Deep Learning Seismic Arrival Picks

Rey Koki 1
Anne Sheehan 2,3
Liz Bradley 1,4
Michael McCabe 1
Tavishi Priyam 1

1Computer Science Department, University of Colorado Boulder
2Geological Sciences Department, University of Colorado Boulder
3CIRES
4Santa Fe Institute, New Mexico

Contributions

1. We introduce atrous layers to a basic CNN architecture to identify seismic phase arrivals in waveform data.
2. We show additional improvements with spectrogram input without significant cost.

Seismic Arrivals

- Obtaining accurate arrival times of earthquake waves is important for earthquake detection, determining epicenter locations and seismic tomography studies.
- Earthquake phase arrival identification is often performed by analysts (figure 1) that can be costly and add bias to their results.

creating an accurate automated phase picker can reduce dependence on analysts, which could decrease the variability in quality while increasing the quantity of databases.

Study Area and Data

Using the New Zealand GeoNet database we look at 9436 earthquakes that occurred on the North Island of New Zealand from 2012 to 2013. We process the data by applying standardization (equation 1) and a bandpass filter between 0 and 25 Hz.

\[x - \text{mean}(x) \]
\[\text{std}(x) \]

Spectrograms

While deep learning phase picking models, such as PhaseNet [3] and EQTransformer [2] have used 1D waveform data, we investigate using 2D spectrogram data (figure 4). Spectrograms convert the waveform data from the spatial to the frequency domain. At every point along the x-axis, it shows the power of the frequency that makes up the waveform at that time.

CNN architecture

To demonstrate the significant impact of atrous layers, we used a very basic architecture shown in figure 3.

Conclusions

Table 1 shows that introducing atrous convolutional layers increases model performance. Additionally, using a spectrogram gave nominal improvements. Our precision and time differences (figure 5) show worse performance than PhaseNet [3] and EQTransformer [2]. Because our simple straight CNN might not be able to capture the complexity needed for this problem, our next step would be to introduce a more involved architecture such as U-nets.

Key Results

<table>
<thead>
<tr>
<th>model type + input</th>
<th>P-wave .1s</th>
<th>S-wave .1s</th>
<th>P-wave .5s</th>
<th>S-wave .5s</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN no atrous + waveform</td>
<td>.85</td>
<td>.42</td>
<td>.94</td>
<td>.85</td>
</tr>
<tr>
<td>CNN w atrous + waveform</td>
<td>.86</td>
<td>.51</td>
<td>.98</td>
<td>.95</td>
</tr>
<tr>
<td>CNN w atrous + spectra</td>
<td>.88</td>
<td>.49</td>
<td>.99</td>
<td>.96</td>
</tr>
</tbody>
</table>

References

Atrous Convolutional Layers

We introduce atrous layers that serve as a way to increase the reception field to achieve more of a global context of the waveform with less memory consumption compared to other methods such as max pooling. More importantly to this problem, as shown in figure 2, DeepLab [1] demonstrated how atrous layers can conserve resolution better than traditional methods of down sampling while still achieving global context.

Figure 2. Figure taken from Chen et al. [1] where they demonstrate differences in resolution from downsampling using a) traditional downsampling method and b) atrous convolutional layers.

Figure 3. The architecture with atrous layers (orange), the gray dotted line represents how the field of view for the network increases as the kernel dilation, d, increases.

Figure 4. Waveforms with analyst picks (dashed line), calculated spectrograms and model output softmax probabilities with model picks (dotted lines).

Table 1. Precision for models and input for P and S waves within 1 and 5 seconds.

Figure 5. Time differences between analyst picks and model picks for a) P-waves and b) S-waves.

https://github.com/reykoki/NetPicky
CIRES Rendezvous Poster Session
reykoki@colorado.edu