166

CHAPTER 6. MANIFOLDS

whose orbit approaches L as k — oo. The stable manifold is
invariant under P.

Unstable manifold (discrete-time): The unstable manifold
W"(L) of a limit set L of a diffeomorphism P is the set of all
points 2 whose orbit approaches L as k — —oo. The unstable
manifold is invariant under P.

Homoclinic point: Let z* be a fixed point of a diffeomor-
?hism P. A homoclinic point is a point = # z* that lies
in W*(z*)\W*(z*). The existence of one homoclinic point
implies the existence of an infinity of homoclinic points.

Homoclinic orbit: An orbit composed of homoclinic points.

Transversal homoclinic point: A homoclinic point at which
the manifolds intersect transversally. A map that possesses
a transversal homoclinic point has horseshoe-like maps embed-

ded in it and, therefore, exhibits sensitive dependence on initial
conditions.

Chapter 7

Dimension Q MM\
\ v
o

This chapter addressp€ the question of the dimension of a limit set,
in particular, the ension of a strange attractor. We will see that
a strange attractor'possesses non-integer dimension while the dimen-
sion of a non-chaotic attractor is always an integer.

After we discuss dimension, we present a remarkable result that
permits an attractor to be reconstructed from a sampled time wave-
form of just one component of the state.

7.1 Dimension

There are several different types of dimension. The dimension of
Euclidean space is familiar to everyone—it is the minimum number
of coordinates needed to specify a point uniquely. The dimension of
a dynamical system is the number of state variables that are used
to describe the dynamics of the system. In differential topology,
the dimension of a manifold is the dimension of the Euclidean space
that the manifold resembles locally. None of these dimensions allows
non-integer values and none of them can be used to describe strange
attractors. The generic term for a dimension that allows non-integer
values is fractal dimension. A set that has non-integer dimension is
called a fractal. Almost all strange attractors are fractals.

We present five different types of fractal dimension. The most
well-known is capacity. The four others are information dimension,
correlation dimension, kth nearest-neighbor dimension, and Lyapu-
nov dimension.

Though these five are the most commonly used dimensions, there
are several other definitions. Some enlightening discussions on these
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other dimensions and their relationship to the ones presented in this
chapter can be found in Young [1983], Farmer et al. [1983], Badii and
Politi [1985], and Mayer-Kress [1986].

7.1.1 Definitions
Capacity .

The simplest type of dimension is capacity. Cover an attractor A
with volume elements (spheres, cubes, etc.) each with diameter e.
Let N(¢) be the minimum number of volume elements needed to
cover A. If A is a D-dimensional manifold—D is necessarily an
integer—then the number of volume elements needed to cover A is
inversely proportional to €2, that is,

N(e)=ke P (7.1)

for some constant k.! The capacity, denoted by Dcgap, is obtained by
solving (7.1) for D and taking the limit as e approaches zero,

o Lig 2V(E)
pr = 11_% E(Tz). (7.2)

If the limit does not exist, then Dcq4p is undefined. Since a d-dimen-
sional manifold locally resembles IR, D ,p of a manifold equals the
topological dimension, which is an integer. For objects that are not
manifolds, Degp can take on non-integer values.

Example 7.1 The unit interval:

As volume elements, choose intervals of length € = 1/3%. It takes
N(€) = 3* of these volume elements to cover the unit interval [0, 1]
(see Fig. 7.1(a)). To refine the covering, let k — oo to obtain

. In3*
Dcap = kllvrgo -lm =1. (73)

As expected, the unit interval has dimension 1.

Example 7.2 The middle-third Cantor set:
This example will show that the middle-third Cantor set has non-
integer dimension. Since strange attractors have a Cantor-set-like

'k depends on the geometry of the attractor and on the type of volume element
used.

e —————
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Figure 7.1: Two simple examples of capacity. (a) The unit interval;
(b) the middle-third Cantor set. :

structure, the example also explains why a strange attractor has a
non-integer dimension.

The middle-third Cantor set is constructed iteratively by remov-
ing the middle third of the unit interval and then the middle third
of the remaining two intervals, etc. (see Appendix F). To calculate
the capacity of the middle-third Cantor set, cover it, at the kth step
in the construction, with intervals of length ¢ = 1/ 3k as shown in
Fig. 7.1(b). At the kth step, the number of intervals required to
cover the set is N(¢) = 2F, and

In2* In2

= lim oo = o= = 0.6309.... 4
Deap = Jim yop = g3 = 06309 (74)

Hence, the Cantor set is something more than a point (dimension 0)
but something less than an interval (dimension 1).

Remark: When the limit in (7.2) exists, the question arises whether
another covering (e.g., spheres instead of cubes or, perhaps, a
mixture of spheres of different sizes) can result in a different
value of D¢gp. The answer, unfortunately, is yes. To resolve this
dilemma, we simply comment that capacity is closely related
to Hausdorff dimension and that the definition of Hausdorff
dimension implies that if different coverings result in differ-
ent values of Degp, then the minimum value over all coverings
should be used (see Young [1983]).

Information dimension

Capacity is a purely metric concept. It utilizes no information about -
the time behavior of the dynamical system. Information dimension,
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on the other hand, is defined in terms of the relative frequency of
visitation of a typical trajectory. The setting is the same as for
capacity—a covering of N(¢) volume elements each with diameter e.
The information dimension Dy is defined by

Dy :=lig mI](IS)e) (7.5)

where N
H(e):=-)_ PilnP. (7.6)

=1

P; is the relative frequency with which a typical trajectory enters the
ith volume element of the covering.

Readers familiar with information theory will recognize H(¢) as
entropy—the amount of information needed to specify the state of

the system to an accuracy of e if the state is known to be on the
attractor.

For sufficiently small ¢, (7.5) can be rewritten as
H(e) = ke™Dr (7.7)

for some constant of proportionality k. In words, the amount of
informa.tion(needed to specify the state increases inversely with the
Dyth power of e. Compare this equation with (7.1).

Example 7.3 Unit interval:

Assume the attractor is the unit interval and that the probability
density is uniform. As before, choose intervals of length ¢ = 1/3*
as volume elements. It follows that N(e) = 3* and that P; = 1/3%,
With these values, the entropy is

o
H(e) = =) =—In
LFERF (7.8)
= In3* l
and the information dimension is
. In3*
D] = kli»n:oln_sk =1. (7.9)

which agrees with Dcap. In fact, it is easy to show that for uniform
densities, D¢,p and Dy always agree.
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Example 7.4 Interval and point:
Let the set under study be the subset of IR that consists of the unit
interval [0,1] and the isolated point 2. Assume that the probability
of finding a point at 2 is 1/2, and of finding a point on the interval
is also 1/2. Further assume that the density is uniform over the
interval.

It is easy to show that the capacity of this set is 1. This is the
same result as for the unit interval itself and, therefore, capacity

* ignores the isolated point even though the probability of being at

the point is the same as being on the interval 2

To find the information dimension of this set, choose intervals of
length € = 1/3* as volume elements. It takes 3F such elements to
cover the unit interval but only one to cover the isolated point, so
N(e) = 3*+1. P; = 1/2 for the volume element covering the isolated
point and P; = 1/(2 - 3*) for the remaining volume elements. Thus,

1, (1 1 &1 1
H(e) = —-2-111(2—') - -2-.2;3—,‘111(—2.3,:)
~=
= %mz + %ln(z-sk) - (7.10)

= In2 + %ln3"

and .
In2 In3
Dy = lim (—+—)
k—oo ln3" 21113k (711)
=1
5

Thus, for this example, Dy is the average of the dimensions of the
point and of the interval.

Though the set in the last example is not the limit set of a dy-
namical system, it does show how information dimension differs from
capacity. Capacity tends to ignore lower dimensional subsets of the
attractor. Information dimension, on the other hand, weights the
lower-dimensional subsets according to the frequency of visitation of
a typical trajectory.

Example 7.5 The middle-third Cantor set:
To find the information dimension of the middle-third Cantor set,

21t can be shown using (7.1) and (7.2) that Deap(S) = max; Deap(Si) for
S =51J-|JShx for some finite k.
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it is necessary to define a probability density on the set. In each
step of the construction of the Cantor set, the middle of an interval
is removed leaving two smaller sub-intervals, one on the left and one
on the right. Any point in the Cantor set is, therefore, identified
uniquely by its left-right history, that is, whether at the kth step of
the construction it was in the right or left sub-interval. For example,
£2e¢... is the left-most point of the Cantor set (i.e., 0),-and £rr... is
the right-most point of the first left sub-interval (i.e., 1/3).

The left-right history can be used to define a self-similar prob-
ability density. Let 0 < p; < 1 be the probability of being in the
left sub-interval and p, = 1 — p; be the probability of being in the
right sub-interval. For example, the probability that a point lies in
the segment [2/27,3/27] corresponding to £6r is pypp,. It is shown
in Appendix F that the information dimension of the middle-third
Cantor set with this probability density is

Dy = _Pelnpetprlnp,

T = - .
In3

Observe that when p; = p, = 1/2, the information dimension agrees

with the capacity. When p; # p,, however, the information capacity
is always less than the capacity.

(7.12)

Remark: It can be shown that for any attractor, D; < Deyp.

Correlation dimension

* Another probabilistic type of dimension is the correlation dimen-
sion Dc. It, too, depends upon refining a covering of N(e) volume
elements of diameter ¢, and is defined by

N(o)
n )" P}

— 1 =1
D¢ : 11_% e (7.13)
where, as before, P; is the relative frequency with which a typical
trajectory enters the ith volume element, '
To help interpret the numerator of (7.13), suppose N points of
a trajectory have been collected, either through simulation or from

measurements. Define the correlation as

C(e):= Nh'_x;nw %{ the number of pairs of points (7.14)
(zi,z;5) such that ||z; — z;|| < €}.

|
|
|
|
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Then

De = lim 2609 (7.15)

«—0 Ine
To show the plausibility of (7.15), let n; be the number of points
lying in the ith volume element. Then :

P, = lim L (7.16)

Since the volume element has diameter ¢, all th(; n; points lie within €
of each other and form n? — n; pairs of points.® It follows that

Cle) = lim %Z(n?-m)

from which (7.15) follows.

An objection to the preceding derivation can be made because
n? — n; is the number of points in a single volume element. It do?s
not include pairs of points that are within € of each ot.her.but that lie
in different volume elements. In response to this objection, assume
that there are actually un? pairs of points within € of one another

where g > 1 is a correction factor. With this correction term, (7.15)

becomes o - im 1n (1 C(e))
¢ = .e—0 lIne

Ing . InC(e) 7.18)
= lm o+, (

In C(€)
= ll—l»% Ine

which agrees with (7.15).

3(zi,2:) is not counted as a pair and for # 7, (z:,z;) is treated as a pair
different from (z;, z:).
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Example 7.6 Interval and point:

Consider the set from Example 7.4. Use intervals of length € = 1/3*
as volume elements. Then N(e) = 3¥ + 1, P; = 1/(2 - 3F) for the
volume elements covering the interval, and P; = 1/2 for the single

'volume element covering the isolated point. Substitute these values
into the numerator of (7.13) to obtain

N(e) 1 3k 1
2 =

(7.19)

which yields

o lnfi(1+3
De = klfc}o [an1 /3k_§)r)]

_ In(1/4) (7.20)
= )

= 0.

T.hus, Tmlil.:e capacity and information dimension, the correlation
f11mens1f)n ignores the unit interval entirely. The reader may find it
interesting to calculate D¢ for this example using (7.15).

Example 7.7 The middle-third Cantor set:
Consider the middle-third Cantor set with probabilities as in Ex-

ample 7.5. It is shown in Appendix F that the correlation di :
n dim
of the middle-third Cantor set is enston

1 2 2
Dc = — n(plln'; pr). (7.21)

Opserve t:ha.t Whefl Pt = pr = 1/2, the correlation dimension agrees
.w1th the information dimension and with the capacity. When, how-

ever, p # Py, the correlation dimension is always less than the infor-
mation dimension.

Remark: It can be shown that for any attractor, D¢ < Dr < Dgp.
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kth nearest-neighbor dimension

The kth nearest-neighbor dimension was formulated by Pettis et
al. [1979). The appeal of this dimension is that its definition is based
firmly on probabilistic concepts.

Consider an attractor A embedded in R". Let 2y, ..., ZN be
N randomly chosen data points lying on A. Let r(k,z) be the dis-
tance between z and its kth nearest neighbor in {z;}. Define 7(k) as
the mean of r(k,z) taken over {=z;}, that is,

N

(k) = %,—Z r(k, i) (7.22)

i=1

Pettis et al. show that under reasonable assumptions and for large N,
there exist functions g and ¢ such that the kth nearest-neighbor di-
mension Dyn is well-defined by the equation

Ink + ¢(z1,...,2N)

Don 2= 0 Don) + I 7(R)

(7.23)

Pettis et al. show that g(ky Dnn) is small for all ¥ and Dgp, 80
ignoring g, (7.23) can be rewritten as

f(k) ~ ec(::l,...,a:N)kI/DM (7.24)

which, given {21, ..., % N}, implies that the average distance to the
kth nearest neighbor is proportional to k1/Dnn . This proportional-
ity is intuitively satisfying, at least for manifolds. For example, let
{21, ..., TN}, be chosen from the interior of the unit circle using a
uniform probability density. Let S be a smaller circle with radius 7
that is randomly positioned. in the interior of the unit circle. The
number n(r) of points in the intersection of S and {z;} is, on the
average, proportional to the area of S, that is,

n(r) o r2. (7.25)

Since a circle of radius (k) contains, on the average, k points, it
follows from (7.25) that k o @(r)* which agrees with (7.24).

Owing to the complexity of calculating 7(k), simple yet mean-
ingful analytical examples are difficult to find. Pettis et al. give an
example using a uniform density over the unit interval with N = 3.
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Lyapunov dimension

Let Ay > «-- > A, be the Lyapunov exponents of an attractor of
a continuous-time dynamical system. Let j be the largest integer

such that Ay + -+ + Aj > 0. The Lyapunov dimension as defined by
Kaplan and Yorke [1979] is

A1+ + A

Dr=it+ =5

(7.26)

K no such j exists, as is the case for a stable hyperbolic equilibrium
point, Dy, is defined to be 0.

For an attractor, ¥, A; < 0, 5o j is gnaranteed to be less than 7.
For an attracting limit cycle, the generic situation is A1=0> >
+++ > An. Thus, the Lyapunov dimension of a generic attracting limit
cycle is 1. Similarly, the Lyapunov dimension of generic attracting
K-periodic behavior is K.

Hf the attractor is chaotic, Dy, is almost always a non-integer.* In

a three-dimensional chaotic system with Lyapunov exponents Ay >
0> A, '
A

D=2+ ﬁ (7.27)

For an attractor, A+ +A- < 0 from which it follows that 2 < Dp < 3.

Plausibility argument: The derivation of (7.26) by Kaplan and Yorke
is not rigorous, and we present a plausibility argument. Consider an
n-dimensional hyper-cube C evolving in a flow ¢,. Let the length
of the sides of the hyper-cube be e. With the proper change of
coordinates and for ¢ small, the ith side of C evolves under the flow,
on the average, as ee*. To find the capacity of C cover C at time 0
with hyper-cubes of side e. To refine this covering, let each of the
sides of each of the volume elements contract at the constant rate
e*+1t where k is chosen such that Akt1 < 0 (the ); are in decreasing

order as before). The number of these contracting cubes it takes to
cover C at time ¢ is

eeMt €erut

N(t) = ee'\*+1‘.“¢e)‘h+1f (728)

= e(A1+"'+Ah —kl*.’,l)t.

‘In the non-generic case of A; > 0, A2 = 0, A3 = =), and Ay < A3, the
attractor has Lyapunov dimension 3.
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The sides of C that grow with rates Axy2, ..., A,:\, dc; not influence
N (t) because they are shrinking with respect to e**+1".
The capacity is approximated by

In N(t)

Deap(k) = T im0 In(e ert1t)

(7.29)
Mt N

Aet1

It is shown by Frederickson et al. [1983] that k = j yields the lowest
value® of Degp(k) s0 define

= k

e e

! Aj+1

Mt ot A
[Aisl

Dy := Deap(j) =
-(7.30)

to complete the plausibility argument.

Discussion

Given the different definitions of dimension, it is natural to ask what
relationship they bear to one another. Are they equivalent? Is one
more useful than another? .

First, we warn the reader that dimension is an active rese:.n'ch
area and the relationships and meanings of the different dimensions
are unclear, especially in experimental settings or when applied to
simulations. Part of the problem arises from not having an exact
definition of a strange attractor. Other problems are due.to the
difficulty of analyzing the statistical properties that are req.ulre.d for
Dy, Do, Dpn, and Dy. Until these issues are settled, it is difficult to
make any rigorous statements regarding the dimension of a strange
attractor. Thus, this discussion is necessarily speculative in nature.

One task for which dimension appears to be impractical is to de-
scribe the geometric structure of an attractor. It seems ridiculous
that a single number can fully describe the complex structure of a
strange attractor. It is shown in Appendix F that Dcgp, Dy, and D¢
are three members of a countably infinite family of dimensions called
the Renyi dimensions. Moreover, Badii and Politi [1985] introduced

5Recall that if two different coverings result in different capacities, the mini-
mum value should be used.
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an entire continuum of dimensions in which, at least for self-similar
sets, the Renyi dimensions are embedded. A different continuum
of dimensions, the multifractal spectrum, has been used to measure
apparently universal properties of attractors at the onset of chaos
through period-adding bifurcations (see Glazier and Libchaber [1988)
for a review of this work). The current state of knowledge is unclear
as to how much information these different values of dimension carry.
For example, to distinguish between two attractors on the basis of di-
mension alone, is it sufficient to know the values of all these different
dimensions, of just a few, or is additional information needed?

Dimension can be used to classify strange versus non-strange at-
tractors. Non-strange attractors have integer dimension, and almost
all chaotic attractors have non-integer dimension. This classification
scheme, though nice in theory, is fairly useless in practice. First,
the dimension algorithms have low precision, making it difficult if
not impossible to judge whether the dimension is an integer. Sec-
ond, there are better ways to judge whether an attractor is chaotic
(e.g., looking at it, or one of the shooting methods).

The main use of dimension is to quantify the complexity of an
attractor. The dimension of an attractor gives a lower bound on
the number of state variables needed to describe the dynamics on
the attractor. In words familiar from physics, the dimension is a
lower bound on the number of degrees of freedom of the attractor.
For example, motion on a limit cycle (dimension 1) can be described
by a first-order differential equation where the variable is arc-length
along the circle or perhaps the angle of rotation. In the chaotic case,
motion on an attractor with dimension 2.4 cannot be described by

two state variables, but can be modeled, at least theoretically, by a
third-order system.

If the main reason for finding the dimension of an attractor is to
estimate the minimum number of variables needed to describe the
steady-state dynamics, there seems to be no theoretical reason for
choosing one type of dimension over another—D,4p, Di, D¢, and Dy,
give values close to one another. The main reasons for choosing
one type of dimension over another are the ease and accuracy of its
computation. Since new algorithms may be found, there is no cut
and dried answer as to which dimension-finding algorithm is best.
There exist algorithms of comparable efficiency for finding each of

Deap, Dg, and Dy,. These algorithms are presented in the next
section.
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As is obvious from the definition, Lyapunov dimension is some-
what different from the other four. It was originally conjectured that
Dy, = Degp as the plausibility argument is designed to show. Sin?e
Lyapunov exponents are probabilistic in nature—they are defined in
terms of an average over time—and Dc,p is not, the conjecture was
changed to Dy, = Dy. Numerical simulations do not appear to con-
tradict this conjecture, but analytical examples exist where D1, # Dy -
(see Grassberger and Procaccia [1983]). These examples, however,
are not structurally stable and if perturbed, the relationship Df, = Dy
does hold. The exact relationship between Dy, and Dy (and the other
dimensions as well) is an active research topic.

7.1.2 Algorithms

For each type of dimension, there are several different algorithms for
estimating it. We cannot cover all the different techniques and are
satisfied to present one technique for each of Deap, Dc, and Dyq.
This is an active field of research and the algorithms presented here
should not be taken as the best possible algorithms—most likely they
will be superseded by more reliable algorithms in the near future.
The algorithms presented do demonstrate, however, the wide va.rifzty
of approaches that are available to tackle the problem of estimating
dimension and they highlight the creativity and energy researchers
have devoted to this area.

The input to the following dimension-finding algorithms is a finite
sequence {z1, ..., n} of points on an attractor. Typicz.\lly, t.he
points are evenly spaced time-samples of one or more trajectories
that have achieved the steady state. It is important to keep in mind
that the dimension-finding algorithms are not given full information
about an attractor; they are given only partial information about a
finite number of trajectories on the attractor.

Capacity

The first attempts to calculate capacity were based directly on the
definition. From (7.1),

1
In N(G) = Dcapln; +111k. (7’31)

Hence, Degp is the slope of a log-log plot of N(¢) versus 1/e.
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To calculate N(¢) for several values of ¢ simultaneously, choose
some minimum value ¢y of €. Cover the n-dimensional state space
with a grid of boxes (hyper-cubes) of side . In the computer, main-
tain a boolean array—all entries initialized to FALSE—where each
entry corresponds to one of the boxes. For each data point z;, calcu-
late the indices of the box in which z; lies and set the corresponding
entry of the array to TRUE. N(¢o) is the number of array entries that
are TRUE. For m = 2, ..., M, the value N(2™¢p) can be calculated
from the entries of the boodlean array by partitioning the €p grid into
larger cubes of side €g2™. N(&2™) is the number of these larger
cubes that contain at least one ¢y cube with a TRUE boolean array
entry. Note that the choice of € = €¢y2™ yields evenly spaced points
on the z-axis of the log-log plot.

This box-counting technique works, but has two drawbacks.

1. For systems of dimension greater than three, the memory re-
quirements are excessive. The total number of entries in the
boolean array is proportional to (1/€)". For ¢ = 0.01 and
n = 4, there are on the order of 10® entries in the array.

2. A large amount of data is required to ensure that nearly every
€ cube that contains a point on the attractor is visited by the
trajectory under study; otherwise, the estimate of D, will be
low. This point is directly related to the fact that capacity
does not distinguish between those parts of the attractor that

are visited frequently and those parts that are rarely touched
by a typical trajectory.

A more efficient algorithm for estimating D.,, was presented by

Hunt and Sullivan [1986]. Given an attractor A embedded in R™,
define

A(€) := volume {y : dist (y, 4) < €} (7.32)
where )
dist (y, 4) := ;1613 iz — yl| (7.33)

is the distance from y to A.
Let Deyp be the capacity of A and define

\v/.
Dy = hn:@)

S Tne (7.34)
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We now show that
Deap =1 — Dy (7.35)

and, therefore; that D4 can be used to calculate Degp. .

Cover A with N(e) hyper-cubes of side e. Every point y that
is within € of A lies in one of these N(e) cubes or in a cube that
neighbors one of these cubes. Each cube has 3" — 1 neighbors so

A(€) S 3"€"N(e). (7.36)

Take the log of both sides and divide by ln € (which is negative for
¢ small) to obtain

InA(¢) _ nln3  nlne In N(e) 7.37)
Ine 2 Ine + Ine + Ine (
Take the limit as € — 0 to obtain
D4 > n— Deap. : (7.38)

Now cover A with N(e//n) hyper-cubes of side ¢/ /™. Any point in
these cubes is within € of 4 so

- e \"
9> (=) MV (7.39)
Take the log of both sides and divide by In(e/+/n) to obtain

Ind(e) _ nln(e/yn) WN(e/VR) o
e—Tnya = n(e/va) | Im(e/VR) (740

Take the limit as € — 0 to obtain
Ds € n— Deap- (7.41)

Equation (7.35) follows from (7.38) and (7 41).

The advantage of D4 over Degp is that Dy can be calculated more
efficiently than Dgp. Da is calculated by finding the slope (?f alog-log
plot of A(¢) versus e. A(€) can be calculated efficiently using IYIonte
Carlo techniques. It is not possible to present a full explana,?lor.;of
Monte Carlo techniques here, so we present only a brief descnptlor.l.
Normalize the coordinates such that A sits in an n-dimensional um.t
hyper-cube in IR". Generate K random points z1, ..., TK i.n tchls
hyper-cube. Count the number N, of these points tha,t.he thh.m €
of A. Then A(¢) ~ Na/M. The most costly step in this technique
is calculating whether each z; lies within ¢ of A. Hunt and'Sulhvan
[1986] present a tree-like data structure that implements this Monte
Carlo technique efficiently on vector floating-point processors.
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Correlation dimension

The correlation dimension can be found directly from (7.13) using a
box-counting scheme to estimate P;, but as explained earlier, this ap-
proach is inefficient. A faster algorithm, due to Grassberger and Pro-
caccia [1983], is obtained using the correlation C(¢) defined in (7.14).
From (7.15), the correlation dimension is the slope of a log-log plot
of C(¢) versus ¢. For a given ¢, estimating C(¢) entails computing all
the inter-point distances, r;; := ||z; — z;||, and counting the number
Ny(€) of 5 < efor i,j=1,..., N. Then, C(e) = N,(¢)/N2.

The z-axis of the log-log plot is Ine. To obtain a set of points
that are evenly spaced in the z direction, a simple binning algorithm
is used. Calculate N(€) for values of € that are geometrically spaced,
that is, for €, €3, ..., e{,‘ , for some €9 > 0 and some integer K >
0. This task is best accomplished by maintaining a K-dimensional
array N,[] of integers. N,[k] is the count of the inter-point distances
that satisfy ef~! < r;; < €5. Then

k
N(e§)=3_N[i], k=1,...,K. (7.42)
i=1

The N[] array is initialized to all zeros. The most straightforward
way to fill N;[] is to choose €; equal to some small integer b. For each
of the inter-point distances r;;, set k to the integer part of logy 7i5
and then increment N,[k] by one.® The drawback of this approach is
that log() is an expensive floating-point operation.

The N[] array can be filled more efficiently by taking advantage
of the floating-point representation used in computers. A floating-
point number r;; is represented by a sequence of bits using a man-
tissa/exponent format

ri; = tmb° (7.43)

where the exponent e is an integer, the base b is also an integer, typi-
cally some power of two, and the mantissa m is a fraction normalized
such that 1/b < m < 1. For example, in the 32-bit IEEE standard,
b = 2, the first bit stores the sign information, the next eight bits
hold the exponent e, and the remaining twenty-three bits represent
the mantissa. Using shifting and masking functions, the exponent

can be retrieved without any time consuming floating-point opera-
tions.

®The value k is often negative so a constant offset must be added to ensure
the index to N[] is positive. More on this point shortly.
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begin find _cor.dim(z[][], N)
set K = emaz — €min +1
set offsel =1 — emin
_set kpin =K
sot kmaz =1
for k from 1 to K
set M[k] =0
endforxr
for i from 1 to N -1
for j from i+1 to N
set r = || 2l[] - 2Ll
set e to the exponent of r
set k = e+ offset
set N,[k] = N[k] +1
if (k < kmaz) then
set kmaz =k
endif
it (k > kmin) then
set kmin =k
endif
endfor
endfor
set sum=0
for k from kmin to kmar do
set sum = sum + N[k] \
plot z =k versus y=In(2sum/N?)/In2
endfor
end find_cor._dim

Figure 7.2: Pseudo-code for find.cor.dim.

To take advantage of this floating-point representation, choose
€0 = 2°min where e, is the smallest exponent possible in the float-
ing-point representation, and choose

K = €maz — €min+1 (7.44)

where emqr is the largest possible exponent. For each inter-point
distance r;;, increment Ne[e—emin+ 1] by one where € is thfa exponent
of the floating-point representation of r;;. This exponent is qﬁ'set by
emin — 1 to ensure that the index is positive.

Pseudo-code for the algorithm is presented in Fig. 7.2. and the
output of the algorithm for Henon’s map is shown in Fig. 7.3.
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Figure 7.3: log,; C(¢) versus log, € for Henon’s map: zpyy = yr + 1 —
1.422, Yr+1 = 0.3z:. €o is a constant that accounts for the biasing of the
exponents—it does not affect the slope. The slope and, therefore, D¢ is
approximately 1.2. N = 2000 points were used in the calculation.

Remarks:

1. In the IEEE floating-point standard, the exponent is stored
with a constant value, called a bias, added to it. The bias is
chosen such that the exponent is never negative. Thus, e;pin =
0 and offset = 1. When plotting, the slope is all that is sought
and, therefore, the exponents (i.e., the k’s) do not have to be
debiased before plotting.

2. Owing to duplications, not all the inter-point distances are
computed. Only the (N2-N)/2 values r;; fori=1,...,N—1
and j=i+41,..., N are calculated. It follows that the entries
in N[] are half the actual count. This explains why sum is
multiplied by two before plotting.

3. There will be some ki, and ks, such -th‘at N[k] = 0 for any

k > kpmaz and for any k < kpnin. Only values of k from ks to
kmaz are plotted.

4. If more points on the plot are desired, raise r to the mth power
for some integer m > 0, and use z = k/m when plotting. This

i
|
i
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increases the number of points plotted by the factor m. A
value of m = 2 is reasonable. It doubles the number of points
plotted, and the cost is just one multiplication per 7;;.

kth nearest-neighbor dimension

If g(k,Dpn) were independent of k and Dy, then the slope of a
log-log plot of 7(k) versus k would yield Dpn. g(k, Dpp), however,
depends on k and D,,,, and, therefore, a log-log plot of 7(k) versus k
is not a straight line. Fortunately, g(k, Dnn) can be approximated
by (Pettis et al. [1979]) '

Dan=1 , (Dan=1)(Dan—2) _ (Dan—1)?
2kD2, ~ 12k°D3, 12k3D3,

g(k,Dpn) =

_ (Dnn = 1)(Dnn = 2)(D2, + 3Dyp — 3)
: 120k4D5,, )
(7.45)
This expression leads to an iterative method for calculating Dpy,.
Pseudo-code for this algorithm is presented in Figs. 7.4 and 7.5.

Remarks:

1. The indexing scheme in find_ln_r is designed so that no inter-
point distance is calculated twice.

2. The routine calculate.d (not shown) calculates the current
iterate of d using the reciprocal of the standard least-squares

formula
kmas kmas 2
kmaz 3 (k) — | > Ink
d = kma: k=1 kmakz=l kmn: (7.46)
kmaz Y In(k) ginrk] - > Ink Y gin_r[k]
k=1 k=1 k=1

3. Equation (7.23) is valid only when the nearest-neighbor dis-
tances are small. It follows that the algorithm is accurate
only for small values of kpaz. What is meant by “small”
depends on the number of data points. If N is increased,
kmaz can be increased too because a larger N implies that the
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begin find dnn(z[][], N)
choose kmsz, tmaz, Er, and E,
set In_r]= tind Anx(kmaz, z[]{], N)
set i=0
set d=0
repeat
set i=i+1
it (k = kmgoz) then
exit--no convergence
endif ’
set dyg=d
for k from 1 to knmar do
set glin_rk] = Inr[k] + g(k,d)
endfoxr
set d = calculated(kn,z, g-In.r[])
until (|d—dod| < dE, + Eg) .
roturn (d)
end find.dnn

begin find.ln.l'(kmazn 3[][]. N)
for k from 1 to kyer do
for i from 1 to N do
set nn[i][k] =0
endfor
endfor
for ¢ from 1 to N -1 do
for j from i+1 to N do
set r = ||z[i][] — z[5](]I|
call sort{r, kmaz, nn[i][])

call sort(r, knsz, nnlj](])
endfor

endfor
for k from 1 to kpar do
set In_r[k] =0
for i from 1 to N do
set In_r{k] = In_r[k] + nn[i][k
e {k] + nn(d][k]
set In_r[k] = In(In_r[k]/N)
endfor
end find.lnr

Figure 7.4: Pseudo-code for £ind_dnn and find_1n_r.
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begin sort(r, kmaz, nni[])
sot k = kmaz
while (k> 0 and nnifk] =0.0) do
get k=k—1
endwhile
while (k>0 and r < nnifk]) do
if (k < kmaz) then
set nni[k + 1] = nni[k]
endif
get k=k—-1
endwhile
if (k < kmaz) then
set nnik+1)=r
endif
end sort

Figure 7.5: Pseudo-code for a bubble-sort routine sort. Called by
find 1n.r.

nearest neighbors are closer. Somorjai [1986] suggests choos-
ing kmazr = aVN with @ =~ 0.5. This rule-of-thumb yields

kmaz = 16 for N = 1000.

Lyapunov dimension

Calculation of the Lyapunov dimension requires calculation of the
Lyapunov exponents. See Section 3.4.3 for details.

Discussion

Calculation of distances All three of the dimension algorithms
presented above require the calculation of inter-point distances. A
single distance calculation is not costly, but given N points, there
are roughly N 2/2 distances that need to be computed. Since N =
10000 is not uncommon, the distance calculations are the most time
consuming part of the algorithms.

There are a few techniques that can be used to decrease the num-
ber of distances that are calculated. One approach is to choose
a small set of N,y random reference points {ziy} C {z;}. The
distances from these reference points to the other z; are used by
the algorithm. This reduces the number of distance calculations to
approximately Nyes(N — Nyes/2) thereby decreasing the number of
distance calculations by a factor of 2Ny /N.
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begin ell.one.norm(n, Tmaz, Z[])
set r=0.0
for i from1l ton
set r =r+ |z[i]|
if (r> rmee) then
return rp;mar
endif
endfor
return r
end ell_one.norm -

Figure 7.6: Pseudo-code for e11l_one.norm.

A second technique that improves the efficiency of the algorithms
is to use the ¢; norm to calculate r,

r = |lully = lua] + -+ + |ua (7.47)

where v = [u; -+- u,])7. The £; norm avoids the multiplications
- and square root operation that are required to evaluate the Euclidean
norm and reduces the number of floating-point operations by a factor
of two.

A third technique is to calculate fully only those distances that
are less than some limit rmaz. The norm is usually calculated in
a loop as is shown in Fig. 7.6. The distance calculation is aborted
if d exceeds Tmgy. This approach can reduce the elapsed time for
estimating the dimension by fifty percent. For D¢,y and Dg, Tmas
is set to the largest value of € that will be plotted. For Dpn, Tmaz i8
not constant; when r;; is calculated, rmq, is set to the maximum of
the kpmazth nearest neighbor of z; and of z;.

Calculation of the slope Typically, the slope of the log-log plot
is determined using a least-squares fit,

K K K
sz.'.%‘ - Zzszys
m= "—‘;{ '=1K =1 (7.48)
K sz - (Zz;)
i=1 i=1

where the points on the z-axis are {z;,...,2x} and the points on
the y-axis are {y1,...,yx}-

|
|
|
|
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Figure 7.7: A set with different dimensions at different length scales.

(a) From a distance the set appears to be a circle; upon magnification, the
set is seen to be an annulus; (b) a log-log plot of C(¢) versus e.

Fig. 7.3 is typical of the log-log plots encountered when estimating
dimension. It is clear from the figure that there is a limited range
where the slope is approximately constant, and data only from this
range should be used to estimate the slope. Unfortunately, there is
currently no robust technique available to detect the useful portion
of the plot automatically.

It can happen that the log-log plot has two or more regions w1th
different slopes. Consider the set in Fig. 7.7 that, from a distance,
appears to be a circle. Upon magnification, the set is seen to be a
thin annulus, that is, it has non-zero width. At large length scales
(i.e., for € greater than the width of the annulus), the dimension of
the set is 1. At smaller length scales (i.e., for € less than the width
of the annulus), the dimension is 2.

The dependence of the dimension on the length scale can be
caused not only by the structure of the attractor, but by noisy data.
Unless there is reason to believe otherwise, additive noise favors no
particular direction in state space. Thus, additive noise tends to
“fatten” the attractor. More precisely, if the attractor is embedded
in IR™®, for length scales below the noise level, the dimension of the
noisy attractor is n. As a simple example, let z* € R? be a pomt on
an attracting limit cycle. For some 7 > 0, let {z; := ¢i-(z*)}}, be
the set of input points to a dimension-finding algorithm. Without
noise, the z; lie on a diffeomorphic copy of a circle, and the log-log
plot has a single slope equal to 1. When noise is added to {z;}, the
noisy data lie in a thin annulus (as in Fig.7.7(b)) and the log-log
plot has two slopes. For € greater than the noise level, the slope is 1.
For € less than the noise level, the slope is 2. See Ben-Mizrachi et
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al. [1984] and Ott et al. [1985] for a further discussion of the effects
of noise on the estimation of dimension.

As a final note of caution, we observe that the statistically rigor-
ous derivation of kth nearest-neighbor dimension shows that the log-
log plot of 7(k) versus k is not a straight line—there is the g(k, Dny)
correction term. This result makes one wonder whether it is unreal-
istic to expect the log-log plots for the other types of dimension to be
straight lines. Until this question is answered, numerical estimates
of dimension should be interpreted carefully and any unexpected or
unusual results should be corroborated by other methods.
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Accuracy The statistics and accuracy of these algorithms are not
well-understood. How many data points are needed for an accurate
estimate of the dimension? What is the mean and variance of the
estimate? How do the statistics depend on the dimension of the
embedding space?

Interested readers are referred to Caswell and Yorke [1986], Holz-

fuss and Mayer-Kress [1986), and Somorjai [1986] for more discussion
on this topic.

The curse of dimensionality The algorithms presented in this
section are reasonably accurate for low-dimensional attractors em-
bedded in low-dimensional spaces (i.e., R" for 1 < n < 5). When
the embedding dimension 7 increases, the accuracy and efficiency of
the algorithms decrease. This is due to the so-called “curse of di-
mensionality.” As the embedding dimension is increased, more and
more of the embedding space is empty. Thus, to achieve statistically
reliable estimates, the number of data points must increase. Further-
more, in higher dimensions, distances tend to be distributed over a
more narrow range. For instance, when d is large, points distributed
uniformly in the interior of a d-dimensional hypersphere tend to lie
near the surface of the hypersphere’ and as d — oo, the standard
deviation of the inter-point distances approaches 0. Thus, any di-

mension algorithm that relies on statistics over a range of inter-point’

distances encounters difficulty with high-dimensional spaces.
One approach that bypasses the curse of dimensionality is the
method of projection pursuit. This technique uses low-dimensional

"I r is a random variable uniformly distributed over the unit interval, then the
random variable for the distance from the origin of points uniformly dmtnbuted
in the interior of a d-dimensional unit hypersphere is r*/4.

7.2. RECONSTRUCTION 191
projections to form an estimate of the probabxhty density which is
then used to calculate any of the probabilistic dimensions. Interested
readers are referred to Friedman et al [1984), Huber [1985], and
Somorjai [1986].

7.2 Reconstruction of attractors

In this section, we present a remarkable result, first proved by Tak-
ens [1980], that allows a strange attractor to be reconstructed from a
sampled time waveform of just one component of the state. This is a
useful technique in experimental settings. If data are gathered from
measurements of a physical system, only one state variable needs
to be measured, thereby cutting instrumentation and data storage
costs. Moreover, for an infinite-order system or for a system where
one or more of the state variables cannot be measured directly, re-
construction may be the only way to observe the attractor.

Let an attractor A of an nth-order system with flow ¢, be con-
tained in an N-dimensional compact manifold M C IR". Define the
reconstruction function F: M — IR2V+1 55

F(z) = [¢§(z) ¢D(z) --- ¢S (o))" (7.49)

where ¢(j )(z) is the jth component of ¢;(z), j is arbitrary, and 7 > 0
is the sampling period, also arbitrary.

Generically, F is an embedding, that is, F dxﬂ'eomorphlcally maps
M onto some compact N-dimensional manifold M’ C 1R?N +,

This fact implies that given a sequence {y;} := {4)(&_) (:1:)}f=l that
corresponds to a uniformly time-sampled component of a trajectory
that lies on an attractor A, the sequence of points

(o ;1 - wn)T
[yl Y2 - YN+1 ]T
3 (7.50)
[3/:' Yi+1 - Yi42N ]T
lyk—2N yx-2nv1 -+ k)T

lies on a diffeomorphic copy of A.
Several examples of reconstructed attractors are presented in
Fig. 7.8. The reconstructed versions are definitely different from



