-assimilation technique, there

are several factors to take into account, including the speed of the model, the diffi-

culty in gathering the observations, and the complexity of the assimilation algorithm.

If the observations can be gathered easily, it may make sense to compare techniques

based on the complexity of the assimilation algorithm itself. If, on the other hand, the

cost of gathering and assimilating the observations is prohibitive, then the number of

corrections performed is a good measure of the computational expense of the correc-

tion methodology. This is the case for data assimilation in the context of a point-vortex

model: the computational complexity of the model itself is low and processing the veloc-

ity field observations to extract vortices is relatively expensive. As a result, in devising

our dynamics-informed approach, we chose to increase the computational complexity of

the model (by tracking velocity gradients) in favor of limiting the number of corrections

performed. Since we are working in a context in which gathering, processing, and as-

similating observations is very costly, we have chosen to use the number of corrections

as an appropriate measure of the computational cost.

To investigate the performance of a given data-assimilation technique, we con-

71

ducted an ensemble of experiments with the data sets depicted in Figures 4.2 and 4.3.

Each simulation was evaluated using the mean-squared error (MSE) metric described

in this section. By plotting the MSE results as a function of the number of corrections

performed, we were able to investigate the accuracy of the assimilation technique as a

function of its computational cost. This also provided a simple mechanism to compare

the performance of two different methods, such as a periodic versus a dynamics-informed

correction.

When evaluating the periodic correction approach, we investigated all possible

correction intervals for our test systems. These correction intervals were determined by

the simulation length and time step. For the von Karman configuration, the simula-

tion length was 5400s with a time step of 50s seconds, so we investigated assimilation

intervals of 50s, 100s, 150s, . . . , 5450s. Note that the 50s correction period results in 0

MSE, while the 5450s produces an uncorrected simulation and provides a baseline error

measure. For the symmetric experiments, the simulation length was 200s and the time

step was 1s, permitting periodic correction intervals of 1s, 2s, 3s, . . . 201s. Here again,

the 201s period provides the MSE for an uncorrected simulation.

For each dynamics-informed approach, we ran simulations with a wide range of

threshold values Tc. By recording the number of corrections performed for each value

of Tc, we obtained MSE as a function of the number of corrections. This allowed us

to effectively compare dynamics-informed correction to periodic correction. The range

of values used for Tc varied depending on the method being used. Table 6.1 shows the

values used for each type of dynamics-informed experiment. These threshold ranges

were obtained by hand-tuning to find the values that would produce a fairly complete

MSE curve, enabling us to compare the techniques for varying numbers of corrections

applied. In the next section, we present the results of these MSE calculations for each of

the dynamics-informed strategies described in Section 5, and compare these techniques

to periodic correction. The initial comparisons are performed without adding noise to

72

Method Symmetric Tc von Karman Tc

[Min,Max]:Inc [Min,Max]:Inc

Norm Change [0, 200]:0.5 [0, 5]:0.01

Norm Increase [0, 200]:0.5 [0, 5]:0.01

Norm Decrease [0, 200]:0.5 [0, 5]:0.01

Norm Thresh [0.1, 7]:0.01 [0, 0.25]:0.001

Eigenvalues [0.3, 12.9]:0.02 [0, 0.25]:0.001

Shear [0.2, 10]:0.01 [0.065, 1]:0.001

RK Steps [0, 0.038]:0.00005 [0, 0.1]:0.0001

Table 6.1: Thresholds for dynamics-informed techniques. Each entry in this table de-
scribes how thresholds were varied for a particular dynamics-informed assimilation ex-
periment. The dynamics-informed technique is listed in the left column and the initial
conditions are along the top row. The format of each entry is [minimum Tc, maximum
Tc]:Tc increment.

73

the observations used in the assimilation. Noise-added experiments appear in Section 8.

Chapter 7

Noise-Free Results for von Karman and Symmetric

To study and compare the various dynamics-informed correction techniques pre-

sented in Section 5, we performed a comprehensive series of experiments using the data

sets from Figures 4.2 and 4.3 . Figure 7.1 displays the results for the von Karman vortex

configuration. The plot in the upper left corner displays the MSE results for all of the

different dynamics-informed and periodic correction techniques. Since this is a little

cluttered, we have also plotted a single comparison plot for each dynamics informed

correction technique versus periodic correction. Note that each data point in a given

plot represents an MSE calculation for a single point-vortex simulation.

There are several interesting results here. First, notice that there are basically

two patterns in these plots. Plots (c), (d), (e) and (h) are very similar to each other,

as are plots (b), (f), and (g). In the first set of plots—which display the results of the

norm increase, norm decrease, norm change, and Runge-Kutta test step methods from

Section 5—each dynamics-informed method significantly outperforms periodic correc-

tion by several orders of magnitude. This is a significant result: it suggests that we can

greatly improve the data-assimilation accuracy by incorporating one of these targeted

observing strategies. Since the MSE results for these four techniques are almost identi-

cal, the Runge-Kutta test step method is the clear winner because it does not require

computation of the velocity gradients.

It is curious that these four methods produce almost identical results. To un-

75

-25

-20

-15

-10

-5

 0

 5

 0 50 100 150 200

Lo
g(

M
S

E
)

Number of Corrections

Eigenvalues
Shear

Norm thresh
Norm increase

Norm decrease
Norm Change

Periodic
RK steps

-25

-20

-15

-10

-5

 0

 5

 0 50 100 150 200

Lo
g(

M
S

E
)

Number of Corrections

Norm threshold
Periodic

(a) (b)

-25

-20

-15

-10

-5

 0

 5

 0 50 100 150 200

Lo
g(

M
S

E
)

Number of Corrections

Norm increase
Periodic

-25

-20

-15

-10

-5

 0

 5

 0 50 100 150 200
Lo

g(
M

S
E

)

Number of Corrections

Norm decrease
Periodic

(c) (d)

-25

-20

-15

-10

-5

 0

 5

 0 50 100 150 200

Lo
g(

M
S

E
)

Number of Corrections

Norm change
Periodic

-25

-20

-15

-10

-5

 0

 5

 0 50 100 150 200

Lo
g(

M
S

E
)

Number of Corrections

Eigenvalues
Periodic

(e) (f)

-25

-20

-15

-10

-5

 0

 5

 0 50 100 150 200

Lo
g(

M
S

E
)

Number of Corrections

Shear rate
Periodic

-25

-20

-15

-10

-5

 0

 5

 0 50 100 150 200

Lo
g(

M
S

E
)

Number of Corrections

RK steps
Periodic

(g) (h)

Figure 7.1: Comparison of dynamics-informed and periodic assimilation using the initial
conditions in Figure 4.1(a).

76

derstand this finding, we plotted a time series of the norms of the induced velocity

Jacobian for vortices 1, 4, 7, and 10 in a representative simulation (see Figure 7.2).

While evaluating these plots, it is useful to recall the behavior of the von Karman sim-

ulation, as depicted in Figure 4.2. Initially, the 10 vortices are very close together and

induced velocities are changing rapidly. As the vortices move farther apart, they pair

up. Eventually, the induced velocity at a particular vortex is dominated by the influence

of a single partner vortex. This pattern also clearly manifests itself in the norm of the

Jacobian. In the time series plots in Figure 7.2, we see that the gradients are changing

rapidly toward the start of the simulation, but then they level out (corresponding to the

very stable pair dynamics just described). In the first several timesteps, the Jacobian

norm is increasing for some of the vortices and decreasing for others. This explains why

the targeted observing techniques that are based on a percentage increase, decrease, or

change from one timestep to the next all perform similarly. Each of these techniques

applies all of the corrections in the first several time steps and does not correct the

simulation when the norms become flat. It is not as obvious why the Runge-Kutta test

step method is identical to the other three, but there is a commonality between all four

of the methods. They all look at rates of change, considering how the system changes

from one time step to the next. The test steps in the Runge-Kutta method are moving

the system forward by either a half time step or a full time step and measuring the

induced velocities at those times. Thus, computing an MSE between these test steps is

similar to looking at a percent change in the norm of the Jacobian from one time step

to the next.

Plots (b), (f), and (g) in Figure 7.1 display the results of the norm, eigenvalue,

and shear rate thresholding techniques. Recall from Section 5 that these techniques es-

sentially perform different arithmetic operations on the velocity gradients at each vortex

position. It appears that these different metrics are providing the same information for

the von Karman data set. They each provide a measure of how “unstable” the dynamics

77

are. Surprisingly, for higher numbers of corrections, these techniques do not outperform

periodic correction. To understand this, we can again refer to the plots of the norms

displayed in Figure 7.2. Consider, for example, the norm thresholding technique. Ini-

tially, as we decrease the threshold, we are correcting the simulation at the first several

timesteps—where the action is. Once we decrease the threshold value too far, however,

the technique subsumes the flat regions in these norm plots. The result is that we apply

too many corrections. It is interesting and somewhat counter-intuitive that these static

measures of the velocity gradients do not work well and that they are significantly worse

than the methods that include a time component in the dynamical analysis. This seems

to suggest that, for the von Karman data set, changes in the dynamical stability are

more important than instantaneous stability for point-vortex modelling accuracy.

It is interesting to compare these von Karman results to those achieved with the

symmetric vortex data sets from Figure 4.3. The MSE results for the symmetric case

are presented in Figure 7.3. For correction counts above roughly 25 corrections (1/4

of the time steps in the simulation), six of the dynamics-informed techniqes clearly

outperform periodic correction, often by several orders of magnitude. It is encouraging

the see the majority of our targeted observing techniques working as designed for this

dynamically sentitive vortex configuration. However, there is no single technique that

clearly works best. For a few corrections—less than about 30—the strategy of correcting

based on decreasing norms outperforms all of the other techniques. The Runge-Kutta

test step method is the winner for 30-100 corrections,however, and the norm change

technique dominates for > 100 corrections. These are three of the techniques that also

performed very well in the von Karman simulations, so we again see the trend that the

rate of change in the dynamical stability is important for simulation accuracy. It is a bit

disconcerting, however, that we cannot point to a single method that works best for all

numbers of corrections. At least for both of the initial conditions studied in this section,

correcting based on changing Jacobian norms or differences between Runge-Kutta test

78

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 2 4 6 8 10 12
 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0 2 4 6 8 10 12

(a) (b)

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 2 4 6 8 10 12
 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 2 4 6 8 10 12

(c) (d)

Figure 7.2: Velocity gradient norms as a function of time for vortex (a) 1 (b) 4 (c) 7 (d)
10 for a simulation starting from the initial conditions in Figure 4.1(a).

79

-25

-20

-15

-10

-5

 0

 5

 0 20 40 60 80 100 120 140 160 180 200

Lo
g(

M
S

E
)

Number of Corrections

Eigenvalues
Shear

Norm thresh
Norm increase

Norm decrease
Norm Change

Periodic
RK steps

-25

-20

-15

-10

-5

 0

 5

 0 50 100 150 200

Lo
g(

M
S

E
)

Number of Corrections

Norm threshold
Periodic

(a) (b)

-25

-20

-15

-10

-5

 0

 5

 0 50 100 150 200

Lo
g(

M
S

E
)

Number of Corrections

Norm increase
Periodic

-25

-20

-15

-10

-5

 0

 5

 0 50 100 150 200
Lo

g(
M

S
E

)

Number of Corrections

Norm decrease
Periodic

(c) (d)

-25

-20

-15

-10

-5

 0

 5

 0 50 100 150 200

Lo
g(

M
S

E
)

Number of Corrections

Norm change
Periodic

-25

-20

-15

-10

-5

 0

 5

 0 50 100 150 200

Lo
g(

M
S

E
)

Number of Corrections

Eigenvalues
Periodic

(e) (f)

-25

-20

-15

-10

-5

 0

 5

 0 50 100 150 200

Lo
g(

M
S

E
)

Number of Corrections

Shear rate
Periodic

-25

-20

-15

-10

-5

 0

 5

 0 50 100 150 200

Lo
g(

M
S

E
)

Number of Corrections

RK steps
Periodic

(g) (h)

Figure 7.3: Comparison of dynamics-informed and periodic assimilation using the initial
conditions in Figure 4.1(b).

80

steps appears to be a safe bet for improved performance of the assimilation. And, since

the dynamical information required by the Runge-Kutta test step method is readily

available, there is no reason not to use this method over periodic correction.

In comparing the symmetric results to those for the von Karman case, we again

see the pattern that the norm, eigenvalue, and shear rate thresholding techniques (plots

(b), (f), and (g), respectively) are qualitatively similar. This corroborates our conjecture

that these metrics are providing roughly the same static dynamic stability information.

However, the results for the other four cases are different from the von Karman simu-

lations. The norm change and Runge-Kutta time step techniques have a similar trend,

so these two seem to be measuring the same rate of change in the dynamical sensitivity

of the system. However, correcting based on increasing norms does not outperform

periodic correction for the symmetric simulations. To understand this, we can again

look at time series of the norms for several vortices in a representative simulation (see

Figure 7.4). The norms for the symmetric configuration look quite different than the

von Karman case. They are characterized by relatively constant norms that are punctu-

ated with fairly large spikes. These spikes might help to explain why the norm decrease

method works better than the norm increase method. Theoretically, the tip of each

spike is a dynamically senstive region where error growth is likely. Applying the cor-

rection at this timestep (which will occur when we use the norm increase method) will

make the model very accurate at this timestep. However, the location is still in a region

of high gradients. So, when we integrate forward in time, some errors are inevitably

introduced. In the timesteps that follow, the norms are decreasing, so the norm increase

method does not trigger a correction here. This analysis suggests that it may be more

important to apply the corrections “after” the vortices pass through a high gradient

region. This is exactly what the norm decrease method accomplishes for this system

that is characterized by spikes in the norms, so its performance dominates the norm

increase method.

81

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20
 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

(c) (d)

Figure 7.4: Velocity gradient Jacobian norms as a function of time for vortex (a) 1 (b)
4 (c) 7 (d) 10 for a simulation starting from the initial conditions in Figure 4.1(b).

Chapter 8

Adding Observational Noise to von Karman and Symmetric

All of the numerical experiments described thus far were performed without

adding any noise to the simulated observations. This is a useful first test, but obser-

vations gathered from any real-world experiment will obviously be contaminated with

noise. Our correction strategy must accomodate this challenge. To explore this issue, we

performed several numerical experiments in which Gaussian-distributed random noise

was added to the observations on each assimilation cycle. Figure 8.1 displays the results

for the von Karman simulations. Each plot provides the MSE results for an ensemble of

experiments corrected with noisy observations with a specific standard deviation, σ, for

the additive noise. For example, each point in Figure 8.1(a) represents a simulation in

which zero-mean Gaussian noise with σ = 0.001 was added to the x and y coordinates

of the assimilated observations. There are five curves in each plot—the curve outlined

by the purple squares displays the results for periodic correction experiments and the

other four curves provide the results for the targeted observing techniques that worked

well in our noise free experiments (red +=norm increase, green x=norm decrease, blue

star=norm change, turquoise square=Runge Kutta test steps). A surprising and dis-

couraging result of this exploration is that any level of noise seems to destroy the benefits

of dynamics-informed assimilation for this data set. Periodic correction fares better for

low levels of noise (σ = 0.001, 0.01, 0.1), but as we increase the noise (σ = 0.5), the MSE

values obtained by any of the correction techniques are higher than that of a completely

83

-6

-5

-4

-3

-2

-1

 0

 1

 2

 0 20 40 60 80 100 120

Lo
g(

M
S

E
)

Number of Corrections

Norm increase
Norm decrease

Norm Change
Periodic

RK steps

-4

-3

-2

-1

 0

 1

 2

 0 20 40 60 80 100 120

Lo
g(

M
S

E
)

Number of Corrections

Norm increase
Norm decrease

Norm Change
Periodic

RK steps

(a) (b)

-2

-1

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120

Lo
g(

M
S

E
)

Number of Corrections

Norm increase
Norm decrease

Norm Change
Periodic

RK steps

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120

Lo
g(

M
S

E
)

Number of Corrections

Norm increase
Norm decrease

Norm Change
Periodic

RK steps

(c) (d)

Figure 8.1: Effects of observational noise: simulations starting from the von Karman
initial conditions from Figure 4.1(a). Each point in these plots shows the MSE when a
single simulation is corrected with noisy observations; the goal is to compare periodic
and dynamics-informed correction when the same amount of noise is added. The plots
display the MSE results for the four targeted correction techniques that performed best
in the first round of experiments: the norm increase, norm decrease, norm change, and
Runge-Kutta test step algorithms. The standard deviation of the zero-mean Gaussian
noise added to the observations was (a) 0.001 (b) 0.01 (c) 0.1 (f) 0.5

84

uncorrected simulation (which has log MSE≈ 1.8). This suggests that we will need

to employ a more-sophisticated assimilation algorithm to account for the noise in the

observations. We explore two such algorithms in Sections 10 and 11.

To understand why the noise is so detrimental for the dynamics-informed tech-

niques, we can look at the corrected paths for some of the vortices in the simulation (see

Figure 8.2). Recall from our earlier discussion about the behavior of the vortices in this

simulation that all ten vortices are initially close together; after the first few timesteps,

they separate into pairs that travel off in different directions. As the simulation contin-

ues, the pairs become far enough apart that the motion of a given vortex is dominated

by the velocity induced by its partner vortex. As shown in Figure 7.2, this behavior is

reflected in the norms, which either increase or decrease rapidly to a steady-state value.

As a consequence, the dynamics-informed methods that are based on changes in the

norm apply all of their corrections in the first several timesteps, and they will not trig-

ger a correction once the pair dynamics begin to dominate. If the last correction applied

contains noise, the subsequent evolution of the vortex trajectories in the simulation will

be slightly off track from the true paths. This can be seen in Figure 8.2—the colored

paths outlined by the solid dots display the “true” behavior of the system. It is difficult

to see in the figure, but each of the five “arms” of the fan shape in the figure actually

depicts the paths of two vortices that have paired up. The paths outlined by the pluses

in the figure display the vortex trajectories from an imperfect model simulation that

is corrected whenever the Jacobian norms change by 3% or more from one timestep to

the next. The black squares indicate the times where a correction has been applied.

In this simulation, six corrections are applied at the first six timesteps. Since the last

correction applied is noisy, we can see that the simulated trajectories diverge from the

truth as time goes on; this is most obvious for the green trajectories in the figure. For

this data set, it seems that we need to use a more-sophisticated assimilation algorithm

that takes observational error into account when applying the correction. In Sections

85

Figure 8.2: Noise destroys dynamics-informed correction: simulation starting from the
von Karman initial conditions from Figure 4.1(a) and corrected based on the norm
change technique with Tc = 0.03. The paths outlined by solid dots are the “true”
trajectories for the 10 vortices in the simulation; the plus paths are the corrected tra-
jectories. Corrections are applied at the first 6 timesteps at the positions indicated by
the black squares. Corrections are not applied as vortices fly off in pairs, so the noise
accumulates.

86

10 and 11, we present the results of using Newtonian nudging and ensemble filtering to

perform this assimilation.

In contrast to the von Karman simulations, data assimilation improves most of the

simulations starting from the initial conditions from Figure 4.1(b)1 . These results are

presented in Figure 8.3. Also, the impact of noise on the dynamics-informed techniques

is much less drastic. For the lowest level of noise studied (σ = 0.001), the dynamics-

informed techniques outperform periodic correction for correction counts above about

20-30. And, for σ = 0.01, dynamics-informed correction is at least competitive with

periodic correction. It is encouraging that, for this data set, the dynamics-informed

techniques are robust in the face of low levels of noise. However, once again we see that

periodic correction is the winner for higher levels of noise (σ = 0.1, 0.5).

It is slightly counter-intuitive that the impact of noise is more deterimental to

the von Karman simulations than the symmetric ones, since we might expect noise to

have more of an impact in a dynamically sensitive flow. However, based on the noise

analysis presented above for the von Karman data set, it is clear that the dynamical

stability of the von Karman configuration causes problems in a direct assimilation of

noisy data: because the dynamical algorithms do not update the system frequently

enough, the noise accumulates. In contrast, the dynamical sensitivity of the symmetric

case results in more frequent correction by all of the dynamics-informed techniques.

And, more frequent correction is necessary in the face of noisy data. In the follow-

ing sections, we analyze some potential explanations for—and possible improvements

upon—the mediocre performance of the dynamics-informed correction techniques in the

face of noise.

1 Note that the log MSE for an uncorrected simulation is roughly 1.9 for this data set.

87

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 0 50 100 150 200

Lo
g(

M
S

E
)

Number of Corrections

Eigenvalues
Shear

Norm thresh
Norm increase

Norm decrease
Norm Change

Periodic
RK steps

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 50 100 150 200

Lo
g(

M
S

E
)

Number of Corrections

Eigenvalues
Shear

Norm thresh
Norm increase

Norm decrease
Norm Change

Periodic
RK steps

(a) (b)

-2

-1

 0

 1

 2

 3

 4

 0 50 100 150 200

Lo
g(

M
S

E
)

Number of Corrections

Eigenvalues
Shear

Norm thresh
Norm increase

Norm decrease
Norm Change

Periodic
RK steps

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 50 100 150 200

Lo
g(

M
S

E
)

Number of Corrections

Eigenvalues
Shear

Norm thresh
Norm increase

Norm decrease
Norm Change

Periodic
RK steps

(c) (d)

Figure 8.3: Effects of observational noise: simulations starting from the symmetric
initial conditions from Figure 4.1(b). Each point in these plots shows the MSE when a
single simulation is corrected with noisy observations; the goal is to compare periodic
and dynamics-informed correction when the same amount of noise is added. The plots
display the MSE results for the four targeted correction techniques that performed
best in the first round of experiments: the norm change and Runge-Kutta test step
algorithms. The standard deviation of the zero-mean Gaussian noise added to the
observations was (a) 0.001 (b) 0.01 (c) 0.1 (f) 0.5

Chapter 9

Random Vortex Configuration

One important question is whether or not the symmetric and von Karman vortex

configurations presented thus far are simply too contrived. Is there something critical

and unphysical in the perfect nature of the alignment and symmetry of the vortices

in these data sets? This initial symmetry is broken when the simulation is corrected

with noisy data, which may be the cause of some of the issues in the previous section.

To explore this, we ran an imperfect model experiment using a random vortex config-

uration. Specifically, we randomly positioned 10 vortices in the domain [0, 1] × [0, 1],

with each vortex randomly assigned a strength of either 1 or −1. Figure 9.1 displays

this initial condition. Starting from this configuration, we again ran a fine-resolution

simulation–in which the timestep of 0.00001 was chosen using a convergence test—as

the “truth” simulation. A coarser simulation (with timestep 0.01) was used to represent

an inaccurate model run. Vortex trajectories from these two simulations are presented

in Figure 9.2; the simulation length in each case was 50 seconds.

We conducted imperfect model experiments on these data sets by correcting the

simulation in Figure 9.2(b) with “observations” from the high-resolution simulation

in Figure 9.2(a). Using several different correction strategies, we ran an ensemble of

experiments to generate plots of MSE versus the number of corrections. In our first set

of experiments, we did not add any noise to the observations. The results are presented

in Figure 9.3. To produce the “periodic” curve in this figure, the interval in the periodic

89

0

1

2

3
4

5
6

7

8

9

Figure 9.1: Randomly distributed vortices. To produce this initial condition, vortices
were randomly placed in [0, 1]× [0, 1] and randomly assigned a strength of either −1 or
1. Vortices 0,3,4,5, and 7 have strength −1 and the rest have strength 1. We use this
initial condition to explore symmetry-breaking issues.

90

Figure 9.2: Simulations of point-vortex equations starting from the initial condition in
Figure 9.1. Both simulations are 50s in length. (a) “Truth” simulation with a 0.00001s
timestep (b) Correction simulation with a 0.01s timestep

91

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Lo
g(

M
S

E
)

Number of Corrections

Eigenvalues
Shear

Norm thresh
Norm Change

Periodic
RK slopes

Figure 9.3: Comparison of dynamics-informed and periodic assimilation using the initial
conditions in Figure 9.1. Each point in this figure, again, represents a single data-
assimilation run; the MSE is plotted as a function of the number of corrections. Each
curve is labelled with the correction strategy used to generate the results.

92
Method Tc [Min,Max]:Inc

Norm Change [8, 28]:0.05

Norm Thresh [0, 60]:0.1

Eigenvalues [10, 16]:0.05

Shear [1, 20]:0.1

RK Steps [0.0005, 0.005]:0.00005

Table 9.1: Thresholds for dynamics-informed techniques. Each entry in this table de-
scribes how thresholds were varied for a particular dynamics-informed assimilation ex-
periment. The dynamics-informed technique is listed in the left column and the format
of each entry is [minimum Tc, maximum Tc]:Tc increment.

correction strategy was varied from 0.01 to 10.01 in increments of 0.01. The other curves

are labelled with the dynamics-informed correction strategy that was used to produce

them. Recall that for a given dynamics-informed approach, varying the threshold value

Tc for the algorithm will result in a different number of corrections. For example, for the

norm-change method, Tc represents the correction threshold for a change in the norm of

the Jacobian of induced velocity gradients. A higher threshold in this case will usually

result in fewer corrections over the course of the simulation. Table 9.1 shows how Tc

was varied for each dynamics-informed correction strategy.

The results in Figure 9.3 are quite surprising. Our goal in investigating the ran-

dom data set was to ensure that the symmetry in the von Karman and symmetric initial

conditions did not introduce artificial problems in the assimilation of noisy observations.

We hypothesized that breaking the rigid symmetry of these configurations by assimi-

lating noisy observations might have caused the problems in the experiments presented

in the previous section. If this were true, we would expect that our dynamics-informed

strategies would perform better in simulations with random initial conditions. This

is not what happened. In fact, periodic correction outperforms all of the dynamics-

informed correction techniques for this data set!

Of the dynamics-informed techniques, the norm-change and norm thresholding

techniques work best for this data set. Also, it appears that for the random initial con-

93

ditions, the behavior of the norm change technique is similar to the norm thresholding

technique. And, the eigenvalue and Runge-Kutta steps methods show a similar trend.

These similarities are different from the similarities we saw for the symmetric and von

Karman initial conditions. In those experiments, techniques based on changes in the

norms (norm change, Runge-Kutta steps) behaved similarly, and techniques based on

a static measure of dynamic stability (eigenvalues, shear, norm thresholding) obeyed a

different trend.

Some of these results can be understood by analyzing the induced velocity norms

for the vortices in an uncorrected simulation. Time series of these norms for several

of the vortices in the simulation are presented in Figure 9.4. Vortices 1 and 8—the

two black curves in Figure 9.2(b)—both display a pattern similar to Figure 9.4(a).

Vortices 2 through 6—the red, green, blue, purple, and turquoise curves—exhibit a

pattern similar to Figure 9.2(b). Notice that four of these vortices are travelling off

in pairs similarly to the vortices in the von Karman configuration. And, we see that

the resulting norm signature is similar for these vortices to the norm series displayed

in Figure 7.2. Vortices 7 and 9 both display a pattern similar to Figure 9.4(c). These

are the yellow and orange vortices in Figure 9.2(b) that are tightly oscillating around

each other. This tight interaction seems to produce a wild oscillation in the velocity

gradient norms. I believe that this norm pattern—which was not observed in either

the symmetric or von Karman data sets—is what causes difficulties for our dynamics-

informed techniques. For example, we can consider how the norm change technique

would handle this norm pattern. If the norm change threshold is too high, we will

not correct at any of the timesteps. But, if we lower the threshold, we will essentially

begin to correct at all of the times because the norms are oscillating so dramatically.

The point is that the dynamical information does not differentiate any of the correction

times from the others. The norms displayed in Figure 9.4(d) for Vortex 10—the gray

curve in Figure 9.2(b)—shows a similar oscillatory pattern, but it is much less dramatic.

94

 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5
 0

 2

 4

 6

 8

 10

 12

 14

 0 0.1 0.2 0.3 0.4 0.5

(a) (b)

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 0.1 0.2 0.3 0.4 0.5
 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5

(c) (d)

Figure 9.4: Velocity gradient norms as a function of time for vortex (a) 1 (b) 4 (c) 7 (d)
10 for a simulation starting from the initial condition in Figure 9.1.

95

A preliminary conclusion is that periodic correction is likely to be the best approach for

data sets with a strong coupling interaction between the vortices.

Chapter 10

Newtonian Nudging

In the experiments described in Section 7, we used direct state variable replace-

ment to correct the point-vortex model. As discussed in Section 2.2, much more sophis-

ticated algorithms are typically used by the meteorological and oceanographic commu-

nities. This is primarily because the full-state of the system is not observed and the

observations available are often different from the model state variables. Most of these

researchers use techniques that attempt to account for the different error characteristics

of the model and the observations, pushing the model closer to the observations when

they are deemed to be the more-accurate source of information. Newtonian nudging,

a common technique in control theory, is a very simplistic approach to this problem

that nudges the model a fraction of the distance toward the observations on each cor-

rection cycle[80]. We will call this fraction the “nudge factor”; it will be expressed here

as the percentage of the distance that the model is nudged toward the observations.

For observations with small uncertainty, a larger nudge factor is more appropriate than

for observations with larger uncertainty. In perfect-model experiments, in which the

true state is known exactly and the observations are noise-free, complete state-variable

replacement—i.e., a nudge factor of 100%—is clearly the best approach. However, for

noisy observations, we would expect that a smaller nudge factor might produce better

results.

Figures 10.1 and 10.2 display the results of the Newtonian nudging experiments

97

with the von Karman and symmetric initial conditions, respectively. We conducted

experiments with various levels of Gaussian noise added to the observations. The σ

value shown below each plot in the figure indicates the standard deviation of the zero-

mean Gaussian noise added to the observations in the set of experiments that produced

the plot. In the left column, we display the MSE results for experiments conducted

using standard periodic correction. These can be compared to the results in the right

column for the norm change dynamics-informed technique. In each plot there are four

curves, each showing the results when a different “nudge factor” is used. The curve

labelled “Full correct” represents a nudge factor of 100%; these curves are the same

as the ones we saw in Figures 8.1 and 8.3. The curves labelled 0.3, 0.6, and 0.9 each

represent an ensemble of experiments in which each state variable in the model was

nudged 30%, 60%, or 90% of the distance to the noisy observations, respectively. To

produce the curves for the periodic experiments, the correction interval was again varied

from 0.1 to 50.1 in increments of 0.01. To produce the norm change curves, we used the

same threshold values shown in Table 6.1.

For the periodic curves in the left column of these two figures, the behavior

matches our expectations fairly well. For low levels of noise, larger nudge factors out-

perform smaller ones and a full correction is always the best choice. However, as the

noise increases, a smaller nudge factor is better than a full correction. For example, for

observations that include Gaussian noise with standard deviation 0.1, a nudge factor of

0.9 often outperforms a full correction; as we increase the noise further to σ = 0.5, nudge

factors of 0.9, 0.6, and, occasionally, 0.3 yield higher accuracy. There is also a similar

trend for the norm change correction of the symmetric data set in the right column of

Figure 10.2, although for higher levels of noise, the nudge factor that works best seems

to be much less systematic.

For the von Karman norm change curves in the right column of Figure 10.1, the

results are more difficult to interpret. Recall the problem with the von Karman noise

98

-6

-5

-4

-3

-2

-1

 0

 1

 2

 0 20 40 60 80 100 120

Lo
g(

M
S

E
)

Number of Corrections

Nudge 0.3
Nudge 0.6
Nudge 0.9

Full correct

-6

-5

-4

-3

-2

-1

 0

 1

 0 20 40 60 80 100 120

Lo
g(

M
S

E
)

Number of Corrections

Nudge 0.3
Nudge 0.6
Nudge 0.9

Full correct

(periodic, σ = 0.001) (norm change, σ = 0.001)

-4

-3

-2

-1

 0

 1

 2

 0 20 40 60 80 100 120

Lo
g(

M
S

E
)

Number of Corrections

Nudge 0.3
Nudge 0.6
Nudge 0.9

Full correct

-4

-3

-2

-1

 0

 1

 2

 0 20 40 60 80 100 120

Lo
g(

M
S

E
)

Number of Corrections

Nudge 0.3
Nudge 0.6
Nudge 0.9

Full correct

(periodic, σ = 0.01) (norm change, σ = 0.01)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120

Lo
g(

M
S

E
)

Number of Corrections

Nudge 0.3
Nudge 0.6
Nudge 0.9

Full correct

-2

-1

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120

Lo
g(

M
S

E
)

Number of Corrections

Nudge 0.3
Nudge 0.6
Nudge 0.9

Full correct

(periodic, σ = 0.1) (norm change, σ = 0.1)

-1

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120

Lo
g(

M
S

E
)

Number of Corrections

Nudge 0.3
Nudge 0.6
Nudge 0.9

Full correct

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120

Lo
g(

M
S

E
)

Number of Corrections

Nudge 0.3
Nudge 0.6
Nudge 0.9

Full correct

(periodic, σ = 0.5) (norm change, σ = 0.5)

Figure 10.1: Newtonian nudging von Karman: simulations starting from the von Kar-
man initial conditions from Figure 4.1(a).

99

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 0 20 40 60 80 100 120 140 160 180 200

Lo
g(

M
S

E
)

Number of Corrections

Nudge 0.3
Nudge 0.6
Nudge 0.9

Full correct

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 20 40 60 80 100 120 140 160 180 200

Lo
g(

M
S

E
)

Number of Corrections

Nudge 0.3
Nudge 0.6
Nudge 0.9

Full correct

(periodic, σ = 0.001) (norm change, σ = 0.001)

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 20 40 60 80 100 120 140 160 180 200

Lo
g(

M
S

E
)

Number of Corrections

Nudge 0.3
Nudge 0.6
Nudge 0.9

Full correct

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 20 40 60 80 100 120 140 160 180 200

Lo
g(

M
S

E
)

Number of Corrections

Nudge 0.3
Nudge 0.6
Nudge 0.9

Full correct

(periodic, σ = 0.01) (norm change, σ = 0.01)

-3

-2

-1

 0

 1

 2

 3

 4

 0 20 40 60 80 100 120 140 160 180 200

Lo
g(

M
S

E
)

Number of Corrections

Nudge 0.3
Nudge 0.6
Nudge 0.9

Full correct

-2

-1

 0

 1

 2

 3

 4

 0 20 40 60 80 100 120 140 160 180 200

Lo
g(

M
S

E
)

Number of Corrections

Nudge 0.3
Nudge 0.6
Nudge 0.9

Full correct

(periodic, σ = 0.1) (norm change, σ = 0.1)

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20 40 60 80 100 120 140 160 180 200

Lo
g(

M
S

E
)

Number of Corrections

Nudge 0.3
Nudge 0.6
Nudge 0.9

Full correct

-1

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140 160 180 200

Lo
g(

M
S

E
)

Number of Corrections

Nudge 0.3
Nudge 0.6
Nudge 0.9

Full correct

(periodic, σ = 0.5) (norm change, σ = 0.5)

Figure 10.2: Newtonian nudging symmetric: simulations starting from the von Karman
initial conditions from Figure 4.1(b).

100

results from Section 8: there was no correction applied after the first several simulation

time steps because the stable pair dynamics of the vortices had materialized. After the

last noisy correction was applied early in the simulation, then, the noise accumulated as

the simulation proceeded. This situation will not be remedied by using the Newtonian

nudging algorithm. Rather, the highest accuracy will be achieved by a simulation that

makes that last correction as accurate as possible. So, the best nudge factor will depend

on the model accuracy and the observational noise at this critical correction time. For

low noise levels, lower nudge factors seem to work better, which indicates that the model

is more accurate than the observations at the final correction time. For the highest level

of noise (σ = 0.5), the results seem a little less systematic, with low nudge factors

winning out occasionally and higher nudge factors being more successful for different

correction counts. However, the results for higher levels of noise (σ = 0.1, 0.5) are all

worse than an uncorrected simulation, which has MSE of 1.8, so these results are not

worth analyzing further.

The Newtonian nudging algorithm provides a step in the right direction in terms of

weighting the impact of the observations based on their noise characteristics. However,

the method is fairly crude. There is no way to decide on an appropriate nudge factor

given the observational noise. And, a constant nudge factor across the entire simulation

is obviously not appropriate. The best nudge factor at a particular timestep depends

on the accuracy of the simulation itself in addition to the accuracy of the observations.

The Newtonian nudging algorithm does not track any information about the accuracy

of the simulation, so there is no mechanism for deciding whether the observations or

the model should receive a higher weight. More-sophisticated methods would take

all of this information into account in the assimilation step. The ensemble Kalman

filter, which was introduced in Section 2.2, is one such method that uses conditional

probability and statistical techniques to provide the most accurate state estimate. In

the next section, we will explore data assimilation using this technique, in the hopes

101

that this more-sophisticated algorithm will solve some of the problems with noise in our

dynamics-informed assimilation.

Chapter 11

Data Assimilation Research Testbed

Ensemble Kalman filtering (EnKF) is an assimilation technique that has gained

popularity in the atmospheric and oceanic communities in recent years. Recall from

Section 2.2 that traditional Kalman filtering is based on the Bayesian statistics for

approximating the mean and covariance of p(xt(ti)|O(ti)): the probability of the true

state xt(ti) given the available observations O(ti) up to time ti. EnKF circumvents some

of the difficulties in the application of the traditional Kalman filter by using Monte-Carlo

sampling to estimate the mean and covariance. The basic algorithm works as follows.

The initial condition for the simulation is perturbed to produce an ensemble of model

states with mean equal to the initial condition and a prescribed variance. All of these

“ensemble members” are integrated forward in time to the analysis time. At this point,

the mean of the ensemble provides a “prior” estimate of the true system state, and the

ensemble spread provides information about the uncertainty in the estimate. After the

observations have been assimilated using the algorithm described in [8], these ensemble

statistics are referred to as a “posterior” estimate.

It is worth noting that the application of the EnKF algorithm inherently includes

some dynamical information that can be exploited in a targeted observing strategy.

In particular, the behavior of the ensemble members is an indirect measure of the

dynamical sensitivity of the system—if they start close together in the phase space and

spread quickly, we know that the model is in a region of high gradients. Thus, the

103

spread of the ensemble members can be used as an indicator of the error growth and a

trigger for correction. The spread is calculated as part of the assimilation process, so

on timesteps when we actually assimilate the data, there is no computational expense

in using spread to trigger correction. However, in order to use it to trigger correction,

the spread must be computed periodically to determine if correction is required. Thus,

there is a computational cost incurred to compute the spread on timesteps when no

correction occurs. The spread-based correction technique is the current state of the art

in ensemble-based targeted observing, and it has been found to perform at least as well

as (if not better than) periodic correction techniques [83]. However, no one has explored

the use of this method in the context of point-vortex models.

Note that the dynamics-informed methods presented in Section 5 and the spread-

based method are very similar. They work in different ways to estimate error growth in

the simulation, which results from the dynamical sensitivity of the system. The differ-

ence is that the dynamics-informed techniques presented in this thesis reason explicitly

and proactively to locate the times in the simulation where the error growth starts,

whereas the spread-based technique reduces the error once the growth has actually

been observed. The theory behind the dynamics-informed techniques is that making

the simulation as accurate as possible in a dynamically sensitive region will minimize the

subsequent error growth. The spread-based techniques reduce error after the fact. It is

not clear which of these techniques will work better, and no one has performed a com-

parison in the context of point-vortex models. In this section, we present a preliminary

study of this, first using the spread-based method to correct the point-vortex simulations

starting from the initial conditions in Figure 4.1. We then compare this spread-based

correction to the norm change method, which performed well in our experiments with

noise-free data.

Ensemble filtering has been very successful and it is widely accepted by the data-

assimilation research community. The method works very well for a wide variety of

104

assimilation problems, and the statistical methods and algorithms employed by the

EnKF enable a clear understanding of the data-assimilation process. Another appeal of

ensemble techniques is that there is a readily available software package that facilitates

their use: the Data Assimilation Research Testbed (DART) [1]. Using this software, the

start-up time for researching data-assimilation problems is greatly minimized. Several

example models are provided with DART and adding a new model is fairly straightfor-

ward. One simply has to implement a model interface to “plug” the new model into the

DART infrastructure. We implemented the point-vortex model in this framework; the

Fortran90 code for our model is provided in Appendix A.

Using DART, it is relatively simple to conduct the perfect model experiments

described in Section 2.2. The standard approach is as follows:

(1) Given an initial condition, run the model for a long time so that the model

state converges onto the “attractor” of the dynamical system being modelled.

Note that the definition of a “long time” is a tuning parameter that is model-

dependent.

(2) Using the spun-up initial state from (1), run the model for a certain number of

timesteps to produce a “truth,” or “perfect model”, simulation.

(3) Collect simulated observations from this truth run and perturb them with Gaus-

sian noise (with variance prescribed by the user).

(4) Construct an ensemble of initial states such that the ensemble mean is equal

to state (1) and the variance has some user-specified structure. Note that the

initial condition from (1) is not included in the ensemble. This would unfairly

pollute the experiments with too much knowledge about the true state.

(5) Run the simulation and correct the ensemble with the observations from the

truth run using a Kalman filter update.

105

Note that there is an assumption in Step (1) that the system being modelled has an

attractor. This is not the case for our point-vortex experiments, and the dynamics of

interest often occur within in a short period of time before the vortices move apart. So,

instead of running the model for a long time, as in step (1), we run the model for a single

timestep just to generate required initialization (“restart”) files for DART. This is not

merely an academic distinction; it has some important implications for the behavior

of DART. There are some processes in DART—for example, the adaptive inflation

machinery described below—that require some lead time to settle onto the appropriate

statistics. We will revisit this difference when we discuss some of the results from our

perfect model experiments.

Figure 11.1(a) shows an example DART result for one state variable (x position

of one vortex) in a perfect model experiment with the point-vortex model. We can use

this time series to make the experimental concepts a little more concrete and show how

to analyze results obtained with DART. The blue trajectory in this figure is the true

state; the green trajectories display the priors1 for 20 of the ensemble members in the

simulation. The red curve provides the prior mean estimate. Notice the initial time,

where we see the ensemble members distributed around the true state. The spread in

the ensemble increases as the simulation moves forward, until the first analysis time,

where we see the spread decrease significantly. This cycle of increasing spread followed

by a huge spread reduction continues through each data-assimilation cycle.

In this example, the EnKF assimilation is not working very well—in the sense that

the prior ensemble mean is not consistently tracking the true state. Another important

measure for judging the success of a DART assimilation is to consider how often the

truth curve lies somewhere within the area spanned by the ensemble members [5]. When

this criterion is met, it indicates that the truth can be “explained” by the model’s prior

estimate of the state (to within the error variance indicated by the ensemble spread). If

1 value at each analysis time before the observations are assimilated

106

Figure 11.1: Analysis of DART Results. (a) Time series for the x position of a vortex
in a representative simulation. The blue trajectory is the true state and the green
trajectories display the priors for 20 of the ensemble members. The red curve shows
the mean estimate. We can see that the assimilation is not working very well in the
sense that the prior mean estimate is not tracking the true state. An example of filter
divergence is illustrated in (b), where the mean estimate spikes downward.

107

this is not the case, the filter has diverged. Filter divergence, described in Section 2.2,

is a symptom of the finite sample size used to estimate the covariance of the probability

distribution. An example of this can be seen in Figure 11.1(b), where the ensemble

mean spikes downward. Notice how the prior estimate has diverged significantly from

the true value and the truth is not contained within the ensemble spread.

There are several techniques built into DART that can be used to address filter

divergence. Perhaps the simplest is to increase the ensemble size to obtain a better

statistical sample. For the experiments presented in this Section, we have chosen an

ensemble of 100 members. This ensemble size might be considered computationally

cost-prohibitive for many research applications, but initially we are not concerned with

DART’s performance. We simply want to explore targeted observing techniques using

an assimilation algorithm that is well-known and respected in the data-assimilation

community. Eventually, of course, if we want to use DART for real-time flow control

applications, this computational burden will become critical. Fortunately, there are

techniques in DART to obtain similar results using fewer ensemble members—namely,

covariance localization and inflation. Covariance localization is used to prevent spurious

correlations between uncorrelated state variables. Inflation serves to increase the spread

to a more representative value; the simplest approach for doing this is to multiply the

covariance matrix by a fixed number slightly larger than 1 at each analysis time. There

is also a more-sophisticated technique, known as adaptive inflation [6] that incorporates

a statistical update of the multiplier at each assimilation time, based on an analysis of

the distance between the observations and the ensemble. For the experiments presented

in this section, we have chosen to use adaptive inflation with an initial value of 1 and

an initial standard deviation of 0.1.

Using this setup, we conducted perfect model experiments for the two sets of

initial conditions from Figure 4.1. For each data set, we performed a similar analysis

to the one described in Section 4 to compare periodic, spread-based, and dynamics-

108
Data Set Time Sim Periodic Spread-based Norm change

Step Length Intervals Tc Tc

von Karman 0.005 200 [1,200,1] [0,20,0.2] [0,20,0.2]

Symmetric 0.005 200 [1,200,1] [0,2,0.01] [0,2,0.01]

Table 11.1: Experimental setup for DART. This table displays the time steps, simulation
lengths, and correction settings for each of the initial conditions studied with DART. A
table entry of the form [a, b, c] indicates that the relevant experimental parameter was
varied from a to b in increments of c.

informed correction. The experimental parameters are provided in Table 11.1. For the

symmetric experiments, we had to modify the simulation parameters slightly from those

used in Section 7, increasing the timestep to 0.005 to avoid a blow-up of the simulation

state variables2 .

For each correction algorithm, we ran multiple DART experiments to generate a

plot of the MSE versus number of corrections. For the periodic algorithm, we varied the

correction interval to produce these curves. For spread-based and dynamics-informed

correction, we generated observations every 1s. At these observation times, we deter-

mined whether to apply a correction based on whether the dynamical criterion was met.

In the case of spread-based correction, if the ensemble spread for any state variable was

above a pre-specified threshold, Tc, we corrected the model. For dynamics-informed

correction, we chose to implement the norm change technique from Section 5: if the

norm of the Jacobian of induced velocity gradients at any vortex position changed by a

threshold percentage Tc between these 1s analysis times, we corrected the model. For

both correction algorithms, Tc was varied as described in Table 11.1 to generate the

MSE curves presented in this section.

Before running the ensemble of experiments just described, our first step was to

verify that ensemble filtering actually works for the point-vortex model and the data sets

we are studying. This is an important contribution of this thesis; no one has investigated

2 The precise cause of this blow-up was never determined, and we did not explore remedies for this
problem because we do not believe that the change in time step affects the results in a meaningful way.

109

ensemble assimilation techniques with a point-vortex model. In the data-assimilation

community, there is significant interest in point-vortex modelling for hurricanes and

other planetary and oceanic systems with discrete vortices. Our results provide good

news for this group of researchers—ensemble filtering seems to work quite well for the

data sets we studied. Figure 11.2 provides some time-series plots similar to the one

presented earlier in this section for a single simulation with the symmetric data set.

These time series show the assimilation results for all three state variables for two of the

vortices in a simulation that was corrected every 5 seconds (40 times in the course of

the simulation). The observational error variance was 0.000001. Notice that we cannot

distinguish the blue curve in most of these plots because the prior estimate of the mean

(red curve) is tracking the true state (blue curve) so well. The assimilation is working

beautifully for this test case.

The simulation in Figure 11.2 was corrected fairly frequently with very accurate

observations. As expected, things get worse as the number of observations is decreased

or the observational error is increased, as shown in Figure 11.3. In this figure, we see

two time series for the x coordinate of the same vortex depicted in Figure 11.2(a). Part

(a) of the figure displays the results of a simulation that is corrected every 12s—that

is, 16 times over the course of the simulation. The results here are not terrible, but as

expected, the prior mean is not tracking the true state as well as it was in the simulation

that was corrected more frequently. Part (b) comes from a simulation that was corrected

every 5s (40 times), but with observations having an error variance of 0.01. It seems

that the assimilation in this experiment is not working very well—we can see that the

ensemble estimate is not “locking on” to the true state. However, it is also possible that

the assimilation is working well, but that this is the best we can do given these noisy

observations. It is interesting to note that this value of the error variance (0.01), where

things seem to break down for the DART assimilation, is the same value that degraded

the performance of our dynamics-informed methods below that of periodic correction

110

(a) (b)

Figure 11.2: DART assimilation is working. This figure shows time series plots for
vortices (a) 1 and (b) 4 from a symmetric simulation that was corrected every 5 seconds
with observations having error variance 0.000001. The top and middle time series show
the evolution of the x and y coordinates, respectively. The bottom plots display the
vortex strengths.

111

(a) (b)

Figure 11.3: Noise level and correction frequency impact accuracy. (a) shows a simula-
tion that was corrected every 12s and (b) shows a simulation in which the observations
have a larger error variance of 0.01. In both cases, we can see that the ensemble mean
is not tracking the true state nearly as well as in Figure 11.2.

112

in Section 8. This suggests that an error variance of 0.01 or higher (σ > 0.1) makes

successful assimilation much more difficult in general.

These considerations regarding noise and correction frequency should be kept in

mind when evaluating the MSE versus number of corrections plots in this section. It can

be argued that it does not make sense to compare targeted observing techniques based on

correction timing when the ensemble assimilation process might not be working well. So,

with this in mind, we should give more weight to results obtained for a higher number of

corrections and lower observational error. This is one of the limitations in conducting a

huge number of experiments with a tuneable software package. Theoretically, it might

be possible to tune the DART parameters to obtain better results with each of the

simulations in these experiments (even those with higher observational error and less

frequent correction). However, this would make it difficult to generalize our results. For

the purposes of this thesis, we simply ask the reader to keep these caveats in mind when

analyzing the results.

Figures 11.4 and 11.5 display the MSE versus number of correction curves for

the three correction techniques we investigated, starting from the initial conditions in

Figures 4.1(a) and 4.1(b), respectively. Here, we compare the periodic (blue curve),

spread-based (green curve), and norm change (red curve) correction techniques. Each

plot provides the results for the ensemble of experiments represented by the parameters

in Table 11.1, in which each simulation is corrected with observations having a fixed

error variance.

For the von Karman results in Figure 11.4, there is good news. For all levels

of noise, the spread-based technique usually significantly outperforms periodic correc-

tion. The norm change dynamics-informed technique also does well for the lower levels

of noise. However, the spread-based method is the clear winner for this data set, es-

pecially when we consider that there is a lower computational cost involved in using

this technique. These results are interesting because in Section 8, we found that noise

113

-4

-2

 0

 2

 4

 6

 8

 0 20 40 60 80 100 120

Lo
g(

M
S

E
)

Number of Corrections

Norm change
Spread-Based

Periodic

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120

Lo
g(

M
S

E
)

Number of Corrections

Norm change
Spread-Based

Periodic

(a) (b)

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120

Lo
g(

M
S

E
)

Number of Corrections

Norm change
Spread-Based

Periodic

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120

Lo
g(

M
S

E
)

Number of Corrections

Norm change
Spread-Based

Periodic

(c) (d)

Figure 11.4: DART: simulations starting from the von Karman initial conditions from
Figure 4.1(a). Each point in these plots provides the MSE when a single simulation
is corrected with noisy observations; the goal is to compare periodic and dynamics-
informed correction when the same amount of noise is added. The plots display the
MSE results for spread-based, norm change, and periodic correction. The variance of
the zero-mean Gaussian noise added to the observations was (a) 0.000001 (b) 0.0001 (c)
0.01 (f) 0.25

114

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 50 100 150 200 250 300 350

Lo
g(

M
S

E
)

Number of Corrections

Norm Change
Spread-Based

Periodic

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140 160 180 200

Lo
g(

M
S

E
)

Number of Corrections

Norm Change
Spread-Based

Periodic

(a) (b)

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140 160 180 200

Lo
g(

M
S

E
)

Number of Corrections

Norm Change
Spread-Based

Periodic

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 20 40 60 80 100 120 140 160 180 200

Lo
g(

M
S

E
)

Number of Corrections

Norm Change
Spread-Based

Periodic

(c) (d)

Figure 11.5: DART: simulations starting from the symmetric initial conditions from
Figure 4.1(b). Each point in these plots provides the MSE when a single simulation
is corrected with noisy observations; the goal is to compare periodic and dynamics-
informed correction when the same amount of noise is added. The plots display the
MSE results for spread-based, norm change, and periodic correction. The variance of
the zero-mean Gaussian noise added to the observations was (a) 0.000001 (b) 0.0001 (c)
0.01 (f) 0.25

115

completely destroyed the dynamics-informed assimilation. It is clear that for the von

Karman data set, an algorithm that incorporates information about the error in the

model state estimate is critical.

Figure 11.5 shows that the spread-based technique also works very well for the

symmetric initial conditions, achieving performance that is as good as or better than

periodic correction. However, the norm change technique is worse than both spread-

based and periodic correction even for low levels of noise. For this data set, it appears

that our attempt to minimize error growth by producing an accurate state estimate

in a region of high gradients is not as successful as reducing the error growth either

periodically or only when it is observed.

There are several significant contributions from our research with DART. No one

has investigated ensemble Kalman filtering in a point-vortex model. Our confirmation

that EnKF is successful in point-vortex assimilation experiments is an important result

for the data-assimilation community. Also, prior research has confirmed that the spread-

based technique performs well for grid-based models, but no one has used it to correct a

point-vortex model. In this section, we have verified that spread-based correction works

as well or better than periodic correction for the two point-vortex data sets studied. It is

also an interesting finding that triggering correction proactively, based on a measure of

dynamical sensitivity, is not as successful as triggering correction after error growth has

been observed. In fact, this strategy is often worse than periodic correction. This result

is a significant contribution to ensemble-based data-assimilation research in point-vortex

systems.

Chapter 12

Initial Conditions Derived from PIV Measurements

The ultimate goal of our research is to determine the best and most efficient

scheme for correcting the point-vortex model. Our hope is that a highly effective data-

assimilation strategy will boost the accuracy of this reduced-order model, making it

practical for real-time modelling and control applications. Recall from Section 3 that a

laboratory planar air jet is our testbed for this assimilation research. In the initial stages

of this thesis—when experimental data from the jet was not available—we attempted to

construct realistic initial conditions for our explorations of data-assimilation dynamics.

In the initial conditions we developed—the symmetric, von Karman, and random data

sets from the previous sections—the strengths assigned to the vortices were arbitrary.

So, the physicality of these vortex configurations is somewhat questionable. Clearly,

working with real data gathered from a physical system is highly preferable. The lab-

oratory setup and vortex extraction techniques described in Sections 3 and 3.1 provide

the data we need to do just that.

Our first step in working with the experimental data was to repeat the same anal-

ysis we conducted for the von Karman, symmetric, and random data sets in order to

study the performance of dynamics-informed techniques when the initial conditions are

extracted from PIV data. Given the PIV data from Figure 3.3(c), we performed vortic-

ity thresholding to extract point-vortex positions and strengths. The resulting vortex

configuration—shown in Figure 12.1—provided the initial condition for our imperfect

117

model experiments. Starting from this initial condition, we ran two simulations—one

with high resolution to represent the “truth” and a second with a larger time step and

fairly large error. We use “observations” from the “truth” simulation to correct the

coarser one using a simple direct replacement assimilation approach. Both of these

simulations were Runge-Kutta integrations of the Biot-Savart equations for 50s. A

timestep of 0.0001s was chosen for the “truth” simulation using a convergence test,

and a timestep of 0.01s was used for the corrected simulation. The resulting vortex

trajectories are shown in Figure 12.2.

The vortices in Figure 12.1 are in an antisymmetric configuration similar to the

von Karman configuration studied in Section 7. However, there are three important

differences in this configuration. First, the vortex spacings are a little different. Recall

that for the von Karman case, the ratio a/b depicted in Figure 4.1(a) was 0.281. For this

real data initial condition, this ratio is a/b ≈ 0.5. Second, the von Karman configuration

we studied contained an even number of vortices and the real data initial condition

contains an odd number. Finally, the vortices in the two configurations are rotating

in opposite directions. In the initial configuration in Figure 12.1, the vortices in the

left column are rotating in a clockwise direction and those in the right column are

rotating counter-clockwise. This is the reverse of the situation for the von Karman

vortex configuration. The result of these discrepancies is a significant difference in the

dynamical evolution for the two systems. For the von Karman case, the vortices pair

up and travel off in the negative x-direction. In Figure 12.2(a), two of the vortices

also group together into a pair (the red and green trajectories), but they are rotating

around each other instead of travelling off together. This rotation is based on the fact

that the circulations of the vortices in this pair have the same sign. It is interesting

that the dynamics of this real-data case are so significantly different from both of the

data sets–von Karman and symmetric—that we designed to mimic the experiment.

Our next step was to perform a comparison of point-vortex correction strategies

118

Figure 12.1: Experimental data initial condition. Vortices were extracted from the PIV
measurement of the planar air jet shown in Figure 3.3(c). The vorticity thresholding
technique was used to determine the vortex positions and strengths. Recall that the
white square in each figure is the location where each point vortex was placed by the
extraction algorithm. The strengths of the vortices (in top to bottom order) 0.0030,
-0.0069, 0.011, -0.012, and 0.0034

119

Figure 12.2: Simulations starting from the initial conditions in Figure 12.1. Both sim-
ulations are 50s in length (a) “truth” simulation with a 0.0001s timestep (b) correction
simulation with a 0.01s timestep

120
Method Tc [Min,Max]:Inc

Norm Change [0, 42]:0.1

Norm Thresh [9, 60]:0.5

Eigenvalues [9, 60]:0.5

Shear [0.2, 10]:0.01

RK Steps [0, 0.0004]:0.0000005

Table 12.1: Thresholds for dynamics-informed techniques. Each entry in this table
describes how thresholds were varied for a particular dynamics-informed assimilation
experiment. The dynamics-informed technique is listed in the left column and the
format of each entry is [minimum Tc, maximum Tc]:Tc increment.

using the data sets from Figure 12.2. We started by conducting noise-free experiments

to see how the assimilation performs in this limiting case. We again ran an ensemble of

experiments for several different correction strategies, including periodic, norm change,

norm thresholding, eigenvalue, shear, and Runge-Kutta test step methods. To generate

curves for MSE as a function of the number of corrections, the periodic correction

interval was varied from 0.05s to 50.05s in increments of 0.05s. The thresholds used for

the various dynamics informed techniques are provided in Table 12.1. The results of

these experiments are presented in Figure 12.3. We can see that all of the dynamics-

informed techniques outperform periodic correction for correction counts above 500.

This is highly encouraging, because we know that this is a realistic vortex configuration.

Similar to results for the symmetric and von Karman data sets from Section 7, we again

see that the norm change and Runge-Kutta test step methods perform best for this data

set.

If we again consider the time series of the induced velocity norms, we can see

that our success on this data set is in agreemement with our results thus far on pre-

dictable norm patterns. Figure 12.4 displays the time series of induced velocity gradient

norms for the five vortices in an uncorrected simulation. Vortex 1 is the black curve

in Figure 12.2(b) and vortices 2 and 3 are the red and green curves that are orbiting

around each other in large circles. These vortices have opposite rotation direction, but

121

-30

-25

-20

-15

-10

-5

 0

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Lo
g(

M
S

E
)

Number of Corrections

Eigenvalues
Shear

Norm thresh
Norm Change

Periodic
RK slopes

Figure 12.3: Comparison of dynamics-informed and periodic assimilation using the ini-
tial conditions in Figure 12.1. Each point in this figure represents a single simulation;
the MSE is plotted as a function of the number of corrections. Each curve is labelled
with the correction strategy used to generate the results.

122

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.1 0.2 0.3 0.4 0.5
 0

 5

 10

 15

 20

 25

 0 0.1 0.2 0.3 0.4 0.5

(a) (b)

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5
 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5

(c) (d)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4 0.5

(e))

Figure 12.4: Velocity gradient norms as a function of time for vortex (a) 1 (b) 2 (c) 3
(d) 4 (e) 5 for a simulation starting from the initial conditions in Figure 12.1.

123

are close to the same strength, so the circles traced out by their trajectories are almost

the same size. Vortices 4 and 5 are the blue and purple curves in Figure 12.2(b). These

vortices are also rotating around each other, but the radius of the circle traced out by

each one is different because their strengths—–0.012, and 0.0034—differ by almost an

order of magnitude. The norms for vortices 1, 4, and 5 look similar in character to those

observed for the symmetric data set. They are relatively flat, but are punctuated by

spikes at a few locations. This similarity may explain the qualitatively similar perfor-

mance of the dynamics-informed techniques between the two data sets. The norms for

vortices 2 and 3 display some of the oscillatory patterns that caused problems for our

random initial conditions. However, the frequency of the oscillation is much lower, and

the time series is also punctuated by downward spikes. The oscillation frequency of the

norms seems to be related to how tightly the vortices are coupled in the simulation. In

this simulation, in which the coupled vortices have larger orbits, the dynamics-informed

techniques work quite well.

12.1 Decomposition of the Initial Condition into Smaller Vortices

Recall from our discussion in Section 3.3 that modelling the vorticity field with

only five point vortices is a fairly coarse approximation. We explored one strategy

for improving the approximation by decomposing each large-scale vortex into smaller

vortices of equal strength. This decomposition, as discussed on page 45, enables the

point-vortex model to advect the vorticity at a more fine-grained level. The strength of

the vortices do not change in a two-dimensional point-vortex simulation, so the ability

to move more point-vortices around in the state space could be beneficial. Also, using

vortices of equal-strength provides the advantage that we could decrease our model

state variables by 1/3 because vorticity is constant 1 . Using the algorithm described in

1 We would have to keep track of which ones were positive and which negative, however, but this
could be done by splitting the state vector into positive and negative vortices.

124

Figure 12.5: Decomposition of large vortices. We divided the large vortices from Fig-
ure 12.1 into smaller point vortices of equal strength. Recall that the white squares are
the locations where the point vortices were placed by the extraction algorithm. The
strength of each point vortex in this initial condition was ±0.0015.

Section 3.3, we performed a decomposition on the data set in Figure 12.1. The resulting

point vortex positioning is depicted in Figure 12.5. The strength of each vortex was

chosen such that the weakest vortex would be assigned two point vortices; in this case,

the strength was ±0.0015.

As usual, we performed the imperfect model experiments on this vortex configu-

ration. Figure 12.6(a) depicts the truth simulation—a 20s simulation with a timestep

of 0.0001. The time step was chosen with the same convergence test used earlier. Using

observations from the “truth” simulation, we corrected the 0.01s timestep simulation

in Figure 12.6(b) at periodic intervals ranging from 0.05 to 20.05 in increments of 0.05.

We also explored several of the dynamics-informed correction strategies for this data set

using the thresholds in Table 12.2. Comparing these thresholds to those in Table 12.1

also corroborates the conjecture that this configuration is highly unstable. The high

end of the threshold range is roughly equal to the maximum of each measure over the

simulation. For the Runge-Kutta test step method, for example, the maximum dif-

ference between test steps over the course of the simulation was about 3.6. For the

125

Figure 12.6: Simulations starting from the initial conditions in Figure 12.5. Both sim-
ulations are 20s in length (a) “truth” simulation with a 0.0001s timestep (b) correction
simulation with a 0.01s timestep

Method Tc [Min,Max]:Inc

Norm Change [80,300]:1

Norm Thresh [12, 200]:0.5

Eigenvalues [12, 200]:0.5

Shear [12, 200]:0.5

RK Steps [0, 3.6]:0.01

Table 12.2: Thresholds for dynamics-informed techniques. Each entry in this table
describes how thresholds were varied for a particular dynamics-informed assimilation
experiment. The dynamics-informed technique is listed in the left column and the
format of each entry is [minimum Tc, maximum Tc]:Tc increment.

126

simulation with only five point vortices, the maximum was roughly 0.0004. This is a

difference of four orders of magnitude! Perhaps the strength quantum chosen for this

vortex configuration was too large given the small spacing between vortices.

The drastic differences between the simulations in Figures 12.6 and 12.2 are also

a concern. In our decomposition of the five vortices into smaller-scale point vortices of

equal strength, the goal was to place the smaller vortices such that they more-accurately

model the distributed vorticity of the larger-scale vortex. The high-resolution simulation

in Figure 12.6(a) has some qualitative similarities to the simulations in Figure 12.2, but

the simulation in Figure 12.6(b) is significantly different. This suggests that perhaps

our approach for decomposing the vortices is not achieving our desired result. In our

future work, we will explore other methods of large-scale vortex decomposition.

In spite of these concerns, it is still worthwhile to look at the MSE results for the

imperfect model experiments, which are presented in Figure 12.7. The outcome is quite

different than in the large vortex simulation above. For these experiments, periodic

correction outperforms all of the dynamics-informed techniques. This is similar to the

behavior we saw for the random initial conditions. It is not surprising, because we again

see the very tight coupling of two groups of vortices that move out in a spiral shape

in Figure 12.6(b). If we look at the norms for some of these vortices in Figure 12.8,

we again see the pattern of high-frequency, high-amplitude oscillations similar to the

norms for the tightly coupled vortices in Figure 9.4. It seems that for both sets of

initial conditions, the tight coupling dynamics for some of the vortices causes a highly

unstable dynamical system that is very difficult to predict with the stability measures

we are using for our dynamics-informed techniques.

127

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Lo
g(

M
S

E
)

Number of Corrections

Eigenvalues
Shear

Norm thresh
Norm Change

Periodic
RK slopes

Figure 12.7: Comparison of dynamics-informed and periodic assimilation using the ini-
tial conditions in Figure 12.5. Each point in this figure represents a single simulation;
the MSE is plotted as a function of the number of corrections. Each curve is labelled
with the correction strategy used to generate the results.

 0

 10

 20

 30

 40

 50

 60

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

(a) (b)

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
 0

 10

 20

 30

 40

 50

 60

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

(c) (d)

Figure 12.8: Velocity gradient norms as a function of time for vortex (a) 2 (b) 4 (c) 14
and (d) 17 for a simulation starting from the initial conditions in Figure 12.5.

Chapter 13

A Real-World Assimilation Experiment

The majority of data-assimilation research relies solely on Observing System Sim-

ulation Experiments (OSSEs), numerical experiments in which the model is used to

generate synthetic observations for the assimilation. The perfect and imperfect model

experiments we have presented thus far in this thesis are classes of OSSEs. While these

numerical experiments are a useful first step, it is often the case that the results will not

generalize to real-world assimilation problems. Thus, it is critical to take the research

one step further and study an assimilation that uses real observations from a physical

system.

In our case, we are fortunate to have a controlled laboratory setup of a planar air

jet and a particle image velocimetry (PIV) system that can accurately capture the jet’s

velocity field. More details on the laboratory setup were provided in Section 3. Our

approach to conducting a real-world assimilation experiment was as follows. We ran a

high resolution simulation with timestep equal to 0.0001s—the same timestep used to

produce the “truth” simulation from Section 12. We chose a simulation length equal

to 60 ms, which is slighly larger than the 59.4 ms time required for a single cycle of

the jet at its natural frequency, 16.83 Hz. Vortices extracted from the PIV observations

were then used to correct the model by replacing the model state variables with the

observed values. The correction frequency was dictated by the assimilation strategy

under investigation.

129

To produce the observations, we used the PIV equipment described in Section 3

to capture 17 snapshots of the velocity field over a single cycle. Since the PIV capture

window is not large enough to measure the velocity field over the entire jet stream, we

took the measurements slightly downstream from the jet slit, where the vortices were

more developed. It is important to note, however, that there is unmodelled vorticity

both upstream and downstream from our PIV capture window. Recall from Section 3

that we had to take phase-averaged measurements because our observing equipment

could not keep up with the natural frequency of the jet. Four of these PIV phase-

averaged velocity fields are displayed in Figure 13.1.

We applied the vorticity thresholding technique described in Section 3.1 to the

17 PIV observations to obtain the point-vortex data sets presented in Figures 13.2 and

13.3. Each of these data sets is an “observation” that can be used to correct the point-

vortex model. Since there were 17 observations divided over the jet’s 59.4 ms cycle,

we had observations available approximately every 3.5 ms. The initial observation in

Figure 13.2(a) is used to initialize the model for the assimilation. Notice that there

are five vortices present in this observation. However, at timestep 0.0105s, one of the

vortices moves downstream from our PIV capture window. Also, at timestep 0.0210s,

a new vortex enters the PIV window on the bottom. We had to decide how to handle

these types of events in our model. Vortices that leave the PIV capture window remain

in our model, but are no longer corrected because they are not observed. It is possible

that these vortices dissipate as they move downstream, but dissipation dynamics are

not part of the point-vortex model. Also, since the simulation length is so short, it is

likely a safe assumption that these vortices remain present in the experiment, even if

they decrease in strength as they begin to dissipate in the far-downstream region of the

jet. For new vortices that are observed, we simply add a new vortex to the simulation.

Thus, although we begin the simulation with five vortices, we eventually include seven

because new vortices are introduced at timesteps 0.0210s and 0.0385s.

130

(a) (b)

(c) (d)

Figure 13.1: PIV measurements of the planar jet at approximately (a) 22.5 ◦ (b) 90 ◦

(c) 202.5 ◦ and (d) 292.5 ◦ into its cycle.

131

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13.2: Vortices extracted from the PIV measurements and used to correct the
model at times (a) 0.0035s (b) 0.0070s (c) 0.0105s (d) 0.0140 (e) 0.0175 (f) 0.0210 (g)
0.0245 and (h) 0.0280.

132

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13.3: Vortices extracted from the PIV measurements and used to correct the
model at times (a) 0.0315s (b) 0.0350s (c) 0.0385s (d) 0.0420 (e) 0.0455 (f) 0.0490 (g)
0.0525 and (h) 0.0560.

133
Method Tc [Min,Max]:Inc

Norm Change [0.4, 0.2]:0.001

Norm Thresh [10, 66]:0.5

Eigenvalues [10, 60]:0.5

Shear [9, 28]:0.05

RK Steps [0, 1E−9]:5E−12

Table 13.1: Thresholds for dynamics-informed techniques. Each entry in this table
describes how thresholds were varied for a particular dynamics-informed assimilation
experiment. The dynamics-informed technique is listed in the left column and the
format of each entry is [minimum Tc, maximum Tc]:Tc increment.

Using these observations and the simulation parameters described above, we ran a

collection of experiments using several different correction strategies, including periodic,

norm change, norm thresholding, eigenvalue, shear, and Runge-Kutta test step methods.

For periodic correction, we ran simulations in which the correction frequency varied from

0.0035s to 0.0630s in increments of 0.0035s. For the dynamics-informed techniques, we

used the thresholds displayed in Table 13.1 to generate the set of experiments conducted.

It is difficult to determine the best way to analyze the results of these real-world

assimilation experiments. We cannot simply plot our standard MSE versus number of

corrections curves for each correction algorithm because we do not know the “truth”

in this simulation. We have only our PIV observations of the velocity field, which are

inevitably contaminated with noise and uncertainty. The best we can do is to compare

our simulations to the observations to see how well each type of simulation reproduces

the observations. But, keep in mind that these results do not necessarily translate to how

well each simulation reproduces the reality of the physical system. For this analysis,

we computed the MSE between the simulation and the observations. Note that this

calculation only involved 17 timesteps, because these are the times when observations

were available. The results are presented in Figure 13.4. We can see that a periodic

correction approach seems to result in the best reproduction of the observations. This

134

-7

-6.5

-6

-5.5

-5

-4.5

-4

 0 2 4 6 8 10 12 14

Lo
g(

M
S

E
)

Number of Corrections

Eigenvalues
Shear

Norm thresh
Norm Change

Periodic
RK slopes

Figure 13.4: Real-World Data Assimilation. Comparison of dynamics-informed and
periodic assimilation using the initial conditions in Figure 13.2(a). Each point in this
figure represents a single simulation; the MSE between the simulation and the observa-
tions is plotted as a function of the number of corrections. Each curve is labelled with
the correction strategy used for the assimilation.

135

is an interesting result, because it is significantly different from what we found in our

numerical experiments in Section 12. However, it is important to reiterate that these

results only indicate how well the simulation reproduces the observations. So, it is

difficult to determine how this correlates with the simulations ability to reproduce the

“truth”.

We can also perform a qualitative analysis of the vortex trajectories in these

simulations. In Figure 13.5(a), we display the vortex trajectories for an uncorrected

simulation starting from the initial conditions in Figure 13.2(a); part (b) of this same

figure shows a simulation that is corrected whenever observations are available. It is

hard to tell conclusively which one of these is a better representation of reality. Clearly

in the snapshots displayed in Figures 13.2 and 13.3, we can see that the vortices are

slowly moving upward in the y-direction. Both of the simulations in Figure 13.5 show

this same general trend. The discontinuous nature of the trajectories in part (b) is due

to the assimilation of observations that shift the vortex positions. The point-vortices are

jumping back and forth in the x-direction. This unphysical situation is caused by our

judgement of the location of each vortex center in the observations in Figure 13.2 and

13.3. A more-sophisticated vortex decomposition scheme in which the point-vortices

are distributed to provide a more-realistic representation of the vorticity for each vortex

would likely alleviate this problem.

136

(a)

(b)

Figure 13.5: Point-vortex simulation starting from the initial conditions in Fig-
ure 13.2(a). Simulation length in each case was 60 ms with a timestep of 0.0001; (a) was
not corrected at all over the course of the simulation and (b) was corrected whenever
observations were available, every 3.5 ms.

Chapter 14

Conclusions and Future Work

Real-time fluid modelling and control applications motivate this thesis work. Di-

rect numerical simulation (DNS) techniques are the current state of the art for fluids

simulations, but they are usually too slow for these purposes. Several reduced-order

modelling techniques have been introduced in recent years, including the point-vortex

model, which is the focus of our research. So far, the simplifications and approximations

necessary to reduce the order of these types of models have compromised their accuracy.

Our hope is that correcting the point-vortex model with observations of the physical

system using the data assimilation techniques introduced in Section 2.2 will sufficiently

improve the accuracy without introducing an unmanageable computational burden.

In Section 5, we introduced several dynamics-informed targeted observing tech-

niques for the point-vortex model. Our goal was to allow the dynamics of the system to

dictate the correction timing for data assimilation. This is in contrast to the traditional

data assimilation approach in which observations are assimilated at periodic intervals.

Initially, we hoped that one of these dynamics-informed strategies would enable us to

improve the accuracy of the point-vortex model at a lower computational cost. The

idea was to correct the model only when the correction would have a significant impact

in terms of reducing model error, saving on the computational cost of correcting the

model when it is not necessary. We found that these dynamics-informed techniques

worked well for some data sets and not others, and we have identified some patterns in

138

the vortex dynamics that indicate when dynamics-informed techniques might fail.

Most of the techniques introduced in Section 5 rely on metrics applied to the

induced velocity gradients for each vortex. By analyzing time series of these Jaco-

bian norms, we have developed some preliminary criteria that indicate when dynamics-

informed techniques are likely to fail. These results are the culmination of many exper-

iments with five different sets of initial conditions. Initially, we conducted experiments

with a simple direct-replacement approach to data assimilation, and we studied the

limiting case of noise-free observations. For the von Karman, symmetric, and real data

initial conditions from Figures 4.1(a), 4.1(b) and 12.1 respectively, we found that the

dynamics-informed techniques significantly outperformed periodic correction. However,

for the random and clustered initial conditions from Figures 9.1 and 12.5, the situation

was reversed and periodic techniques prevailed. In looking at the norms for these two

failing cases, we found that they were characterized by high-frequency, high-amplitude

oscillations. Also, the vortex dynamics included several tightly coupled vortices that

were orbiting around each other. Our conjecture is that these features make it difficult

for our dynamics-informed techniques to pinpoint important time steps, because all of

the timesteps have similar dynamics. And, it is likely the case that correcting more

often is the best approach.

Clearly these initial conclusions need to be evaluated further in our future work.

Also, we would like to try a hybrid correction approach in which periodic corrections

are applied in certain types of dynamical regions and dynamics-informed techniques are

used in others. Another flavor of hybrid assimilation might be to use the dynamics

to vary the periodic correction interval. Hopefully, such techniques might address the

difficulties we encountered with dynamics-informed techniques while still enabling us to

benefit from their computational savings.

Our second step in the analysis of point-vortex data assimilation with numerical

experiments was to add varying levels of Gaussian noise to the assimilated observations.

139

These results were presented in Section 8 for the von Karman and symmetric data sets.

For the von Karman data set, we again discovered some interesting dynamics that re-

sulted in very poor performance of our data assimilation techniques. In particular, the

dynamics in later stages of the simulation were “too stable”. The result was that after

the application of a noisy assimilation early in the simulation, there was nothing to trig-

ger another correction. So, errors accumulated in the incorrect vortex trajectories that

resulted. The conclusion in this case was that we needed a more-sophisticated correction

algorithm that incorporates information about the observational error when perform-

ing the correction. For the symmetric data set, we did not see this type of behavior,

because the vortices remain fairly close in the assimilation and the dynamics-informed

corrections are triggered throughout the entire simulation. However, we did find that,

as the variance in the observational noise increased, periodic correction outperformed

dynamics-informed techniques. This is a result that still needs some further analysis in

our future work. Additionally, it would be interesting to try other types of noise in the

observations to see if the noise type affects the results.

Ensemble Kalman Filtering is one example of a data assimilation algorithm that

considers the uncertainty in both the observations and the model when performing

the assimilation. The Data Assimilation Research Testbed (DART) is a software frame-

work that enables research with ensemble techniques. We implemented the point-vortex

model in DART and conducted some perfect model experiments with the von Karman

and symmetric data sets; these results were presented in Section 11. This analysis of

ensemble filtering in the point-vortex model is an important contribution of this the-

sis to the meteorological and geophysical communities. We are the first to use the

point-vortex model in DART and verify that ensemble assimilation works well with this

model. Additionally, we performed a comparison of the norm change dynamics-informed

technique from Section 5 to current state of the art targeted observing technique for

ensemble filtering—the spread-based technique described in Section 11. For the von

140

Karman data set, both the norm change and spread-based correction techniques out-

performed periodic correction. And, the assimilation algorithm in DART alleviated the

noise issues described in the preceding paragraph. For the symmetric data set, the per-

formance of the spread-based and periodic correction techniques was comparable, but

the norm change technique was worse. In our future work, we will conduct some more

analysis to determine why the norm change technique does not work well for this data

set in the DART framework.

There are also quite a few other areas we would like to address using the DART

framework. A more thorough study of several different vortex configurations would en-

able a better understanding of the dynamics that cause one assimilation timing strategy

to outperform another. Also, we have only studied data assimilation of vortex observa-

tions; it would be interesting to compare these results to those achievable by assimilating

the velocity observations directly. Recall from Section 2.2 that this requires the use of a

forward operator to map from the model state space to the observation space. Finally,

since one of our interests is ensuring that the computational cost of a simulation that

uses the point-vortex model with data assimilation is less than that of a DNS simula-

tion, we need to perform some analysis of the computational costs of using DART for

our purposes. This will likely involve some tuning of the DART parameters to achieve

the best performance for the lowest cost.

Another significant component of our thesis work was the application of point-

vortex data assmilation techniques to real data. Most data assimilation research relies

solely on numerical experiments, but we have extended our results to a real-world assim-

ilation of an experimental fluids system. As described in Section 3, we have a controlled

laboratory setup of a planar air jet and particle image velocimetry (PIV) system. Our

first step in using the PIV data gathered from this system was to develop operational

techniques for extracting point-vortex positions and strength from the velocity fields.

We employed two standard techniques—vorticity thresholding and Okubo-Weiss—and

141

augmented them with a connected component algorithm for delineating the vortices.

Although this technique is fairly straightforward, we have not seen it used in the vor-

tex extraction literature. We generated one set of observations that assigned one point

vortex to each large vortex in the PIV data. After conducting the real assimilation

experiment in Section 13, it became clear that we will likely need to distribute more

point vortices to more accurately model the vorticity distribution. We explored one

technique for doing this in Section 3.3, but the MSE measurements in that section and

the numerical experiments in Section 12 seemed to indicate that this technique does

not work very well. In future work, we will study other strategies for decomposing the

vorticity field into point-vortices, keeping in mind that more point-vortices will increase

the computational load for our simulations.

The initial results presented in Section 13 for a real-world assimilation are a useful

first step in exploring the practicality of point-vortex data assimilation. In our future

work, we would like to run some longer simultions with more obsevations of the system.

Also, it might be useful to take some PIV measurements both upstream and downstream

to capture more of the dynamics. Once we begin to run longer simulations, it is likely

that we will run into problems with the simplicity of our model. In particular, we might

need to add boundary conditions that mimic the upstream forcing of the jet and the

downstream dissipation of the vortices. Clearly, there are still significant challenges to

address before the point-vortex model is practical for real-world modelling of systems like

our planar air jet. However, this thesis is a useful first step in analyzing data assimilation

in the point-vortex model and determining when dynamics-informed techniques might

be useful.

Bibliography

[1] http://www.cgd.ucar.edu/DAI/.

[2] R. Adrian, K. Christiensen, and Z. Liu. Analysis and interpretation of instanta-
neous turbulent velocity fields. Experiments in Fluids, 29:275–290, 2000.

[3] R.J. Adrian. On the role of conditional averages in turbulence theory. In
Proceedings of the Fourth Biennial Symposium on Turbulence in Liquids, vol-
ume 44, pages 323–332, Princeton, 1977. Science Press.

[4] A. Airapetov. Motion of an initially point vortex in a flow of viscous fluid. Journal
of Applied Mathematics and Mechanics, 54:355–359, 1990.

[5] J. Anderson. A method for producing and evaluating probabilistic forecasts from
ensemble model integrations. Journal of Climate, 9:1518–1530, 1996.

[6] J. Anderson. An adaptive covariance inflation error correction algorithm for en-
semble filters. Tellus A, 59:210–224, 2007.

[7] Jeffrey L. Anderson. An ensemble adjustment Kalman filter for data assimilation.
Monthly Weather Review, 129(12):2884–2903, December 2001.

[8] Jeffrey L. Anderson. A local least squares framework for ensemble filtering.
Monthly Weather Review, 131(4):634–642, April 2003.

[9] N.L. Baker. Quality control for the Navy operational atmospheric database.
Weather Forecasting, 7:250–261, 1992.

[10] N.L. Baker and R. Daley. Observation and background adjoint sensitivity in
the adaptive observation-targeting problem. Quarterly Journal of the Royal
Meteorological Society, 126:1431–1454, 2000.

[11] A. Basu, R. Narasimha, and A. Prabhu. Modelling plane mixing layers using
vortex points and sheets. Applied Mathematical Modelling, 19:66–75, 1995.

[12] Michael Bergmann, Laurent Cordier, and Jean-Pierre Brancher. Optimal rotary
control of the cylinder wake using proper orthogonal decomposition reduced-order
model. Physics of Fluids, 17:1–21, 2005.

[13] T. Bergot, G. Hello, A. Joly, and S. Malardel. Adaptive observations: A feasibility
study. Monthly Weather Review, 127:743–765, 1999.

143

[14] P. Bergthorsson and B. Doos. Numerical weather map analysis. Tellus, 7:329–340,
1955.

[15] G. Berkooz, P. Holmes, and J. Lumley. The proper orthogonal decomposition in
the analysis of turbulent flows. Ann. Rev. Fluid Mech., 25:539–575, 1993.

[16] Craig Bishop and Zoltan Toth. Ensemble transformation and adaptive observa-
tions. Journal of the Atmospheric Sciences, 56:1748–1765, 1999.

[17] Craig H. Bishop, Brian J. Etherton, and Sharanya J. Majumdar. Adaptive sam-
pling with the ensemble transform Kalman filter. Part I: Theoretical aspects.
Monthly Weather Review, 129(3):420–436, March 2001.

[18] P. Boyland, M. Stremler, and H. Aref. Topological fluid mechanics of point vortex
motions. Physica D, 175:69–95, 2003.

[19] R. Buizza and T.N. Palmer. The singular-vector structure of the atmospheric
global circulation. Journal of the Atmospheric Sciences, 52:1434–1456, 1995.

[20] J.P. Burg and D.G. Luenberger. Estimation of structured covariance matrices.
Proceedings of the IEEE, 70:963–974, 1982.

[21] Gerrit Burgers, Peter Jan van Leeuwen, and Geir Evensen. Analysis scheme in
the ensemble Kalman filter. Monthly Weather Review, 126(6):1719–1724, June
1998.

[22] R. Camussi. Coherent structure identification from wavelet analysis of particle
image velocimetry data. Experiments in Fluids, 32:76–86, 2002.

[23] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang. Spectral methods in fluid
dynamics. Springer, 1988.

[24] P. Chavanis. Kinetic theory of point vortices: Diffusion coefficient and systematic
drift. Phys. Rev. E, 64:263091–263092, 2001.

[25] S. Chen, D. Holm, L. Margoin, and R. Zhang. Direct numerical simulations of
the Navier-Stokes-α model. Physica D, 133:66–83, 1999.

[26] Y. Chen and C. Snyder. Assimilating vortex position with an ensemble kalman
filter. Monthly Weather Review, 135:1828–1845, 2007.

[27] M. Chong, A. Perry, and B. Cantwell. A general classification of three-dimensional
flow fields. Physics of Fluids, 2:765–777, 1990.

[28] Stephen E. Cohn. An introduction to estimation theory. Journal of the
Meteorological Society of Japan, 75(1B):’257–288, March 1997.

[29] L. Cortelezzi, Y. Chen, and H. Chang. Nonlinear feedback control of the wake
past a plate: From a low-order model to a higher-order model. Physics of Fluids,
9:2009–2022, 1997.

144

[30] P. Courtier, E. Andersson, W. Heckley, J. Pailleux, D. Vasiljevic, M. Hamrud,
A. Hollingsworth, F. Rabier, and M. Fisher. The ECMWF implementation of
three-dimensional variational assimilation (3D-Var) I: Formulation. Quarterly
Journal of the Royal Meteorological Society, 124:1783–1808, 1998.

[31] P. Courtier and O. Talagrand. Variational assimilation of meteorological observa-
tions with the adjoint vorticity equation I: Numerical results. Quarterly Journal
of the Royal Meteorological Society, 113:1329–1347, 1987.

[32] I. Currie. Fundamental Mechanics of Fluids. McGraw Hill, 1993.

[33] R. Daley. Atmospheric Data Analysis. Cambridge University Press, 1991.

[34] H. Davies and R. Turner. Updating prediction models by dynamical relaxation:
An examination of the technique. Quart. J. Roy. Meteor. Soc., 103:225–245, 1977.

[35] A. Deane, I. Kevrekidis, G. Karniadakis, and S. Orszag. Low-dimensional models
for complex geometry flows: Application to grooved channels and circular cylin-
ders. Physics of Fluids A, 3:2337–2354, 1999.

[36] D. Dee and A. daSilva. Estimating observation error statistics for atmospheric
data assimilation. Annales Geophysicae, 11:634–647, 1993.

[37] D. Dee and A. daSilva. Maximum-likelihood estimation of forecast and observation
error covariance parameters. Part I: Methodology. Monthly Weather Review,
121:2449–2461, 1998.

[38] J.E. Dennis and J.J. Moré. Quasi-Newton methods, motivation and theory. SIAM
Review, 19:46–89, 1977.

[39] John C. Derber. A variational continuous assimilation technique. Monthly
Weather Review, 117(11):2437–2446, November 1989.

[40] R. Dickinson and D. Williamson. Free oscillations of a discrete stratified fluid
with application to numerical weather prediction. Journal of Atmospheric Science,
29:623–640, 1972.

[41] Francois-Xavier Le Dimet, I.M. Navon, and Dacian N. Daescu. Second-order
information in data assimilation. Monthly Weather Review, 130:529–647, 2002.

[42] Francois-Xavier Le Dimet and Olivier Talagrand. Variational algorithms for anal-
ysis and assimilation of meteorological observations: Theoretical aspects. Tellus,
38A:97–110, 1986.

[43] E.S. Epstein. Stochastic dynamic prediction. Tellus A, 21:739–759, 1969.

[44] G. Evensen. Using the extended Kalman filter with a multilayer quasi-geostrophic
ocean model. Journal of Geophysical Research, 97(C11):17 905–17 924, 1991.

[45] Geir Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics. Journal of
Geophysical Research, 99(C5):10,143–10,162, May 1994.

145

[46] M. Farge, K. Schneider, and N. Kevlahan. Non-gaussianity and coherent vortex
simulation for two-dimensional turbulence using an adaptive orthogonal wavelet
basis. Physics of Fluids, 11(8):2187–2201, August 1999.

[47] M. Farge, K. Schneider, G. Pellegrino, A. Wray, and R. Rogallo. Coherent vortex
extraction in three-dimensional homogeneous turbulence: Comparison between
CVS-wavelet and POD-Fourier decompositions. Physics of Fluids, 15(10):2886–
2896, October 2003.

[48] N. Farrell, N. Ross, T. Peacock, E. Bradley, and J. Hertzberg. Cumetr09092006.
Technical report, University of Colorado, 2006.

[49] R.J. Fleming. On stochastic dynamic prediction I: The energetics of uncertainty
and the question of closure. Monthly Weather Review, 99:851–872, 1971.

[50] M. Funakoshi. Evolution of vorticity regions of Karman-vortex-street type. Fluid
Dynamics Research, 15:251–269, 1995.

[51] L. Gandin. Complex quality control of meteorological observations. Monthly
Weather Review, 116:1137–1156, 1988.

[52] P. Gauthier, P. Courtier, and P. Moll. Assimilation of simulated wind LIDAR
data with a Kalman filter. Monthly Weather Review, 121:1803–1820, 1993.

[53] A. Gelb, editor. Applied Optimal Estimation. MIT Press, Cambridge, MA, 1974.

[54] J. Gerhard, M. Pastoor, R. King, B.R. Noack, A. Dillman, M. Morzyński,
and G. Tadmor. Model-based control of vortex shedding using low-dimensional
Galerkin models. In 33rd AIAA Fluids Conference and Exhibit, Orlando, FL,
2003. AIAA Paper 2003-4262.

[55] M. Germano, U. Piomelli, P. Moin, and W. Cabot. A dynamic subgrid scale eddy
viscosity model. Phys. Fluids A, 3(7):1760–1765, 1991.

[56] M. Ghil and P. Malanotte-Rizzoli. Data assimilation in meteorology and oceanog-
raphy. Advanced Geophysics, 33:141–266, 1991.

[57] W. Graham, J. Peraire, and K. Tang. Optimal control of vortex shedding usind
low-order models. Part I: Open-loop model development. International Journal of
Numerical Methods in Engineering, 44:945–972, 1999.

[58] G. Haller. An objective definition of a vortex. Journal of Fluid Mechanics, 525:1–
26, 2005.

[59] T.M. Hamill, J.S. Whitaker, and C. Snyder. Distance-dependent filtering of back-
ground error covariance estimates in an ensemble Kalman filter. Monthly Weather
Review, 129:2776–2790, 2001.

[60] Ross N. Hoffman. A four-dimensional analysis exactly satisfying equations of
motion. Monthly Weather Review, 114:388–397, 1986.

[61] D. Holm, J. Marsden, and T. Ratiu. Euler-Poincaré models of ideal fluids with
nonlinear dispersion. Phys. Rev. Lett., 349:4173–4177, 1998.

146

[62] P.L. Houtekamer, Louis Lefaivre, Jacques Derome, Harold Ritchie, and Herschel L.
Mitchell. A system simulation approach to ensemble prediction. Monthly Weather
Review, 124(6):1225–1242, June 1996.

[63] P.L. Houtekamer and Herschel L. Mitchell. Data assimilation using an ensemble
Kalman filter technique. Monthly Weather Review, 126(3):796–811, March 1998.

[64] P.L. Houtekamer and Herschel L. Mitchell. A sequential ensemble Kalman filter
for atmospheric data assimilation. Monthly Weather Review, 129:123–137, 2001.

[65] B. L. Hua, J.C. McWilliams, and P. Klein. Lagrangian accelerations in geostrophic
turbulence. Journal of Fluid Mechanics, 366:87–108, 1998.

[66] B.L. Hua and P. Klein. An exact criterion for the stirring properties of nearly
two-dimensional turbulence. Physica D, 113:98–110, 1998.

[67] G. Huber and P. Alstrom. Universal decay of vortex density in two dimensions.
Physica A, 195:448–456, 1993.

[68] J. Hunt, A. Wray, and P. Moin. Eddies, streams, and convergence zones in tur-
bulent flows. In Proc. of the Summer Program, volume CTR-S88, pages 193–208,
1988. Stanford University Center for Turbulence Research Report.

[69] A K M F Hussain. Coherent structures and turbulence. Journal of Fluid
Mechanics, 173:303–356, 1986.

[70] K. Ide, P. Courtier, M. Ghil, and A.C. Lorenc. Unified notation for data assim-
ilation: Operational, sequential, and variational. Journal of the Meteorological
Society of Japan, 75(1B):181–189, March 1997.

[71] K. Ide and M. Ghil. Extended Kalman filtering for vortex systems. Part I: Method-
ology and point vortices. Dynamics of Atmospheres and Oceans, 27:301–332, 1997.

[72] K. Ide, L. Kuznetsov, and C. Jones. Lagrangian data assimilation for point vortex
systems. Journal of Turbulence, 3:1–7, 2002.

[73] N.B. Ingleby and A.C. Lorenc. Bayesian quality control using multivariate normal
distributions. Quarterly Journal of the Royal Meteorological Society, 119:1195–
12251, 1993.

[74] A.H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press, 1997.

[75] J. Jeong and F. Hussain. On the identification of a vortex. J. Fluid. Mech.,
285:69–94, 1995.

[76] B. Jorgensen, J. Sorensen, and M. Brons. Low-dimensional modeling of a driven
cavity flos with two free parameters. Theoretical Computational Fluid Dynamics,
16:299–317, 2003.

[77] S. Julier and J. Uhlmann. A new extension of the Kalman filter to nonlinear
systems. In Int. Symp. Aerospace/Defense Sensing, Simul. and Controls, Orlando,
FL, 1997.

147

[78] R.E. Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–45,
1960.

[79] R.E. Kalman and R. Bucy. New results in linear filtering and prediction theory.
Transactions of the ASME–Journal of Basic Engineering, 83(Series D):95–108,
1961.

[80] E. Kalnay. Atmospheric Modeling, Data Assimilation, and Predicatability. Cam-
bridge University Press, 2002.

[81] K. Karhunen. Zur spectral theorie stochasticher prozesse. Annales Academiae
Scientiarum Fennicae, Mathematica-Physica, 37, 1946.

[82] Christian L. Kepenne. Data assimilation into a primitive-equation model with
a parallel ensemble Kalman filter. Monthly Weather Review, 128(6):1971–1981,
2000.

[83] S.P. Khare and J. Anderson. An examination of ensemble filter based adaptive
observation methodologies. Tellus A, 58:179–195, 2006.

[84] Sir Horace Lamb. Hydrodynamics. Dover Publications, 1945.

[85] C.E. Leith. Atmospheric predictability and two-dimensional turbulence. Journal
of Atmospheric Science, 28:145–161, 1971.

[86] C.E. Leith and R.H. Kraichnan. Predictability of turbulent flows. Journal of
Atmospheric Science, 29:1041–1058, 1972.

[87] P.F. Lermusiaux and A. R. Robinson. Data assimilation via error subspaces statis-
tical estimation. Part I: Theory and schemes. Monthly Weather Review, 127:1385–
1407, 1999.

[88] M. Lesieur and O. Metais. New trends in large-eddy simulations of turbulence.
Ann. Rev. Fluid Mech., 28:45–82, 1996.

[89] J.M. Lewis and J.C. Derber. The use of adjoint equations to solve a variational
adjustment problem with advective contraints. Tellus, 37A:309–322, 1985.

[90] M. Loeve. Functiona aleatoire de second ordre. Comptes Rendus Academie des
Sciences, Paris, 1945.

[91] A. Lorenc and O. Hammon. Objective quality control of observations using
Bayesian methods. theory and practical implementation. Quarterly Journal of
the Royal Meteorological Society, 114:515–543, 1988.

[92] A.C. Lorenc. Analysis methods for numerical weather prediction. Quarterly
Journal of the Royal Meteorological Society, 112:1551–1556, 1986.

[93] A.C. Lorenc, S.P. Ballard, R.S. Bell, N.B. Ingleby, P.L.F. Andrews, D.M. Barker,
J.R. Bray, A.M. Clayton, T. Dalby, D. Li, T.J. Payne, and F.W. Saunders. The
Met Office global 3-dimensional variational data assimilation. Quarterly Journal
of the Royal Meteorological Society, 126:2991–3012, 2000.

148

[94] E. Lorenz and K. Emanuel. Optimal sites for supplementary weather observations.
Journal of the Atmospheric Sciences, 55:399–414, 1998.

[95] X. Ma and G. Karniadakis. A low-dimensional model for simulating three-
dimensional cylinder flow. Journal of Fluid Mechanics, 458:181–190, 2002.

[96] B. Machenhauer. On the dynamics of gravity oscillations in a shallow water model
with application to normal mode initialization. Contributions in Atmospheric
Physics, 50:253–271, 1977.

[97] R.N. Miller, M. Ghil, and F. Gauthiez. Advanced data assimilation in strongly
nonlinear dynamical systems. Journal of Atmospheric Science, 51:1037–1056,
1994.

[98] E. D. Mitchell, S. V. Vasiloff, G. J. Stumpf, A. Witt, M. D. Eilts, J. T. Johnson,
and K. W. Thomas. The national severe storms laboratory tornado detection
algorithm. Weather and Forecasting, 13:352–366, 1998.

[99] K. Miyakoda and R. Moyer. A method of initialization for dynamical weather
forecasting. Tellus, 20:115–128, 1968.

[100] K. Mohseni, B. Kosović, S. Shkoller, and J.E. Marsden. Numerical simulations
of the Lagrangian averaged Navier-Stokes (LANS-α) equations for homogeneous
isotropic turbulence. Phys. Fluids, 15(2):524–544, 2003.

[101] P. Moin. Progress in large eddy simulation of turbulent flows. Technical Report
1997-0749, AIAA, 1997.

[102] P. Moin and K. Mahesh. Direct numerical simulation: A tool in turbulence re-
search. Annual Review of Fluid Mechanics, 30:539–578, 1998.

[103] R. Morss and K. Emanual. Idealized adaptive observation strategies for improving
numerical weather prediction. Journal of the Atmospheric Sciences, 58:210–232,
2001.

[104] T. Nitta and J. Hovermale. A technique of objective analysis and initialization
for the primitive forecast equations. Monthly Weather Review, 97:652–658, 1969.

[105] B.R. Noack, K. Afanasiev, M. Morzyński, G. Tadmor, and F. Thiele. A hierar-
chy of low-dimensional models for the transient and post-transient cylinder wake.
Journal of Fluid Mechanics, 497:335–363, 2003.

[106] B.R. Noack, G. Tadmor, and M. Morzyński. Actuation models and dissipative
control in empirical Galerkin models of fluid flows. In The 2004 American Control
Conference, Boston, MA, U.S.A., June 30-July 2, 2004.

[107] A. Okubo. Horizontal dispersion of floatable trajectories in the vicinity of velocity
singularities such as convergencies. Deep Sea Research, 17:445–454, 1970.

[108] T. L. Olander and C. S. Velden. The advanced objective dvorak technique (aodt)
- continuing the journey. In Conference on Hurricanes and Tropical Meteorology,
26th, Miami, FL, 3-7 May 2004, pages 224–224. Americal Meteorological Society,
2004.

149

[109] A. Palacios, D. Armbruster, E.J. Kostelich, and E. Stone. Analyzing the dynamics
of cellular flames. Physica D, 96(1-4):132–161, 1996.

[110] T. Palmer, R. Gelaro, J. Barkmeijer, and R. Buizza. Singular vectors, metrics, and
adaptive observations. Journal of the Atmospheric Sciences, 55:633–653, 1998.

[111] R.L. Panton. Incompressible Flow. John Wiley and Sons, 1996.

[112] David F. Parrish and John C. Derber. The national meteorological center’s
spectral statistical-interpolation analysis system. Monthly Weather Review,
120(8):1747–1763, August 1992.

[113] T. Peacock, J. Hertzberg, Y.-C. Lee, and E. Bradley. Forcing a planar jet flow
using MEMS. Experiments in Fluids, 37:22–28, 2004.

[114] R. Pemberton, S. Turnock, T. Dodd, and E. Rogers. A novel method for identi-
fying vortical structures. Journal of Fluids & Structures, 16:1051–1057, 2002.

[115] D. Peterson and D. Middleton. On representative observations. Tellus, 15:387–
405, 1963.

[116] R.W. Preisendorfer. Principal Component Analysis in Meteorology and
Oceanography. Elsevier, 1988.

[117] F. Rabier, H. Jarvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons. The ECMWF
operational implementation of four-dimensional variational assimilation–Part I:
Experimental results with simplified physics. Quarterly Journal of the Royal
Meteorological Society, 126:1143–1170, 2000.

[118] M. Raffel, C. Willert, and J. Kompenhans. Particle Image Velocimetry: A
Practical Guide. Springer, 1998.

[119] G. Riccardi and R. Piva. Interaction of an elliptical patch with a point vortex.
Fluid Dynamics Research, 27:269–289, 2000.

[120] V. Robins, N. Rooney, and E. Bradley. Topology-based signal separation. Chaos,
14:305–316, 2004.

[121] C.W. Rowley and V. Juttijudata. Model-based control and estimation of cavity
flow oscillations. In IEEE Conference on Decision and Control, December 2005.

[122] M. Samimy, M. Debiasi, E. Caraballo, J. Malone, J. Little, H. Ozbay, M.O. Efe,
P. Yan, X. Yuan, J. DeBonis, J.H. Myatt, and R.C. Camphouse. Three con-
trol methods for time-dependent fluid flow. Flow, Turbulence and Combustion,
65:273–298, 2000.

[123] M. Samimy, M. Debiasi, E. Caraballo, J. Malone, J. Little, H. Ozbay, M.O. Efe,
P. Yan, X. Yuan, J. DeBonis, J.H. Myatt, and R.C. Camphouse. Exploring strate-
gies for closed-loop cavity flow control. In 42nd AIAA Aerospace Sciences Meeting
and Exhibit, January 2004. Stanford University Center for Turbulence Research
Report.

150

[124] Y. Sasaki. Some basic formalisms in numerical variational analysis. Monthly
Weather Review, 98:875–883, 1970.

[125] H. Segur. Evolution of a tracer gradient in an incompressible, two-dimensional
flow. In IUTAM Symposium on Developments in Geophysical Turbulence, 1998.

[126] A. Seigel and J. Weiss. A wavelet-packet census algorithm for calculating vortex
statistics. Physics of Fluids, 9(7):1988–1999, July 1997.

[127] J. Sethian. A brief overview of vortex methods. In Vortex Methods and Vortex
Motion. SIAM Press, 1991.

[128] A-M Shineeb, J D Bugg, and R Balachandar. Variable threshold outlier identifi-
cation in PIV data. Measurement Science and Technology, 15:1722–1732, 2004.

[129] S. Siegel, K. Cohen, and T. McLaughlin. Feedback control of a circular cylinder
wake in experiment and simulation. In 33rd AIAA Fluids Conference and Exhibit,
Orlando, FL, 2003. AIAA Paper 2003-3571.

[130] L. Sirovich. Turbulence and the dynamics of coherent structures. Quarterly of
Applied Mathematics, XLV(3):561–590, 1987.

[131] B.L. Smith and A. Glezer. Jet vectoring using synthetic jets. Journal of Fluid
Mechanics, 458:1–34, 2002.

[132] C. Speziale. Analytical methods for the development of Reynolds-stress closures
in turbulence. Ann. Rev. Fluid Mech., 23:107–157, 1991.

[133] G. J. Stumpf, A. Witt, E. D. Mitchell, P. L. Spencer, J. T. Johnson, M.D. Eilts,
K. W. Thomas, and D. W. Burgess. The national severe storms laboratory meso-
cyclone detection algorithm for the wsr-88d. Weather and Forecasting, 13:304–326,
1998.

[134] O. Talagrand. Assimilation of observations, an introduction. Journal of the
Meteorological Society of Japan, 75(1B):’257–288, March 1997.

[135] O. Talagrand and P. Courtier. Variational assimilation of meteorological obser-
vations with the adjoint vorticity equation I: Theory. Quarterly Journal of the
Royal Meteorological Society, 113:1311–1328, 1987.

[136] A. Tarantola. Inverse Problem Theory: Methods for Data Fitting and Model
Parameter Estimation. Elsevier, 1987.

[137] C. Temperton. Dynamic initialization for barotropic and multi-level models.
Quarterly Journal of the Royal Meteorological Society, 102:297–311, 1976.

[138] H. Vollmers. Detection of vortices and quantitative evaluation of their main pa-
rameters from experimental velocity data. Measurement Science and Technology,
12:1199–1207, 2001.

[139] J. Weiss. The dynamics of enstrophy transfer in 2-dimensional hydrodynamics.
Physica D, 48:273–294, 1991.

151

[140] J.S. Whitaker and T.M. Hamill. Ensemble data assimilation without perturbed
observations. Monthly Weather Review, 130:1913–1924, 2002.

[141] D. Williamson and R. Dickinson. Free oscillations of the NCAR global circulation
model. Monthly Weather Review, 104:1372–1391, 1976.

Appendix A

Point-Vortex model mod.f90 code for DART

! Data Assimilation Research Testbed -- DART

! Copyright 2004, 2005, Data Assimilation Initiative, University Corporation for Atmospheric Research

! Licensed under the GPL -- www.gpl.org/licenses/gpl.html

module model_mod

! <next five lines automatically updated by CVS, do not edit>

! $Source: /home/thoar/CVS.REPOS/DART/models/template/model_mod.f90,v $

! $Revision: 1.3 $

! $Date: 2005/02/26 06:14:24 $

! $Author: thoar $

! $Name: hawaii $

! This is a template showing the interfaces required for a model to be compliant

! with the DART data assimilation infrastructure. The public interfaces listed

! must all be supported with the argument lists as indicated. Many of the interfaces

! are not required for minimal implementation (see the discussion of each

! interface and look for NULL INTERFACE).

! Modules that are absolutely required for use are listed

use types_mod, only : r8

use time_manager_mod, only : time_type, set_time, write_time, get_time

use location_mod, only : location_type, set_location, get_location, &

LocationDims, LocationName, LocationLName, &

get_close_maxdist_init, get_close_obs_init,&

get_close_obs, get_dist, query_location, &

operator(==), set_location_missing, &

set_location_uninitialized

use utilities_mod, only : file_exist, open_file, find_namelist_in_file, close_file, &

register_module, error_handler, E_ERR, E_MSG, logfileunit, &

check_namelist_read

use obs_kind_mod, only : KIND_V_VELOCITY, KIND_U_VELOCITY, &

KIND_VORTEX_X, KIND_VORTEX_Y, KIND_VORTEX_STRENGTH

implicit none

private

public :: get_model_size, &

adv_1step, &

get_state_meta_data, &

model_interpolate, &

get_model_time_step, &

end_model, &

static_init_model, &

init_time, &

153

init_conditions, &

model_get_close_states, &

nc_write_model_atts, &

nc_write_model_vars, &

pert_model_state, &

get_close_maxdist_init, get_close_obs_init, get_close_obs, ens_mean_for_model, &

comp_gradient_L1_norms, &

model_corrected

! CVS Generated file description for error handling, do not edit

character(len=128) :: &

source = "$Source: /home/thoar/CVS.REPOS/DART/models/template/model_mod.f90,v $", &

revision = "$Revision: 1.3 $", &

revdate = "$Date: 2005/02/26 06:14:24 $"

!==

! define model parameters

!---

! Namelist with default values

!

integer :: numVortices = 2

real(r8) :: delta_t = 0.01_r8

integer :: time_step_days = 1

integer :: time_step_seconds = 0

real(r8) :: approx_x_min = -5.0_r8

real(r8) :: approx_x_max = 5.0_r8

real(r8) :: approx_y_min = 0.0_r8

real(r8) :: approx_y_max = 200.0_r8

namelist /model_nml/ numVortices, delta_t, time_step_days, time_step_seconds, &

approx_x_min, approx_x_max, approx_y_min, approx_y_max

!---

! Number of state variables

integer :: model_size

integer :: num_corrections

type(location_type), allocatable :: state_loc(:)

logical :: locations_set

type(time_type) :: time_step, model_time

contains

subroutine static_init_model()

!--

!

! Called to do one time initialization of the model. As examples,

! might define information about the model size or model timestep.

! In models that require pre-computed static data, for instance

! spherical harmonic weights, these would also be computed here.

! Can be a NULL INTERFACE for the simplest models.

integer :: vortex, iunit, ierr, io

! Print module information to log file and stdout.

call register_module(source, revision, revdate)

! Read the namelist entry

call find_namelist_in_file("input.nml", "model_nml", iunit)

read(iunit, nml = model_nml, iostat = io)

call check_namelist_read(iunit, io, "model_nml")

! Model size (3 state variables per vortex)

model_size = numVortices * 3.0_r8

154

num_corrections = 0

! Create storage for locations

allocate(state_loc(model_size))

locations_set = .false.

! Record the namelist values used for the run ...

call error_handler(E_MSG,’static_init_model’,’model_nml values are’,’ ’,’ ’,’ ’)

write(logfileunit, nml=model_nml)

write(* , nml=model_nml)

! open the correction times file

model_time = set_time(0, 0);

open(unit=29, file=’./correction_times’)

! The time_step in terms of a time type must also be initialized. Need

! to determine appropriate non-dimensionalization conversion for L93

time_step = set_time(time_step_seconds, time_step_days)

end subroutine static_init_model

subroutine init_conditions(x)

!--

! subroutine init_conditions(x)

!

! Returns a model state vector, x, that is some sort of appropriate

! initial condition for starting up a long integration of the model.

! At present, this is only used if the namelist parameter

! start_from_restart is set to .false. in the program perfect_model_obs.

! If this option is not to be used in perfect_model_obs, or if no

! synthetic data experiments using perfect_model_obs are planned,

! this can be a NULL INTERFACE.

real(r8), intent(out) :: x(:)

integer :: i, index

real(r8) :: xPos, yPos, circ

! read the initial state vector from the file ’initial_conditions’

open(1, file=’initial_conditions’)

do i = 1, numVortices

read(1,*) xPos, yPos, circ

index = 3*(i-1) + 1

x(index) = xPos

x(index+1) = yPos

x(index+2) = circ

end do

close(1)

end subroutine init_conditions

subroutine set_locations(x)

!---

! subroutine set_locations

!

real(r8), intent(in) :: x(:)

integer :: index

type(location_type) :: location

155

do index=1, model_size-2, 3

location = set_location(x(index), x(index+1))

state_loc(index:index+2) = location

end do

locations_set = .true.

end subroutine set_locations

subroutine model_corrected()

!--

! subroutine model_corrected

!

! Keeps track of the number of corrections applied in the assimilation

!

integer :: seconds, days

num_corrections = num_corrections + 1

call get_time(model_time, seconds, days)

write(29, *) days*delta_t

end subroutine model_corrected

subroutine adv_1step(x, time)

!--

! subroutine adv_1step(x, time)

!

! Does single time step advance for the point-vortex model

! using fourth order Runge Kutta integration

real(r8), intent(inout) :: x(:)

type(time_type), intent(in) :: time

real(r8), dimension(size(x)) :: k1, k2, k3, k4, inter

real(r8) :: half_time

integer :: i

model_time = time;

half_time = delta_t / 2.0_r8

call comp_dx(x, k1) ! Compute the first intermediate step

inter = x + (half_time * k1);

call comp_dx(inter, k2) ! Compute the second intermediate step

inter = x + (half_time * k2);

call comp_dx(inter, k3) ! Compute the third intermediate step

inter = x + (delta_t * k3)

call comp_dx(inter, k4) ! Compute fourth intermediate step

! Compute new value for x

x = x + delta_t/6.0_r8 * (k1 + 2.0_r8 * k2 + 2.0_r8 * k3 + k4)

!print *, "After Advance"

!do i = 1, model_size

! print *, x(i)

!end do

end subroutine adv_1step

156

subroutine comp_gradient_L1_norms(x, norms, dx, dy)

!

! subroutine comp_gradient_L1_norms

!

! Computes the L1 norm of the local velocity gradients

! for each vortex

!

real(r8), intent(in) :: x(:)

real(r8), intent(out) :: norms(:)

real(r8), intent(in) :: dx, dy

real(r8), dimension(model_size) :: d_dx, d_dy

real(r8) :: sum1, sum2

integer :: vortex

call comp_gradients(x, d_dx, d_dy, dx, dy)

! Compute the column sum norm of the matrix

!

! du/dx du/dy

! dv/dx dv/dy

!

do vortex = 1, model_size-2, 3

sum1 = abs(d_dx(vortex)) + abs(d_dx(vortex+1))

sum2 = abs(d_dy(vortex)) + abs(d_dy(vortex+1))

!write(*,*) "du_dx, dv_dx, du_dy, dv_dy", d_dx(vortex),d_dx(vortex+1), d_dy(vortex), d_dy(vortex+1)

!write(*,*) "sum1=", sum1, "sum2=", sum2

if(sum1 > sum2) then

norms((vortex+2)/3) = sum1

else

norms((vortex+2)/3) = sum2

end if

end do

end subroutine comp_gradient_L1_norms

subroutine comp_gradients(x, d_dx, d_dy, dx, dy)

!

! subroutine comp_gradients

!

! Computes the local velocity gradients in the vicinity of

! each vortex

!

real(r8), intent(in) :: x(:)

real(r8), intent(out) :: d_dx(:), d_dy(:)

real(r8), intent(in) :: dx, dy

real(r8), dimension(model_size) :: temp

! compute velocity gradient in the x direction first

call comp_dx_with_offset(x, d_dx, dx, 0.0_r8)

call comp_dx_with_offset(x, temp, -dx, 0.0_r8)

d_dx = (d_dx - temp)/(2.0_r8*dx)

call comp_dx_with_offset(x, d_dy, 0.0_r8, dy)

call comp_dx_with_offset(x, temp, 0.0_r8, -dy)

d_dy = (d_dy - temp)/(2.0_r8*dy)

end subroutine comp_gradients

157

subroutine comp_dx(x, deriv)

!

! subroutine comp_dx(x, deriv)

!

! Computes the dx/dt for the point vortex model

!

real(r8), intent(in) :: x(:)

real(r8), intent(out) :: deriv(:)

call comp_dx_with_offset(x, deriv, 0.0_r8, 0.0_r8)

end subroutine comp_dx

subroutine comp_dx_with_offset(x, deriv, dx, dy)

!

! subroutine comp_dx_with_offset(x, deriv, dx, dy)

!

! Computes the dx/dt for the point vortex model.

! Adds an offset to the reference vortex position

real(r8), intent(in) :: x(:)

real(r8), intent(out) :: deriv(:)

real(r8), intent(in) :: dx, dy

integer :: reference

type(location_type) :: ref_loc

real(r8), dimension(2) :: induced_velocity

! perform the calculations for each vortex in the system

do reference = 1, model_size-2, 3

ref_loc = set_location(x(reference), x(reference+1))

induced_velocity = find_induced_velocity(x, ref_loc, dx, dy, .true.)

deriv(reference) = induced_velocity(1)

deriv(reference+1) = induced_velocity(2)

! vorticity remains constant in 2D

deriv(reference+2) = 0

end do

! print *, "Deriv", reference, other

! do i=1,model_size

! print *, deriv(i)

! end do

end subroutine comp_dx_with_offset

function find_induced_velocity(state, ref_loc, dx, dy, skip_colocated)

!---

! subroutine find_induced_velocity()

!

! Finds the induced velocity at a given location

!

real(r8), intent(in) :: state(:)

type(location_type), intent(in) :: ref_loc

real(r8), intent(in) :: dx, dy

logical, intent(in) :: skip_colocated

real(r8), dimension(2) :: find_induced_velocity

real(r8), dimension(2) :: kernel_result

real(r8):: xInfl, yInfl

158

real(r8):: ref_x, ref_y

integer :: other

type(location_type) :: other_loc

xInfl = 0.0_r8

yInfl = 0.0_r8

do other = 1, model_size-2, 3

other_loc = set_location(state(other), state(other+1))

if (skip_colocated .AND. other_loc == ref_loc) cycle

ref_x = query_location(ref_loc, ’x’)

ref_y = query_location(ref_loc, ’y’)

kernel_result = kernel_with_offset(state, ref_x, ref_y, state(other), &

state(other+1), dx, dy)

! multiply the kernel function times the

! vorticity of the other vortex

xInfl = xInfl + (kernel_result(1) * state(other+2))

yInfl = yInfl + (kernel_result(2) * state(other+2))

end do

find_induced_velocity(1) = xInfl

find_induced_velocity(2) = yInfl

end function find_induced_velocity

function kernel(state, ref_x, ref_y, other_x, other_y)

!---

! function kernel(state, ref_x, ref_y, other_x, other_y)

!

! Kernel function for point vortex integration

!

real(r8), intent(in) :: state(:)

real(r8), intent(in) :: ref_x, ref_y, other_x, other_y

real(r8), dimension(2) :: kernel

kernel = kernel_with_offset(state, ref_x, ref_y, other_x, &

other_y, 0.0_r8, 0.0_r8)

end function kernel

function kernel_with_offset(state, ref_x, ref_y, other_x, other_y, dx, dy)

!--

! function kernel_with_offset(state, ref_x, ref_y, other_x, other_y, dx, dy)

!

! Kernel function for point vortex integration

! Adds an x offset and y offset to the reference vortex position

! before computing the kernel

!

real(r8), intent(in) :: state(:)

real(r8), intent(in) :: ref_x, ref_y, other_x, other_y

real(r8), intent(in) :: dx, dy

real(r8) :: x, y, normalization, temp

real(r8), parameter :: pi=3.1415926535897932384626433832795

real(r8), dimension(2) :: kernel_with_offset

x = ref_x+dx - other_x

y = ref_y+dy - other_y

159

! Kernel function

! K(x) = 1/2pi * (-x2,x1)/(|x|^2)

! first compute |x|^2

normalization = x*x + y*y;

! multiply by 2pi

normalization = normalization * 2*pi;

! perform swap for (-x2, x1) and div by normalization

temp = x;

x = -y/normalization;

y = temp/normalization;

kernel_with_offset(1) = x;

kernel_with_offset(2) = y;

end function kernel_with_offset

function get_model_size()

!--

!

! Returns the size of the model as an integer. Required for all

! applications.

integer :: get_model_size

get_model_size = model_size

end function get_model_size

subroutine init_time(time)

!--

!

!! Companion interface to init_conditions. Returns a time that is somehow

! appropriate for starting up a long integration of the model.

! At present, this is only used if the namelist parameter

! start_from_restart is set to .false. in the program perfect_model_obs.

! If this option is not to be used in perfect_model_obs, or if no

! synthetic data experiments using perfect_model_obs are planned,

! this can be a NULL INTERFACE.

type(time_type), intent(out) :: time

! For now, just set to 0

time = set_time(0, 0)

end subroutine init_time

subroutine model_interpolate(x, location, itype, obs_val, istatus)

!--

!

! Given a state vector, a location, and a model state variable type,

! interpolates the state variable field to that location and returns

! the value in obs_val. The istatus variable should be returned as

! 0 unless there is some problem in computing the interpolation in

! which case an alternate value should be returned. The itype variable

! is a model specific integer that specifies the type of field (for

! instance temperature, zonal wind component, etc.). In low order

! models that have no notion of types of variables, this argument can

! be ignored. For applications in which only perfect model experiments

160

! with identity observations (i.e. only the value of a particular

! state variable is observerd), this can be a NULL INTERFACE.

real(r8), intent(in) :: x(:)

type(location_type), intent(in) :: location

integer, intent(in) :: itype

real(r8), intent(out) :: obs_val

integer, intent(out) :: istatus

real(r8), dimension(2) :: induced_velocity

! Default for successful return

istatus = 0

induced_velocity = find_induced_velocity(x, location, 0.0_r8, &

0.0_r8, .false.)

select case(itype)

case (KIND_U_VELOCITY)

obs_val = induced_velocity(1)

case (KIND_V_VELOCITY)

obs_val = induced_velocity(2)

case DEFAULT

call error_handler(E_ERR, ’model_interpolate’, &

’Attempt to interpolate invalid variable type’, &

source, revision, revdate)

end select

end subroutine model_interpolate

function get_model_time_step()

!--

!

! Returns the the time step of the model; the smallest increment

! in time that the model is capable of advancing the state in a given

! implementation. This interface is required for all applications.

type(time_type) :: get_model_time_step

get_model_time_step = time_step

end function get_model_time_step

subroutine get_state_meta_data(index_in, location, var_type)

!--

!

! Given an integer index into the state vector structure, returns the

! associated location. A second intent(out) optional argument kind

! can be returned if the model has more than one type of field (for

! instance temperature and zonal wind component). This interface is

! required for all filter applications as it is required for computing

! the distance between observations and state variables.

integer, intent(in) :: index_in

type(location_type), intent(out) :: location

integer, intent(out), optional :: var_type

integer :: vortex

integer :: modulus

if (.NOT. locations_set) then

write(*,*) ’Locations not set for the point vortex model’

location = set_location_uninitialized()

end if

161

location = state_loc(index_in)

if(present(var_type)) then

modulus = MOD(index_in, 3)

select case(modulus)

case(1)

var_type = KIND_VORTEX_X

case(2)

var_type = KIND_VORTEX_Y

case(3)

var_type = KIND_VORTEX_STRENGTH

end select

end if

end subroutine get_state_meta_data

subroutine end_model()

!--

!

! Does any shutdown and clean-up needed for model. Can be a NULL

! INTERFACE if the model has no need to clean up storage, etc.

deallocate(state_loc)

write(*,*) "Writing number of corrections to file...", num_corrections

open(unit=1, file=’./num_corrections’)

write(1, *) num_corrections

close(1)

write(*,*) "Closing correction times file..."

close(29)

write(*,*) "Done."

end subroutine end_model

subroutine model_get_close_states(o_loc, radius, inum, indices, dist, x)

!--

!

! Computes a list of model state variable indices that are within

! distance radius of a given location, o_loc. The units of the radius

! and the metric for computing distances is defined by the location module

! that is in use. The number of state variables that are within radius

! of o_loc is returned in inum. The indices of each of these is

! returned in indices and the corresponding distance in dist. The model

! state is available in x because it is sometimes required to determine

! the distance (for instance, the current model surface pressure field

! is required to compute the location of state variables in a sigma

! vertical coordinate model). A model can choose to do no computation

! here and return a value of -1 in inum. If this happens, the filter

! will do a naive search through ALL state variables for close states.

! This can work fine in low-order models, but can be far too expensive

! in large models.

type(location_type), intent(in) :: o_loc

real(r8), intent(in) :: radius

integer, intent(out) :: inum, indices(:)

real(r8), intent(out) :: dist(:)

real(r8), intent(in) :: x(:)

type(location_type) :: vortex_loc

real(r8) :: distance

integer :: index, vortex

162

index = 1

do vortex=1, model_size-2, 3

vortex_loc = set_location(x(vortex), x(vortex+1))

! We don’t really know the kind of the incoming location,

! but it currently doesn’t matter in the distance computation

distance = get_dist(o_loc, vortex_loc, KIND_VORTEX_X, KIND_VORTEX_X)

if (distance < radius) then

indices(index) = vortex

indices(index+1) = vortex+1

indices(index+2) = vortex+2

dist(index:index+2) = distance

index = index + 3

end if

end do

inum = index-1

end subroutine model_get_close_states

function nc_write_model_atts(ncFileID) result (ierr)

!--

! Writes the model-specific attributes to a netCDF file

! TJH Jan 24 2003

!

! TJH 29 July 2003 -- for the moment, all errors are fatal, so the

! return code is always ’0 == normal’, since the fatal errors stop execution.

!

! For the lorenz_96 model, each state variable is at a separate location.

! that’s all the model-specific attributes I can think of ...

!

! assim_model_mod:init_diag_output uses information from the location_mod

! to define the location dimension and variable ID. All we need to do

! is query, verify, and fill ...

!

! Typical sequence for adding new dimensions,variables,attributes:

! NF90_OPEN ! open existing netCDF dataset

! NF90_redef ! put into define mode

! NF90_def_dim ! define additional dimensions (if any)

! NF90_def_var ! define variables: from name, type, and dims

! NF90_put_att ! assign attribute values

! NF90_ENDDEF ! end definitions: leave define mode

! NF90_put_var ! provide values for variable

! NF90_CLOSE ! close: save updated netCDF dataset

use typeSizes

use netcdf

integer, intent(in) :: ncFileID ! netCDF file identifier

integer :: ierr ! return value of function

!--

! General netCDF variables

!--

integer :: nDimensions, nVariables, nAttributes, unlimitedDimID

!--

! netCDF variables for Location

!--

integer :: LocationVarID

integer :: StateVarDimID, StateVarVarID

integer :: StateVarID, MemberDimID, TimeDimID

163

!--

! local variables

!--

character(len=8) :: crdate ! needed by F90 DATE_AND_TIME intrinsic

character(len=10) :: crtime ! needed by F90 DATE_AND_TIME intrinsic

character(len=5) :: crzone ! needed by F90 DATE_AND_TIME intrinsic

integer, dimension(8) :: values ! needed by F90 DATE_AND_TIME intrinsic

character(len=NF90_MAX_NAME) :: str1

integer :: i

type(location_type) :: lctn

ierr = 0 ! assume normal termination

!--

! make sure ncFileID refers to an open netCDF file

!--

call check(nf90_Inquire(ncFileID, nDimensions, nVariables, nAttributes, unlimitedDimID))

call check(nf90_sync(ncFileID)) ! Ensure netCDF file is current

call check(nf90_Redef(ncFileID))

!--

! Determine ID’s from stuff already in the netCDF file

!--

! make sure time is unlimited dimid

call check(nf90_inq_dimid(ncFileID,"copy",dimid=MemberDimID))

call check(nf90_inq_dimid(ncFileID,"time",dimid=TimeDimID))

!--

! Write Global Attributes

!--

call DATE_AND_TIME(crdate,crtime,crzone,values)

write(str1,’(’’YYYY MM DD HH MM SS = ’’,i4,5(1x,i2.2))’) &

values(1), values(2), values(3), values(5), values(6), values(7)

call check(nf90_put_att(ncFileID, NF90_GLOBAL, "creation_date",str1))

call check(nf90_put_att(ncFileID, NF90_GLOBAL, "model_source", source))

call check(nf90_put_att(ncFileID, NF90_GLOBAL, "model_revision", revision))

call check(nf90_put_att(ncFileID, NF90_GLOBAL, "model_revdate", revdate))

call check(nf90_put_att(ncFileID, NF90_GLOBAL, "model", "PointVortex"))

call check(nf90_put_att(ncFileID, NF90_GLOBAL, "model_numVorts", numVortices))

call check(nf90_put_att(ncFileID, NF90_GLOBAL, "model_delta_t", delta_t))

!--

! Define the model size, state variable dimension ... whatever ...

!--

call check(nf90_def_dim(ncid=ncFileID, name="StateVariable", &

len=model_size, dimid = StateVarDimID))

!--

! Define the Location Variable and add Attributes

! Some of the atts come from location_mod (via the USE: stmnt)

! CF standards for Locations:

! http://www.cgd.ucar.edu/cms/eaton/netcdf/CF-working.html#ctype

!--

!call check(NF90_def_var(ncFileID, name=trim(adjustl(LocationName)), xtype=nf90_double, &

! dimids = StateVarDimID, varid=LocationVarID))

!call check(nf90_put_att(ncFileID, LocationVarID, "long_name", trim(adjustl(LocationLName))))

!call check(nf90_put_att(ncFileID, LocationVarID, "dimension", LocationDims))

!call check(nf90_put_att(ncFileID, LocationVarID, "units", "nondimensional"))

164

!call check(nf90_put_att(ncFileID, LocationVarID, "valid_range", (/ 0.0_r8, 1.0_r8 /)))

!--

! Define either the "state vector" variables -OR- the "prognostic" variables.

!--

! Define the state vector coordinate variable

call check(nf90_def_var(ncid=ncFileID,name="StateVariable", xtype=nf90_int, &

dimids=StateVarDimID, varid=StateVarVarID))

call check(nf90_put_att(ncFileID, StateVarVarID, "long_name", "State Variable ID"))

call check(nf90_put_att(ncFileID, StateVarVarID, "units", "indexical"))

call check(nf90_put_att(ncFileID, StateVarVarID, "valid_range", (/ 1, model_size /)))

! Define the actual state vector

call check(nf90_def_var(ncid=ncFileID, name="state", xtype=nf90_double, &

dimids = (/ StateVarDimID, MemberDimID, TimeDimID /), varid=StateVarID))

call check(nf90_put_att(ncFileID, StateVarID, "long_name", "model state or fcopy"))

! Leave define mode so we can fill

call check(nf90_enddef(ncfileID))

! Fill the state variable coordinate variable

call check(nf90_put_var(ncFileID, StateVarVarID, (/ (i,i=1,model_size) /)))

!--

! Fill the location variable

!--

! do i = 1,model_size

! call get_state_meta_data(i,lctn)

! call check(nf90_put_var(ncFileID, LocationVarID, get_location(lctn), (/ i /)))

!enddo

!--

! Flush the buffer and leave netCDF file open

!--

call check(nf90_sync(ncFileID))

write (*,*)’Model attributes written, netCDF file synched ...’

contains

! Internal subroutine - checks error status after each netcdf, prints

! text message each time an error code is returned.

subroutine check(istatus)

integer, intent (in) :: istatus

if(istatus /= nf90_noerr) call error_handler(E_ERR,’nc_write_model_atts’,&

trim(nf90_strerror(istatus)), source, revision, revdate)

end subroutine check

end function nc_write_model_atts

function nc_write_model_vars(ncFileID, statevec, copyindex, timeindex) result (ierr)

!--

! Writes the model variables to a netCDF file

! TJH 23 May 2003

!

! TJH 29 July 2003 -- for the moment, all errors are fatal, so the

! return code is always ’0 == normal’, since the fatal errors stop execution.

!

! For the lorenz_96 model, each state variable is at a separate location.

! that’s all the model-specific attributes I can think of ...

!

! assim_model_mod:init_diag_output uses information from the location_mod

! to define the location dimension and variable ID. All we need to do

165

! is query, verify, and fill ...

!

! Typical sequence for adding new dimensions,variables,attributes:

! NF90_OPEN ! open existing netCDF dataset

! NF90_redef ! put into define mode

! NF90_def_dim ! define additional dimensions (if any)

! NF90_def_var ! define variables: from name, type, and dims

! NF90_put_att ! assign attribute values

! NF90_ENDDEF ! end definitions: leave define mode

! NF90_put_var ! provide values for variable

! NF90_CLOSE ! close: save updated netCDF dataset

use typeSizes

use netcdf

integer, intent(in) :: ncFileID ! netCDF file identifier

real(r8), dimension(:), intent(in) :: statevec

integer, intent(in) :: copyindex

integer, intent(in) :: timeindex

integer :: ierr ! return value of function

!--

! General netCDF variables

!--

integer :: nDimensions, nVariables, nAttributes, unlimitedDimID

integer :: StateVarID

!--

! local variables

!--

ierr = 0 ! assume normal termination

!--

! make sure ncFileID refers to an open netCDF file

!--

call check(nf90_Inquire(ncFileID, nDimensions, nVariables, nAttributes, unlimitedDimID))

! no matter the value of "output_state_vector", we only do one thing.

call check(NF90_inq_varid(ncFileID, "state", StateVarID))

call check(NF90_put_var(ncFileID, StateVarID, statevec, &

start=(/ 1, copyindex, timeindex /)))

! write (*,*)’Finished filling variables ...’

call check(nf90_sync(ncFileID))

! write (*,*)’netCDF file is synched ...’

contains

! Internal subroutine - checks error status after each netcdf, prints

! text message each time an error code is returned.

subroutine check(istatus)

integer, intent (in) :: istatus

if(istatus /= nf90_noerr) call error_handler(E_ERR,’nc_write_model_vars’,&

trim(nf90_strerror(istatus)), source, revision, revdate)

end subroutine check

end function nc_write_model_vars

subroutine pert_model_state(state, pert_state, interf_provided)

!--

!

! Perturbs a model state for generating initial ensembles.

166

! The perturbed state is returned in pert_state.

! A model may choose to provide a NULL INTERFACE by returning

! .false. for the interf_provided argument. This indicates to

! the filter that if it needs to generate perturbed states, it

! may do so by adding an O(0.1) magnitude perturbation to each

! model state variable independently. The interf_provided argument

! should be returned as .true. if the model wants to do its own

! perturbing of states.

real(r8), intent(in) :: state(:)

real(r8), intent(out) :: pert_state(:)

logical, intent(out) :: interf_provided

interf_provided = .false.

! May want to do something more intelligent here later...

end subroutine pert_model_state

subroutine ens_mean_for_model(ens_mean)

!--

! Not used in low-order models

real(r8), intent(in) :: ens_mean(:)

call set_locations(ens_mean)

end subroutine ens_mean_for_model

!===

! End of model_mod

!===

end module model_mod

