
Polynomial Regression 
and Regularization



Administrivia
o If you still haven’t enrolled in Moodle yet

o Homework 1 posted later tonight.  Good Milestones: 
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§ Enrollment key on Piazza

§ If joined course recently, email me to get added to Piazza

§ Problems 1-3 This Week 
§ Problems 4 and 5 Next Week



The RoadMap
o Last Time: 

o This Time:

o Next Time:
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§ Regression Refresher (there was nothing fresh about it)

§ Polynomial Regression

§ Regularization (wiggles are bad, Man)

§ Bias-Variance Trade-Off (what does it all MEAN?)
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Previously on CSCI 4622
Given training data                           for                    fit a regression of the form

where

Estimates of the parameters are found by minimizing  

Construct the design matrix     by prepending column of 1s to data matrix

For the moment, solve via normal equations:  

✏i ⇠ N(0,�2)

(xi1, xi2, . . . , xip, yi) i = 1, 2, . . . , n

yi = �0 + �1xi1 + �2xi2 + · · ·+ �pxip + ✏i

X

�̂ =
⇣
XTX

⌘�1
XTy

RSS =
nX

i=1

[(�0 + �1xi1 + · · ·+ �pxip)� yi]
2 = kX� � yk2
f

LOSS Function
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So, We Can Model Things Like This
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And Things Like This

X1

X2

Y



But What About Things Like This?
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But What About Things Like This?
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o So yeah, nonlinearity is a thing

o Clearly, the linear models of 
regression cannot handle this. 

o Give me Neural Networks or Give 
me Death! 



But What About Things Like This?
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o So yeah, nonlinearity is a thing

o Clearly, the linear models of 
regression cannot handle this. 

o Give me Neural Networks or Give 
me Death! 

o Nah.  Regression can totally do this



Start with the Obvious: Polynomials
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o Suppose, as in the previous pictures, we have a single feature 

o We want to go from this: 

o To something like this: 

o So what is the difference between these two? 

Y = �0 + �1X + ✏

X

Y = �0 + �1X + �2X2 + · · ·+ �pXp + ✏



Start with the Obvious: Polynomials
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o Suppose, as in the previous pictures, we have a single feature 

o We want to go from this: 

o To something like this: 

o So what is the difference between these two?

o Seems like it’s closer to this: 

Y = �0 + �1X + ✏

X

Y = �0 + �1X + �2X2 + · · ·+ �pXp + ✏

Y = �0 + �1X1 + �2X2 + · · ·+ �pXp + ✏



The One Becomes the Many
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o Start with a single feature 

o And derive new polynomial features:  

o These two things: 

o are exactly the same: 

X

Y = �0 + �1X + �2X2 + · · ·+ �pXp + ✏

Y = �0 + �1X1 + �2X2 + · · ·+ �pXp + ✏

X1 = X, X2 = X2, · · · Xp = Xp



The Polynomial Regression Pipeline
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o Start with a single feature 

o Derive new polynomial features:  

o Solve the MLR in the usual way: 

o Question: What does the Matrix Equation look like? 

X

Y = �0 + �1X1 + �2X2 + · · ·+ �pXp + ✏

X1 = X, X2 = X2, · · · Xp = Xp



The Polynomial Regression Pipeline

14

o Start with a single feature 

o Derive new polynomial features:  

o Solve the MLR in the usual way: 

o Question: What does the Matrix Equation look like? 

Before:

X

Y = �0 + �1X1 + �2X2 + · · ·+ �pXp + ✏

X1 = X, X2 = X2, · · · Xp = Xp

2

666664

1 x11 x21 · · · x1p

1 x21 x22 · · · x2p

1 x31 x32 · · · x3p
...

...
...

...
1 xn1 xn2 · · · xnp

3

777775

2

666664

�0

�1

�2
...
�p

3

777775
=

2

666664

y1
y2
y3
...
yn

3

777775



The Polynomial Regression Pipeline
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o Start with a single feature 

o Derive new polynomial features:  

o Solve the MLR in the usual way: 

o Question: What does the Matrix Equation look like? 

After:

X

Y = �0 + �1X1 + �2X2 + · · ·+ �pXp + ✏

X1 = X, X2 = X2, · · · Xp = Xp

2

66666664

1 x1 x2
1 · · · xp

1

1 x2 x2
2 · · · xp

2

1 x3 x2
2 · · · xp

3

...
...

...
...

1 xn x2
n · · · xp

n

3

77777775

2

666664

�0

�1

�2
...
�p

3

777775
=

2

666664

y1
y2
y3
...
yn

3

777775
-3



The Polynomial Regression Pipeline
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o Suppose I learn the parameters from the training set 

o What if I want to make a prediction about data I haven’t seen yet? 

HAVE TEST point Xo

NEED to PERFORM SAME Transformation

on Xo THAT WE PERFORMED On training
data . xo → ( 1

, × .

,
X5

, ... ,XoP)

THEN PRE Pichon IS just §o= Xotp



The Polynomial Regression Pipeline
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o Suppose I learn the parameters from the training set 

o What if I want to make a prediction about data I haven’t seen yet? 

o Important Theme #1: If you transform your features for training, predicting is 
always as easy transforming the features of your new data in the same way. 

Input space FEATURE SPACE-
Training X → X

,
Xn , ...

XP

Test Xo → Xo
,
Xp

, . .

,
XOP

MAGIC Happens HERE !



The Polynomial Regression Pipeline
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o Suppose I learn the parameters from the training set 

o What if I want to make a prediction about data I haven’t seen yet? 

o Important Theme #1: If you transform your features for training, predicting is 
always as easy transforming the features of your new data in the same way. 

o Important Theme #2: If your current features are not flexible enough, moving 
into a higher dimensional space will make your model more flexible (but BEWARE!)



Example: Sinusoidal Data
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True Model is f(x) = sin(⇡x) + ✏

o Question: What degree polynomial 
should I use?  



Example: Sinusoidal Data
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True Model is f(x) = sin(⇡x) + ✏

o Question: What degree polynomial 
should I use?

o Degree = 1  



Example: Sinusoidal Data
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True Model is f(x) = sin(⇡x) + ✏

o Question: What degree polynomial 
should I use?

o Degree = 4  



Example: Sinusoidal Data
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True Model is f(x) = sin(⇡x) + ✏

o Question: What degree polynomial 
should I use?

o Degree = 7  



Example: Sinusoidal Data
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True Model is f(x) = sin(⇡x) + ✏

o Question: What degree polynomial 
should I use?

o Degree = 11  



Example: Sinusoidal Data
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True Model is f(x) = sin(⇡x) + ✏

o Question: What degree polynomial 
should I use?

o Degree = 11

o What Questions should we be asking?  



The Real ML Pipeline (Almost)

25

The more flexible (powerful) your model gets, the better it’ll do on training set

But that’s not useful.  We want to know how model will do on new data 

How well it’ll Generalize 
A better pipeline: 

Train on training set.  Validate (or evaluate) on validation set. 

All	Labeled	Data Training	Set Validation	
Set

TRAIN TEST on

on
TH 'S THIS

RANDOM

SPLIT ) )
L L

HELD - OUT

DATA



The Real ML Pipeline (Almost)
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Need a performance measure:
For Regression, we use the Mean-Squared Error:  

All	Labeled	Data Training	Set Validation	
Set

MSE =
1

n

nX

I=1

(yi � ŷi)
2

y
TRUE RESPONSE

← predictions
-



Example: Sinusoidal Data

27

What happens to the MSE on training set as p grows?

What happens to MSE on validation set as p grows? 

MSE goesDOWNMSE
goes Down

At±T , then BACK-Up!



Example: Sinusoidal Data
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FLEXIBLE
Enough

MODEL

/ OUERFITT '

ng←
HAS STARTED



Example: Sinusoidal Data
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Revisit Polynomial Regression 

What causes those wiggles that are hurting us so bad? 



Example: Sinusoidal Data
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True Model is f(x) = sin(⇡x) + ✏



Example: Sinusoidal Data
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True Model is f(x) = sin(⇡x) + ✏



Example: Sinusoidal Data
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True Model is f(x) = sin(⇡x) + ✏



Example: Sinusoidal Data
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True Model is f(x) = sin(⇡x) + ✏



Example: Sinusoidal Data
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Coefficients grow very large.  Need a way to control them.  Regulate them even 



Regularization
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Goal: Keep model coefficients from growing too large 

Idea: Put something in the loss function to dissuade them growing too much             

RSS� =
nX

i=1

[(�0 + �1xi1 + · · ·+ �pxip)� yi]
2 + �

pX

k=1

�2
k

o Regularization weight    is a tuning parameter 

o Have to do regularization study to choose best value 

�

minimize

of
Tenafly



Regularization
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Goal: Keep model coefficients from growing too large 

Idea: Put something in the loss function to dissuade them growing too much             

RSS� =
nX

i=1

[(�0 + �1xi1 + · · ·+ �pxip)� yi]
2 + �

pX

k=1

�2
k

o Why do we not regularize the bias parameter? 

BIAS Tells Us About Average RESPONSE
( HEIGHT OF DATA ) . Regularizing po pulls
THE whole model down FROM WHERE Should BE



Ridge Regression
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Goal: Keep model coefficients from growing too large 

Idea: Put something in the loss function to dissuade them growing too much             

RSS� =
nX

i=1

[(�0 + �1xi1 + · · ·+ �pxip)� yi]
2 + �

pX

k=1

�2
k

o This form of penalty term is called Ridge Regression.  But there are many more



Sinusoidal Data with Ridge Regression
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Watch the coefficients



Sinusoidal Data with Ridge Regression
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Watch the coefficients



Sinusoidal Data with Ridge Regression
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Watch the coefficients



Sinusoidal Data with Ridge Regression
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Watch the coefficients



Sinusoidal Data with Ridge Regression
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Watch the coefficients



Sinusoidal Data with Ridge Regression
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Watch the coefficients NOTE : COEFFICIENTS

STAYED Small !



Example: Sinusoidal Data
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No Regularization                                  Ridge Regression

BLOW - UP HAPPENS

MUCH LATER !



Example: Sinusoidal Data
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Regularization Study:
o Choose poly degree
o Vary over reg strength
o Look for best validation MSE



Example: Sinusoidal Data
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Regularization Study:
o Choose poly degree
o Vary over reg strength
o Look at size of coefficients

COEFFS SHRINK

As × → oo



Regularization Wrap-Up
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You should always do regularization.  

If you choose    carefully, it will always help Generalization

Next Time:  
o Talk more about Ridge Regression Details

o Learning Curves and what they tell us about the Bias-Variance Trade-Off

�
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