Polynomial Regression
and Regularization



Administrivia

o If you still havent enrolled in Moodle yet

= Enrollment key on Piazza

= If joined course recently, email me to get added to Piazza

o Homework 1 posted later tonight. Good Milestones:

= Problems 1-3 This Week

= Problems 4 and 5 Next Week



The RoadMap

o Last Time:

= Regression Refresher (there was nothing fresh about it)

o This Time:
= Polynomial Regression
= Regularization (wiggles are bad, Man)

o Next Time:
= Bias-Variance Trade-Off (what does it all MEAN?)



Previously on CSCI 4622

Given training data (z;1, %2, . .. s T y;) fori =1,2,...,n fita regression of the form

Y; = Bo + B1zi1 + Bazio + -+ - 4 BpTip + € where e; ~ N(0,02)

LOSS Fonchon

Estimates of the parameters are found by minimizing /

n

RSS = 3" [(Bo + Brzir + -+ Bpzip) — 9l = IIXB — v

1=1

Construct the design matrix X by prepending column of 1s to data matrix

. —1
For the moment, solve via normal equations: (3 = (XTX) X1y



So, We Can Model Things Like This

s &8 8
c o © o

o

8 8 & 8 8
< 2

Sale Price (Thousands USD)

[
o
o

o 2 4 6 8 10 12 14 16 18 20 2 24 2
Area (Hundreds of Sq Ft)



B e e
And Things Like This
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But What About Things Like This?
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But What About Things Like This?

15 o So Yyeah, nonlinearity is a thing

10 1

o Clearly, the linear models of
regression cannot handle this.
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But What About Things Like This?
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So yeah, nonlinearity is a thing

Clearly, the linear models of
regression cannot handle this.

Give me Neural Networks or Give
me Death!

Nah. Regression can totally do this
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Start with the Obvious: Polynomials

Suppose, as in the previous pictures, we have a single feature X
We want to go from this: Y = 8y + 51 X + €
To something like this: Y = 8y + 1X + B2 X% + -+ + B, XP + ¢

So what is the difference between these two?
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Start with the Obvious: Polynomials

Suppose, as in the previous pictures, we have a single feature X
We want to go from this: Y = 55+ 51X + ¢
To something like this: Y = 8y + 51X + B2 X% + - + B, XP + ¢
So what is the difference between these two?

Seems like its closer fo this: YV = 8y + 81.X1 + BoXo + -+ + BpX, + €
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The One Becomes the Many

Start with a single feature X
And derive new polynomial features: X; = X, X, = X2,
These two things: Y = 8y + 51X + B2 X?+ -+ B, XP + ¢

are exactly the same: Y = g + 51 X1 + f2Xo + -+ 5, X, + €

Xp

XP



The Polynomial Regression Pipeline

o Start with a single feature X
o Derive new polynomial features: X; = X, X, =X? .- X, = X?
o Solve the MLR in the usual way: Y = By + 81 X1 + BoXo+ - + 5, X, + €

o Question: What does the Matrix Equation look like?



The Polynomial Regression Pipeline

o Start with a single feature X
o Derive new polynomial features: X; = X, X, = X? ... X, = XP?
o Solve the MLR in the usual way: Y = By + 51 X1 + B2 Xo + - + 5, X, + €

o Question: What does the Matrix Equation look like?

I z11 o1 - ZTip Bo Y1
1 221 @22 -+ Tg b1 Y2

Before: I ®31 x32 -+ X3 Ba | — | vs
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The Polynomial Regression Pipeline

o Start with a single feature X
o Derive new polynomial features: X; = X, X, = X? ... X, = XP?
o Solve the MLR in the usual way: Y = By + 51 X1 + B2 Xo + - + 5, X, + €

o Question: What does the Matrix Equation look like?

1 oz, x? - e . _ _ i
] ; 11) Bo Y1
2Lyt L2 b1 Y2
After: 1 x5 a3 - T Ba | — | y3 | _
1 g g w2 | LBl L Un
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The Polynomial Regression Pipeline

o Suppose I learn the parameters from the training set

o What if I want to make a prediction about data I havent seen yet?
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The Polynomial Regression Pipeline

o Suppose I learn the parameters from the training set
o What if I want to make a prediction about data I havent seen yet?

o Important Theme #1: If you transform your features for training, predicting is
always as easy transforming the features of your new data in the same way.
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The Polynomial Regression Pipeline

Suppose I learn the parameters from the training set
What if I want to make a prediction about data I havent seen yet?

Important Theme #1: If you transform your features for training, predicting is
always as easy transforming the features of your new data in the same way.

Important Theme #2: If your current features are not flexible enough, moving
into a higher dimensional space will make your model more flexible (but BEWARE!)



Example: Sinusoidal Data

True Model is f(x) = sin(mx) + €
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Example: Sinusoidal Data

True Model is f(x) = sin(mx) + €

o Question: What degree polynomial
should I use?

o Degree = 1
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Example: Sinusoidal Data

True Model is f(x) = sin(mx) + €
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o Question: What degree polynomial
should I use?

o Degree = 4
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Example: Sinusoidal Data

True Model is f(x) = sin(mx) + €
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o Question: What degree polynomial
should I use?

o Degree =7

0.00 0.25 0.50 0.75 100




R
Example: Sinusoidal Data

True Model is f(x) = sin(mx) + €

o Question: What degree polynomial
should I use?

o Degree = 11
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Example: Sinusoidal Data

True Model is f(x) = sin(mx) + €

o Question: What degree polynomial
Should I use?

o Degree = 11

o What Questions should we be asking?
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The Real ML Pipeline (Almost)

The more flexible (powerful) your model gets, the better it'll do on training set

But thats not useful. We want to know how model will do on new data

it i aw T 6N
How well it’ll Generalize J,ZT“\S 1&_?" ;
A better pipeline: 2EWVPOM
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REeELD —ovuT
DATA

Train on training set. Validate (or evaluate) on validation set.
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The Real ML Pipeline (Almost)

Need a performance measure:

For Regression, we use the Mean-Squared Error:
K/ -FzED\C:\w\ S

1 N
Mk = — > (yi — )

I=1 —

s ~ g .
All Labeled Data — - Validation
Set
\ y L )




R
Example: Sinusoidal Data

What happens to the MSE on training set as p grows? MSE 3°£5 Ddouwn

What happens to MSE on validation set as p grows? NSE QOES °°"n‘
AT FIeST = FHEN BACK Up .
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Example: Sinusoidal Data
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Example: Sinusoidal Data

Revisit Polynomial Regression

What causes those wiggles that are hurting us so bad?
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Example: Sinusoidal Data

True Model is f(z) = sin(mx) + €

20

1.6
L2 14 -
®
l o __
A S S 12
Q
05 4 -g 1.0 -
s
=
> 009 8’ 0.8
Y
-0.5 [} 0.6
o .
(W)}
-1.0 0.4
s & 0.2

b
°
g
=}

“00 02 04 056 038 10 1 2 3 4 5 6 7 8 9 10 11 12
X coef degree



Example: Sinusoidal Data

True Model is f(z) = sin(mx) + €
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Example: Sinusoidal Data

True Model is f(z) = sin(mx) + €

20
2000 -
15 -
o 1750 -
10 -
1500 -
3
05 4
-
£ 1250
c
(@)]
>, 00
g 1000
o
-0.5
O 750-
W]
-1.0 4 500 -
15 ® 250
-2.0 0

00 02 04 056 08 10 1 2 3 4 5 6 71 8 9 10 1 1
X coef degree



R
Example: Sinusoidal Data

True Model is f(z) = sin(mx) + €

20
1z 6000000 -
10 1 5000000 1
3
05 4
-]
i 4000000 |
c
o
> 00 1 ®
€ 3000000 -
‘©
-0.5
o
w]
2000000 -
-1.0 4
s ° 1000000 1
-20 T T T T 0 T T T
0.0 0.2 04 06 0.8 10 1 2 = 4 5 6 7 8 9 10 11 12
X coef degree



Example: Sinusoidal Data

Coefficients grow very large. Need a way to control them. Regulate them even
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Regularization

Goal: Keep model coefficients from growing foo large

Idea: Put something in the loss function o dissuade them growing too much

n

P
MMM ) 2E RSS), = Z [(Bo + Brzir + -+ + Bpwip) — yil” + )\Zﬁi
’LW k=1
gss e
o Regularization weight )\ is a tfuning parameter Pﬁ ij

o Have to do regularization study to choose best value
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Regularization

Goal: Keep model coefficients from growing too large

Idea: Put something in the loss function to dissuade them growing too much

n

p
RSSx =) [(Bo+ Bz + - + BpTip) — yi]” + AY G
k=1

1=1

o Why do we not regularize the bias parameter?

%2108 17€lls vs ABovr AVG‘ZAjc EG_SFOn”SE
(Héljﬂf’ of onTA) . Ff7ulaﬂtz—m? ‘P.. ‘:\l J'“ )
+tHt b-’Hd),& u—so-l&] d puwsn Femwm LOMHERE S hov
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Ridge Regression

Goal: Keep model coefficients from growing foo large

Idea: Put something in the loss function o dissuade them growing too much

n p

RSSx =Y [(Bo+ Brwss + -+ + Bpwip) —il> + 2D B

1=1 k=1

o This form of penalty term is called Ridge Regression. But there are many more



Sinusoidal Data with Ridge Regression

Watch the coefficients
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Sinusoidal Data with Ridge Regression

Watch the coefficients
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Sinusoidal Data with Ridge Regression

Watch the coefficients
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Sinusoidal Data with Ridge Regression

Watch the coefficients
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Sinusoidal Data with Ridge Regression

Watch the coefficients
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Sinusoidal Data with Ridge Regression
NWoTE: CoeFFicI1onTd

Watch the coefficients i
54—a\1£1) v .
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MSE

Example: Sinusoidal Data

No Regularization
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MSE
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Example: Sinusoidal Data

- Degree 11 train
Degree 11 validation
X best MSE valid = 0.071
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Regularization Study:
o Choose poly degree
o Vary over reg strength

o Look for best validation MSE



Absolute Coef
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Regularization Study:
o Choose poly degree
o Vary over reg strength

o Look at size of coefficients
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Regularization Wrap-Up

You should always do regularization.

If you choose \ carefully, it will always help Generalization

Next Time:
o Talk more about Ridge Regression Details

o Learning Curves and what they tell us about the Bias-Variance Trade-Off















