Polynomial Regression and Regularization

Administrivia

- $\circ\,$ If you still haven't enrolled in Moodle yet
 - Enrollment key on Piazza
 - If joined course recently, email me to get added to Piazza
- $\circ\,$ Homework 1 posted later tonight. Good Milestones:
 - Problems 1-3 This Week
 - Problems 4 and 5 Next Week

The RoadMap

- $\circ~$ Last Time:
 - Regression Refresher (there was nothing fresh about it)
- $\circ~$ This Time:
 - Polynomial Regression
 - Regularization (wiggles are bad, Man)
- \circ Next Time:
 - Bias-Variance Trade-Off (what does it all MEAN?)

Previously on CSCI 4622

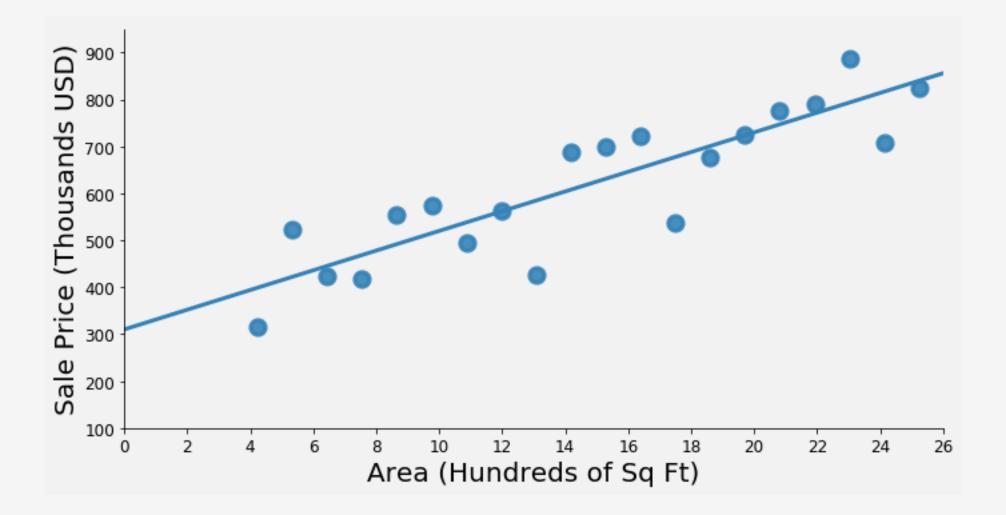
Given training data $(x_{i1}, x_{i2}, \ldots, x_{ip}, y_i)$ for $i = 1, 2, \ldots, n$ fit a regression of the form

 $y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{p}x_{ip} + \epsilon_{i} \quad \text{where} \quad \epsilon_{i} \sim N(0, \sigma^{2})$ Estimates of the parameters are found by minimizing $N = \sum_{i=1}^{n} \left[(\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{p}x_{ip}) - y_{i} \right]^{2} = \|\mathbf{X}\boldsymbol{\beta} - \mathbf{y}\|^{2}$

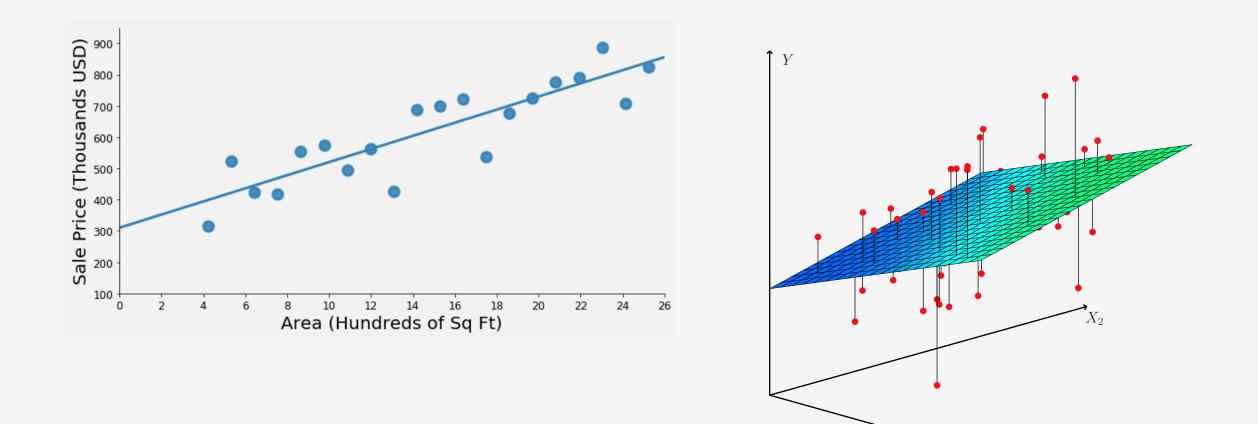
Construct the design matrix ${f X}$ by prepending column of 1s to data matrix

For the moment, solve via normal equations: $\hat{oldsymbol{eta}} = \left(\mathbf{X}^T \mathbf{X}
ight)^{-1} \mathbf{X}^T \mathbf{y}$

So, We Can Model Things Like This

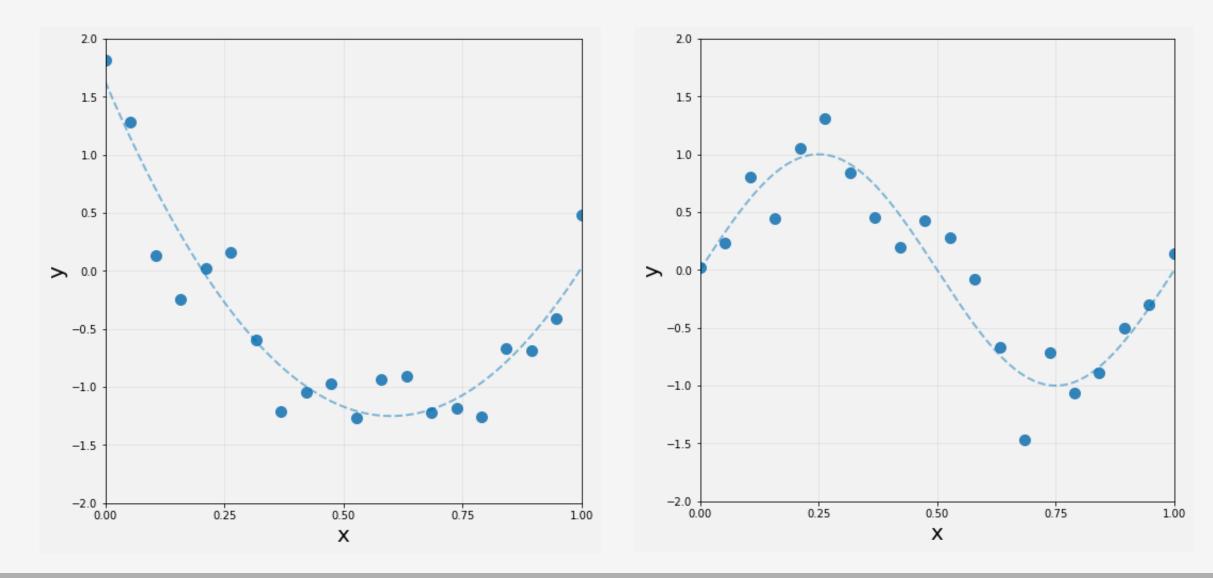


And Things Like This

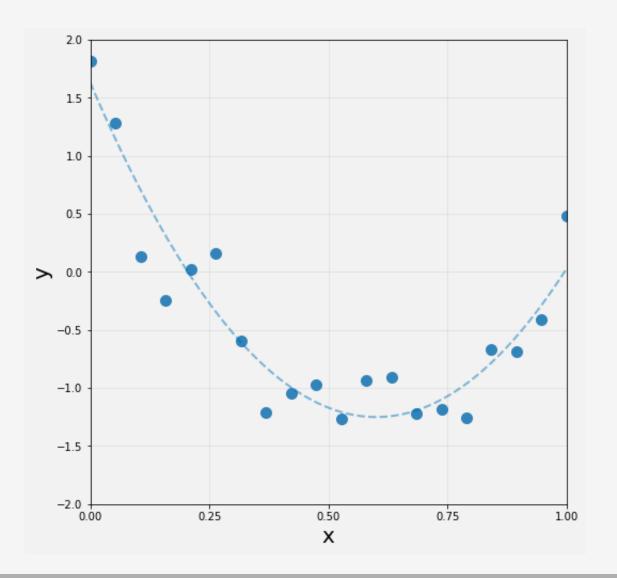


 X_1

But What About Things Like This?

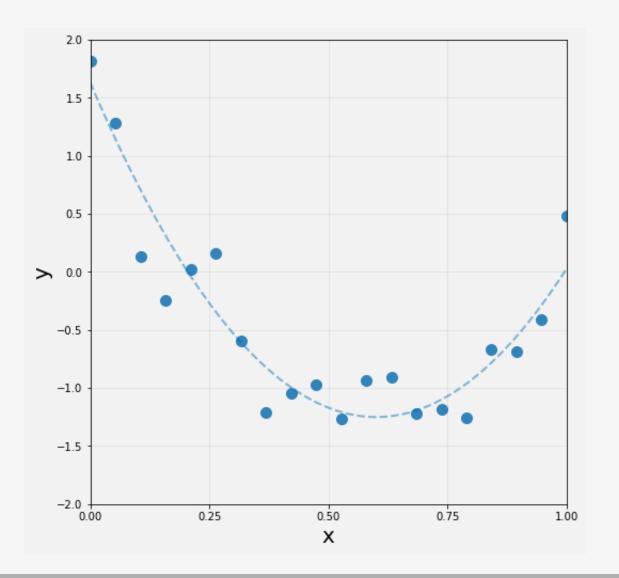


But What About Things Like This?



- \circ So yeah, nonlinearity is a thing
- Clearly, the linear models of regression cannot handle this.
- Give me Neural Networks or Give me Death!

But What About Things Like This?



- \circ So yeah, nonlinearity is a thing
- Clearly, the linear models of regression cannot handle this.
- Give me Neural Networks or Give me Death!
- \circ Nah. Regression can totally do this

Start with the Obvious: Polynomials

 $\circ\,$ Suppose, as in the previous pictures, we have a single feature X

- \circ We want to go from this: $Y = \beta_0 + \beta_1 X + \epsilon$
- \circ To something like this: $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_p X^p + \epsilon$
- $\circ\,$ So what is the difference between these two?

Start with the Obvious: Polynomials

 $\circ\,$ Suppose, as in the previous pictures, we have a single feature X

- \circ We want to go from this: $Y = \beta_0 + \beta_1 X + \epsilon$
- \circ To something like this: $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_p X^p + \epsilon$
- \circ So what is the difference between these two?
- \circ Seems like it's closer to this: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p + \epsilon$

The One Becomes the Many

- $\circ~$ Start with a single feature X
- \circ And derive new polynomial features: $X_1 = X, X_2 = X^2, \cdots X_p = X^p$
- \circ These two things: $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_p X^p + \epsilon$
- \circ are exactly the same: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$

- $\circ~$ Start with a single feature X
- Derive new polynomial features: $X_1 = X$, $X_2 = X^2$, \cdots $X_p = X^p$
- \circ Solve the MLR in the usual way: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p + \epsilon$
- Question: What does the Matrix Equation look like?

- $\circ~$ Start with a single feature X
- \circ Derive new polynomial features: $X_1 = X, X_2 = X^2, \cdots X_p = X^p$
- \circ Solve the MLR in the usual way: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p + \epsilon$
- Question: What does the Matrix Equation look like?

- $\circ~$ Start with a single feature X
- Derive new polynomial features: $X_1 = X$, $X_2 = X^2$, \cdots $X_p = X^p$
- \circ Solve the MLR in the usual way: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p + \epsilon$
- Question: What does the Matrix Equation look like?

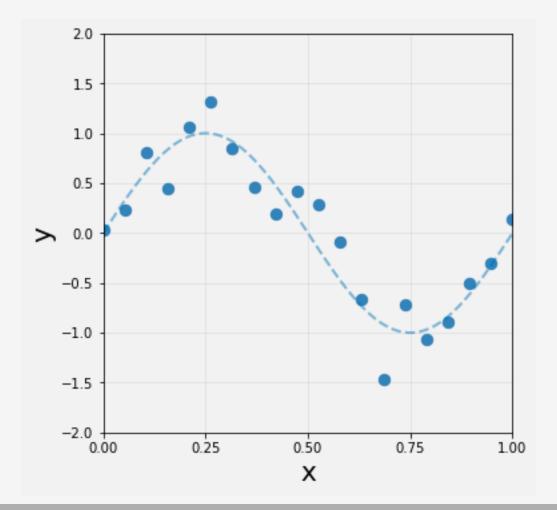
 $\circ~$ Suppose I learn the parameters from the training set

• What if I want to make a prediction about data I haven't seen yet? HAVE TEST POINT X. NEED to PEEFORM SAME TRANSFORMAtion on Xo that we performed on training JAta. Xo - (1, X., Xo, ..., Xo) THEN PREPICTION IS just 40= X. P

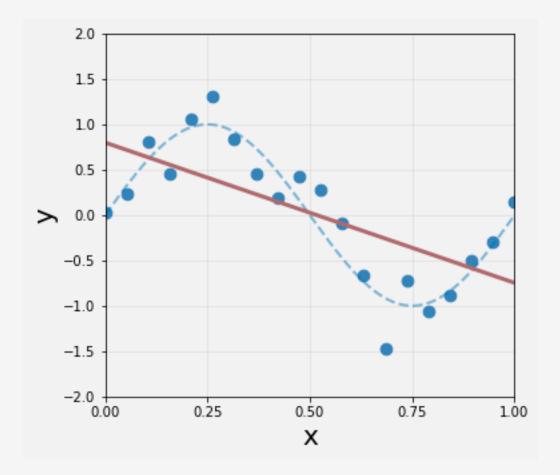
- \circ Suppose I learn the parameters from the training set
- What if I want to make a prediction about data I haven't seen yet?
- Important Theme #1: If you transform your features for training, predicting is always as easy transforming the features of your new data in the same way.
 IN PV+ 3PACE FEATURE SPACE
 TRAINING X -> X, X, X, ..., XP
 TEST X. -> X, X, ..., XP
 MALTIC HAPPENS HERE!

- Suppose I learn the parameters from the training set
- What if I want to make a prediction about data I haven't seen yet?
- **Important Theme #1:** If you transform your features for training, predicting is always as easy transforming the features of your new data in the same way.
- Important Theme #2: If your current features are not flexible enough, moving into a higher dimensional space will make your model more flexible (but BEWARE!)

True Model is $f(x) = \sin(\pi x) + \epsilon$

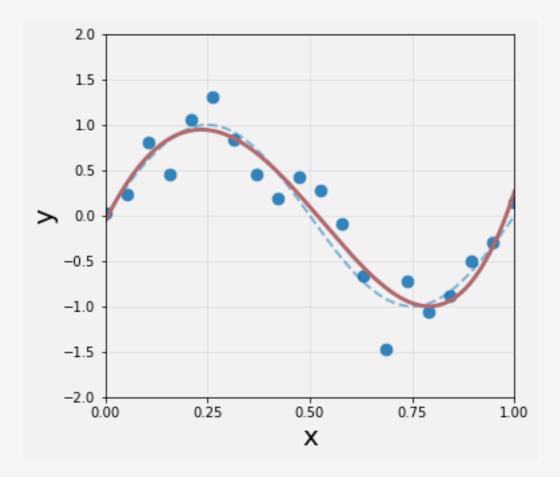


• Question: What degree polynomial should I use?



- Question: What degree polynomial should I use?
- \circ Degree = 1

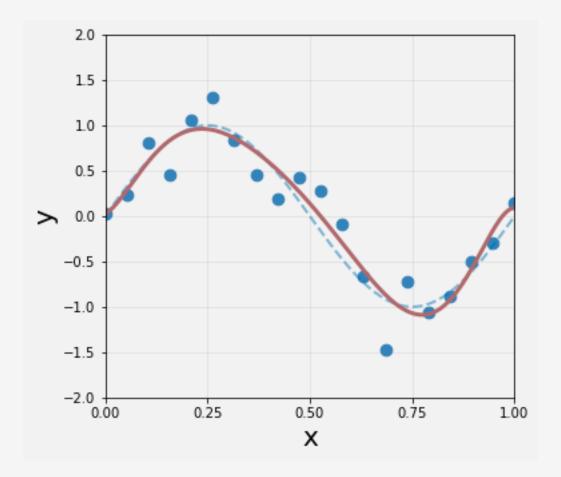
True Model is $f(x) = \sin(\pi x) + \epsilon$



Question: What degree polynomial should I use?

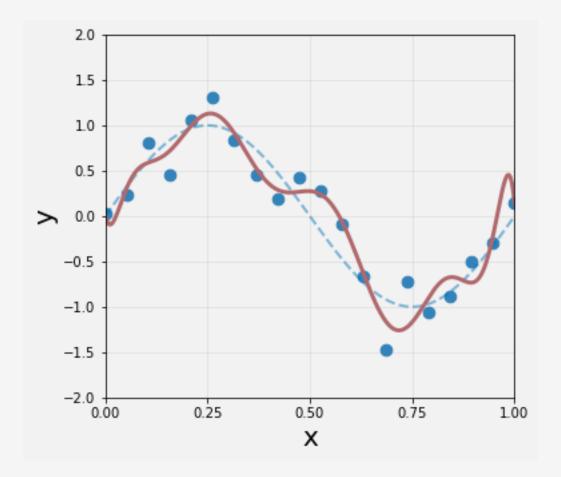
$$\circ$$
 Degree = 4

True Model is $f(x) = \sin(\pi x) + \epsilon$

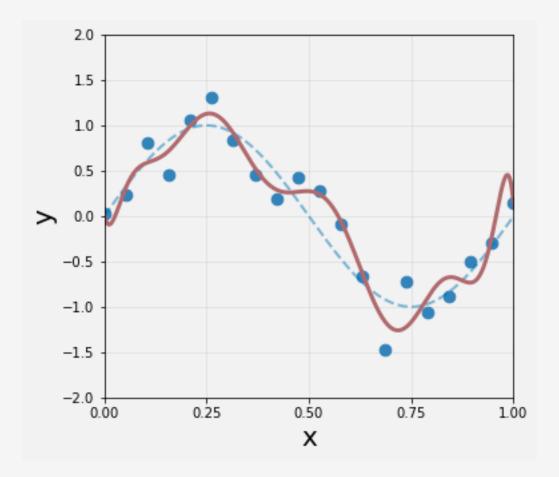


• Question: What degree polynomial should I use?

$$\circ$$
 Degree = 7



- Question: What degree polynomial should I use?
- \circ Degree = 11

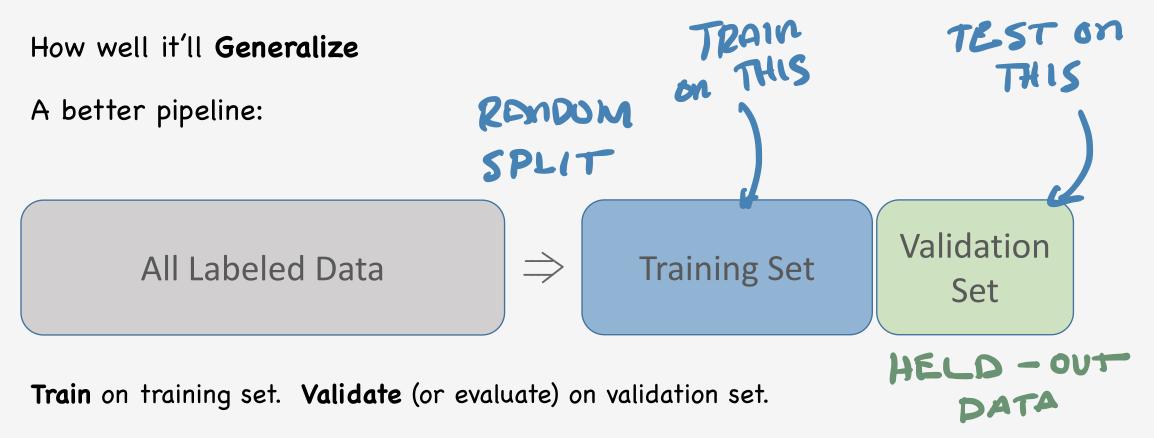


- Question: What degree polynomial should I use?
- \circ Degree = 11
- \circ What Questions should we be asking?

The Real ML Pipeline (Almost)

The more flexible (powerful) your model gets, the better it'll do on training set

But that's not useful. We want to know how model will do on new data

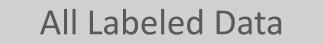


The Real ML Pipeline (Almost)

Need a **performance measure**:

For Regression, we use the Mean-Squared Error: TEVE PLSPONS C

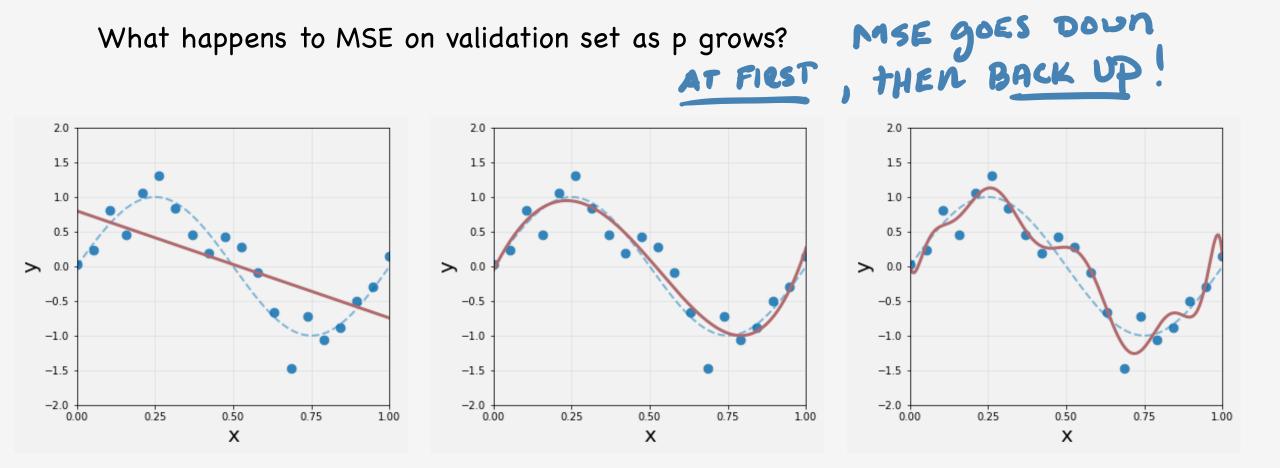
$$MSE = \frac{1}{n} \sum_{I=1}^{n} (y_i - \hat{y}_i)^2$$

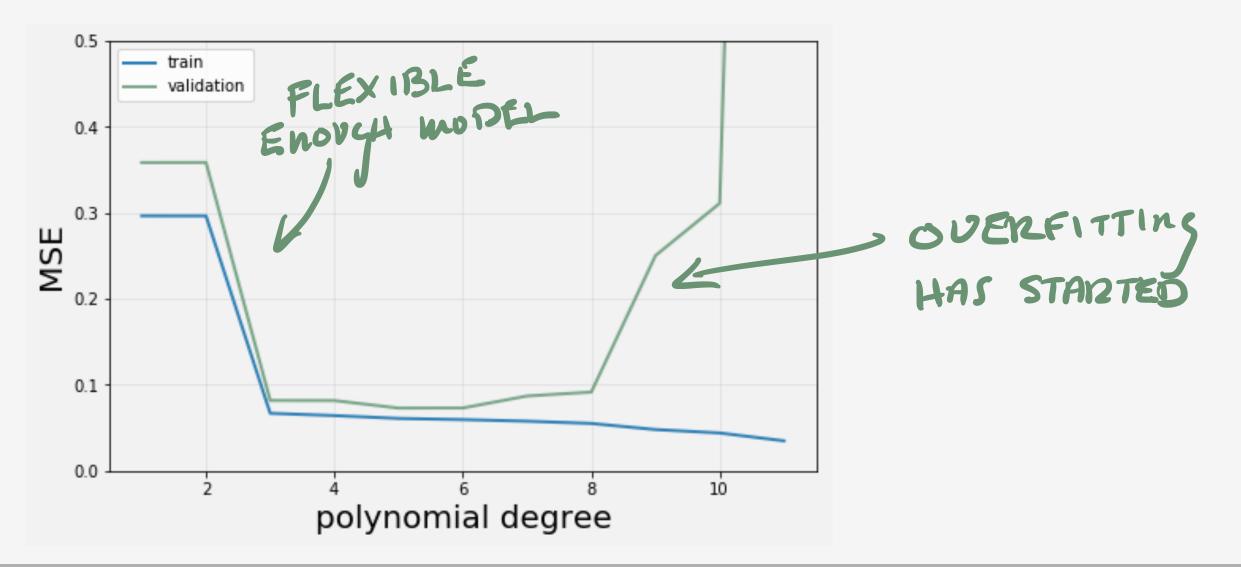


MSE goes

What happens to the MSE on training set as p grows?

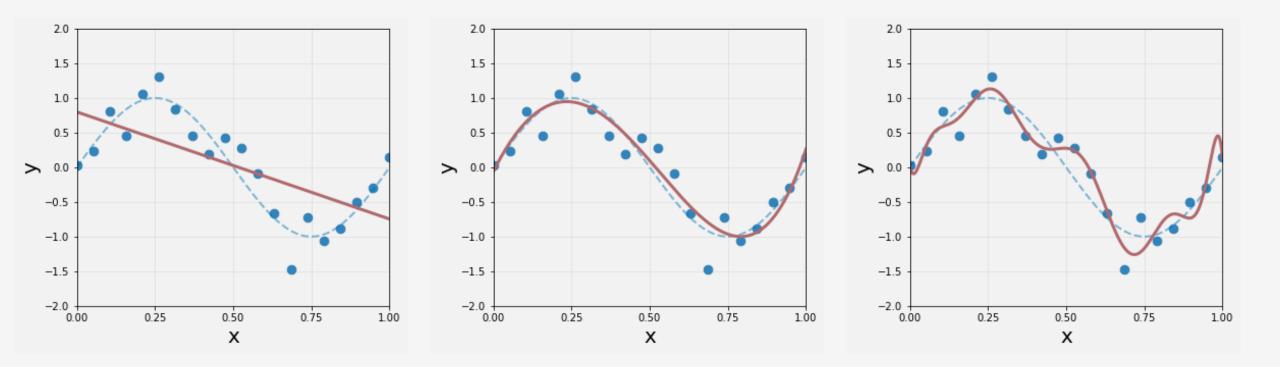
What happens to MSE on validation set as p grows?

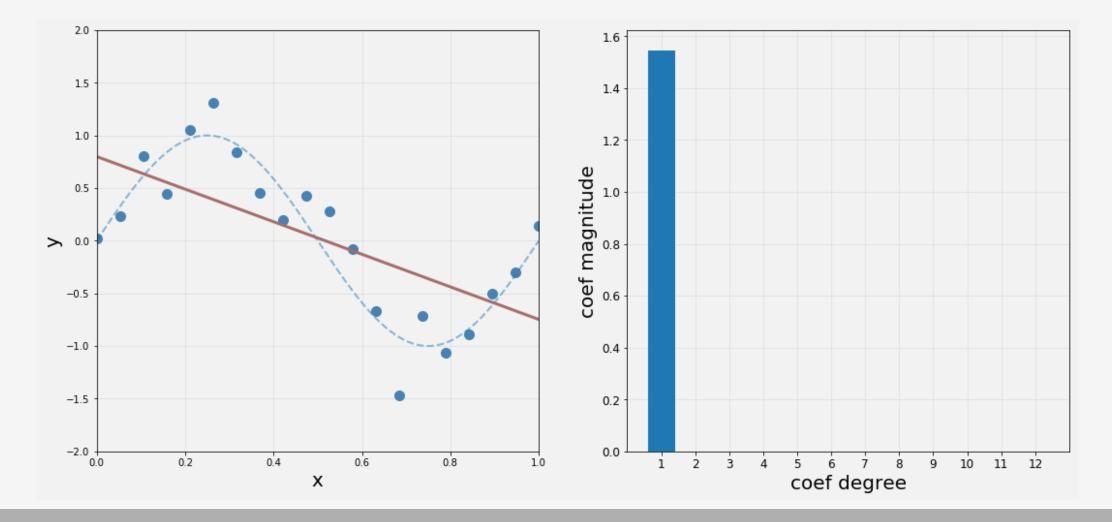


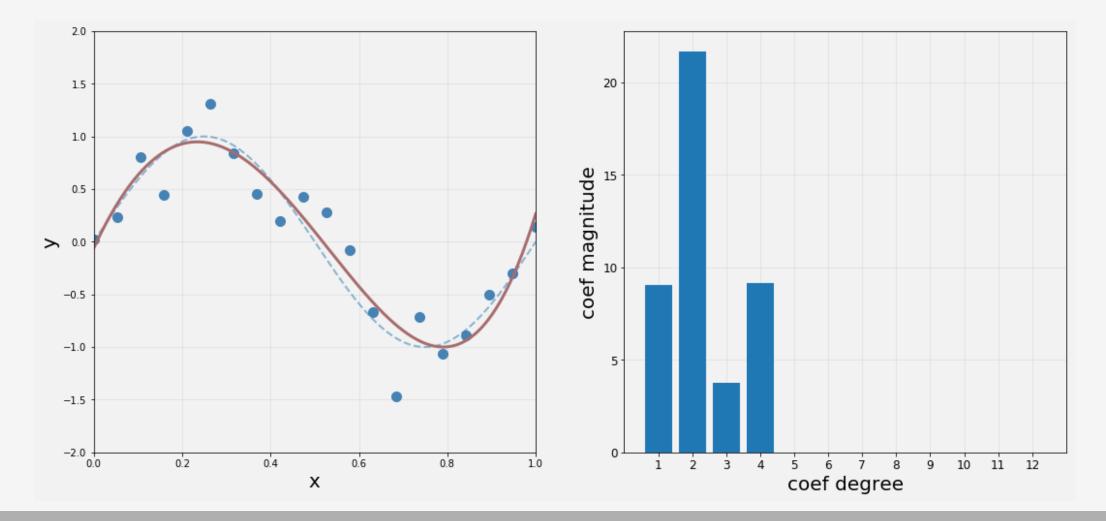


Revisit Polynomial Regression

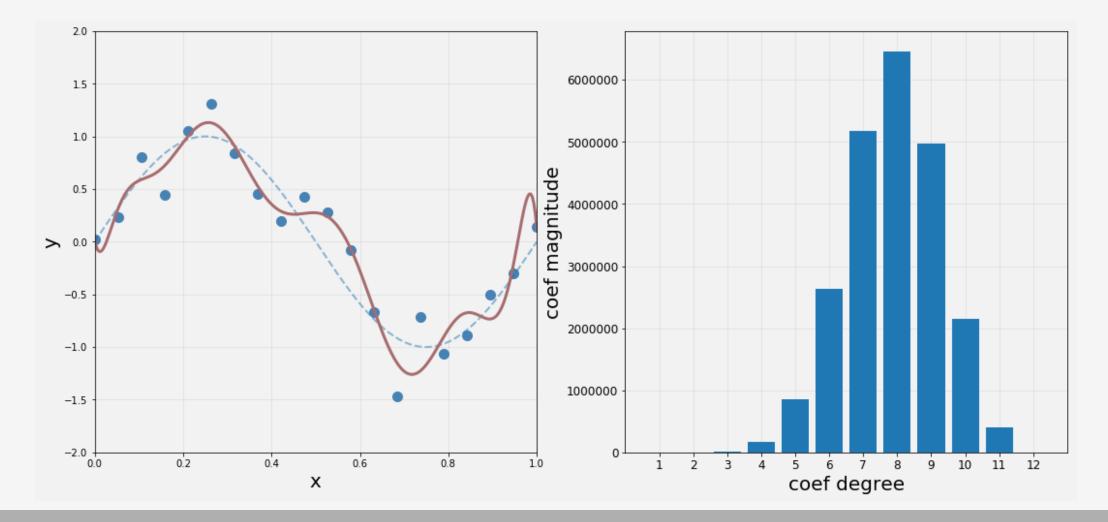
What causes those wiggles that are hurting us so bad?



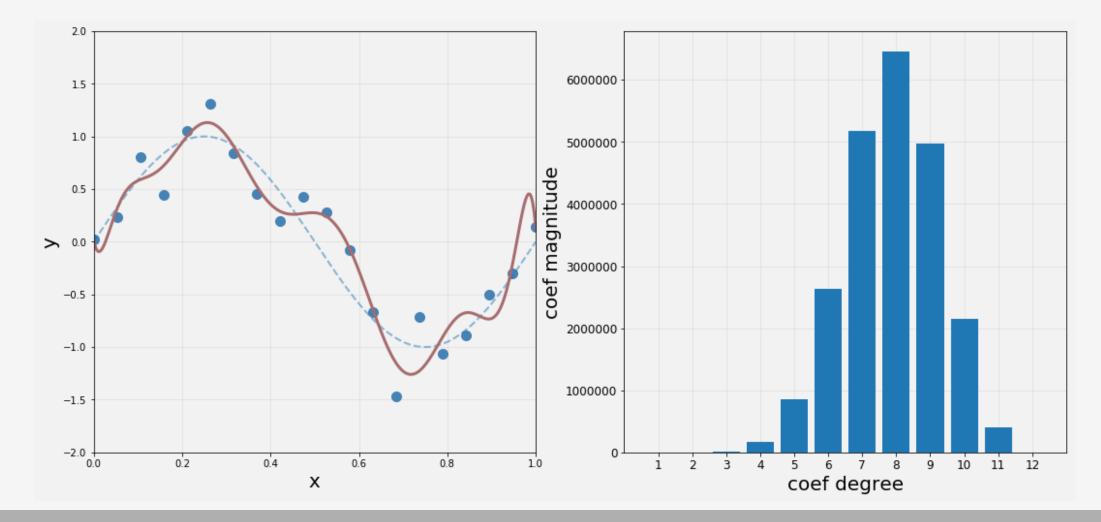








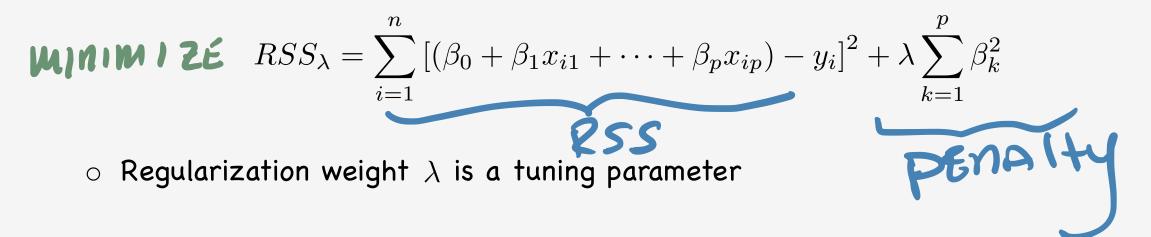
Coefficients grow very large. Need a way to control them. Regulate them even



Regularization

Goal: Keep model coefficients from growing too large

Idea: Put something in the loss function to dissuade them growing too much



 $\circ\,$ Have to do regularization study to choose best value

Regularization

Goal: Keep model coefficients from growing too large

Idea: Put something in the loss function to dissuade them growing too much

$$RSS_{\lambda} = \sum_{i=1}^{n} \left[(\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}) - y_i \right]^2 + \lambda \sum_{k=1}^{p} \beta_k^2$$

• Why do we not regularize the bias parameter?

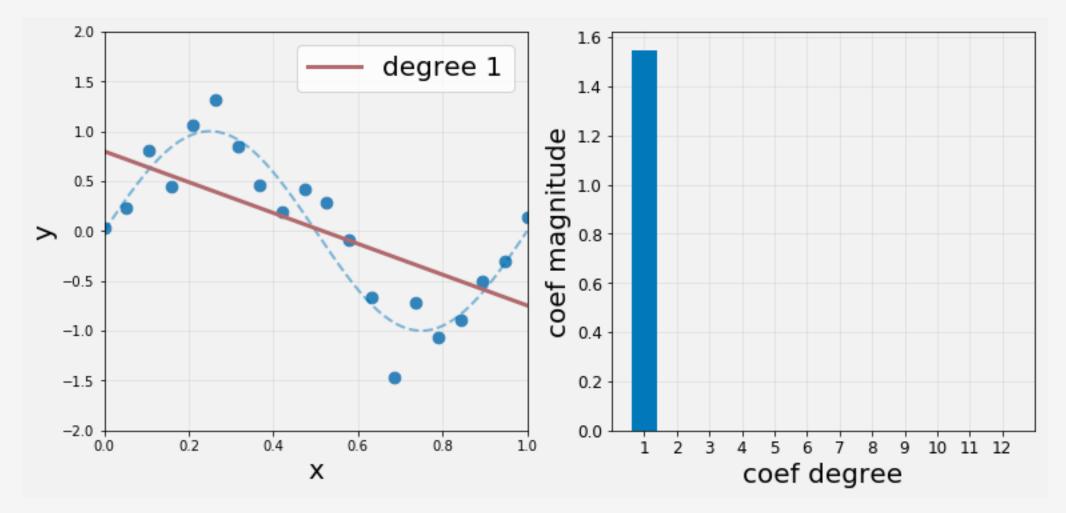
BIAS TElls US ABOUT AVERAGE RESPONSE (HEIGHT OF DATA). REGULARIZING B. pulls the whole wodel down From where should be

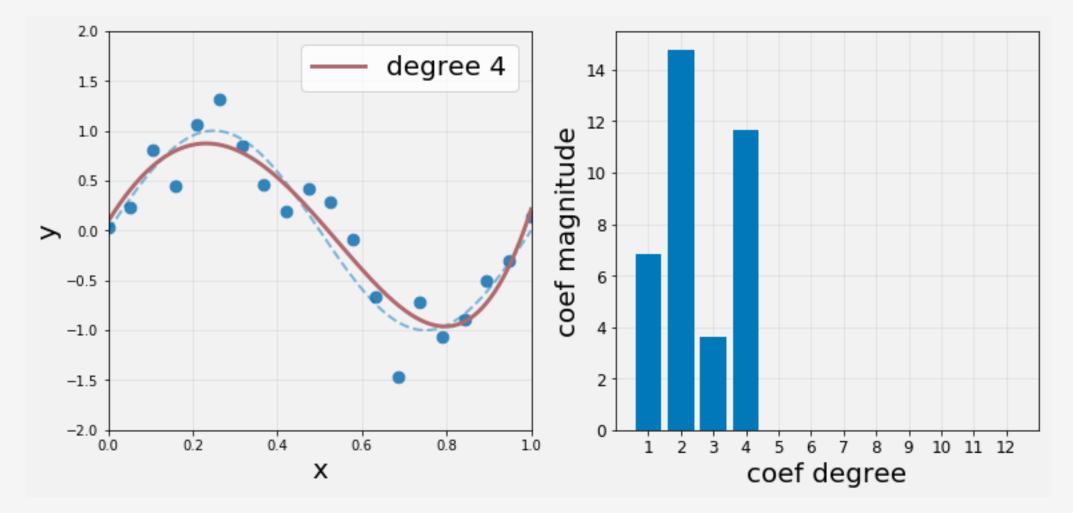
Goal: Keep model coefficients from growing too large

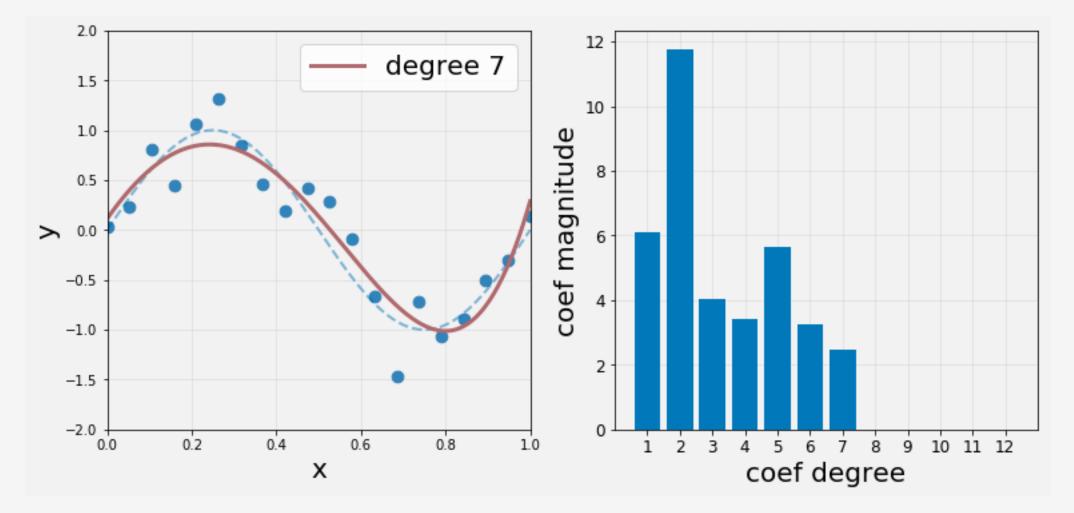
Idea: Put something in the loss function to dissuade them growing too much

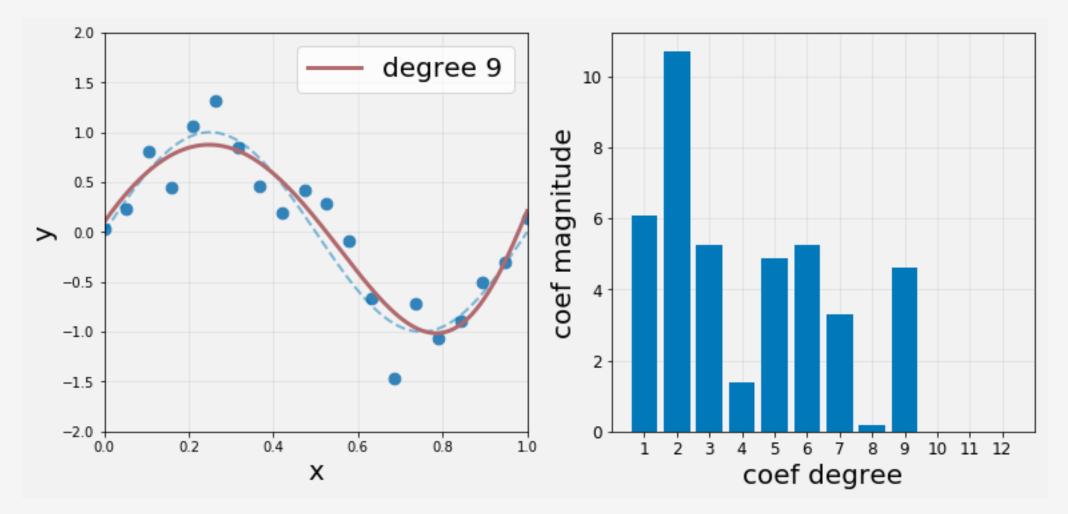
$$RSS_{\lambda} = \sum_{i=1}^{n} \left[(\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}) - y_i \right]^2 + \lambda \sum_{k=1}^{p} \beta_k^2$$

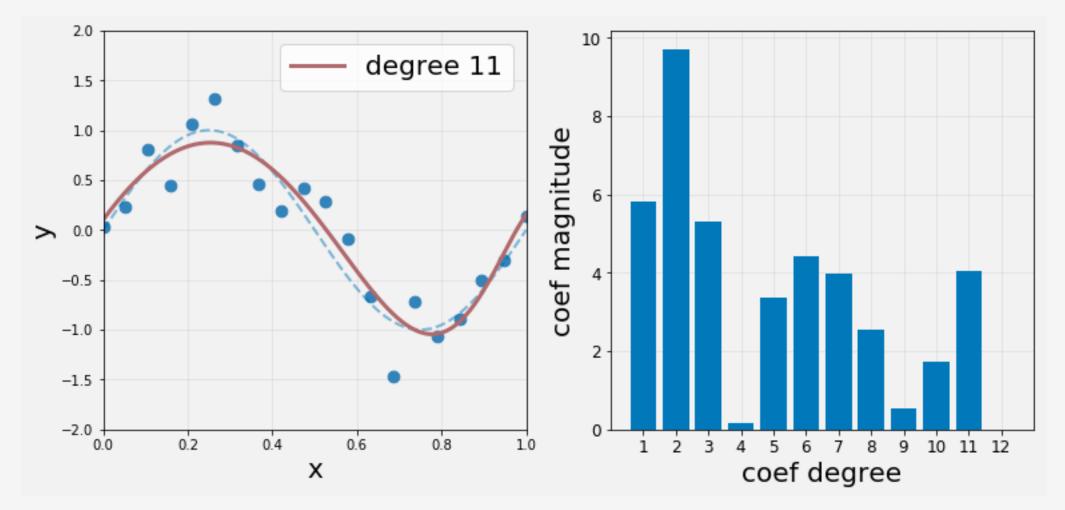
 \circ This form of penalty term is called Ridge Regression. But there are many more



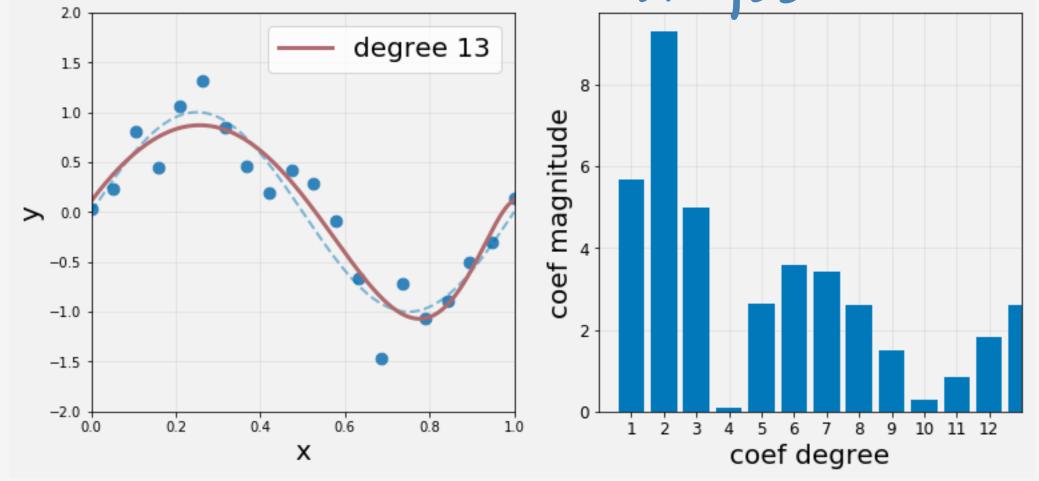








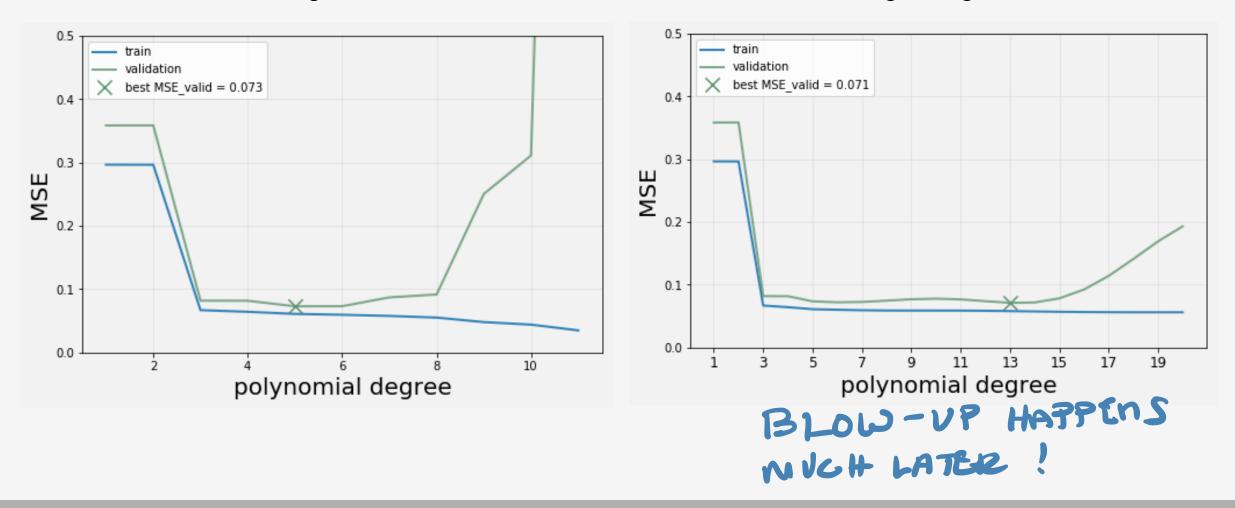
Sinusoidal Data with Ridge Regression Watch the coefficients Watch the coefficients Watch the coefficients



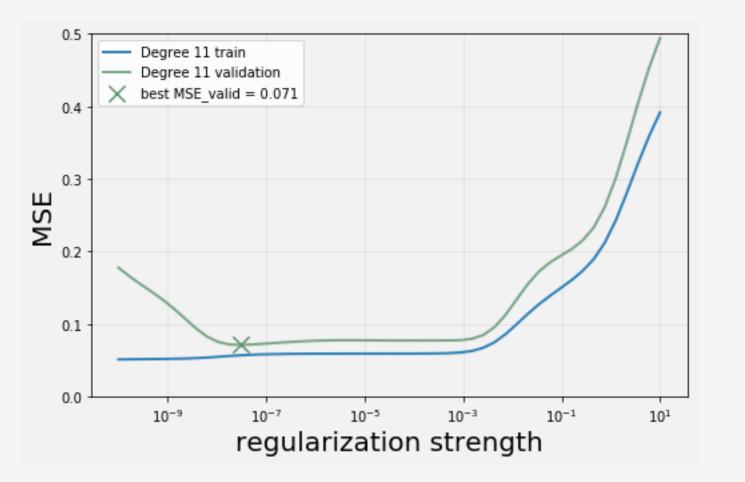
Example: Sinusoidal Data

No Regularization

Ridge Regression



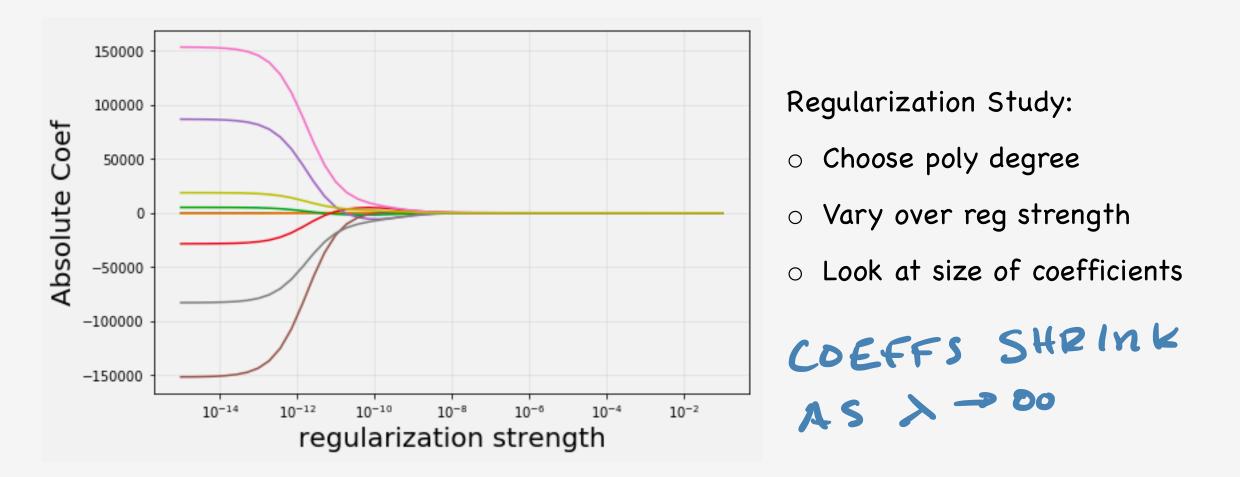
Example: Sinusoidal Data



Regularization Study:

- $\circ\,$ Choose poly degree
- Vary over reg strength
- $\circ~$ Look for best validation MSE

Example: Sinusoidal Data



Regularization Wrap-Up

You should always do regularization.

If you choose λ carefully, it will always help Generalization

Next Time:

- Talk more about Ridge Regression Details
- $\circ\,$ Learning Curves and what they tell us about the Bias-Variance Trade-Off