CSCI 4446/5446 Course materials:
Liz's videos and written materials:
Some useful and/or interesting links: (caveat emptor!)

A
SIAM News piece about numerical dynamics in the solar system that
came out of a final project in this class, also
featured
on the CS Department website.
 A great article from Quanta magazine entitled
The
Hidden Heroines of Chaos" about the people who carried out
Lorenz's computer simulations. (There are lots of other "hidden
figures" in this field, including
Lise
Meitner and
Mary Tsingou Menzel).
 xkcd's takes on chaos (and
curvefitting)
 A nice
youtube lecture
about fractals (21 min)
 An amazing
animated bifurcation diagram

Riding around on the Lorenz
attractor
 A
transcript of Lorenz's 1972 speech to
the AAAS entitled "Predictability: Does the flap of a butterfly's
wings in Brazil set off a tornado in Texas?"
 Pendulum stuff:
 Henri Poincare didn't only play a formative role in the
foundation of the field of nonlinear dynamics. Among other things, he
came up with the theory of relativity and wrote down e=mc^2 before
Einstein did. Read a bit about
him here.
 Michael Skirpan's
fractal tree generator (= the mother of all solutions to PS3).

CU's
site license for Matlab now covers student computers!

The
visualization of dynamical systems page from the Nonlinear
Dynamics and Time Series Analysis Group at the Max Planck Institute
for the Physics of Complex Systems.
 Video recordings of the lectures from Steve
Strogatz's introductory course on nonlinear dynamics and chaos
 Complexity, the flip side of
chaos: complex
dynamics of a flock of starlings. Here's
the Vimeo version of that
video if you prefer that channel.
 Movies of metronomes synchronizing (modernday equivalent of
Huyghens' pendulum clocks): an array of five
and an
array of 32 (!)

The
PhET project, an interactive simulator that you can use to explore
all sorts of interesting systems. Click on "Play with sims" and go to
"Physics" for the nbody simulator (called "My Solar System").
Unfortunately PhET uses Adobe Flash, which has been deprecated. I've
left this link here in case you have a workaround.
 Analog computers for nonlinear dynamical systems: the
Antikythera
mechanism and the
digital
orrery (built by Liz's advisor)
 "Guide to
Takens' Theorem" paper (heavy going, mathematically, but very
comprehensive).
 Rigid body
dynamics in zero gravity on the international space station.
 A gorgeous youtube video that zooms in on the
Mandelbrot set.
 Another gorgeous video of an
evolving 3D fractal surface.
 A 'chalkmation' youtube video  complete with music  about the
Mandelbrot
set (warning: a bit of foul language at the end).
 The
TISEAN timeseries analysis toolkit.
 Chaos in the path of a Roomba
 Chaotic music & dance stuff:
 NASA's movie of
Hyperion tumbling
 Remember that wonderful
"powers of ten" video from highschool physics?
 SIAM's dynamics
tutorials, many of which were contributed by grad students in courses
like this one.
 Wolfram's Mathworld site.
 The
FAQ for sci.nonlinear. A fabulous resource.
 The Santa Fe Institute,
which has a couple of
great educational programs for graduate students (the Complex
Systems Summer School) and undergraduates (called "Research
Experiences for Undergraduates").
 The Chaos
Hypertextbook
 Helwig Hauser's visualization
of dynamical systems page. The pages above that are interesting,
too.
 JeanFrancois Colonna's
"virtual spacetime travel" page, which includes lots of stuff
about the Lorenz system, pendula, the nbody problem, etc. Very nice
graphics.
 Some sources of interesting time series data:
 Would you like your own double pendulum?