
Chapter 10: Vectors and the Geometry of Space

Course Introduction

Calculus III is takes concepts and techniques that we learned in Calculus I-II for functions
of 1 variable and generalizes them to 2 and 3 variables.

The world is decidedly NOT one-dimensional. Sometimes we get away with 2D, but usually
the really good science and engineering is in 3D.
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10.1 The Three Dimensional Coordinate System

In the standard 2D Cartesian coordinate system we can represent the point (a, b) 2 R2 as

x

y

(a, b)

a

b

Now, if we want to plot a point in 3D we need to add some height! A point in 3D looks like
(a, b, c) 2 R3. The first two coordinate are the same as 2D, indicating displacement in the
x and y-directions, respectively. The third coordinate indicates how far o↵ the ground the
point is.
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The region in the 3D coordinate system with x, y, z > 0 is called the first octant. It helps if
we picture the first octant as a room:
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We can characterize the coordinate planes mathematically in the following way

xy-plane: {(x, y, z) | z = 0}
yz-plane: {(x, y, z) | x = 0}
xz-plane: {(x, y, z) | y = 0}



We will often talk about the projection of points onto a coordinate plane. Think about this
as shining a flashlight at a point in a direction perpendicular to the plain you’re projecting
onto. The coordinates of the projection are then the coordinates of the shadow of the point.
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Notice that this is the same as setting the variable along which access you’re projecting to 0.

OK, so now we know how to plot points in 3D. Let’s think about how we could plot equations.

Example 1

In 2D, what curve does the equation y = 3 represent?

The equation tells us that all points on the curve must have y coordinate value of 3, but
it makes no restrictions on the x value, so x can be anything we like. This means that
the equation y = 3 represents all points (x, y) such that y = 3. Or, more mathematically,
{(x, y) | y = 3}. This is a horizontal line in the 2D coordinate system.

So what happens in 3D?

Example 2

In 3D, what does the equation y = 3 represent?

In 3D points are described by triplets of the form (x, y, z). This equation tells us what the y-
value is, but puts no restriction on the x or z-values. This means that these can be anything.
The set of all points (x, 3, z) form a plane in three dimensional space.
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In general, any equation of the form ax+ by + cz = d describes a plane in three-space.

Example 3

Draw the plane x+ 2y + 3z = 6 in the first octant.

We want to plot all points (x, y, z) that satisfy the equation x+ 2y+ 3z = 6. Since we know
that the surface is a plane, and intersections of planes are described by straight lines, let’s
find the points where the plane intersects the three coordinate axes and then connect the
dots.

The plane will intersect the z-axis precisely when x = 0 and y = 0. In order to satisfy the
equation of the plane, we must then have

0 + 2 (0) + 3z = 6 ) 3z = 6 ) z = 2 ) (0, 0, 2)

Similarly, for the intersection with the x-axis we have y = 0 and z = 0 which gives

x+ 2 (0) + 3 (0) = 6 ) x = 6 ) (6, 0, 0)

And finally, for the y-axis we have x = 0 and z = 0 which gives

0 + 2y + 3 (0) = 6 ) 2y = 6 ) y = 3 ) (0, 3, 0)

Plotting these three points and connecting the dots gives

Note that we could also solve the problem by projecting the plane onto each of the coordinate
planes to obtain lines.

Project onto xy-plane by setting z = 0: x + 2y = 6 ) y = 3 � x/2 (line in the xy-plane)
Project onto yz-plane by setting x = 0: 2y + 3z = 6 ) z = 2� 2y/3 (line in the yz-plane)
Project onto xz-plane by setting y = 0: x+ 3z = 6 ) z = 6� x/3 (line in the xz-plane)
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Distance Between Points

In 2D, the distance between points P1(x1, y1) and P2(x2, y2), denoted |P1P2| is

x

y

y1

y2

x1 x2

y2 � y1

x2 � x1

From the Pythagorean Theorem we have |P1P2| =
q

(x2 � x1)
2 + (y2 � y1)

2

In 3D we want to find |P1P2| for P1 (x1, y1, z1) and P2 (x2, y2, z2).

Instead of drawing a triangle we can draw a box

P1(x1, y1, z1)

P2(x2, y2, z2)

A(x2, y2, z1)

We’ll use that auxiliary right-triangle to compute |P1P2| using Pythagoras. We have

|P1A| =
q

(x2 � x1)
2 + (y2 � y1)

2



Then, we have

|P1P2| =
q

|P1A|2 + |AP2|2 =
q
(x2 � x1)

2 + (y2 � y1)
2 + (z2 � z1)

2 = D

Spheres

Example 4

Find the equation for a sphere centered at the point C(2, 4, 1) with radius 3.

The definition of a sphere is a surface made up of all points (x, y, z) that are distance 3 from
the center point C(2, 4, 1). We write down a general formula describing all points that are 3
units away from C.

D =
q

(x� 2)2 + (y � 4)2 + (z � 1)2 = 3

This is kind of a messy equation. Note that it’s still true even if we square both sides, so a
better expression is

(x� 2)2 + (y � 4)2 + (z � 1)2 = 9

Definition: A sphere with center C(h, k, `) and radius r is described by

(x� h)2 + (y � k)2 + (z � `)2 = r2

Example 5

Write down the expression for a sphere of radius 4 and center (2,�1, 5)

(x� 1)2 + (y � (�1))2 + (z � 5)2 = 16 ) (x� 1)2 + (y + 1)2 + (z � 5)2 = 16

Example 6

Describe the surface x2 + y2 + z2 + 4x� 2z = 0

Rule of Thumb: If the equation has x2, y2, and z2 as it’s highest powers and they all have
the same sign, then the surface is a sphere.

To put the equation in the general form of a sphere we have to complete the square



�
x2 + 4x

�2
+ y2 +

�
z2 � 2z

�2
= 0

�
x2 + 4x+ 4

�2
+ y2 +

�
z2 � 2z + 1

�2
= 4 + 1

(x+ 2)2 + y2 +
�
z2 � 1

�2
= 5

So the surface is a sphere centered at (�2, 0, 1) with radius
p
5.

Example 7

What is described by the expression x2 + y2 + z2  3?

All points such that the distance from the origin is less than or equal to 3. So, everything
inside a sphere of radius 3 centered at the origin.

Example 8

Find the equation of a sphere with center (2,�6, 4) and radius 5. Find the distance from the
sphere center to the origin. Describe the sphere’s intersection with each of the coordinate
planes.

(x� 2)2 + (y + 6)2 + (z � 4)2 = 25

D =
p
22 + 62 + 42 =

p
4 + 36 + 16 =

p
56

xy-plane ) z = 0 ) (x� 2)2 + (y + 6)2 = 9

xz-plane ) y = 0 ) (x� 2)2 + (z � 4)2 = �11 (Not possible, sphere doesn’t intersect)

yz-plane ) x = 0 ) (y + 6)2 + (z � 4)2 = 21



10.2 Vectors

Lots of things get measured in amounts, e.g. mass, time, temperature

More things have a magnitude and and direction, e.g. displacement, velocity, force. Quan-
tities with both a magnitude and a direction can be represented by vectors. It’s helpful to
think of vectors by drawing them as arrows on paper.

A

B

��!AB

C

D

��!CD E

F

��!E
F

G

H

��!G
H

�!
AB and

��!
CD have the same direction and magnitude.

�!
AB and

�!
EF have the same magnitude but di↵erent directions.

�!
EF and

��!
GH have the same direction but di↵erent magnitudes.

We say that two vectors are equal if they have the same magnitude and direction (e.g.
�!
AB

and
��!
CD above).

We say that two vectors are parallel if they have the same direction

The zero vector (denoted by 0 or
�!
0 ) has magnitude 0 be NO direction.

There are two main arithmetic operations for combining and modifying vectors. These are
vector addition and scalar multiplication.



Vector Addition

Example 9

Displacement Say someone walks NE from their home for 50 meters. From there they
walk East 100 meters. Represent their displacement by a vector.

v1

v2

v1

v2

v1 + v2

So, graphically, we represent the addition of two vectors by setting them tip-to-tail, and then
drawing the new vector from the starting point of the first, to the end point of the second.

What happens if the person goes East first for 100 meters and then goes 50 meters NE?

v1

v2

v1 + v2

v2

v1

Note that the result is the same! v1+v2 = v2+v1 This result is called The Parallelogram
Law.

Scalar Multiplication

Again it’s helpful to think about displacement:

Example 10

v ) Man walks 100 meters NE

2v ) Man walks 200 meters NE

Scalar multiplication changes the magnitude of a vector NOT the direction (kinda).

Example 11

�v ) Man walks �100 meters NE (LOL WUT?)

) Man walks 100 meters SW



Note: Two vectors are parallel if one can be written as a scalar multiple of the other.

Example 12

Given the following vectors v1 and v2, draw v1 � 2v2

v1

v2

v1

�2v2

v1 � 2v2

OK, so manipulating arrows on paper is pretty cool, but we need a way to talk about vectors
without drawing. Consider the following vectors in 2D

x

y

O

A(2, 2)

B(4, 3)

P(2, 1)

The vectors
�!
AB and

�!
OP are the same (i.e. same dir and mag) and we can represent them

both as h2, 1i (Note the di↵erence between (2, 1), which is a point).

For point P (2, 1) the vector h2, 1i =
�!
OP has a particular name: The position vector of

point P (2, 1).

In 3D everything is the same. The position vector of Q(3, 2,�1) is written as h3, 2,�1i.

We can define a vector by the directed line segment from point A(x1, y1, z1) to B(x2, y2, z2).

v =
�!
AB = hx2 � x1, y2 � y1, z2 � z1i

Example 13

Write down the vector represented by the directed line segment from initial point A(1,�2, 4)
to terminal point B(�2, 4,�1).

v =
�!
AB = h�2� 1, 4 + 2,�1� 4i = h�3, 6,�5i

Magnitude of a Vector



Let v = ha, bi. The magnitude is written as |v| or sometimes kvk. To find the magnitude
we need to think in terms of the position vector corresponding to v.

x

y

(a, b)b

a

|v| =
p
a2 + b2

In 3D for v = ha, b, ci we have |v| =
p
a2 + b2 + c2

Example 14

Let v = h3, 4i, then |v| =
p
32 + 42 = 5.

Adding Vectors Algebraically

Let a = ha1, a2i and b = hb1, b2i

x

y

a

ba+ b

a1 b1

a2

b2 a+b = ha1, a2i+hb1, b2i = ha1 + b1, a2 + b2i

Addition is componentwise!

Scalar Multiplication

Let a = ha1, a2i. We want to find ca where c is a scalar.

a1

a1a

ca1

ca1ca
ca = c ha1, a2i = hca1, ca2i

Scalar multiplication is also compo-
nentwise!

Yet Another Notation (From Physics)

Consider vectors of length 1 pointing along the coordinate axes.



i

j

i = h1, 0i, j = h0, 1i
x

y

z

i
j

k

i = h1, 0, 0i, j = h0, 1, 0i, k = h0, 0, 1i

We can now decompose any vector into a sum of vectors that are aligned with the coordinate
axes.

x

y

i

j

A

C

B

��!
AB = ha, bi

��!
BC = h0, bi

��!
AB = ha, 0i

�!
AC =

�!
AB +

��!
BC

ha, bi = ha, 0i+ h0, bi
= a h1, 0i+ b h0, 1i
= ai+ bj

So in 2D we can write ha, bi = ai+ bj and in 3D ha, b, ci = ai+ bj+ ck.

Example 15

If a = 3i� 2j+ k and b = �2i+ 3j+ 2k then

a+ b = (3� 2) i+ (�2 + 3) j+ (1 + 2)k = i+ j+ 3k

A unit vector is a vector of magnitude 1.

i, j, and k are all unit vectors.

Suppose v is some vector. How can we find a unit vector in the same direction as v?

v has magnitude |v|, so u =
v

|v| is a unit vector.

Example 16

Find a unit vector in the direction of i� 2j+ 2k.

|i� 2j+ 2k| =
q

12 + (�2)2 + 22 = 3 ) u =
i� 2j+ 2k

3
=

1

3
i� 2

3
j+

2

3
k



Example 17

Suppose we pull a wagon by applying some force vector F on the handle at a 45� angle
with the horizon. Find F if we know that |F| = 10.

F

Assume that F has the form F = ai+bj. Since the angle of the handle is 45 � we know that
a = b ) F = ai+ aj. Then, since |F| = 10 we have

|F| =
p
a2 + a2 =

p
2a = 10 ) a =

10p
2
=

p
50 ) F =

p
50i+

p
50j

Note that only the portion of F in the i-direction actually acts to pull the wagon. The
component of the force in the j-direction attempts to pull the wagon o↵ the ground!

Example 18

Supppose a 100 KG weight is suspended by a sequence of cables as depicted in the figure
below. Find the tension in the cables represented by the vectors T1 and T2.

T1 T2

60�

60�

30�

30�

w = �100j

a1i a2i

b1j b2j

Let T1 = �a1i+ b1j and T2 = a2i+ b2j where

a1 = cos 60� |T1|
b1 = sin 60� |T1|
a2 = cos 30� |T2|
b2 = sin 30� |T2|



This gives us

T1 = � cos 60� |T1| i+ sin 60� |T1| j
T2 = � cos 30� |T2| i+ sin 30� |T2| j

From the expressions above it’s clear that to determine T1 and T2 we just need to find their
magnitudes. Since the entire system is at rest, we can find the magnitudes by assuming that
the sum of all of the force vectors in the system is equal to the zero vector.

T1 +T2 +w = 0

which gives

(� cos 60� |T1| i+ sin 60� |T1| j) + (cos 30� |T2| i+ sin 30� |T2| j)� 100j = 0

Now, if the expression on the left-hand side of the equation is really the zero vector, it must
be the case that both of the terms in front of the i and j are zero. From this we can separate
the vector equation into two scalar equations in the unknowns |T1| and |T2|.

� cos 60� |T1|+ cos 30� |T2| = 0 (1)

sin 60� |T1|+ sin 30� |T2|� 100 = 0 (2)

Solving (1) for |T1| gives

|T1| =
cos 30�

cos 60�
|T2| (3)

Substituting (3) into (2) gives

sin 60� cos 30�

cos 60�
|T2|+ sin 30� |T2| = 100 (4)

Solving (4) for |T2| yields |T2| = 50. Then from (3) we have |T1| = 50
p
3.

Then plugging these into the definition of T1 and T2 we have

T1 = �43.3i+ 75j

T2 = 43.3i+ 25j



10.3 Dot Products

So far we’ve added vectors together and multiplied a vector by a scalar. But what about
multiplying vectors together? It turns out that there are several vector-vector operations
that are similar to multiplication. The first such operation is the dot product.

Definition: If A = ha1, a2, a3i and B = hb1, b2, b3i, then the dot product of A and B is
the number A ·B given by

A ·B = a1b1 + a2b2 + a3b3

Note that the result of the dot product is a scalar, not a vector.

Example 19

h1,�2i · h3, 4i = 1 (3) + (�2) (4) = �3

h2,�1, 3i · h0,�1, 2i = 2 (0) + (�1) (�1) + 3 (2) = 7

(2i� j+ k) · (i+ 2j� k) = 2 (1) + (�1) (2) + 1 (�1) = �1

Properties of the Dot Product

1. 0 ·A = 0

2. A ·A = |A|2

3. A ·B = B ·A

4. c (A ·B) = (cA) ·A = A · (cB)

5. A · (B+C) = (A ·B) + (A ·C) or (A+B) ·C = (A ·C) + (B ·C)

These properties are easy to prove using the definition of the dot product

Proof of 2: A ·A = a21 + a22 + a23 = |A|2

Proof of 3: A ·B = a1b1 + a2b2 + a3b3 = b1a1 + b2a2 + b3a3 = B ·A

Proof of 4: c (A ·B) = c (a1b1 + a2b2 + a3b3) = (ca1) b1 + (ca2) b2 + (ca3) b3 = (cA) ·B



Geometric intuition

Take two vectors A and B, and place them on the same initial point

A

B

✓

Theorem: A ·B = |A| |B| cos ✓

The dot product gives us an idea of how much two vectors line up with one another.

Example 20

Let A = i+ j and B = 2i.

A

B

✓

|A| =
p
2 |B| = 2

A ·B =
⇣
2
p
2
⌘
cos ✓

But ✓ = 45� = ⇡

4 ) cos ✓ =
p
2
2

Then A ·B =
�
2
p
2
� p

2
2 = 2

Likewise, if we use the definition of a dot product we obtain A ·B = 1 (2) + 1 (0) = 2.

The sign on A · B can tell us whether the vectors are pointing in the same or opposite
directions.

A

B

✓

✓ acute ) A ·B > 0

A

B

✓

✓ obtuse ) A ·B < 0

A

B

✓

✓ = 90� ) A ·B = 0

When vectors A and B are such that A ·B = 0 we say that A and B are orthogonal.

Example 21

Let A = 2i� j� 3k and B = 2i� 2j+ 2k.

A ·B = (2) (2) + (�1) (�2) + (�3) (2) = 4 + 2� 6 = 0



So A and B are orthogonal vectors.

Example 22

The coordinate vectors i, j and k are all mutually orthogonal. That is

i · i = 1 i · j = 0 i · k = 0
j · i = 0 j · j = 1 j · k = 0
k · i = 0 k · j = 0 k · k = 1

We can even find the angle between two vectors A and B using the dot product.

cos ✓ =
A ·B
|A| |B| ) ✓ = cos�1

✓
A ·B
|A| |B|

◆

Big Picture: The size of A ·B tells us how much how much of the vector A is aligned with
vector B. Conversely, it also tells us how much of B is aligned with A. The sign of A · B
tells us if the vectors point in the same general direction or not.

Projections

What is a projection?

B

AP

r

o

jAB

B
A

P

r

o

jA
B

B

AP

r

o

jAB

Again, you can think of ProjBA as the vector that B’s shadow would make if you shined a
flashlight above B in the direction orthongal to A.



Example 23

Let B = 2i+ 3j and A = 5i. Compute ProjAB.

B = 2i+ 3j

A = 5i
ProjAB = 2i

Now, how can we compute a projection for general vectors A and B?

B

A✓

P

r

o

jA
B

projAB = (|B| cos ✓) A

|A|

projAB = (|A| |B| cos ✓) A

|A|2

projAB =

✓
A ·B
A ·A

◆
A

Example 24

Consider applying a force F = 3i� 2j to push a cart. What is the horizontal component of
F?

F = 3i� 2j

Duh, it’s 3i. But it’s also proj+iF

proj+iF =


i · F
i · i

�
i =


i · (3i� 2j)

i · i

�
i = 3i

Example 25



Suppose you push a block up a ramp with a slope of 1/3 using a horizontal force of F = 5i.
Find the component of F that acts to move the block up the ramp.

F = 5i

A = 3i+ j

F = 5i
F = 5i

projA
F

projAF =


A · F
A ·A

�
A

=


(3i+ j) · (5i)

(3i+ j) · (3i+ j)

�
(3i+ j)

=


15

9 + 1

�
(3i+ j)

=


3

2

�
(3i+ j) =

9

2
i+

3

2
j or 4.5i+ 1.5j

Work

Suppose we apply a force F to move a block along some displacement vector D.

D

F

|F| cos ✓
✓

Work =

0

@
Magnitude of Force

in Direction of
Displacement

1

A

0

@
Length

of
Displacement

1

A

= (|F| cos ✓) |D|
= |F| |D| cos ✓
= F ·D



Example 26

How much work is done if we apply a force of F = 3i + 2j Newtons to drag a block along a
displacment vector D = 4i meters?

D = 4i

F = 3i+ 2j

W = F ·D = (3i+ 2j) · (4i) = 12 N m

Example 27

Suppose a force of F = �2i + j � 2k is applied to push a large stone block along the
floor with a displacement vector of D = �4i+ 2j. How much work is done?

F = �2i+ j� 2k

D = �4i+ 2j

W = F ·D = (�2i+ j� 2k) · (�4i+ 2j) = 10N m



10.4 The Cross Product

We’ve already seen one form of vector multiplication: the dot product. The dot product of
two vectors is a scalar and is bigger the more aligned two vectors are.

Today, we talk about another form of vector multiplication: the cross product. Consider
the plane formed by two vectors A and B.

B

A

A⇥B

✓

The cross product of A and B, written A ⇥ B is a vector that is orthogonal to BOTH A
and B. In particular, it is orthogonal to any vector that lies in the same plane as A and B.
We say that the cross product is normal to the plane defined by A and B.

The direction that the cross product points away from the plane is determined by the Right
Hand Rule.

Definition: Let A = ha1, a2, a3i and B = hb1, b2, b3i

A⇥B = ha2b3 � a3b2, a3b1 � a1b3, a1b2 � a2b1i
= (a2b3 � a3b2) i+ (a3b1 � a1b3) j+ (a1b2 � a2b1)k

There is an easy way to remember the formula for the cross product, but it requires some
new machinery from linear algebra

Definition: The determinant of a 2⇥ 2 matrix is given by

����
a b
c d

���� = ad� bc

����
2 �1
4 3

���� = (2) (3)� (�1) (4) = 6 + 4 = 10

Definition: The determinant of a 3⇥ 3 matrix is given by

������

a1 a2 a3
b1 b2 b3
c1 c2 c3

������
= a1

����
b2 b3
c2 c3

����� a2

����
b1 b3
c1 c3

����+ a3

����
b1 b2
c1 c2

����



Then, another way to compute A⇥B is by computing the following 3⇥ 3 determinant:

A⇥B =

������

i j k
a1 a2 a3
b1 b2 b3

������

Example 28

Compute A⇥B where A = i+ 3j� 2k and B = �i+ 5k. We have

A⇥B =

������

i j k
1 3 �2

�1 0 5

������
=

����
3 �2
0 5

���� i�
����

1 �2
�1 5

���� j+
����

1 3
�1 0

����k = 15i� 3j+ 3k

Let’s check to see if it’s really true that A⇥B is orthogonal to both A and B.

A · (A⇥B) = (i+ 3j� 2k) · (15i� 3j+ 3k) = 15� 9� 6 = 0 X
B · (A⇥B) = (�i+ 5k) · (15i� 3j+ 3k) = �15 + 15 = 0 X

Alternate Method for Computing A⇥B

i j k i j

1 3 �2 1 3

�1 0 5 �1 0

��������

��������

Multiply along arrows. Down arrows get a (+) and up arrows get a (�).

A⇥B = 15i+ 2j+ 0k� (�3)k� 0i� 5j

= 15i� 3j+ 3k

Similar to the dot product, the magnitude of A ⇥ B is determined by the size of the angle
between A and B, but the relationship is flipped.

Recall that the dot product of two vectors was bigger if the angle between the vectors was
smaller. The magnitude of the cross product is smaller if the vectors are more aligned with
each other.

Theorem: |A⇥B| = |A| |B| sin ✓



Dot Product

A ·B
|A| |B| = cos ✓

A ·B = 0 if A ? B
A ·B maximized if A kB

Cross Product

|A⇥B|
|A| |B| = sin ✓

|A⇥B| maximized if A ? B
|A⇥|B = 0 if A kB

Fact: |A⇥B| = |A| |B| sin ✓ = Area of Parallelogram formed by A and B.

✓

B

A

|B| sin ✓

Example 29

Compute the area of the parallelogram formed by A and B and verify that A ? (A⇥B)
and B ? (A⇥B).

Area of Parallelogram = |A⇥B| = |15i� 3j+ 3k| =
p
225 + 9 + 8 =

p
243

A · (A⇥B) = (i+ 3j� 2k) · (15i� 3j+ 3k) = 15� 9� 6 = 0 X
A · (A⇥B) = (�i+ 5k) · (15i� 3j+ 3k) = �15 + 15 = 0 X

Properties of the Cross Product

Anti-Commutativity: Is A⇥B = B⇥A? Think about RHR! A⇥B = �B⇥A

Scalar Multiplication: (cA)⇥B = c (A⇥B) = A⇥ (cB)

Distribution: A⇥ (B+C) = (A⇥B) + (A⇥C)

Triple Products:

⇢
Scalar A · (B⇥C) = (A⇥B) ·C
Vector A⇥ (B⇥C) = (A ·C)B� (A ·B)C

Example 30

The volume of a parallel piped formed by the vectors A, B, and C is given by the scalar
triple product A · (B⇥C).



A

B

C

B⇥C

✓h = |A| |cos ✓|

|B⇥C|

V = |B⇥C| |A| |cos ✓| = |A · (B⇥C)|

Example 31

Torque measures the tendency of an object to rotate around a pivot (twisting power).

R

F
|⌧ | =

✓
Magnitude of Force

? to lever arm

◆✓
Length of
lever arm

◆

But what if the force applied is not orthogonal to R?

✓

R

F

Magnitude of Force ? to R is |F| sin ✓
Length of R is |R|
So |⌧ | = |R| |F| sin ✓ = |R⇥ F|

We can think of torque as a vector ⌧ where ⌧ = R ⇥ F. The torque vector has a direction
orthogonal to the plane of rotation and sign given by the RHR.

R

F

⌧

Example 32



Consider an arm with 1ft between the shoulder and the elbow and 1ft between the elbow and
the hand extended in the j direction and holding a 20lb dumbbell at 30� below the horizon.
Calculate the magnitude of the torque on both the elbow and the shoulder.

R

F = �20k

✓ = 30

�

Shoulder: We have R
s

= 2 cos 30�j� 2 sin 30�k =
p
3j� k

⌧
s

= R
s

⇥ F =

i j k i j

0
p
3 �1 0

p
3

0 0 �20 0 0

���������

���������

= �20

p
3i

Elbow: We have R
e

= 1
2Rs

) ⌧
e

= R
e

⇥ F = 1
2Rs

⇥ F = 1
2⌧s = �10

p
3i so...

|⌧
s

| = 20
p
3 ft-lbs and |⌧

e

| = 10
p
3 ft-lbs



10.5 Equations of Lines and Planes

In 2D a line is defined by
a point and a slope

x

y
slope= m

y0

y = mx+ b

In 3D a line is defined by
a point and a direction vector

x
y

z

r0

P0

v

r

L

r0 is the position vector of P0(x0, y0, z0), i.e. r0 = hx0, y0, z0i.

To get to a new point on line L we add a scalar multiple of v. The position vector r traces
out the line.

L : r = r0 + tv �1  t  1

Suppose the direction vector v is given by v = ha, b, ci. (a, b, c are called the directional

numbers of L). Then

r = r0 + tv , hx, y, zi = hx0 + ta, y0 + tb, z0 + tci

Vector Equation of L : hx, y, zi = hx0 + ta, y0 + tb, z0 + tci

Example 33

Find the vector equation of the line that pass through the point (1, 3, 2) and is k to vec-
tor v = 2i� 2j+ k.

hx, y, zi = h1 + 2t, 3� 2t, 2 + ti



We can also write the equation of the line in terms of a parameterization of each coordinate

Parametric Equation: x = x0 + at, y = y0 + bt, z = z0 + ct

Example 34

We can also write L as x = 1 + 2t, y = 3� 2t, z = 2 + t.

Each value of the parameter t gives a new point on line L

Example 35

Find 2 other points on the line L

t = 1 ) x = 3, y = 1, z = 4 (3, 1, 4)

t = �1 ) x = �1, y = 5, z = 1 (�1, 5, 1)

Vector and parametric equations of lines are not unique. We could choose another point
on the line and another vector that points in the same direction as v and obtain di↵erent
equations describing the same line.

Example 36

Letting P0 = (3, 1, 4) and v = 8i� 8j+ 4k gives hx, y, zi = h3 + 8t, 1� 8t, 4 + 4ti. Then

t = 0 ) (3, 1, 4)
t = �1/2 ) (�1, 5, 1)

�
SAME LINE!

Example 37

Find the Line that passes through the point P (�1, 0, 2) and Q (2, 1, 4).

Need a point and a direction vector. v =
�!
PQ = h2� (�1) , 1� 0, 4� 2i = h3, 1, 2i.

x = 2 + 3t, y = 1 + t, z = 4 + 2t or x = �1 + 3t, y = t, z = 2 + 2t

Example 38

Where does L intersect the xy-plane?

We’re in the xy-plane if z = 0 ) 0 = 2 + 2t ) t = �1

) x = 2 + 3 (�1) = �1 and y = 1� 1 = 0 ) (�1, 0, 0)



Example 39

What if we only want to know the equation of the finite line segment between P and
Q?

x = �1 + 3t, y = t, z = 2 + 2t, 0  t  1

Example 40

Determine whether the following line segments are parrallel. Do they intersect?

L1 := hx, y, zi = h1� t, 2 + t, 2t� 1i
L2 := hx, y, zi = h2 + 3s, 5 + 3s, si

The direction vectors associated with each line are

v1 = h�1, 1, 2i and v2 = h1, 3, 1i ) Not Parallel!

To see if the two lines intersect we need to see if there are values of t and s that make the
three coordinates of the points on the line equal.

1� t = 2 + s

2 + t = 5 + 3s

2t� 1 = s

We’ll use two equations to solve for t and s, and then see if the computed values satisfy the
third equation. Adding the first and second equations we have

3 = 7 + 4s ) s = �1 ) t = 0

Plugging these into the third equation we have �1 = �1 X . Therefore the point of
intersection of the two lines occurs when t = 0 in L1 or s = �1 in L2, which gives (1, 2,�1).

Planes

Earlier we saw that the equation of a plane has the form Ax+By+Cz = D. We also noted
that described a vector normal to a plane as a vector that is orthogonal to any vector lying
in the plane. We’ll use these facts to determine the equation of a specific plane.

In 2D we know that we can find the equation of a line if we know 2 points on the line, or if
we know 1 points and the slope. Notice the slope of a line in 2D is sort of like a direction.



Analogously, we can find the equation of a plane if we know 3 points on the plane, or 1 point
and a vector that is normal to the plane. Let P0(x0, y0, z0) be a point on a plane with n.

x y

z

r0

r

r� r0

n

Then n · (r� r0) = 0 , n · r = n · r0 which is the so-called vector equation of a plane.

If the normal vector is given by n = ha, b, ci and the position vector r = hx, y, zi then we
have

ha, b, ci · hx, y, zi = ha, b, ci · hx0, y0, z0i ) ax+ by + cz = ax0 + by0 + cz0

which we can rearrange to get the more familiar equation for a plane

a (x� x0) + b (y � y0) + c (z � z0) = 0

Example 41

Find the equation of a plane containing the point (�1, 1/2, 3) with normal vector n = i+4j+k.

(x+ 1) + 4

✓
y � 1

2

◆
+ (z � 3) = 0 , x+ 4y + z = 5

Example 42

Find the equation of the plane containing the points P1 (1, 2, 1), P2 (0,�1, 0), and P3 (2,�1, 3).

To find the equation of the plane we need at least one point and a normal vector. We already
have a point. To find the normal vector we can use the three points to find two vectors in
the plane and cross them.



v1 =
��!
P1P2 = h�1,�3,�1i and v2 =

��!
P2P3 = h2, 0, 3i

Then

n = v1 ⇥ v2 =
i j k

�1 �3 �1
2 0 3

= i
�3 �1
0 3

� j
�1 �1
2 3

+ k
�1 �3
2 0

= �9i+ j+ 6k

Then, choosing (arbitrarily) P1 as the point we get

�9 (x� 1) + (y � 2) + 6 (z � 1) = 0

Note that if two planes have the same normal vector then we say the planes are parallel.

If two planes are not parallel then they must intersect somewhere and the intersection is a
line.

n1n2

Example 43

Find the parametric equation of the line of intersection of the planes x + y + z = 1 and
x+ 2y + 2z = 1.

To find the equation of a line we need a point and a vector parallel to the line. To find the
point, let’s look for the point where the line of intersection intersects the xy-plane. To do
this we set z = 0 in both planes and then solve simultaneously for x and y.

x+ y = 1
�(x+ 2y = 1)

�y = 0

Then y = 0 ) x = 1 which gives us the point (1, 0, 0).



The vector parallel to the line of intersection will be orthogonal to the normal vector for both
planes. We can find this by taking their cross-product.

v = n1 ⇥ n2 =
i j k
1 1 1
1 2 2

= i
1 1
2 2

� j
1 1
1 2

+ k
1 1
1 2

= �j+ k

Then together with the point we found we have

hx, y, zi = h1,�t, ti or x = 1, y = �t, z = t

Sometimes it’s also useful to know the angle between two planes. This is simply the angle
between the planes’ normal vectors, which we can find using the dot product

✓ = cos�1


n1 · n2

|n1| |n2|

�

Example 44

Find the angle between the planes in the previous example.

We have n1 = h1, 1, 1i and n2 = h1, 2, 2i. Then

n1 · n2 = 5 and |n1| =
p
3 and |n2| = 3

✓ = cos�1


5

3
p
3

�
⇡ 15.8�



Shortest Distance Between Plane and Point

n

P1

Projnv

P0

v

Let P1 (x1, y1, z1) be the point of interest and P0 (x0, y0, z0) be any point on the plane. The
shortest distance from P1 to the plane will be along the normal vector n. If we know the
vector v =

��!
P0P1 then the vector Projnv will have the same magnitude as the distance from

P1 to the plane. We have

v = hx1 � x0, y1 � y0, z1 � z0i then

D = Projnv =
���
v · n
n · nn

��� =
|v · n|
|n|2

|n| = |v · n|
|n|

If we let n = ha, b, ci be the normal vector then we have

D =
|v · n|
|n| =

|a (x1 � x0) + b (y1 � y0) + c (z1 � z0)|p
a2 + b2 + c2

=

|ax1 + by1 + cz1 � (ax0 + by0 + cz0)|p
a2 + b2 + c2

=
|ax1 + by1 + cz1 � d|p

a2 + b2 + c2

Example 45

Find the distance between the point P (1, 2, 3) plane 3x+ 4y + 5z = 1.

D =
|3 (1) + 4 (2) + 5 (3)� 1|p

32 + 42 + 52
=

25p
50

=
5p
2



10.6 Cylinders and Quadratic Surfaces

Consider the usual cylinder of the form x2 + y2 = a2:

x

y

x
y

z

Note that the curve intersecting any plane z = c looks like a cirlce.

We can do this with any shape we want. The curve that generates the cylinder is called
the generating curve. The cylinder can be oriented perpendicular to any of the three
coordinate planes.

f(x, y) = c perpendicular to the xy-plane
g(x, z) = c perpendicular to the xz-plane
h(y, z) = c perpendicular to the yz-plane

Example Plot the cylinder z = x2 in three dimensions.

x

z

x
y

z



Quadratic Surfaces

In general Ax2+By2+Cz2+Dxy+Eyz+Fxz+Gx+Hy+ Jz+K = 0 where A,B,C, . . .
are constants.

Example: We’ve already seen a few quadratic surfaces with spheres and the previous exam-
ple.

In this section we’ll consider ellipsoids (sorta spheres) parabloids, cones, and hyperboloids.

The Ellipsoid

Ellipsoids have the general form
x2

a2
+

y2

b2
+

z2

c2
= 1

Example: Let’s look at the particular case of the ellipsoid when a = 1, b = 2, and c = 3.
Then we have

x2

1
+

y2

4
+

z2

9
= 1

What does the surface look like if we restrict it to the three coordinate planes?

z = 0 ) x2

1
+

y2

4
= 1 x

y

(1, 0, 0)(�1, 0, 0)

(0, 2, 0)

(0,�2, 0)



x = 0 ) y2

4
+

z2

9
= 1 y

z

(0, 2, 0)(0,�2, 0)

(0, 0, 3)

(0, 0,�3)

y = 0 ) x2

1
+

z2

9
= 1 x

z

(1, 0, 0)(�1, 0, 0)

(0, 0, 3)

(0, 0,�3)

Now we can plot all three ellipses in the coordinate planes and get a general idea of the
shape.

x

y

z

(0, 0, 3)

(0, 2, 0)

(1, 0, 0)



Now we have a general outline of the shape. Sometimes this is good enough to finish the plot,
but other times we’d like more information than just the intersection with the coordinate
planes. In these cases it’s helpful to look at cross-sections in planes that are parallel to the
coordinate planes. For example, we could look at cross-sections formed by cutting the surface
with planes of the form z = k, where here k is just a constant. Note that this is a plane that
is parallel to the xy-plane at height z = k.

First note that we can’t choose a k-value that is bigger than c = 3 or smaller than �c = �3,
because the ellipsoid does not exist there. We can see this from the equation if we try to
choose something like z = 6 because we get

x2

1
+

y2

4
+

62

9
= 1 ) x2

1
+

y2

4
= �3

which can’t possibly have a solution because everything on the left side of the equals sign is
positive and the right side is negative. Then, for any z = k for �3  k  3 the part of the
surface lying in the z = k plane is an ellipse

x2

1
+

y2

4
+

k2

9
= 1 ) x2

1
+

y2

4
= 1� k2

9
) x2

1
�
1� k

2

9

� +
y2

4
�
1� k

2

9

� = 1

Now, remember that the size of the quantity in the denominator of each term determines how
long the ellipse is along that axis. For di↵erent values of k we see that the denominators can
be bigger or smaller. This means that the elliptical cross-sections will get bigger or smaller
depending on which z = k plane we’re in. For instance, the biggest that the two denominators
can be occurs when k = 0. Or in other words, the largest ellitpical cross-section occurs in the
xy-plane. As we get farther away from the xy-plane the elliptical cross sections get smaller.
Let’s plot a few cross sections in the three dimensions corresponding to z = 0, z = ±1 and
z = ±2.

x
y

z

Now we have an even better idea of what the ellipsoid looks like. If we put them all together
in one plot, we have the final form of the ellipsoid.



x

y

z

(0, 0, 3)

(0, 2, 0)

(1, 0, 0)

The Elliptic Paraboloid

Of course, sometimes we’re not actually handed the equation and told to draw the surface.
Consider the following example.

Example 46

Find the equation of the surface consisting of all points that are equidistance from the point
(0, 0, 1) and the plane z = �1.

We need to express the fact that the distance between an arbitrary point (x, y, z) and the
point (0,0,1) is the same as the distance between (x, y, z) and the plane z = �1. We have

d
point

=
q

x2 + y2 + (z � 1)2 and d
plane

= |z � (�1)| = |z + 1|

Setting them equal and squaring both sides we have

x2 + y2 + (z � 1)2 = (z + 1)2 ) x2 + y2 � 4z = 0

Rearranging the expression above we have z =
1

4
(x2 + y2).

Let’s try to figure out what this surface looks like. If we look at it’s cross-section in the
xy-plane we have

0 =
1

4

�
x2 + y2

�

Clearly the only xy-pair that satisfies this equation is the point (0, 0)

More interesting are the cross-sections in the xz- and yz-planes. For these we have, respec-
tively,



z =
x2

4
and z =

y2

4

These are parabolas. If we graph them we have

x

z

(4, 0, 4)(�4, 0, 4)

y

z

(0, 4, 4)(0,�4, 4)

Finally, we can look at the cross-sections in various planes of parallel to the xy-plane of the
form z = k. We have

x2 + y2 = 4k

From this expression we can tell various things. First, the cross-sections in the z = k planes
are all circles of radius 2

p
k. Furthermore, we can tell that the surface does not exist below

the xy-plane, because for values of k < 0 there are no values of x and y that satisfy the
equation. Plotting several of these circles in three dimensions we have

x

y

z

Finally, we can put it all together by plotting the parabolic cross-sections in the xz- and
yz-planes. We have



x

y

z

This surface is a paraboloid. Technically it’s called an elliptic paraboloid because the cross-
sections could be ellipses instead of circles if the coe�cients in front of the x2 and y2 terms
were di↵erent.

The Cone

Cones in three dimensional space have general equations of the form

z2

c2
=

x2

a2
+

y2

b2

Let’s look at the following specific case:

z2 =
x2

4
+ y2

The cross-sections in the z = k planes look as follows:

x2

4
+ y2 = k2 ) x2

(2k)2
+

y2

k2
= 1

Note that these are ellipses that are 2 times wider in the x-direction than the y-direction.
Notice also that because the z term appears everywhere as a square, the cone exists both
above and below the xy-plane. Plotting several of these elliptic cross-sections we have



x

y

z

To get the cross-sections in the xz- and yz-planes we set y = 0 and x = 0 in the equation,
respectivley. This gives

z2 =
x2

4
) z = ±x

2
and z2 = y2 ) z = ±y

These are just sets of criss-crossing lines that go through the origin. In the xz-plane the lines
have slopes of ±1/2 and in the yz-plane the lines have slopes of ±1. Adding these to the
picture gives

x

y

z



The Hyperboloid of One Sheet

The so-called hyperboloid of one sheet has the general form
x2

a2
+

y2

b2
� z2

c2
= 1. One example

of this is x2 + 4y2 � z2 = 1.

We first plot the cross-sections of the quadratic surface in each of the coordinate planes. We
have:

For the xy-plane ) z = 0 ) x2+4y2 = 1 ) x2+
y2

(1/2)2
= 1 which is an ellipse

centered at the origin with x-major axis length 1 and y-major axis length 1/2. It looks like

x

y

(1, 0, 0)

(0, 1/2, 0)

For the xz-plane ) y = 0 ) x2 � z2 = 1 which is a hyperbola. The hyperbola has
asymptotes z = ±x and turns around at x = ±1.

x

z

For the yz-plane ) x = 0 ) 4y2�z2 = 1 which is also a hyperbola. This hyperbola
has asymptotes z = ±2y and turns around at y = ±1/2.



y

z

Plotting these together on the 3D axis we have

x
y

z

From this we can almost tell what the graph looks like, but we better plot some more z cross-
sections just to be sure. Notice that if we set z = k then the equation of the hyperboloid
becomes

x2 + 4y2 = 1 + k2 ) x2

1 + k2
+

x2

4 (1 + k2)
= 1

These cross-sections are ellipses whose size depends on the size of k. Let’s determine the
cross-sections in the z = ±1 planes

z = ±1 ) x2

2
+

x2

8
= 1



which are both ellipses with x-major axis length
p
2 and y-major axis length 2

p
2. Plotting

these we have

x
y

z



The Hyperboloid of Two Sheets

By tweaking the coe�cients in the surface equation for the hyperboloid of one sheet, we
obtain the hyperboloid of two sheets. Consider the example z2 � x2 � 4y2 = 1.

Let’s first look at the cross-sections in the z = k planes. We have

x2 + 4y2 = z2 � 1

These are ellipes, but notice that the equation becomes undefined for z-values between �1
and 1 (noninclusize). This means that the surface only exists for z larger than 1 and smaller
than �1. In other words, the surface is really two surfaces with a big gap in the middle. If
we pick several values of z larger than 1 and smaller than �1 they look as follows:

x

y

z

For the xz-plane ) y = 0 ) z2 � x2 = 1 which almost the same hyperbola we saw
in the previous example, but with the roles of x and z swapped. The hyperbola again has
asymptotes z = ±x and turns around at z = ±1.



x

z

For the yz-plane ) x = 0 ) z2�4y2 = 1 which is also a hyperbola. This hyperbola
has asymptotes z = ±2y and turns around at z = ±1.

y

z

Plotting these together with the z = k cross-sections on the 3D axis we have



x

y

z

You can find (crude) animations of the drawing of each of the six quadratic surfaces discussed
in the book at the following links:

• Ellipsoid: https://youtu.be/gg6Wr33HmWg

• Elliptic Paraboloid: https://youtu.be/rk2cFG_PNiw

• Hyperbolic Paraboloid: https://youtu.be/uTNaNoLnbW0

• Cone: https://youtu.be/k8p4SY9ScVE

• Hyperboloid of One Sheet: https://youtu.be/IoUtzaK25Lc

• Hyperboloid of Two Sheets: https://youtu.be/GZXVxop_A2Y

https://youtu.be/gg6Wr33HmWg
https://youtu.be/rk2cFG_PNiw
https://youtu.be/uTNaNoLnbW0
https://youtu.be/k8p4SY9ScVE
https://youtu.be/IoUtzaK25Lc
https://youtu.be/GZXVxop_A2Y


10.7 Vector Functions and Space Curves

Most functions that you’ve seen in Calculus have been what we call scalar functions. They
take a point or a set of real numbers in 1D or 2D space and return a scalar back. For example,
a surface is described in 3D by a function f(x, y) = c which R2 7! R

Example 47

f(x) = y = x2 Domain: all real #s R 7! R f(2) = 4

g(x, y) = z = x2+y2 Domain: all (x, y) 2 R2 R2 7! R g(2, 1) = 5

In this course we are mostly concerned with so-called vector-valued functions. These take
a set of inputs and return a vector. If, for instance, the function takes a set of size m and
returns a vector of size n we say f : Rm 7! Rn.

Example 48

r (t) =
⌦
t3,

p
t, ln (5� t)

↵
Domain: 0  t  5 or [0, 5) r : R 7! R3

In general we have r (t) = hf(t) , g(t) , h(t)i = f(t) i+ g(t) j+ h(t)k

The individual functions in the vector-valued function r (t) are called the component func-
tions. If we think of r (t) as a position vector of a point in three-space, then for a given t
the component functions tell you the x, y, and z components of the point, respectively.

Example 49

We’ve already seen a vector function that defines a line through the point P (2, 1, 0) and
parallel to the vector v = h1,�2, 3i.

r (t) = h2 + t, 1� 2t, 3ti

So this was one parametrization of a curve – specifically a line. But we can parameterize all
kinds of curves!

Parameterizing 2D Function

If we want to parametrize a standard function in 2D with the form y = f(x) then the process
is extremely straightforward. You simply set the component function associated with the x
variable to t and the y variable to f(t).

Example 50

Parameterize the curve f(x) = x2.



We have x = t and y = f(t) = t2. Then the vector-valued function which parameterizes the
curve is given by

r (t) =
⌦
t, t2

↵
= ti+ t2j

Example 51

Parameterize the curve g(x) =
p
x

r (t) =
D
t,
p
t
E
= ti+

p
tj for t � 0.

Example 52

What shape in 2D does the following vector-valued function parameterize?

r(t) = 2 cos ti+ 2 sin tj

From the parameterization, we know that for a given t value, the position vector r (t) points
at the point (x = 2 cos t, y = 2 sin t). So now we can start playing games with this to see if
we can make it look like a function in terms of x and y that we are familiar with. How about
if we square both of them and add?

(2 cos t)2 + (2 sin t)2 = 4 cos2 t+ 4 sin2 t = 4
�
cos2 t+ sin2 t

�
= 4

So the component functions satisfy the equation x2 + y2 = 4 which is a circle of radius 2
centered at the origin.

OK, so suppose that we let t vary from 0 to 2⇡. Where does the curve start? In what
direction does it traverse the circle?

Let’s start plugging in points...

t r (t)
0 (2, 0)

⇡/2 (0, 2)
⇡ (�2, 0)

3⇡/2 (0,�2)

It is clear from looking at the data that the curve starts at the point (2, 0) and traverses the
circle in the clockwise direction.



x

y

(2, 0)

(0, 2)

Example 53

Find the parameterization of the curve that traverses clockwise the ellipse centered at the
origin with x-major axis length 2 and y-major axis length 3.

x

y

(2, 0)

(0, 3)

which is described in cartesian coordinates by
x2

4
+

y2

9
= 1.

Now we want to find functions of t to represent each of the x and y components, that
when I plug them into the equation for the ellipse I get a true statement. Looking at the
demonimators we see that one choice that works is

x = f(t) = 2 cos t and y = g(t) = 3 sin t

So the parameterization of the ellipse is given by r (t) = h2 cos t, 3 sin ti = 2 cos ti + 3 sin tj.
We can then plug in points of increasing t and confirm that this parameterization does in
fact traverse the ellipse in the counterclockwise direction.



It is also useful to parameterize curves in three dimensional space.

Example 54

What curve does the following vector-valued function represent: r (t) = hcos t, sin t, ti?

If we look at just the x and y components of the vector, it is clear that from the top looking
down the curve is a circle with radius 1 centered at the origin. What does the z component of
the vector do? It gives the circle some height! As t increases the circle creeps o↵ the ground
to become a helix!

Notice that when t = 0 we’re at the point (1, 0, 0) and at t = 2⇡ we’re at (1, 0, 2⇡). So as we
traverse the helix one revolution in the counterclockwise direction the helix rises to a height
of 2⇡.

x

y

z

(1, 0, 0)

(1, 0, 2⇡)

OK, let’s try to use what we know about parameterizing curves to solve a more interesting
problem.

Example 55

Find a parameteric equation for the curve of intersection of the cylinder x2 + y2 = 4 and the
plane x+ y + z = 1.

We want to find a vector-valued function r (t) = hf(t) , g(t) , h(t)i where all values of r (t)
satisfy both the cyclinder and the plane. With these it’s usually easiest to try chipping away
at the answer by finding a few of the components and then solving for the last one.



Since the curve necessarily must lie on the cylinder, we can immediately see that the x and
y components of the parameterization must lie on the circle x2 + y2 = 4. From the previous
example we know that this means that

x = 2 cos t and y = 2 sin t

Notice that as long as x and y are described as above, the curve will lie on the cylinder no
matter what the parameterization of z is. Because of this, the cylinder can provide us no
information about what z is. Now we turn to the plane. In order for the curve to be a curve
of intersection it must satisfy the equation of the plane. Since we already know what x and
y are it’s very easy to plug them into the equation of the plane, and determine what z must
be in order to be on the plane.

x+ y + z = 1 ) 2 cos t+ 2 sin t+ z = 1 ) z = 1� 2 cos t� 2 sin t

Thus the curve of intersection is given by r (t) = h2 cos t, 2 sin t, 1� 2 cos t� 2 sin ti

Calculus with Vector-Valued Functions

The limit of a vector-valued function r (t) is simply the limit of its components, i.e.

lim
t!a

r (t) =
D
lim
t!a

f(t) , lim
t!a

g(t) , lim
t!a

h(t)
E

Since derivatives of functions are defined in terms of limits, it’s believable that since limits of
vector-valued functions are computed componentwise, derivatives are computed component-
wise as well. This is of course true and we have

r0(t) =
dr

dt
= hf 0(t) , g0(t) , h0(t)i

Example 56

Find r0(t) for r(t) = ht3, et, sin ti

We have r0(t) = h3t2, et, cos ti

Recall that in Calculus I you learned that the derivative of a function at a point gives the
slope of the tangent vector to the function at that point. Can you guess what the derivative
of a parameterized curve r (t) gives you?

If you guessed that it’s the tangent vector then you are correct!

Example 57

Find the vector tangent to the helix r (t) = hcos t, sin t, ti at the point t = ⇡/2.



We have r0(t) = h� sin t, cos t, 1i which gives a tangent vector of r0(⇡/2) = h�1, 0, 1i at
t = ⇡/2.

x

y

z

(1, 0, 0)

(1, 0, 2⇡)

Often times it’s useful to express the vector tangent to a curve as a unit vector. When this
happens we denote it by T (t) and call it the unit tangent vector. It is defined by

T (t) =
r0(t)

|r0(t)|

For the previous example we have T(t) =
h�1, 0, 1ip

2

Di↵erentiation Rules for Vector-Valued Functions

1.
d

dt
[u (t) + v (t)] = u0(t) + v0(t)

2.
d

dt
[cu (t)] = cu0(t)

3.
d

dt
[f(t)u (t)] = f 0(t)u(t) + f(t)u0(t)

4.
d

dt
[u (t) · v (t)] = u0(t) · v(t) + u(t) · v0(t)

5.
d

dt
[u (t)⇥ v (t)] = u0(t)⇥ v(t) + u(t)⇥ v0(t)

6.
d

dt
[u (f(t))] = f 0(t)u0(f(t))

Integration of Vector-Valued Functions



Shockingly, integration of a vector-valued function is also performed componentwise, both
for definite and indefinite integrals.

Z
r (t) dt =

✓Z
f(t) dt

◆
i+

✓Z
g(t) dt

◆
j+

✓Z
h(t) dt

◆
k

Example 58

Compute the following integral:

Z
b

a

�
ti� t3j+ 3t5k

�
dt

Z
b

a

�
ti� t3j+ 3t5k

�
dt =

t2

2

����
2

0

i+
t4

4

����
2

0

j+
t6

2

����
2

0

k = 2i+ 4j+ 32k

10.8 Arc Length and Curvature

Last time we talked about how to parameterize all kinds of curves in three dimensionsal
space. Our favorite example was the helix described by

r(t) = hcos t, sin t, ti

which, for 0  t  2⇡ looks like

x

y

z

(1, 0, 0)

(1, 0, 2⇡)

Now suppose we want to find the length arc made by the helix in one revolution from t = 0
to t = 2⇡. You’ve seen things like this before in both Calc I and Calc II but let’s go over it
again. As with all integration, we start by breaking the thing we’re trying to measure into
discrete chunks.



x

y

z

(1, 0, 0)

(1, 0, 2⇡)

Now, the length of the helix is approximated by the sum of the length of each one of the little
chunks, which we’ll refer to as �s

k

. Let’s look at one arbitrary �s
k

which starts at time t
and ends at time t + �t. If we represent the start and endpoints of the chunk by position
vectors we see that the first point is at r(t) and the second point is at r(t+�t). Then the
length of a little chunk is given by

�s
k

= |r(t+�t)� r(t)|

Another way to write this is

�s
k

=

����
r(t

k

+�t)� r(t)

�t

�����t

Then, if we say there are n of these little chunks and we add them up, we get

L
n

=
nX

k=1

����
r(t

k

+�t)� r(t)

�t

�����t

Now, the approximation gets better as we increase the number of chunks we divide the curve
up into. Taking this to the extreme we let the number of little chunks go to infinity, and we
get

L = lim
n!1

nX

k=1

����
r(t

k

+�t)� r(t)

�t

�����t =

Z
b

a

|r0(t)| dt

=

Z
b

a

q
[f 0(t)]2 + [g0(t)]2 + [h0(t)]2 dt =

Z
b

a

s
dx

dt

�2
+


dy

dt

�2
+


dz

dt

�2
+ dt



Example 59

Find the arc length of the helix r(t) = hcos t, sin t, ti.

We have

r0(t) = h� sin t, cos t, 1i ) |r0(t)| =
p

sin2 t+ cos2 t+ 1 =
p
2

Then

L =

Z 2⇡

0

p
2 dt = 2

p
2⇡

Parameterization by Arc Length

Recall that we noticed last time that there are numerous ways that we can parameterize the
same curve. For instance, another parameterization of the same helix is given by

r2(t) = hcos (2t) , sin (2t) , 2ti for 0  t  ⇡

Now, with all these di↵erent parameterizations lying around, it would be nice if we one that
was standardized. One way to do this is to parameterize by arc length. We can define arc
length as a function of the parameter t by

s(t) =

Z
t

a

|r0(u)| du

Notice that this expression says that, given a starting position at time t = a, the function
s(t) returns the distance along the arc from time a to time t.

Example 60

Let’s compute the arc length function for the helix starting at time t = 0. We have

s(t) =

Z
t

0

p
sin2 u+ cos2 u+ 1 du =

Z
t

0

p
2 du =

p
2t

This tells us that, for the original parameterization, when t = 1 we have traveled s(1) =
p
2

units along the arc. Now, solving for t in terms of s(t) we can reparameterize the curve in
terms of arc length

s =
p
2t ) t = s/

p
2 ) r (s (t)) =

D
cos

⇣
s/
p
2
⌘
, cos

⇣
s/
p
2
⌘
, s/

p
2
E



So, with the original paramterization, we chose a parameter t and that told us which point
on the helix we were at. Now, we can choose an arc length s, interpreted as the distance
traveled along the arc, to tell us which point on the curve we’re at.

The arc length function also gives us our first physical interpretation of the parameterization
r(t). Notice, by applying the Fundamental Theorem of Calculus to the arc length function
we obtain

ds

dt
= |r0(t)|

The quantity ds/dt is the rate at which the distance traveled along the curve is changing,
also known as speed. So, the magnitude of the derivative of the position vector tells us the
speed at which the particle is traveling. This will become more apparent next time when we
talk about velocity and acceleration.

Curvature

Another important geometric measurement for a space curve is its curvature. Recall that the
vector r0(t) gives us a vector tangent to the curve r(t) at time t. Then to get the unit vector
that is tangent to the curve we compute

T(t) =
r0(t)

|r0(t)|

We define the curvature of a curve r(t) as the magnitude of the rate of change of the unit
tangent vector with respect to arc length. Or

 =

����
dT

ds

����

Now, with the arc length term in there, it looks like we might have to do a lot of work to
compute curvature. But we can play some games and reduce this to something that is more
manageable. Notice that

dT

ds
=

dT

dt

dt

ds
=

dT/dt

ds/dt
)  =

|T0(t)|
|r0(t)|

Example 61

Let’s compute the curvature of a circle of radius a in the xy-plane. The curve is param-
eterized by r(t) = ha cos t, a sin ti. Then we have

r0(t) = h�a sin t, a cos ti ) |r0(t)| =
p

a2 sin2 t+ a2 cos2 t = a

) T =
ha cos t, a sin ti

a
= hcos t, sin ti ) T0(t) = h� sin t, cos ti ) |T0(t)| = 1



Then

 =
|T0(t)|
|r0(t)| =

1

a

Notice that in this case the curvature of the circle is constant for all points on the circle and
is equal to the reciprocal of the radius. This should make intuitive sense because the smaller
the radius of the circle the more the curve is curving.

There are several other formulas for curvature that are equivalent. We will state them here
without proof, but the proofs can be found in your textbook.

 =
|r0(t)⇥ r00(t)|

|r0(t)|3

In the special case that the curve is a planar curve described by y = f(x) we can also use

 =
f 00(x)

⇥
1 + (f 0(x))2

⇤3/2

The TNB Frame

For general space it’s extremely convenient to have a framework that decomposes three
dimensional space into orthogonal vectors i, j, and k. But when studying particle motion,
it’s also convenient to have a set of three orthogonal vectors that move with the particle
reference frame. We already have one of those vectors, namely the unit tangent vector. The
next orthogonal vector is can be found using a consequence of the following fact:

Claim: A vector of constant length is always orthogonal to its derivative.

Proof: Assume that u has constant length. Then

0 =
d

ds

�
|u|2

�
=

d

ds
u · u =

du

ds
· u+ u · du

ds
= 2

✓
u · du

ds

◆
) u ? du

ds

Since T(t) is a unit vector it has constant length. Then, to get a vector orthogonal to T we
can take it’s derivative with respect to arc length. However, the resultant vector won’t be a
unit vector. To make it a unit vector we can scale it by the reciprocal of the curvature. The
resultant vector is what we call the unit normal vector to the curve.

N(t) =
1



dT

ds

Of course this is cumbersome to compute because we’d have to parameterize T in terms of
arc length. But again we can play some games to get N into a simpler form. We have



N(t) =
dT/ds

|dT/ds| =
(dT/dt) (dt/ds)

|(dT/dt) (dt/ds)| =
T0(t)

|T0(t)|

Where here the two dt/ds terms cancel because we’ve defined ds/dt to be position.

Example 62

Compute the unit tangent vector T and the unit normal vector N for the curve r(t) =
h3 sin t, 3 cos ti.

T(t) =
r0(t)

|r0(t)| =
h3 cos t,�3 sin ti
|h3 cos t,�3 sin ti| = hcos t,� sin ti

Then we have

N(t) =
T0(t)

|T0(t)| =
h� sin t, cos ti
|h� sin t, cos ti| = h� sin t, cos ti

The final unit vector that makes up the orthogonal framework for the paricle’s motion is
called the binormal vector. It is the unit vector that is orthogonal to both T and N. This
is easily computed using the cross-product:

B(t) = T⇥N

Note that the order here is chosen by convention.

Example 63

Calculate the binormal vector for the curve in the previous example.

B = T⇥N = (cos ti+ sin tj)⇥ (� sin ti+ cos tj) =

cos t sin t (i⇥ i) + cos2 t (i⇥ j)� sin2 (j⇥ i) + sin t cos t (j⇥ j) =

cos2 tk+ sin2 tk = k

The TNB frame has a particular interpretation with respect to the particle’s motion. The
unit tangent T points in the direction the particle is traveling, the unit normal N points in
the direction the particle is turning, and the unit binormal vector points directly up from
the particle’s perspective.



We can derive two important planes from the TNB frame. The first is called the oscillating
plane, and it is the plane in which all turning happens. It is the plane formed by the vectors
T and N. Of course, if we want to write down an equation for the plane, we need a vector
normal to the plane. This is conveniently provided by the binormal vector B. The second
plane is formed by the N and B vectors. It is called the normal plane, and it’s the plane
in which all twisting happens. The vector normal to the normal plane is the unit tangent
vector T.

10.9 Motion in Space: Velocity and Acceleration

We’ve already surmized that the derivative of the position vector r(t) with respect to time
is the velocity of a particle. It should not be a surprise then that the acceleration of the
particle is given by the second derivative of position.

a(t) = v0(t) = r00(t)

Example 64

Find a particles velocity, speed, and acceleration if its position vector is given by r(t) =⌦p
2t, et, e�t

↵
.

We have the velocity is given by v(t) = r0(t) =
⌦p

2, et,�e�t

↵

and acceleration by a(t) = r00(t) = h0, et, e�ti.

The speed is given by ⌫ = |v(t)| =
p
2 + e2t + e�2t =

q
(et + e�t)2 = et + e�t

Example 65

Find the position and velocity vectors of a particle with a(t) = h2t, sin t, cos 2ti with v (0) =
h1, 0, 0i and r (0) = h0, 1, 0i.

We integrate the acceleration vector to obtain the velocity vector

v(t) =

Z
a(t) dt =

Z
h2t, sin t, cos 2ti dt =

⌧
t2,� cos t,

sin 2t

2

�
+C1

where here C1 is a vector of (possibly di↵erent) constants. To determine those constants we
can use the initial condition on the velocity.

v(0) = h1, 0, 0i = h0,�1, 0i+C1 ) C1 = h1, 1, 0i



Then we have v(t) =
⌦
t2 + 1,� cos t+ 1, sin 2t

2

↵

We can then get the position vector by integrating the velocity vector

r(t) =

Z
v(t) dt =

Z ⌧
t2 + 1,� cos t+ 1,

sin 2t

2

�
dt =

⌧
t3

3
+ t, t� sin t,

� cos 2t

4

�
+C2

Then, using the initial condition on the position we have

r(0) = h0, 1, 0i =
⌧
0, 0,�1

4

�
+C2 ) C2 =

⌧
0, 1,

1

4

�

which gives us the final position vector as r(t) =

⌧
t3

3
+ t, t� sin t+ 1,

1� cos 2t

4

�

Tangential and Normal Components of Acceleration

Imagine you’re driving in a car and you step on the gas while exiting a turn. The resulting
acceleration has two components. One component comes from you stepping on the gas,
and occurs in the tangential direction to the curve. The second comes from the centripital
acceleration due to the turn and points towards the center of the oscillating circle of the
curve.

T

N

a(t)

We decompose the acceleration vector into its tangential and normal components.

a = a
T

T+ a
N

N

The tangential component of a, namely a
T

is the rate of change of the length of v. The
normal component is the rate of change of the direction of v. To see this

a =
dv

dt
=

d

dt

✓
T
ds

dt

◆
=

d2s

dt2
T+

ds

dt

dT

dt

= ⌫ 0T+ ⌫

✓
dT

ds

ds

dt

◆
= ⌫ 0 T+ ⌫2dT

ds

= ⌫ 0 T+ ⌫2N



So a(t) = a
T

T+ a
N

N where a
T

= ⌫ 0 and a
N

= ⌫2.

Example 66

Find the tangential and normal components of the acceleration of the helix r(t) = hcos t, sin t, ti.

We have v = h� sin t, cos t, 1i ) ⌫ = |v| =
p
2.

To compute the curvature we need the unit tangent vector T = 1p
2
h� sin t, cos t, 1i. Then

 =
|T0(t)|
|r0(t)| =

1p
2
|h� cos t,� sin t, 0i|

p
2

=
1

2

Then a
T

= 0 and a
N

= 1
2

�p
2
�2

= 1 or we could write a(t) = N.



Chapter 11: Partial Derivatives

11.1 Functions of Several Variables

One Dimension

Function

f(x)

x

y

Domain: 8x vals
Range: 8y vals

Two Dimensions

Function

f(x, y)

(x, y) z

Domain: 8 (x, y) pairs
Range: 8z vals

In the function z = f(x, y) the x and y variables are called the independent variables and
the z variable is the dependent variable.

Example 1

Consider the function f(x, y) =
p
2x� y.

The function is well-defined provided that 2x� y � 0.

We write the domain as D = {(x, y) | 2x� y � 0}.

Chris Ketelsen

APPM 2350

Chapter 11

November 19, 2015



Example 2

Consider the function f(x, y) =

p
x+ y + 1

x� 1
.

The function is well-defined provided that x+ y + 1 � 0 and x 6= 1.

We write the domain as D = {(x, y) | x+ y + 1 � 0 and x 6= 1}.

Graphs

Def: If f is a function of two variables with domain D, then the graph of f is a set of all
points (x, y, z) 2 R3 such that z = f(x, y) and (x, y) 2 D.

We’ve already seen graphs of some functions of two variables, namely, quadratic surfaces.
We’ve already practiced drawing quadratic surfaces in 3D. Another helpful method for visu-
alizing functions of two variables is with the use of level curves.

Def: The level curves of a function f of two variables are the curves with equations
f(x, y) = k, where k is a constant (in the range of f).



Example 3

Plot the level curves of of the function z = f(x, y) = 4x2 + y

2. We have

k = 1 4x2 + y

2 = 1 ) x

2

1/4
+

y

2

1
= 1

k = 4 4x2 + y

2 = 4 ) x

2

1
+

y

2

4
= 1

k = 9 4x2 + y

2 = 9 ) x

2

9/4
+

y

2

9
= 1

k = 1

k = 4

k = 9

Example 4

Plot the level curves of the plane given by 4x+ 2y + z = 6 , f(x, y) = 6� 4x� 2y

k = 0 6� 4x� 2y = 0 ) y = 3� 2x

k = 2 6� 4x� 2y = 2 ) y = 2� 2x

k = 0 6� 4x� 2y = 4 ) y = 1� 2x



0

2

4

x

y

z

Example 5

Plot the level curves of of the function z = f(x, y) =
p

y

2 � x

2. We have

k = 0
p
y

2 � x

2 = 0 ) y = ±x

k = 1
p
y

2 � x

2 = 1 ) y

2 � x

2 = 1

k = 2
p
y

2 � x

2 = 2 ) y

2 � x

2 = 2

k = 3
p
y

2 � x

2 = 2 ) y

2 � x

2 = 3

0

1
2
3

Note: Recall that we test to see if the graph of a function in one dimension represents a
function using the vertical line test. For graphs of functions of two variables we can also
apply the vertical line test. In this case though the vertical line runs parallel to the z-axis.

Example 6

The graph of the sphere x2 + y

2 + z

2 = 1 does not represent a function since it does not pass



the vertical line test. On the other hand, the top half of the sphere does pass the vertical
line test and the function is represented by z = f(x, y) =

p
1� x

2 � y

2. It’s level curves are
concentric circles centered at the origin.

0

1/2

3/4

9/10

Functions of Three Variables

We can also have functions with three independent variables. Consider

h(x, y, z) = x

2 + y

2 + z

2

These functions are impossible to draw in three dimensional space, since technically they
live in four dimensional space. But, we can represent them using a method similar to level
curves. In this case, setting the function equal to a constant gives

h(x, y, z) = x

2 + y

2 + z

2 = k

which form level surfaces, e.g.

x

2 + y

2 + z

2 = 0 ) The point (0, 0, 0)

x

2 + y

2 + z

2 = 1 ) The sphere with radius 1

x

2 + y

2 + z

2 = 4 ) The sphere with radius 2



11.2 Limits and Continuity

We want to compute limits of functions of two variables, which look like

lim
(x,y)!(a,b)

f(x, y) = L

This is very similar to the typical limit of a function of one variable. The only di↵erence is
that where for a function f(x) we check to see that the values of f(x) as x ! a approaches
some number L as x goes to a from both the left and the right, we now need to check that
values of f(x, y) apprach L as (x, y) approaches (a, b) along any possible path in the domain.

Def: Let f be a function of 2 variables whose domain D includes points arbitrarily close to
(a, b). Then we say that the limit of f(x, y) as (x, y) approaches (a, b) is L and we write

lim
(x,y)!(a,b)

f(x, y) = L

if for ever ✏ > 0 there is a corresponding number � > 0 such that if (x, y) 2 D andq
(x� a)2 + (y � b)2 < � then |f(x, y)� L|  ✏.

x

y

D

a

b

�

(x, y)

z

L� ✏

L+ ✏

L

In other words, given some small positive number ✏ we must be able to find some � such
that if (x, y) is in a ball of radius � centered at (a, b) then f(x, y) must fall in the interval
(L� ✏, L+ ✏).

Recall that in 1D we had to check to see if the limit was the same from the left and the
right of the point. We concluded that if

lim
x!a

�
f(x) 6= lim

x!a

+
f(x)

then the limit did not exist. In 2D we can take (x, y) ! (a, b) along any path. If the limit
isn’t the same along all paths then we say the limit does not exist.



Example 7

Show that lim
(x,y)!(0,0)

x

2 � y

2

x

2 + y

2
does not exis.

Path 1: Along x-axis ) y = 0 ) f(x, 0) =
x

2

x

2
= 1.

We say that f(x, y) ! 1 as (x, y) ! (0, 0) along the x-axis.

Path 2: Along y-axis ) x = 0 ) f(0, y) =
�y

2

y

2
= �1.

We say that f(x, y) ! �1 as (x, y) ! (0, 0) along the y-axis.

Since these limits along two paths do not match we say that the limit does not exist.

Example 8

Show that lim
(x,y)!(0,0)

xy

x

2 + y

2
does not exis.

x-axis: f(x, 0) =
0

y

2
= 0

y-axis: f(0, x) =
0

x

2
= 0

y = mx: f(x,mx) =
x (mx)

x

2 + (mx)2
=

mx

2

x

2 +m

2
x

2
=

m

1 +m

Since the limits along any line of the form y = mx do not agree we conclude that the limit
does not exist.

So, how do we show that a limit does exist?

1. Use the ✏� � definition of a limit

2. Use the Squeeze Theorem

3. If (x, y) ! (0, 0) use the polar coordinate trick

Squeeze Theorem

We want to find functions ` (x, y) and u (x, y) such that

` (x, y)  f(x, y)  u (x, y)

and both ` (x, y) ! L and u (x, y) ! L as (x, y) ! (a, b).



Example 9

Find the limit lim
(x,y)!(0,0)

3x2
y

x

2 + y

2

Note that
x

2

x

2 + y

2
 1 because x

2  x

2 + y

2

Then �3 |y|  3x2
y

x

2 + y

2
 3 |y| and lim

(x,y)!(0,0)
�3 |y| = lim

(x,y)!(0,0)
3 |y| = 0

So we conclude by the Squeeze Theorem that

lim
(x,y)!(0,0)

3x2
y

x

2 + y

2
= 0

Polar Coordinates Trick

Since here we are taking the limit (x, y) ! (0, 0) it is helpful to convert the limit to polar
coordinates. Let x = r cos ✓ and y = r sin ✓ and then take the limit as r ! 0+. By doing this
we are really taking the limit of all possible paths that lead to the origin.

Example 10

Find the limit lim
(x,y)!(0,0)

3x2
y

x

2 + y

2

= lim
r!0+

3r2 cos2 ✓r sin ✓

r

2 sin2
✓ + r

2 cos2 ✓
= lim

r!0+

3r3 cos3 ✓ sin ✓

r

2
= lim

r!0+
3r cos2 ✓ sin ✓ = 0

Note again that this works because without fixing ✓ we cover every path as (x, y) ! (0, 0)
and the r-ball shrinks to the origin. We can also use this trick to show that a limit does not
exist.

Example 11

Find the limit lim
(x,y)!(0,0)

x

2 � y

2

x

2 + y

2

= lim
r!0+

r

2 cos2 ✓ � r

2 sin2
✓

r

2 sin2
✓ + r

2 cos2 ✓
= lim

r!0+

r

2
�
cos2 ✓ � sin2

✓

�

r

2
= cos2 ✓ � sin2

✓

Notice that the resulting limit depends on the choice of ✓ along the path, and so the limit
does not exist.

Continuity

Def: A function of two variables f is called continuous at (a, b) if



lim
(x,y)!(a,b)

f(x, y) = f(a, b)

We say that f is continuous on D if it is continuous at every point in D.

Some Special Cases

1. A polynomial in two variables is continuous everywhere.

2. A rational function is continuous everywhere on its domain.

Recall that if you know that a function is continuous at a point that you’re taking a limit to,
you can use direct substitution to figure out the limit

Example 12

lim(x,y)!(1,2) x
2 + xy + y

3 = 1 + 2 + 8 = 11

Example 13

lim(x,y)!(1,0)
x

2 � y

2

x

2 + y

2
= 1

Remark: Everything that we’ve discussed for limits of functions of two variables is naturally
extended to functions of three or more variables.



11.3 Partial Derivatives

Let f(x, y) be a function of two variables and suppose we want to know how f varies with x

and y at a particular point. Consider the case when we want to know how f is varying w.r.t.
x at the point (x, y) = (a, b). Since we’re only letting f vary with x, we can think of the y

variable as held constant at y = b. Then, if we define a new function

g(x) = f(x, b)

If the derivative of g(x) exists at x = a then we write

g

0(a) = f

x

(a, b)

and call f
x

(a, b) the partial derivative with respect to x at the point (a, b). By the definition
of a derivative of a function of a single variable we have

g

0(a) = lim
h!0

g(a+ h)� g(a)

h

= lim
h!0

f(a+ h, b)� f(a, b)

h

= f

x

(a, b)

Example 14

Suppose we want to find the partial derivative of the function f(x, y) = 5 � x

2 � y

2 with
respect to x at the point (1, 1).

Since we’re keeping y fixed at y = 1, we have g(x) = 5 � x

2 � 1 = 4 � x

2. If we plot this
cross-section in the xz-plane we have

x

z

f

x

(1, 1) = slope of tangent line

1�1

3

Then we have that the change if f w.r.t. x at x = 1 is given by

g

0(1) = f

x

(1, 1) = �2 (1) = �2



This value is precisely the slope of the tangent line to the y = 1 cross-section g(x) = 4� x

2

at the point x = 1.

We can over course do this for a general point (x, y). The method is essentially the same.
To take the partial derivative w.r.t. x we pretend the y-value is fixed and take the derivative
of f(x, y) with respect to x. For our example problem we have

f

x

(x, y) = �2x

Similarly, to take the partial derivative w.r.t. y we pretend the x-value is fixed and take the
derivative of f(x, y) w.r.t. y.

f

y

(x, y) = �2y

Example 15

Find the first partial derivatives of the function g(x, y) = y

5 � 3xy and determine the rate of
change of g w.r.t. x and y at the point (2, 1).

g

x

(x, y) = �3y g

y

(x, y) = 5y4 � 3x

g

x

(2, 1) = �3 (1) = �3 g

y

(2, 1) = 5 (1)4 � 3 (2) = �1

So, at the point (2, 1) the function g(x, y) is decreasing with a rate of change of �3 and �1
in the x and y-directions, respectively.

Example 16

Find the first partial derivatives of h(x, y) = x ln y + sin (xy)

h

x

(x, y) = ln y + y sin (xy) h

y

(x, y) =
x

y

+ x sin (xy)

We can of course take higher-order partial derivatives. For instance f
xx

is the second partial
derivative of f w.r.t. x and is obtained by di↵erentiating f

x

w.r.t. x. Similarly we can take
the second-partial derivatives f

yy

, f
xy

and f

yx

.

Example 17

Find all second partial derivatives of the function h(x, y) from the previous example.



h

xx

= y

2 sin xy

h

xy

=
1

y

+ sin xy + xy sin xy

h

yx

=
1

y

+ sin xy + xy sin xy

h

yy

= � x

y

2
+ x

2 sin xy

Notice that we got the same thing for h
xy

and h

yx

. It turns out that this will always be the
case so long as h

xy

and h

yx

are continuous. This result is known as Clairaut’s Theorem.

Just like functions of one variable, there are several di↵erent ways to denote partial deriva-
tives. The subscript notation introduced above is the partial derivative equivalent of using
primes to denote derivatives. The Leibniz notation for partial di↵erentiation is similar to the
single-variable case, except we use a script @ instead of a regular d. We have

f

x

=
@f

@x

f

yy

=
@

2
f

@y

2
f

xy

=
@

2
f

@y@x

Just like functions of one variable, we sometimes want to take partial derivatives of a function
z which is defined implicitly in terms of x and y, i.e. z = z (x, y).

Example 18

Use implicit di↵erentiation to find @z/@x if z is a function of x and y and satisfies

x

2 + 2y2 + 3z2 + xyz = 1

Taking the partial derivative of both sides with respect to x we have

@

@x

�
x

2 + 2y2 + 3z2 + xyz

�
=

@

@x

(1)

) 2x+ 6z
@z

@x

+ yz + xy

@z

@x

= 0 ) (6z + xy)
@z

@x

= �2x� yz

) @z

@x

= �2x+ yz

6z + xy

Partial Di↵erential Equations

Just like we could use equations involving derivatives to model certain phenomenon in Calc
1 in one dimension, we can use partial derivatives to model physical phenomenon in two
dimensions. The following partial di↵erential equation or PDE is ubiquitous in science



and engineering as a way to model di↵usion of heat, contaminant transportation in a fluid,
and electrical potential. It is called Laplace’s Equation

@

2
u

@x

2
+

@

2
u

@y

2
= 0

Example 19

Show that the function u(x, y) = sin (⇡x) cosh (⇡y) is a solution to Laplace’s Equation.

We have

u

x

= ⇡ cos (⇡x) cosh (⇡y) ) u

xx

= �⇡

2 sin (⇡x) cosh (⇡y)

u

y

= ⇡ sin (⇡x) sinh (⇡y) ) u

yy

= ⇡

2 sin (⇡x) cosh (⇡y)

which clearly satisfies u
xx

+ u

yy

= 0.

Another partial di↵erential equation that appears literally everywhere is called the wave
equation. Here u(x, t) describes the displacement of something like a water wave or a guitar
string at position x and time t. It is given by

@

2
u

@t

2
= a

2@
2
u

@x

2

Example 20

Show that the function u(x, t) = cos (x� at) satisfies the wave equation

We have

u

t

= a sin (x� at) ) u

tt

= �a

2 cos (x� at)

u

x

= � sin (x� at) ) u

xx

= � cos (x� at)

It is easy to see that this u(x, t) satisfies the wave equation.



11.4 Tangent Planes and Linear Approximations

Recall that for functions of one variable, i.e. y = f(x) we can use the tangent line at a point
x = a to approximate the function for values of x very near a.

x

y

f

x

(1, 1) = slope of tangent line

a

f(a)

This function is often called the linearization of f(x) around a and is just the tangent line
of f(x) at x = a.

f(x) ⇡ L(x) = f(a) + f

0(a) (x� a)

Notice that the derivative of f at x = a tells us the slope of the tangent line / linearization.

For functions of two variables we’re concerned with working with surfaces. The same idea
applies here. Around some point (x0, y0) the surface can be approximated well by a linear
function. A linaer function of two variables is just a plane. We call this the linearization of
f(x, y) around the point (x0, y0) or just the tangent plane of f at (x0, y0).

Let the surface S be described by z = f(x, y) where f has continuous first partial derivatives
in a neighborhood around the point (x0, y0). Let P (x0, y0, z0) be a point on the surface.

Suppose we take cross-sections of the surface in the x = x0 and y = y0 planes, which intersect
at point P . The intersection of each plane with surface S traces out a curve. Call them C1

and C2.

C1 : z = f(x0, y) and C2 : z = f(x, y0)

Let v1 and v2 be tangent lines to C1 and C2 at (x0, y0). Then the tangelt plane to S at point
P is the plane which contains P (x0, y0, z0) and contains v1 and v2.

Note that we picked v1 and v2 for convenience. Any curve C that lies on S and passes
through P will have a tangent line v that lies in the tangent plane.

We know that in general the plane containing P (x0, y0, z9) has the form



A (x� x0) + B (y � y0) + C (z � z0) = 0

Solving for z we have

z = z0 �
A

C

(x� x0)�
B

C

(y � y0)

Think about the tangent lines v1 and v2.

v1 : y = y0 ) z = z0 + a (x� x0)

But we know from last time that this line has the slope f

x

(x0, y0) ) a = f

x

(x0, y0)

and

v2 : x = x0 ) z = z0 + b (y � y0)

This line has the slope f

y

(x0, y0) ) b = f

y

(x0, y0)

So the tangent plane is given by

z = z0 + f

x

(x0, y0) (x� x0) + f

y

(x0, y0) (y � y0)

Example 21

Find the tangent plane to the function z = f(x, y) = 2x2 + y

2 at the point (1, 1, 3).

We have

f

x

= 4x ) f

x

(1, 1) = 4

f

y

= 2y ) f

y

(1, 1) = 2

z = 3 + 4 (x� 1) + 2 (y � 1) ) z = 4x+ 2y � 3

Recall that the linearization of f(x, y) at P (1, 1, 3) is a good approximation to the function
near the point (1, 1, 3). Suppose we want to use the linearization derived above to approxi-
mate the function f(x, y) at the point (1.1, 0.95). We have

f(1.1, 0.95) ⇡ L (1.1, 0.95) = 4 (1.1) + 2 (0.95)� 3 = 3.3

while the actual value is given by f(1.1, 0.95) = 3.3225.



Away from the point (1, 1, 3) the linearization is not a good approximation to f(x, y)

L (2, 3) = 11 vs f(2, 3) = 17

Another way that the linearization is commonly written is when approximating f(x, y) near
the point (a, b) is

z = f(a, b) + f

x

(a, b) (x� a) + f

y

(a, b) (y � b)

The linearization is only good if f
x

(a, b) and f

y

(a, b) exist near (a, b) and are con-
tinuous at (a, b). When this is true we say that f is di↵erentiable at (a, b).

Example 22

Show that f(x, y) = xe

xy is di↵erentiable at (1, 0) and find it’s linearization there

f

x

= e

xy + xye

xy ) f

x

(1, 0) = 1

f

y

= x

2
e

xy ) f

y

(1, 1) = 1

Note that both partial derivatives are continuous (everywhere) so f is di↵erentiable (every-
where).

L(x, y) = f(1, 0)+ f

x

(1, 0) (x� 1)+ f

y

(1, 0) (y � 0) = 1+ (x� 1)+ y ) L(x, y) = x+ y

Di↵erentials

Let’s go back to functions of one variable for a minuate. Let y = f(x) and consider the small
change in y that is caused by a small change in x

�y = f(x+�x)� f(x)

With our linearization we can approximate this change via

f(x+�x) ⇡ f(x) + f

0(x) [(x+�x)� x] = f(x) + f

0(x)�x

Then we can write

�y ⇡ f

0(x)�x



When we actually make this approximation, we approximate the actual changes by so-called
di↵erentials.

dx = �x and dy = f

0(x) dx

x

y

x

x+�x

dx = �x

�y

dy

Example 23

Suppose you measure the side length of a cube as x = 2cm with a potential overestimate of
0.02 cm. Use di↵erentials to estimate the maximum error in the calculated volume of the
cube.

The formula relating the side length of a cube and it’s volume is given by

V = x

3

Since we know that dV = f

0(x) dx we have

dV = 3x2
dx

If dx = 0.02 (Note: this is an over-measurement) then we have

dV = 3 · 4 · 0.02 = 0.24m3

We can easily generalize this concept to functions of two or more variables. Let z = f(x, y)
and consider the small change in z that is caused by small changes in x and y. We have

�z = f(x+�x, y +�y)� f(x, y)



But from our linearization of f(x, y) we have

f(x+�x, y +�y) ⇡ f(x, y) + f

x

(x, y) [(x+�x)� x] + f

y

(x, y) [(y +�y)� y]

= f(x, y) + f

x

�x+ f

y

�y

Subtracting f(x, y) from both sides we have

�z = �f ⇡ f

x

�x+ f

y

�y

Now, letting dx = �x and dy = �y, and dz ⇡ �z we have the equation representing
di↵erentials

dz = df = f

x

dx+ f

y

dy

When f is a function of multiple variables we call df the total di↵erential of f . Note that
dx and dy are independent variables representing the exact change in x and y, respectively,
while dz or df is a dependent variable which represents an approximation of the change in
f .



Example 24

Let z = f(x, y) = x

2 + 3xy � y

2. Approximate the change in z if x changes from 2 to
2.05 and y changes from 3 to 2.96.

We want to compute the approximate change dz. We have

dz = f

x

dx+ f

y

dy = (2x+ 3y) dx+ (3x� 2y) dy

The partial derivatives are computed at the center point (2, 3) and the deltas are given by
dx = 2.05� 2 = 0.05 and dy = 2.96� 3 = �.04.

dz = 13 (0.05) + 0 (�0.4) = 0.65

If we compute the exact change in dz we have

f(2.05, 2.96)� f(2, 3) = 0.6449

Remark: The di↵erential approximation is exactly the same approximation we would get if
we approximated f(2.05, 2.96) using the tangent plane approximation and subtracted f(2, 3).
Di↵erentials are just a more convenient way to formulate the problem if you’re interested in
computing changles instead of values of the function.

Example 25

The side lengths of a closed box with square base are measured as 10cm for the side of
the base and 20cm for the height with possible errors in measurement of ±0.1cm each. Use
di↵erentials to estimate the maximum error in calculating the surface area of the box. Which
measurement is more sensitive to error?

We have

A = 2x2 + 4xy ) dA = (4x+ 4y) dx+ 4x dy

Substituting (10, 20) for (x, y) and 0.1 for the di↵erentials we have

dA = [4 (10) + 4 (20)] (0.1) + 4 (10) (0.1) = 120 (0.1) + 40 (0.1) = 16cm3

Since the f
x

term was larger than the f
y

term, the x measurement is more sensitive to error.
In other words, errors in the x measurement cause a larger overall error in the estimation of
the surface area than errors in the y measurement.

Example 26



While working a summer job in the university arts department, you are tasked with trans-
porting a new piece of conical metal artwork (all the rage right now) from a local gallery to
the campus. The cones exterior measurements are taken to be 4m for the radius of the base
and 6m for the height. Thankfully, you’re told that piece is hollow with the thickness of the
metal being approximately 1cm. Estimate the weight of the piece assuming that copper has
density 9 g/cm3.

We’ll estimate the volume and approximate the weight at the end. We can estimate the
volume of the metal by considering the di↵erential of the volume when the radius and height
are decreased by 1cm. The volume of a right circlular cone is given by

V =
1

3
⇡r

2
h ) dV =

@V

@r

dr +
@V

@h

dh =
2

3
⇡rh dr +

1

3
⇡r

2
dh

dV =
2

3
⇡ (4) (6) (�0.01) +

1

3
⇡ (4)2 (�0.01) ⇡ 0.67m3 = 6.7⇥ 105 cm3

You estimate that the artwork has weight (670000⇥ 9) grams or 6030 KGs at which point
you point out to your boss that this is above your pay grade.

Di↵erentials with functions of three variables is analagous.

Example 27

Suppose you measure the sides of a rectangular box to be 50cm, 40cm, and 60cm respectively.
Suppose your measurements of the side lengths were subject to overmeasurement by 1cm for
the first two measurements and undermeasurement by 2cm in the last dimension (because
your ruler broke and you decided to use your shoe). Estimate the error in computing the
volume.

V = xyz ) dV =
@V

@x

dx+
@V

@y

dy +
@V

@z

dz = yz dx+ xz dy + xy dz

dV = (40) (60) (1) + (50) (60) (1) + (50) (40) (�2) = 340cm3

11.5 The Chain Rule

Example: Suppose the function T (x, y, z) describes the temperature in a room and we want
to know how the temperature is changing along a curve

r(t) = f(t) i+ g(t) j+ h(t)k

That is, x(t) = f(t), y(t) = g(t), and z(t) = h(t).



We could substitute the functions for x, y, and z in terms of t into the termperature function
and compute dT/dt, but this could be hard if the component functions are at all complicated.
Instead we use the Chain Rule for functions of multiple variables.

Single Variable Case: Say we have temperature as a function of just x, i.e. T (x), and
x = f(t). Then

dT

dt

=
dT

dx

dx

dt

Two Variable Case: For T (x, y) with x = f(t) and y = g(t)

dT

dt

=
@T

@x

dx

dt

+
@T

@y

dy

dt

Note that when di↵erentiating a function of multiple variables we use the @ notation, and
when di↵erentiating a function of a single variable we use the d notation.

This should be believable based on what we know about linearizations and tangent planes.
We have that

�T ⇡ @T

@x

�x+
@T

@y

�y ) �T

�t

⇡ @T

@x

�x

�t

+
@T

@y

�y

�t

Then, taking the limit as �t ! 0 we obtain the result.



Example 28

Compute dw/dt for w = xy with x(t) = cos t and y(t) = sin t

Note that dw/dt gives the rate of change of the function w = xy as we move around a circle
of radius 1 in the xy-plane.

dw

dt

=
@w

@x

dx

dt

+
@w

@y

dy

dt

= y (� sin t) + x (cos t)

= (sin t) (� sin t) + (cos t) (cos t)

= � sin2
t+ cos2 t

= cos (2t)

So when t = ⇡/2 we have
dw

dt

�
⇡

2

�
= cos (⇡) = �1

EFY: Check that this is what you would get if you substituted x and y in terms of t and
took the derivative.

One helpful way for determining the form of the chain rule is to use a tree diagram

w

x y

t

t

@w

@x

@w

@y

dy

dt

dx

dt

Then we sum all paths that start at w and end at t.

dw

dt

=
@w

@x

dx

dt

+
@w

@y

dy

dt



What if if w = f(x, y, z) with x = g(t), y = h(t), and z = k(t)?

w

x y z

t

t

t

dw

dt

=
@w

@x

dx

dt

+
@w

@y

dy

dt

+
@w

@z

dz

dt

Example 29

Suppose that the temperature in a room is given by T (x, y, z) = x + yz and we want to
know the rate that the temperature changes with respect to time along the helix r(t) =
hcos t, sin t, ti.

dT

dt

=
@T

@x

dx

dt

+
@T

@y

dy

dt

+
@T

@z

dz

dt

= 1 (� sin t) + z (cos t) + y (1)

= � sin t+ t cos t+ sin t

= t cos t

Then we could find, for instance, that at time t = ⇡ the temperature is changing at a rate of

dT

dt

(⇡) = ⇡ cos (⇡) = �⇡

What if the spatial variables depend on two independent variables instead of one? Suppose
w = f(x, y, z) where x = g(r, s), y = h(r, s) and z = k(r, s). Then

w = f(g(r, s) , h(r, s) , k(r, s))

Now suppose we want to know how w changes with respect to one of the independent vari-
ables, say r. We again draw a tree.



w

x y z

r s

r s

r s

Following all of the branches that lead to an r we find

@w

@r

=
@w

@x

@x

@r

+
@w

@y

@y

@r

+
@w

@z

@z

@r

Example 30

Suppose T = ln (x2 + y

2) where x and y are defined in terms of polar coordinates, i.e.
x = r cos ✓ and y = r sin ✓. Compute @w/@✓.

@w

@✓

=
@w

@x

@x

@✓

+
@w

@y

@y

@✓

=
2x

x

2 + y

2
(�r sin ✓) +

2y

x

2 + y

2
(r cos ✓)

=
2r cos ✓

r

2
(�r sin ✓) +

2r sin ✓

r

2
(r cos ✓)

= 0

This makes sense. The temperature depends on the square of the distances from the origin.
If we hold r fixed and let ✓ vary we should see no change in temperature.

EFY: Compute the change in temperature with respect to radius.

Implicit Di↵erentiation Trick:

Example 31

Find dy/dx for y an implicit function of x related by x

3 � 2y2 + xy = 0.

d

dx

�
x

3 � 2y2 + xy

�
= 0 , 3x2 � 4y

dy

dx

+ y + x

dy

dx

= 0 , dy

dx

=
3x2 + y

4y � x



This is kind of a pain. We can use the chain rule to find a shortcut. Define w = F (x, y) = 0
where here F (x, y) = F (x, y (x)) is the function of two variables that describes the implicit
relationship between y and x. If we draw a tree for F we have

F

x y

x

Now if we di↵erentiate F w.r.t. x (just like we normally do in implicit di↵erentiation) we
have by the chain rule

dF

dx

=
@F

@x

+
@F

@y

dy

dx

Then

F (x, y) = 0 , dF

dx

=
@F

@x

+
@F

@y

dy

dx

= 0

Solving for dy/dx we have

dy

dx

= �F

x

F

y

With F (x, y) = x

3 � 2y2 + xy

dy

dx

= � 3x2 + y

�4y + x

=
3x2 + y

4y � x

EFY: Look in the book for implicit di↵erentiation with three variables.



11.6 Directional Derivatives and the Gradient Vector

Recall that @f/@x and @f/@y tell us the instantaneous rate at which the function f(x, y) is
changing in the x- and y-directions, respectively.

What if I want to know how f is changing in another direction?

Suppose we want to know how z = f(x, y) is changing in the direction of a unit vector u at
the point P0(x0, y0, z0). Let’s parameterize a line through P0 that is parallel to the vector
u = hu1, u2i. Notice that since u is a unit vector we can parameterize using arc length.

r(s) = hx0 + su1, y0 + su2i or x = x0 + su1 and y = y0 + su2

Then the derivative of f at P0 in the direction of u is

✓
df

ds

◆

u,P0

= lim
s!0

f(x0 + su1, y0 + su2)� f(x0, y0)

s

= Duf(x0, y0)

This is called the directional derivative of f in the direction u. Sometimes we write
(Duf)

P0

Geometric Interpretation: Let z = f(x, y) be a surface. The point (x0, y0, z0) is on
the surface. Recall that we interpretted f

x

(x0, y0) by drawing a vertical plane at y = y0

and noticed that the partial derivative was the slope of the tangent line of the curve of
intersection. For directional derivatives we can do the same thing, only this time the vertical
plane is not aligned with the x or y axes. This time the plane is vertical but in the direction
of u.

x

y

z



OK, but we don’t want to compute these things using the limit definition. That would suck!
Instead we use the chain rule.

(Duf)
P0

=

✓
df

ds

◆

u,P0

=

✓
df

dx

◆

P0

dx

ds

+

✓
df

dy

◆

P0

dy

ds

But remember that along u and through P0 we have x = x0 + su1 and y = y0 + su2, so

=

✓
df

dx

◆

P0

u1 +

✓
df

dy

◆

P0

u2

So we can compute the directional derivative of f in direction u with

(Duf)
P0

= f

x

(x0, y0) u1 + f

y

(x0, y0) u2

That’s all nice, but there is an even better way to do it that makes life even easier. Notice
that we can write this expression as a dot product of two vectors.

(Duf)
P0

=

"✓
@f

@x

◆

P0

i+

✓
@f

@y

◆

P0

j

#
· [u1i+ u2j] = (rf)

P0
· u

This new vector is so useful that we give it a name. It’s called the gradient vector.

rf =
@f

@x

i+
@f

@y

j or in 3 variables rf =
@f

@x

i+
@f

@y

j+
@f

@z

k

Example 32

Compute rf at P0 (1, 1, 1) for f(x, y, z) = x

2 + y

2 � 2z2 + z ln x

@f

@x

= 2x+
z

x

@f

@y

= 2y
@f

@z

= �4z + ln x

rf =
D
2x+

z

x

, 2y,�4z + ln x
E

) (rf)
P0

= h3, 2,�4i

Example 33

Compute the directional derivative of f at the point P0 in the direction u =
D

1p
3
,� 1p

3
,

1p
3

E

(Duf)(1,1,1) = (rf)(1,1,1) · u = h3, 2,�4i ·
⌧

1p
3
,� 1p

3
,

1p
3

�

3
3p
3
� 2

3p
3
� 4

3p
3
=

�3p
3



So at the point (1, 1, 1) the function f is changing in the u direction at an instantaneous rate
of �3

p
3.

What happens if we take the directional derivative of f in directions along the x and y axes?

u = i : Duf = rf · i = f

x

u = j : Duf = rf · j = f

y

So directional derivatives are just generalizations of partial derivatives.

Properties of Duf .

Writing the directional derivative as a dot product allows us to say some interesting things
about it. Recall that A ·B = |A| |B| cos ✓ where ✓ is the angle between A and B. Applying
this to the directional derivative we have

Duf = rf · u = |rf | |ru| cos ✓ = |rf | cos ✓

In what direction does f increase the fastest? We see that the expression above is maximized
if cos ✓ = 1 which happens when ✓ = 0. In other words, f increases the fastest in the direction
of it’s gradient.

Following similar logic we see that f decreases the fastest in the direction of �rf .

OK, so how much is this increase/decrease?

Recall that the direction vector in the expression for the directional derivative needs to be a
unit vector. So we have u = rf/ |rf | and

Duf = rf · rf

|rf | =
|rf |2

|rf | = |rf |

Similarly, the greatest decrease happens in the direction of �rf , so we have

Duf = rf ·� rf

|rf | = � |rf |2

|rf | = � |rf |

We can also use the gradient vector to determine a direction to move which will not change
f at all. We do this by picking a direction orthogonal to the gradient vector.

Example 34

Find the direction of greatest increase/decrease and no change for f(x, y) = xy + y

2 at
the point (3, 2).



Example 35

Two velociraptors are hunting you in a 4 by 4 room which has a door at the point (�2,�1).
You are standing at the origin. They always hunt in pairs, one to distract you by standing
right in front of you, and one to attack from the side. If the raptors are standing at (0, 1) (2, 0)

then the likelihood of you getting eaten is given by the function P (x, y) =
⇥
(x� 1)2 + y

2
⇤�1

=
⇥
x

2 + (y � 2)2
⇤�1

.

1. If you run towards the door, how is your chance of being eaten changing w.r.t. dis-
tance?

2. In what direction should you go to minimize your chance of being devoured?

3. If you move at a speed of 0.5 m/s in this direction, how is your chance of being eaten
changing w.r.t. time?

For all of these we’ll need the gradient of P . We have

@P

@x

=
�2 (x� 1)

⇥
(x� 1)2 + y

2
⇤2 +

�2x
⇥
x

2 + (y � 2)2
⇤2

@P

@y

=
�2y

⇥
(x� 1)2 + y

2
⇤2 +

�2 (y � 2)
⇥
x

2 + (y � 2)2
⇤2

Since the question only asks about what happens when you’re standing at the origin, we will
only need the gradient vector evaluated at that point.

rP (0, 0) =

⌧
2,

1

4

�

1. The rate of change with respect to distance in the direction of some unit vector u is
given by

dP

ds

= rP · u

Since we’re running towards the door, we do so along the vector u =
1p
5
h�2,�1i so

we have

dP

ds

= rP · u =

⌧
2,

1

4

�
· h�2,�1i 1p

5
= � 15

4
p
5

2. To minimize our chance of being devoured, we want to move in the direction of �rP ,
but we first need to express this direction as a unit vector. We have

u =
�rP

|rP | =
�h2, 1/4i
|h2, 1/4i| =

h�8,�1ip
65

in which the chance of being eaten is changing w.r.t. distance at a rate of � |rP | =
�
p
65/4



3. We want to compute dP/dt if we move with speed 0.5 in the direction of greatest
decrease in P . We have

dP

dt

=
dP

ds

ds

dt

= �
p
65

4

1

2
= �

p
65

8

Example 36

Bonnie the honey bee is flying along the path r(t) in Suluclcac Swamp looking for sweet
nectar. The temperature distribution that morning in the swamp is given by T (x, y). At
some instance in time t

⇤, you know that r(t⇤) = i + 3j, v(t⇤) = 2i + j, and a(t⇤) = 3i + 2j.
Furthermore, you know that rT |(1,3) = 2i+ 5j, and T (1, 3) = 10.

1. As Bonnie flies past the location r(t⇤), at what rate is the temperature T changing with
respect to time.

dT

dt

= rT · v = h2, 5i · h2, 1i = 9

2. As she flies past the location r(t⇤) at what rate is the temperature T changing with
respect to distance.

dT

ds

= rT · u = h2, 5i · h2, 1ip
5

=
9p
5

3. If Bonnie continues on her original path r(t) for a short interval of time �t = 0.1, by
approximately how much does the temperature change?

�t ⇡ dT

dt

�t = 9 (0.1) = 0.9

4. Onthe other hand, suppose at time t

⇤ Bonnie suddenly sees her favorite flower, and
starts to fly towards it in a direction that happens to be the direction of greatest
increase of T . Assuming Bonnie maintains her same speed, by approximately how
much does the temperature change after she flies for �t = 0.1?

First we need to find dT/dt in the direction of greatest increase.

dT

dt

= rT · (|v| rT

|rT |) = |v| |rT |2

|rT | = |v| |rT | =
p
5
p
29

Significance of the Gradient Vector

Consider the level curves of a function z = f(x, y). That is, consider a curve of the form
f(x, y) = k for some constant k. Suppose we have some parameterization of this curve given
by r(t) = hx(t) , y(t)i. Now, along this curve the function is described by

f(x(t) , y(t)) = k

Taking the derivative w.r.t. time using the chain rule we have



d

dt

f(x(t) , y(t)) =
d

dt

k , @f

@x

dx

dt

+
@f

@y

dy

dt

= 0 , rf · r0(t) = 0

This expression tells us that along the level curve, the gradient vector and the velocity vector
are always orthogonal. This makes perfect sense if you think of a topographic map.

Example 37

Consider the function f(x, y) = y � x

2. Then the level curves have the form

f(x, y) = y � x

2 = k ) y = x

2 + k

So the level curves are just shifted parabolas. Consider the point (2, 4) on the surface. The
gradient at this point is given by

rf = h�2x, 1i ) rf (2, 4) = h�4, 1i

From calc 1 techniques we know that the slope of the tangent line to the level curve that
contains the point (2, 4) is given by

y = x

2 + 0 ) y

0 = 2x ) m = 4

from which we can see that rf is orthogonal to the tangent line.

Relation to Tangent Plane

Consider the surface described by z = f(x, y) that contains the point P (x0, y0, z0). Letting
F (x, y) = f(x, y)� z and taking the gradient at the point P we have

rF (P ) =

⌧
@f

@x

(P ) ,
@f

@y

(P ) ,�1

�
= hf

x

(x0, y0) , fy(x0, y0) ,�1i

Now, if we take this vector and let it be the normal vector of a plane that contains the point
(x0, y0, z0) we get

0 = �1 (z � z0) + f

x

(x0, y0) (x� x0) + f

y

(x0, y0) (y � y0) ,

z = z0 + f

x

(x0, y0) (x� x0) + f

y

(x0, y0) (y � y0)

Does this plane look familiar? It turns out this is exactly the tangent plane to the surface at
the point P !



We can also do this for level surfaces. Consider the function Fx, y, z. It’s level surfaces are of
the form Fx, y, z = k for some constant k. Consider the level surface that contains the point
P (x0, y0, z0). Then the tangent plane to the level surface containing the point P is given by

0 = F

x

(x0, y0, z0) (x� x0) + F

y

(x0, y0, z0) (y � y0) + F

z

(x0, y0, z0) (z � z0)

which has rF as it’s normal vector. This again makes sense. Clearly if we want F to increase
(or descrease) we should move in a direction normal to the level surface. If we move along
the level surface we should expect no change in F .

Example 38

Find the equation of the tangent plane and the normal line to the function x+ y + z = e

xyz

at the point (0, 0, 1). The given relation is a level surface to the function

F (x, y, z) = x+ y + z � e

xyz

We have

rF = h1� yze

xyz

, 1� xze

xyz

, 1� xye

xyzi ) rF (0, 0, 1) = h1, 1, 1i

The tangent plane is then given by

1 (x� 0) + 1 (y � 0) + 1 (z � 1) = 0 ) x+ y + (z � 1) = 0

The normal line is the line through the point (0, 0, 1) in the direction of the gradient h1, 1, 1i.
So we have L(t) = ht, t, 1 + ti

Example 39

Reconstructing the Gradient: Suppose you have some function f(x, y) and you’re told
that at the point (1, 1) the directional derivative of f(x, y) along the vector v

l

= h1, 1i is
2
p
2, and the directional derivative along the vector v2 = h1, 1i is �3

p
2. Find rf at the

point (1, 1).

Let rf = ha, bi. We need to find unit vectors in the direction of v1 and v2. We have

u1 =
v1

|v1|
=

h1, 1ip
2

and u2 =
v2

|v2|
=

h1,�1ip
2

Du1f = rf · u1 = ha, bi · h1, 1ip
2

= 2
p
2

Du2f = rf · u2 = ha, bi · h1,�1ip
2

= �3
p
2



From this we have

a+ b = 4

a� b = �6

Adding the equations together we find a = �1 and b = 5. So rf (1, 1) = h�1, 5i.

Under what circumstances would you NOT be able to reconstruct the gradient given two
directional derivatives?



11.7 Maximum and Minimum Values

Motivation: Functions of One Variable: Consider y = f(x)

x

y

x1 x2 x3

x1 has a local min because for any small for any small open region around x1, f(x1)  f(x).

x2 has a local max because for any small for any small open region around x2, f(x2) � f(x).

x3 has a saddle because for any small for any small open region around x3, we have functiona
values above and below f(x3).

So, if we don’t have a picture, how do we know that something may or may not be happening
at these points?

First we notice that something might be happening at x2 because f

0(x2) = DNE.

Then we notice that something might be happening at x1 and x3 because f 0(x1) = f

0(x3) = 0.
So the slope of the tangent line at thise points is zero.

So how do we know that x1 has a local min? We do the Second Derivative Test!

Second Derivative Test: If f 0(x) is continuous at x
c

then

1. f

00(x
c

) > 0 ) graph is concave up ) Local Minimum

2. f

00(x
c

) < 0 ) graph is concave down ) Local Maximum

3. f

00(x
c

) = 0 ) graph has no extreme point ) Saddle



So how do we extend this to surfaces?

We need away to look for critical points of a function z = f(x, y). Let’s look at a couple of
examples.

Example 40

Consider f(x, y) = 1�
p

x

2 + y

2.

This is a cone that intersects the z-axis at the point (0, 0, 1).

x

y

z

This guy has a local max at the point (0, 0). Notice that at that point there is a sharp corner
in the surface. We can recognize this by taking partial derivatives

f

x

=
�xp
x

2 + y

2
and f

y

=
�yp
x

2 + y

2

Then, if we plug in the alleged point where something is happening, i.e. (0, 0), we get

f

x

(0, 0) = DNE and f

y

(0, 0) = DNE

So if one or both of the partial derivatives does not exist then there might be something
going on.



Example 41

Consider the function f(x, y) = 1� x

2 � y

2

This is an upside down paraboloid with it’s top at the point (0, 0, 1).

x

y

z

Again we see that there is a local maximum at the point (0, 0, 1). What’s happening with
the partial derivatives at this point?

f

x

= �2x and f

y

= �2y

Then, if we plug in the alleged point where something is happening, i.e. (0, 0), we get

f

x

(0, 0) = 0 and f

y

(0, 0) = 0

Notice that this means that a tangent plane to the surface at the point (0, 0) is perfectly flat.

Definition: A critical point of f(x, y) is a point where the partial derivatives are zero or
at least one of the partial derivatives does not exist.

So, we find critical points by taking partial derivatives and setting them equal to zero, or
finding points where one of them does not exist.

If we find a critical point does it guarantee that there is a local min or max at that point?



Example 42

Consider f(x, y) = y

2 � x

2.

This is a hyperbolic paraboloid.

x

y

z

Here we have

f

x

= �2x andf
y

= 2y

which has a critical point at (0, 0) but no corresponding min or max. It’s a saddle!

So, suppose we found a critical point. How do we classify it as a local min or local max? If
the critical point (x

c

, y

c

) is such that the partial derivatives are zero, then we have a version
of the second derivative test for functions of two variables.

Method: Second Derivative Test: Suppose f(x, y) has continuous first and second deriva-
tives around (x

c

, y

c

), then

1. If f
xx

> 0 and f

xx

f

yy

� f

2
xy

> 0 then f has a local min at (x
c

, y

c

)

2. If f
xx

< 0 and f

xx

f

yy

� f

2
xy

> 0 then f has a local max at (x
c

, y

c

)

3. If f
xx

f

yy

� f

2
xy

< 0 then f has a saddle at (x
c

, y

c

)

4. If f
xx

f

yy

� f

2
xy

= 0 then f the test is indeterminant



Example 43

Consider the upside-down paraboloid f(x, y) = 1� x

2 � y

2

f

x

= �2x ) f

x

= 0 when x = 0 f

y

= �2y ) f

x

= 0 when y = 0

So the only critical point is (0, 0). We also have

f

xx

= �2 f

yy

= �2 f

xy

= 0

So D = f

xx

f

yy

� f

2
xy

= (�2) (�2)� 0 = 4 > 0

Since f

xx

= �2 < 0 we have that the point is a local minimum.

Example 44

Consider the hyperbolic paraboloid f(x, y) = y

2 � x

2.

f

x

= �2x ) f

x

= 0 when x = 0 f

y

= 2y ) f

x

= 0 when y = 0

So the only critical point is (0, 0). We also have

f

xx

= �2 f

yy

= 2 f

xy

= 0

So D = f

xx

f

yy

� f

2
xy

= (�2) (2)� 0 = �4 < 0

Since D < 0 we have that the cricical point (0, 0) is a saddle point.

Example 45

Find the shortest distance from the point (2, 0,�3) to the plane x+ y + z = 1

We want to find the point (x, y, z) on the plane such that the distance from (x, y, z) to
(2, 0,�3) is minimized. In other words, for general point (x, y, z) we want to minimize

distance =
q

(x� 2)2 + y

2 + (z + 3)2

Since minimizing the distance is the same as miniizing the square of the distance we can
instead ask to minimize the the expression

squared distance = (x� 2)2 + y

2 + (z + 3)2



Now, we somehow need to enforce the fact that (x, y, z) is on the plane. We can do this
by solving the equation of the plane for z and substituting this into the squared distance
expression. Then, any value of x and y that we pick, the substituted expression for z

guarantees that the point is on the plane. We have

z = 1� x� y ) f(x, y) = (x� 2)2 + y

2 + (4� x� y)2

We find the critical points by taking the partial derivatives and setting them equal to zero.
Then

f

x

= 2 (x� 2)� 2 (4� x� y) = 4x+ 2y � 12 and f

y

= 2y � 2 (4� x� y) = 2x+ 4y � 8

So we need to find x and y that simultaneously satisfy

4x+ 2y � 12 = 0 (1)

2x+ 4y � 8 = 0 (2)

Subtracting 2 times (2) from (1) gives

�6y + 4 = 0 ) y =
2

3

Then

2x+ 4

✓
2

3

◆
= 8 ) x =

8

3

So the one critical point is (8/3, 2/3). To check that this is really a minimum we do the
second derivative test.

Computing the second partial derivatives we have

f

xx

= 4 f

xy

= 2 f

yy

= 4 ) f

xx

f

yy

� f

2
xy

= 16� 4 = 12 > 0

Since f

xx

= 4 > 0 and f

xx

f

yy

� f

2
xy

= 16� 4 = 12 > 0 we conclude by the second derivative
test that the critical point is a local minimum. Then the critical point (8/3, 2/3) gives the x
and y values of the closest point on the plane to (2, 0,�3). Since we know that this point is
on the plane, we can compute the z value using

z = 1� x� y = 1� 8

3
� 2

3
= �7

3

The mimimum distance from the point to the plane is then give by



D =

s✓
2� 8

3

◆2

+

✓
0� 2

3

◆2

+

✓
�3 +

7

3

◆2

=
2
p
3

3

You can of course check that this is the same distance we’d find if we used the formula for
point-to-plane distance from Chapter 10.



Example 46

Consider the function F (a, b) =

Z
b

a

(�1) (x� 1) (x� 2) dx where a, b > 0 and b > a. Find

intervals on which this integral is maximized.

We have

F

a

=
@

@a

Z
a

b

(+1) (1� x) (2� x) dx = (a� 1) (a� 2) and

F

b

=
@

@b

Z
b

a

(�1) (1� x) (2� x) dx = � (b� 1) (b� 2)

Then

F

a

(a, b) = 0 ) a = 1 or 2 and F

b

(a, b) = 0 ) b = 1 or 2

So we have the four critical points (1, 1), (1, 2), (2, 1), and (2, 2). Now, the problem de-
scriptions says that we need only consider intervals [a, b] for which b > a. So technically we
don’t need to check the points (1, 1), (2, 1), and (2, 2), but we’ll do so anyway because it’s
instructive.

To classify these points we need to do the second derivative test. The descriminant is D =
F

aa

F

bb

� F

2
ab

where

F

aa

= a� 2 + a� 1 = 2a� 3 F

bb

= � (b� 2 + b� 1) = 3� 2b F

ab

= 0 so

D (a, b) = (2a� 3) (3� 2b)� 0 = (2a� 3) (3� 2b)

Setting up a table for our second derivative test, we have

(a, b) D F

aa

Classification
(1, 1) - - saddle
(1, 2) + - max
(2, 1) + + min
(2, 2) - + indeterminant

Not surprisingly, the interval on which the integral is maximized is [1, 2]. The intervals [1, 1]
and [2, 2] will make the integral zero. The backwards interval (2, 1) will give the negative of
the integral over [1, 2].



What if we want to know about the absolute extrema of f(x, y) over some bounded region?

Extreme Value Theorem: If f(x, y) is continuous on some bounded region B then f has
an extreme min and an extreme max on the region B and these extrema occur either at
critical poitns or on the boundary of the domain.

Example 47

Find the absolute mins and max’s of f(x, y) = 2x2 � 4x + y

2 � 4y + 1 on the region R

bounded by the lines x = 0, y = 3, and y = x.

The region R looks as follows

x

y

3

3

The process for finding the absolute minimum and absolute maximum values of f on the
region R is as follows

1. Find the values of f at the critical points on the interior of the region

2. Find the extreme values of f on the boundary

3. The largest value of f from these points is the absolute maximum. The smallest value
is the absolute minimum.

Interior Critical Points

We find the critical values of f on the interior by taking partial derivatives and seeing where
they’re both zero or at least one does not exist.

f

x

= 4x� 4 and f

y

= 2y � 4



Setting these equal to zero we have

4x� 4 = 0 ) x = 1

2y � 4 = 0 ) y = 2

Therefore the point (1, 2) is a critical point. We also need to check that the critical point is
in R, because if it’s not then there is no point in considering it as an absolute extrema. In
this case the point (1, 2) is in R.

x

y

31

3

2

Next we find the extreme values on the boundaries. Since the boundary of R is made up of
three di↵erent lines, we need to check each one.

Boundary: x=0

On the line x = 0 we have f(0, y) = y

2 � 4y + 1. Now the problem has been reduced to
finding the extreme values of the function of one variable g(y) = y

2 � 4y + 1 on the interval
0  y  3. Extreme values of g(y) can occur at critical points of g(y) and the endpoints of
the interval. Taking the derivative and setting it equal to zero we have

g

0(y) = 2y � 4 = 0 ) y = 2 ) (0, 2)

We also need to check the endpoints y = 0 and y = 3, which on the line x = 0 are the points
(0, 0) and (0, 3). Updating our picture we have (so far) the following points to check



x

y

31

3

2

Boundary: y=3

On the line y = 3 we have f(x, 3) = 2x2 � 4x � 2. Now the problem has been reduced to
finding the extreme values of the function of one variable h(x) = 2x2� 4x� 2 on the interval
0  x  3. Extreme values of h(x) can occur at critical points of h(x) and the endpoints of
the interval. Taking the derivative and setting it equal to zero we have

h

0(x) = 4x� 4 = 0 ) x = 1 ) (1, 3)

We also need to check the endpoints x = 0 and x = 3, which on the line y = 3 are the points
(0, 3) and (3, 3). Updating our picture again we have (so far) the following points to check

x

y

31

3

2



Boundary: y=x

On the line y = x we have f(x, x) = 3x2 � 8x + 1. Now the problem has been reduced to
finding the extreme values of the function of one variable q(x) = 3x2 � 8x+1 on the interval
0  x  3. Extreme values of q(x) can occur at critical points of q(x) and the endpoints of
the interval. Taking the derivative and setting it equal to zero we have

q

0(x) = 6x� 8 = 0 ) x =
4

3
)

✓
4

3
,

4

3

◆

Technically we need to check the endpoints, but we’ve already put them in the list from the
analysis of the other two boundaries. So we now have the following points to check

x

y

31

3

2

We now take all of the potential points and compute their function values. We summarize
these in a table

(x
c

, y

c

) f(x
c

, y

c

) Classification
(1, 2) �5 absolute min
(0, 0) �1
(0, 2) �3
(0, 3) �2
(1, 3) �4
(3, 3) �4 absolute max

(4/3, 4/3) �13/3

So the absolute maximum of the function on the region R is 4 which occurs at the point
(3, 3). The absolute minimum is �5 which occurs at the point (1, 2).



Example 48

Find the absolute extrema of the function f(x, y) = 2x2 � y

2 + 6y on the region R =
{(x, y) | x2 + y

2  16}.

The region R is the circle of radius four centered at the origin. To find the abslute extrema
we will find the critical points of f on the interior of R and then find the extreme values of
f on the boundary of R.

Interior Points

Taking partial derivatives and setting them equal to zero we have

f

x

= 2x = 0 ) x = 0 and f

y

= 6� 2y = 0 ) y = 3

So the single interior critical point is at (0, 3) which is inside the region R.

Boundary

To look for extrema on the boundary we need to look at all values of f(x, y) such that (x, y)
satisfy x

2 + y

2 = 16. Solving for x2 we have

x

2 = 16� y

2 for � 4  y  4

Remark: There are actually many ways to find the extreme values on the boundary. We
could solve x

2 + y

2 = 16 for y to get y = ±
p
16� x

2 for �4  x  4. This represents the
top and bottom halfs of the circle. Similarly we could solve the boundary expression for x

to get the left and right halfs of the circle. But, in this case, since there is a sole x

2 in f it
is convenient to solve directly for x2.

Substituing the expression describing the circle into f(x, y) we have

g(y) = 2
�
16� y

2
�
� y

2 + 6y = �3y2 + 6y + 32

Taking the derivative w.r.t. y and setting it equal to zero we have

g

0(y) = �6y + 6 = 0 ) y = 1 which gives the points on the circle
⇣
±
p
15, 1

⌘

We also need to check the endpoints y = ±4. On the circle these are the points (0,±4).



Making a table of function values we have

(x
c

, y

c

) f(x
c

, y

c

) Classification
(0, 3) �9
(0, 4) �8
(0,�4) �40 absolute min�
±
p
15, 1

�
�35 absolute max

So the absolute minimum value of �40 occurs at the point (0,�4). The absolute maximum
of 35 occurs at the two points

�
±
p
15, 1

�
.



11.8 Lagrange Multipliers

Last time we saw how we could find the extrema of a function f(x, y) globally or inside some
bounded domain. This is called unconstrained optimization. There are other instances
when we want to know specifically the largest and smallest values the function f(x, y) takes
on subject to some constraint. This is called constrained optimization.

Suppose the constraint is described by the level curve g(x, y) = k. The mathematically this
is described by

Maximize/Minimize f(x, y)

Subject to g(x, y) = k

Here f(x, y) is called the objective function and g(x, y) = k is called the constraint or
the constraint equation.

Let’s think about the problem visually by plotting level curves of f(x, y) and the constraint
g(x, y) = k on the same axes. Suppose we have

x

y

f(x, y) = 4

f(x, y) = 3

f(x, y) = 2

f(x, y) = 1

g(x, y) = k

From the picture, it’s clear that the point where the maximum of f occurs on the constraint
is the point (x, y) where the constraint curve and a level curve just barely touch. Recalling
that the gradient vector of a function always points normal to the level curve, we see that
this is precisly the point where the gradient vectors of f and g are parallel to each other.

One way to express this mathematically is that there exists some constant � such that at the
point (x, y) we have

rf = �rg

The particular scalar � that makes this statement true is called the Lagrange Multiplier.



Then, we can find the points on the constraint curve where the objective function is max-
imized/minimized by finding all points on the constraint curve where the gradient vectors
of f and g are parallel. Then, we can reformulate the mathematical problem as finding all
points (x, y) and multipliers � such that simultaneously satisfy

rf(x, y) = �rg(x, y)

g(x, y) = k

Note that in solving for (x, y) we may need to also find � along the way, but the value � has
no bearing on the solution.

Example 49

Find the extreme values of the function f(x, y) = x

2 + 2y2 on the circle x

2 + y

2 = 1.

We have

r
�
x

2 + 2y2
�

= �r
�
x

2 + y

2
�

x

2 + y

2 = 1

which gives

2x = �2x

4y = �2y

x

2 + y

2 = 1

From the first equation we know that either x = 0 or � = 1.

If we assume x = 0 then the constraint equation gives us y = ±1. So we need to check the
points (0,±1).

If � = 1 then the second equation gives us y = 0 and the constraint equation gives us x = ±1.
So we need to check the points (±1, 0).

Plugging these into the function we have

(x, y) f(x, y) Classification
(0,±1) 2 absolute max
(±1, 0) 1 absolute min



Example 50

Suppose you have 420 ft of fencing and decide to make a kennel by building 5 identical
adjacent rectangular runs. Find the dimension of each run that maximizes its area.

y

x

Solution: Let x,y be the dimensions of a run and let A be its area. Then we want to
maximize the objective function A(x, y) = xy subject to the constraint that we use exactly
420 ft of fence. The constraint equation is

g(x, y) = 10x+ 6y = 420

The equations we need to solve for the Lagrange Multiplier problem are

rA = �rg

g(x, y) = 420

Which becomes

y = 10�

x = 6�

10x+ 6y = 420

First we check if � = 0 yields a solution. In this case it clearly does not because � = 0 implies
that (x, y) = (0, 0) which yields a run of zero area. Instead, we solve for � in terms of y in
the first equation and substitute it into the second. This then yields the reduced system

x =
3

5
y

10x+ 6y = 420

Plugging this into the constraint equation yields

6y + 6y = 420 ) y = 35 ) x = 21

This gives a maximum area of a run of A(21, 35) = 735 sq ft



Example 51

The moon’s orbit around the earth is well-approximated by the curve

x

2 + y

2 =
�
3⇥ 105 � 0.05y

�2

where distance is in miles and the earth is located at the origin. How close is the moon to
the earth at its closest point? What is the farthest the moon ever is from the earth?

Solution: The objective function that we are trying to both maximize and minimize is the
distance from the point (x, y) to the origin. Of course, minimizing the distance is the same
as minimizing the square of the distance, so we take as our objective function

f(x, y) = x

2 + y

2

The constraint is that the point is on the moon’s orbit, so we have

g(x, y) = x

2 + y

2 �
�
3⇥ 105 � 0.05y

�2
= 0

Then, the system of equations for the Lagrange Multiplier problem is given by

rf = �rg

g(x, y) = 0

which becomes

2x = �2x (3)

2y = �

⇥
2y � 2

�
3⇥ 105 � 0.05y

�
(�0.05)

⇤
(4)

0 = x

2 + y

2 �
�
3⇥ 105 � 0.05y

�2
(5)

First we check to see if � = 0 gives us a valid solution. From the first two equations we have

� = 0 ) (x, y) = 0

which is not on the constraint curve. Since � 6= 0 we are free to eliminate � from the equation
by dividing equation (2) by equation (1). Cross multiplying then gives

2x
⇥
2y � 2

�
3⇥ 105 � 0.05y

�
(�0.05)

⇤
= 4xy

which simplifies to



x

�
3⇥ 105 � 0.05y

�
= 0

Solving this equation for x and y gives x = 0 or y = 6⇥ 106.

If y = 6⇥ 106 then the constraint equation gives

x

2 + 6⇥ 106 = 0

which has no real solution. On the other hand if we choose x = 0 the constraint equation
gives

y

2 �
�
3⇥ 105 � 0.05y

�2
= 0

Using the quadratic formula we find that two possible solutions are

(x, y) = (0,�315790) and (x, y) = (0, 285710)

Plugging these into the distance formula we find that for the first point the moon is 315790
miles from the earth and the second point is 285710 miles from the earth. Clearly the first
point is the location at which the moon is farthest from the earth and the second is when
it’s closest to the earth.

Example 52

Many airlines require that carry-on baggage have a linear distance (length + width + height)
of no more than 45 inches with an additional requirement of being able to slide under the
seat in front of you. If we assume that the carry-on is roughly the shape of a rectangular box
and one dimension is no more than half of one of the other dimensions (to insure that it can
slide under the seat) then what dimensions of the carry-on lead to maximum volume?

Solution: If we let x, y and z denote length, width, and height, respectively, then our goal
is maximize the volume V (x, y, z) = xyz subject to the constraints

g(x, y) = x+ y + z = 45 and h(x, y) = y � 2x = 0

Note that this is an optimization problem with two constraints. The Lagrange Multipliers
system looks like

rV = �rg + µrh

g = 45

h = 0

Taking partial derivatives we obtain the following system



yz = �� 2µ

xz = �+ µ

xy = �

x+ y + z = 45

y � 2x = 0

Eliminating � yields the updated system

yz = xy � 2µ

xz = xy + µ

x+ y + z = 45

y = 2x

Solving for µ in the second equation and substituting it into the first gives

yz = xy � 2 (xz � xy)

x+ y + z = 45

y = 2x

which simplifies to

yz = 3xy � 2xz

x+ y + z = 45

y = 2x

Substituting in for y in terms of x gives

4xz = 6x2

3x+ z = 45

Then, eliminating z gives

4x (45� 3x) = 3x2 ) 90x� 6x2 = 3x2 ) x (90� 9x) = 0

Since x 6= 0 we must have that x = 10 which implies that y = 20 and z = 15.



Taylor’s Formula

Consider the function f(x, y). Recall that we can approximate f(x, y) with a linear function
in x and y:

f(x, y) ⇡ f(a, b) + f

x

(a, b) (x� a) + f

y

(a, b) (y � b)

Notice that again this is just a linear polynomial in two-variables that does a good job of
approximating f near the point (x, y) = (a, b). It’s also exactly the equation of the tangent
plane to the surface f at the point (a, b).

Example 53

Find the linear approximation to f(x, y) = xe

y at the point (0, 0).

We need evaluate the function and its first partial derivatives at the point (0, 0). We have

f = xe

y

f (0, 0) = 0
f

x

= e

y

f

x

(0, 0) = 1
f

y

= xe

y

f

y

(0, 0) = 0

Then the linear approximation is

f(x, y) ⇡ 0 + (1 · (x� 0) + 0 · (y � 0)) = x = L(x, y)

Example 54

Use L(x, y) to approximate f(x, y) = xe

y at the point (0.05, 0.05) and find the error in
the approximation.

L(0.05, 0.05) = 0.05 f(0.05, 0.05) = 0.05e0.05 = 0.052564

|E(0.05, 0.05)| = |L(0.05.0.05)� f(0.05, 0.05)| = 2.5⇥ 10�3

OK, that’s pretty good. But what if we need to do better? The linearization is the best
approximation by a linear polynomial of f(x, y) near the point (0, 0). It’s natural to ask if
we can get a better approximation if we use a quadratic polynomial.



It turns out that we can. The quadratic approximation of f(x, y) near the general point (a, b)
is given by

f(x, y) ⇡ f(a, b) + f

x

(a, b) (x� a) + f

y

(a, b) (y � b) +
1

2

⇥
f

xx

(a, b) (x� a)2 + 2f
xy

(a, b) (x� a) (y � b) + f

yy

(a, b) (y � b)2
⇤

Notice that the first three terms in the approximation are just the linearization of f(x, y)
about the point (a, b). The additional terms are quadratic in x and y and involve the second
partial derivatives of f evaluated at the point (a, b).

Example 55

Find a quadratic approximation to f(x, y) = xe

y at the point (0, 0).

We already computed the value of the function and it’s first partial derivatives at the point
(0, 0) when computing the linearization in the previous example. Now we need the second
partials.

f

xx

= 0 f

xx

(0, 0) = 0
f

xy

= e

y

f

xy

(0, 0) = 1
f

yy

= xe

y

f

yy

(0, 0) = 0

Then the quadratic approximation is

f(x, y) ⇡ L (x, y) +
1

2

�
0 · (x� 0)2 + 2 · 1 · (x� 0) (y � 0) + 0 · (y � 0)2

�

⇡ x+ xy = Q(x, y)

Example 56

Use Q(x, y) to approximate f(x, y) = xe

y at the point (0.05, 0.05) and find the error in
the approximation.

Q(0.05, 0.05) = 0.05 + (0.05)2 = 0.0525 f(0.05, 0.05) = 0.05e0.05 = 0.052564

|E(0.05, 0.05)| = |Q(0.05.0.05)� f(0.05, 0.05)| = 6.4⇥ 10�5

Notice that, not surprisingly, the quadratic approximation has a smaller error than the linear
approximation.



OK, so we’ve found a linear approximation and quadratic approximation to f(x, y) near the
point (a, b). It turns out that we can come up with a polynomial approximation of any
degree we like that approximates f(x, y) near the point (a, b). This result is called Taylor’s
Theorem for functions of two variables. Of course, we’ve seen this before.

Recall that in Calc II we used Taylor’s Formula to approximate a function f(x) near a point
x = a by a sequence of polynomials.

Theorem: If f has n+ 1 continuous partial derivatives in an open interval I around x = a,
then

f(x) = f(a) + f

0(a) (x� a) +
f

00(a)

2
(x� a)2 +

f

000(a)

3!
(x� a)3 +

+ · · ·+ f

(n)(a)

n!
(x� a)n +

f

(n+1)(c)

(n+ 1)!
(x� a)(n+1)

for some c 2 I.

Notice that if we take n = 1

f(x) = f(a) + f

0(a) (x� a) +
f

00(c)

2
(x� a)2

then the first two terms are exactly the equation of the tangent line to f at the point x = a,
which in turn is exactly the linearization of f about the point x = a.

The remainder term is just the next term in the Taylor Series. Notice that the second
derivative in the remainder term is evaluated at some point x = c instead of x = a. It turns
out that for some value c between x and a this expression is exact. The hitch is that we
don’t know exactly what c is. The remainder term is useful because it can be used to get an
upper bound on the error incurred by using the linear approximation to approximate values
of f near x = a.

Of course, the power of Taylor’s Formula is that we can use it to obtain higher-order poly-
nomial approximations to f near x = a for any degree polynomial that we like. If we want
to approximate f using a quadratic polynomial then we use

f(x) = f(a) + f

0(a) (x� a) +
f

00(a)

2
(x� a)2 +

f

000(c)

3!
(x� a)3



Taylor’s Theorem for Functions of Two Variables

OK, so how do we do this for functions of two variables? It turns out it’s pretty straightfor-
ward and very similar to Taylor’s Theorem for functions of one variable. But to do this we
need to introduce some new notation. First, let �x = (x� a) and �y = (y � b). Then we
define a special operator as follows

✓
�x

@

@x

+�y

@

@y

◆
f

����
(a,b)

= �xf

x

(a, b) +�yf

y

(a, b) = (x� a) f
x

(a, b) + (y � b) f
y

(a, b)

Notice that the operator is a rule for applying this particular sum of partial derivatives to
the function f and then evaluating them at the point (a, b). Notice also that this is exactly
the linear part of the linearization L(x, y).

To get the quadratic term for the quadratic approximation we do this twice. Note that when
taking derivatives, we treat �x and �y as constants.
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+ 2�x�yf

xy

+�y

2
f

yy

� ����
(a,b)

= f

xx

(a, b) (x� a)2 + 2f
xy

(a, b) (x� a) (y � b) + f

yy

(a, b) (y � b)2

So the quadratic approximation to f(x, y) at the point (a, b) can be written as

f(x, y) ⇡ Q(x, y) = f(a, b) +

✓
�x

@

@x

+�y

@

@y

◆
f

����
(a,b)

+
1

2

✓
�x

@

@x

+�y

@

@y

◆2

f

����
(a,b)

OK, so how do we generalize to an n-degree polynomial approximation of f(x, y), and what
about that remainder term? It turns out that it exactly follows the same pattern of Taylor’s
Theorem for functions of one variable, but the regular derivatives are replaced by powers of
the operator described above. We have the following



Taylor’s Theorem. Suppose f(x, y) has n + 1 continuous partial derivatives in an open
region R near (x, y) = (a, b), then for �x = (x� a) and �y = (y � b) we have

f(x, y) = f(a, b) +
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where here the remainder term is evaluated at some (unknown) point (c1, c2) on the line
connecting (a, b) and (x, y).

y

x

(a, b)

(x, y)

(c1, c2)

�x

�y

Taylor’s Theorem is powerful for a couple of reasons. The first is that it allows us a methodical
way of coming up with polynomial approximations to f(x, y) near a point (a, b) for any degree
polynomial that we like. The second is that it allows us to use the remainder term to get an
upper bound on the error incurred when using the approximation.



Example 57

Use Taylor’s Formula to find a cubic approximation to f(x, y) = xe

y at the point (0, 0).

If we want to do the cubic approximation then we need to evaluate the cubic term in the
series. We have
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����
(a,b)

= �x

3
f

xxx

+ 3�x

2�yf

xxy

+ 3�x�y

2
f

xyy

+�y

3
f

yyy

It turns out that you can easily get the coe�cients of the expansion from Pascal’s Triangle

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

To get the cubic terms in the example we need to evaluate some third-order partial derivatives

f

xxx

= 0 f

xxx

(0, 0) = 0
f

xxy

= 0 f

xxy

(0, 0) = 0
f

xyy

= e

y

f

xyy

(0, 0) = 1
f

yyy

= xe

y

f

yyy

(0, 0) = 0

Then

f(x, y) ⇡ x+ xy +
1

3!

�
0 · (x� 0)3 + 3 · 0 · (x� 0)2 (y � 0) + 3 · 1 · (x� 0) (y � 0)2 + 0 · (y � 0)3

�

= x+ xy +
xy

2

2

If we use the cubic approximation to approximate the function at the point (0.05, 0.05) we
find that the exact error incurred is around 1 ⇥ 10�6, which is again better than the linear
and quadratic approximations.



Error in the Taylor Approximation

The remainder term in Taylor’s Theorem gives us a way to find an upper bound on the error
incurred by approximating a function f(x, y) using a Taylor polynomial. The remainder term
is always taken to be the next term in the series beyond those used in the approximation.
The only di↵erence is that the remainder term is evaluated at some unknown point (c1, c2)
instead of (a, b). For instance, if we want to bound the error in the linear approximation, the
remainder term is the quadratic term in the polynomial.

Recall (one more time) that the linear approximation of f(x, y) at (a, b) is given by

L(x, y) = f(a, b) + f

x

(a, b) (x� a) + f

y

(a, b) (y � b)

Then from the theorem we see that

E(x, y) = f(x, y)�L(x, y) =
1

2

⇥
f

xx

(c1, c2) (x� a)2 + 2f
xy

(c1, c2) (x� a) (y � b) + f

yy

(c1, c2) (y � b)2
⇤

Then to get a bound on the worst-case scenario error we put absolute values around
everything in the remainder term. This guarantees that we don’t get any helpful cancellation
in the remainder from some terms being positive and some being negative.

|E(x, y)|  1

2

⇥
|f

xx

| |x� a|2 + 2 |f
xy

| |x� a| |y � b|+ |f
yy

| |y � b|2
⇤

If M is an upper bound on each of the second partial derivatives in the region of interest
such that |f

xx

| , |f
xy

| , |f
yy

|  M then we have

|E(x, y)|  M

2

⇥
|x� a|2 + 2 |x� a| |y � b|+ |y � b|2

⇤
=

M

2
(|x� a|+ |y � b|)2



Example 58

Consider again the function f(x, y) = xe

y near the point (0, 0). Find a bound on the er-
ror if we use the linearization to approximate f for any x and y satisfying |x|  0.1 and
|y|  0.1.

Note here that we want to find an upper bound when using the approximation to approximate
f at any point in the region of interest. From the previous example we know that L(x, y) = x.
To use the error formula we derived previously we need to find an upper bound on the second
partial derivatives in the region |x|  0.1 and |y|  0.1. The second partials were

f

xx

= 0 f

xy

= e

y

f

yy

= xe

y

We want to find the worst-case scenario for the error when |x|  0.1 and |y|  0.1. So we
need to choose points that make the second derivatives as large as possible in the given region
shown below

x

y

(0.1, 0.1)

To find M we need to figure out the largest values that any of the second partials can take
on in the desired region. We have

|f
xx

| = 0
|f

xy

| = |ey|  e

0.1

|f
yy

| = |xey|  0.1e0.1

The biggest value that the three partials take on in the given region is M = e

0.1, so we have

|E(x, y)|  e

0.1

2
(|x|+ |y|)2  e

0.1

2
(0.1 + 0.1)2 ⇡ 2.2⇥ 10�2

Note that this error bound is larger than the actual error incurred when we approximated f

at the point (0.05, 0.05). This makes sense because this error bound is valid for any point in
the region of interest.



Example 59

Example. Use Taylor’s Theorem to find the linear approximation to f(x, y) = y cos x at
the point (⇡, 0) and use it to approximate f at the point (3.1, 0.15). Find a bound on the
error if the linear approximation is used to approximate f for x in [⇡ � 0.1, ⇡ + 0.1] and y in
[�0.2, 0.2].

For the linearization we need to evaluate f and it’s first partial derivatives at (⇡, 0).

f = y cos x f(⇡, 0) = 0
f

x

= �y sin x f

x

(⇡, 0) = 0
f

y

= cosx f

y

(⇡, 0) = �1

Then the linearization of f at (⇡, 0) is given by

L(x, y) = �y

Evaluating both f and L at (3.1, 0.15) we find

f(3.1, 0.15) = �0.14987... L(3.1, 0.15) = �0.15 and |E(x, y)| = 1.30⇥ 10�4

To find an upper bound on the error we need to bound the second-partial derivatives of f in
the desired region. We have

f

xx

= �y cos x
f

xy

= � sin x
f

yy

= 0

In the region that we care about, we have the following bounds on the second-partial deriva-
tives:

|f
xx

| = |�y cos x|  0.2
|f

xy

| = |� sin x|  |� sin(⇡ + 0.1)| ⇡ 0.1
|f

xx

| = 0.0

So we pick M = 0.2. The error bound for general (x, y) is then

|E(x, y)|  0.2

2
(|x� ⇡|+ |y|)2

Then, plugging in x = ⇡ + 0.1 and y = 0.2 we have the following bound on the error the
linear approximation

|E(x, y)|  0.2

2
(0.1 + 0.2)2 = 9⇥ 10�3

which is greater than the exact error for the approximation at the point (3.1, 0.15).



Example 60

Consider again the function f(x, y) = xe

y near the point (0, 0). Find a bound on the er-
ror if we use the quadratic approximation of f for any x and y satisfying |x|  0.1 and
|y|  0.1.

To find a bound on the quadratic approximation to f we use the cubic remainder term in
the Taylor Polynomial. For a general f we have

E(x, y) = f(x, y)�Q(x, y) =
1

3!
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⇤

Then putting absolute values around everything in the remainder term we get the following
upper bound.

|E(x, y)|  1
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| |x� a|2 |y � b|+ |f
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If M is an upper bound on each of the second partial derivatives in the region of interest
such that |f
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|  M then we have

|E(x, y)|  M
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3!
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To determine the upper bound on the error in the example we need to bound each of the
third partial derivatives in the region of interest. We have

|f
xxx

| = 0
|f

xxy

| = 0
|f

xyy

| = |ey|  e

0.1

|f
yyy

| = |xey|  0.1e0.1

Again we see that the largest value that the third partial derivatives take on on the region is
M = e

0.1. Then, plugging this into the error formula we have

|E(x, y)|  M

3!
(|x� 0|+ |y � 0|)3  e

0.1

3!
(0.1 + 0.1)3 = 1.47⇥ 10�3

This is the worst-case scenario error that can be incurred by using the quadratic approxima-
tion to approximate f in the region of interest.



12.1 Double Integrals over Rectangles

Recall that for functions of a single variable we can use a definite integral to compute the
area under a curve

y

x

a b

�x
2

�x
6

Then approximating the integral over f(x) dx is done by approximating the area of the little
chunks with area f(xk) �xk and summing them up.

SN =
NX

k=1

f(xk) �xk

The definite integral is then defined as the limit as the number of subintervals goes to infinity.

lim
N!1

SN =

Z b

a

f(x) dx

For functions of two variables, we can use an integral to compute the volume under a surface
defined by z = f(x, y). Consider the volume under the surface f(x, y) = 4� x� y in region
R where R = {(x, y) | 0  x  2, 0  y  1}.
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x

y

z

�Ak = �xk�yk

x
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z

Then approximating the volume under the surface over R is done by approximating the
volume of the little chunks with volume f(xk, yk) �xk�yk and summing them up. We have

SN =
NX

k=1

f(xk, yk) �Ak =
NX

k=1

f(xk, yk) �xk�yk

The exact value is obtained by taking the limit as the number of little volume chunks goes
to infinity.

lim
N!1

Sn =

ZZ

R

f(x, y) dA =

ZZ

R

f(x, y) dxdy

Properties of the Double Integral

1.

ZZ

R

k (f(x, y) + g(x, y)) dA = k
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R

f(x, y) dA+ k

ZZ

R

g(x, y) dA

2. If f(x, y) � 0 on R then
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R

f(x, y) dA � 0

3. If f(x, y) � g(x, y) on R then

ZZ

R

f(x, y) dA �
ZZ

R

g(x, y) dA � 0

Example: Find the volume under the function f(x, y) = 4 � x � y over the region R =
[0, 2]⇥ (0, 1).

ZZ

R

4� x� y dA =

ZZ

R

4� x� y dydx =

Z
2

0

✓Z
1

0

4� x� y dy

◆
dx =

Z
2

0

 
4y � xy � y2

2

����
1

0

!
dx =

Z
2

0

✓
7

2
� x

◆
dx =

7

2
x� x2

2

����
2

0

= 7� 2 = 5



Geometric Interpretation

Notice that
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R

f(x, y) dA =
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x=0

A(x) dx with A(x) =
7

2
� x since

Z
1

y=0

4� x� y dy =
7

2
� x

A (x) represents the area of a slice of the volume under the surface at the point x. Then the
volume of a thin slice is A(x) dx. We get the entire volume by summing up all of the slices
using an integral.
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y

z

We’ve now reduced the problem to an integral of a function of a single variable.
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What would happen if we integrated over x first and y second?
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Geometric Interpretation
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Fubini’s Theorem: If f is continuous on a rectangle R = [a, b]⇥ [c, d], then
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f(x, y) dA =

Z b
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f(x, y) dydx =

Z d
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Z b

a

f(x, y) dxdy

Fubini’s Theorem is more generally true as long as f is bounded on R and f is discontinuous
only on a finite number of smooth curves in R.

Example: Find the volume under f(x, y) = (1� x) sin (⇡y) on R = [0, 2]⇥ [0, 1].
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Why would we get zero? Break up R into R
1

and R
2

with R
1

= [0, 1] ⇥ (0, 1) and R
2

=
[1, 2]⇥ [0, 1].

ZZ

R1
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Volume overR
2

is below the z = 0 plane. The small volume elements have volume f(xk, yk) �Ak

with f(xk, yk) < 0 which gives a negative volume!



12.2 Double Integrals over General Regions

Recall that

ZZ

R

f(x, y) dA = lim
N!1

NX

k=1

f(xk, yk) �Ak gave the volume under the surface f

over the region R.

Suppose that f is the constant function f = 1 Then SN =
NX

k=1

�Ak and

lim
N!1

SN =
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R

dA = Area of Region R

OK, this is kinda boring if R is a rectangle. What if R is more complicated:

f(x)

g(x)

a b
x

y

Think about integrating f = 1 with order dydx and remember the area slices we used to
compute the volume under a surface.
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The area of this slice is then A(x) = 1 · (g(x)� f(x)).

So
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Example: Find the area of the region bounded by the curves y = x+ 2 and y = x2.

It’s always a good idea to draw a picture for these problems.
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Example: Find the area of the region bounded by the x-axis, y = 3� x, and y = 3� 3x.

1 3
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y

y = 3� x

y = 3� 3x

Solving for x in terms of y we have x = 3� y and x = 1� y

3
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A =

Z
3

0

Z
3�y

1�y/3

dxdy =

Z
3

0

2� 2y

3
dy = 2y � y2

3

����
3

0

= 6� 3 = 3



Could we have done the first example in the order dxdy?

Example: If we integrate with respect first we have to break R into two regions.

�1 2 x

y

R
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R
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x =
p
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y

x = y � 2
(2, 4)

(�1, 1)
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In general you should choose the order of integration that is easiest (usually the one that
requires only one integral). Sometimes though, switching the order of integration makes the
integral easier (or possible) to do.

Switching the Order of Integration

Example: Evaluate

Z
4

0

Z
2

p
x

1

y3 + 1
dydx

It is not obvious how to evaluate the inner integral with respect to y, but maybe if we
switch the order of integration something nice will happen. In order to switch the order of
integration we need to figure out the correct bounds on the integral. First we need to figure
out what region we’re actually intgrating over. Since y goes from y =

p
x to y = 2 we plot

these two functions



2

4
x

y

y =
p
x , x = y2

y = 2

x = 0

(2, 4)

Since we’re going to integrate with respect to x first we draw horizontal lines in the region.
Since each line starts on the function x = 0 and ends on the function x = y2, these define the
limits of integration for dx. Then, we have 0  y  2 for the whole region. We then have

Z
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Z y2

0

1

y3 + 1
dxdy =

Z
2

0

x

y3 + 1

����
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0

dy =

Z
2

0

y2

y3 + 1
dy

Switching the order of integration led to an integral that we can actually compute using
u-substitution. We have

u = y3 + 1
du = 3y2 dy

) y2dy =
1

3
du ) y = 0 ) u = 1

y = 2 ) u = 9

) 1

3

Z
9

1

1

u
du =

1

3
(ln 9� ln 1) =

ln 9

3
= ln 3

Volume Under and Between Surfaces

In the previous examples we integrated the constant function f = 1 over the region R to
compute the area of R. Of course what we’re really doing is computing the volume under
the function f = 1, because in this case the volume under the function and the area of R
are the same. If we want to compute the volume under some nonconstant function f over
the region R we setup the problem in exactly the same way, but instead of having 1 as the
integrand we have f(x, y).

Example: Find the volume under f(x, y) = xy over the region R defined by the triangle
with vertices (1, 1) , (2, 1) , and (1, 2).

Drawing the region R in the xy-plane we have
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1 2
x

y

y = 3� x , x = 3� y

y = 1
(1, 1) (2, 1)

(1, 2)

We then have
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Example: Find the volume under f(x, y) = 2xy over the triangular region with vertices
(0, 0) , (1, 2) , and (0, 3).

First we draw the picture.

1 x

y

y = 3� x

y = 2x
(0, 0)

(1, 2)

(0, 3)

It is clear from the picture that we want to integrate w.r.t. y first. If we integrated w.r.t. x
first we would have break R up into two di↵erent regions and compute two di↵erent integrals.
We then have
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Z
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Example: Find the volume between the planes z = 8� 2x� 2y and z = 4� x� y over the
previously defined triangular region.

x

y

z

To find the volume between the two regions we want to integrate the di↵erence between the
top function and the bottom function. But, first we need to check that the top function
is always the top function and the bottom function is always the bottom function over the
region of integration. If we don’t check this and the two surfaces cross, we will get areas with
positive volume and areas with negative volume and they will cancel each other out.

The line of intersection of the two surfaces is given by

8� 2x� 2y = 4� x� y ) y = 4� x

Plotting this with the region of integration we have

1 4 x

y

We can see from the picture that the region R does not contain the line of intersection, so
the functions don’t switch top and bottom within R. We have



V =

Z
1

0

Z
3�x

2x

[(8� 2x� 2y)� (4� x� y)] dydx =

Z
1

0

Z
3�x

2x

4�x�y dydx =

Z
1

0

4y � xy � y2

2

����
3�x

2x

dx

=

Z
1

0

"
4 (3� x)� x (3� x)� (3� x)2

2

#
�
"
4 (2x)� x (2x)� (2x)2

2

#
dx =

=
3

2

Z
1

0

3x2 � 8x+ 5 dx =
3

2
(1� 4 + 5) = 2



12.3 Double Integral in Polar Coordinates

Polar Coordinates

x

y

(x, y) or (r, ✓)

r
y

x
✓

The transformations between cartesian coordinates and polar coordinates are given by

x = r cos ✓ y = r sin ✓ x2 + y2 = r2
y

x
= tan ✓

Example: Write down the equation for a circle of radius a centered at the origin in polar
coordinates.

x2 + y2 = a2 , r = a

Example: Write down the equation for the horizontal line y = 5 in polar coordinates

y = 5 , r sin ✓ = 5

Sometimes regions of integration are more simply expressed in polar coordinates.

x

y

✓ = ⇡/4

3



In rectangular coordinates the simplest shape is a rectangle. In polar coordinates the simplest
shape is a polar rectangle:

R : 0  r  3, 0  ✓  ⇡/4

In rectangular coordinates we divided the region into little rectangular area elements.

x

y

�Ak = �xk�yk

Then the integral representing the volume under a surface f(x, y) is approximated by the
sum of little pillars with height f(xk, yk) and base area �Ak:

SN =
NX

k=1

f(xk, yk) �Ak

In polar coordinates we divide the region into tiny polar rectangles.

x

y

�Ak

So what does the small area element �Ak look like in polar coordinates?

�rk

�✓k

rk

We have



�Ak = Area of big circle sector� Area of small circle sector

The area of a sector of a circle is given by A = ⇡r2
�✓

2⇡
=

1

2
r2�✓. Then

�Ak = Area of big circle sector� Area of small circle sector

=
1

2

✓
rk +

�r

2

◆
2

�✓ � 1

2

✓
rk �

�r

2

◆
2

�✓

= rk�r�✓

Then the volume under a surface f and above the polar rectangle �Ak is approximated by

f(rk, ✓k)�Ak = f(rk, ✓k) rk�rk�✓k

The total volume under the surface f over the region R is then approximated by

SN =
NX

k=1

f(rk, ✓k) rk�rk�✓k

The exact volume under the surface is obtained by taking the limit as the number of little
polar area pieces goes to infinity:

lim
N!1

SN =

ZZ

R

f(r cos ✓, r sin ✓) dA =

ZZ
f(r cos ✓, r sin ✓) rdrd✓

Example: Use a double integral to find the area of one fourth of a circle with radius 3.

x

y

3

A =

ZZ
dA =

Z ⇡/2

0

Z
3

0

rdrd✓ =

Z ⇡/2

0

r2

2

�����

3

0

d✓ =

Z ⇡/2

0

9

2
d✓ =

9⇡

4



What if the region is more complicated?

Example: Setup an integral to integrate arbitrary function f(r, ✓) over R where R is the
region in the first quadrant bounded by the y-axis, a circle of radius 2, and the line y =

p
2.

x

y

2

p
2

�p
2,
p
2)
�

If we decide to integrate in the order dr d✓ then we draw r-lines obtained by holding ✓ fixed
and drawing lines with varying radius. We then ask, on which function do the lines enter the
region and on which function do they leave. From the picture we can clearly see that they
enter at y =

p
2 and leave through the circle. This means that we will limits of integration

on the r integral will be

⇣
y =

p
2
⌘
 r 

�
x2 + y2 = 4

�
,

p
2 csc ✓  r  2

To find the limits of integration on ✓ we ask what the smallest and largest values of ✓ are in
the region. Then we find that

⇡

4
 ✓  ⇡

2

The desired integral is then

Z ⇡/2

⇡/4

Z
2

p
2 csc ✓

f(r, ✓) rdrd✓

We could have course chosen to integrate in the order d✓dr. In that case we do the same
process but to figure out the limits of integration on ✓ we draw ✓ � lines, which are curves
obtained by fixing r and letting ✓ vary.



x

y

2

p
2

�p
2,
p
2)
�

Now we ask what function do the ✓-lines start and end on. We find

⇣
y =

p
2
⌘
 ✓  ⇡

2
, arcsin

⇣p
2/r

⌘
 ✓  ⇡

2

Then we find the smallest and largest value of r in the region of integration. We have

p
2  r  2

Then the integral in the d✓dr order is given by

Z
2

p
2

Z ⇡/2

arcsin(
p
2/r)

f(r, ✓) rd✓dr

Example: Setup the integral to compute the area of the region in the first quadrant between
the circle with radius 1 and the cardiod r = 1 + sin ✓.

x

y



We notice that each r-line enters on the circle and exits on the cardiod. So we have

1  r  1 + sin ✓ and 0  ✓  ⇡

2
) A =

Z ⇡/2

0

Z
1+sin ✓

1

rdrd✓

Converting Cartesian Integrals to Polar Integrals

Suppose we have a double integral expressed in terms of Cartesian coordinates. If the region
of integration is such that it would be easier to do in polar coordinates, it is straightforward
to convert from x’s and y’s to r’s and ✓’s.

1. Use the bounds on the cartesian integral to draw a picture of the region of integration.

2. Determine limits of integration for the region in terms of polar coordinates.

3. Substitute x = r cos ✓ and y = r sin ✓ and dxdy = rdrd✓.

Example: Compute

Z
1

�1

Z p
1�y2

�
p

1�y2

�
x2 + y2

�
dxdy

First we determine the region of integration from the limits. Since we’re integrating in the
order dxdy we see that

�
p

1� y2  x 
p

1� y2

The bounds on x are the left and right halfs of the circle centered at the origin with radius
1. Since y is bounded by �1 and 1 we know that the region is the entire circle. So we have

x

y

Then the limits of integration are simply

0  r  1 and 0  ✓  2⇡



Converting the integrand we have x2 + y2 = r2. So

Z
1

�1

Z p
1�y2

�
p

1�y2

�
x2 + y2

�
dxdy =

Z
2⇡

0

Z
1

0

�
r2
�
r drd✓

=

Z
2⇡

0

Z
1

0

�
r3
�
drd✓ =

Z
2⇡

0

r4

4

�
1

0

d✓ =

Z
2⇡

0

1

4
d✓ =

⇡

2

Example: Compute

Z
6

0

Z y

0

x dxdy using polar coordinates.

The region of integration is the triangle bounded by the y-axis, the line y = 6, and the line
x = y.

x

y

(6, 6)

Drawing several r-lines we see that they all start at r = 0 and stop on the line y = 6. So we
have

0  r  (y = 6) ) 0  r  (r sin ✓ = 6) ) 0  r  6 csc ✓

The smallest value of ✓ that occurs in the region is ⇡/4 and the largest is ⇡/2. Converting
the integrand to polar coordinates we then have

Z ⇡/2

⇡/4

Z
6 csc ✓

0

(r cos ✓) r drd✓ =

Z ⇡/2

⇡/4

Z
6 csc ✓

0

�
r2 cos ✓

�
drd✓ =

Z ⇡/2

⇡/4

cos ✓
r3

3

#
6 csc ✓

0

d✓

= 72

Z ⇡/2

⇡/4

cos ✓

sin3 ✓
d✓ ) (u = sin ✓ ) du = cos ✓d✓) ) 72

Z
1

p
2/2

1

u3

du

= �36


1

u2

�
1

p
2/2

= �36 (1� 2) = 36



What if we want to integrate in the order d✓dr?

x

y

R
1

R
2

We need to set up integrals for each of the regions R
1

and R
2

separately.

Region 1: We have

R
1

:

Z
6

0

Z ⇡/2

⇡/4

(r cos ✓) r d✓dr =

Z
6

0

Z ⇡/2

⇡/4

r2 cos ✓ drd✓ =

Z
6

0

r2 sin ✓

�⇡/2

⇡/4

d✓dr =

Z
6

0

r2

 
1�

p
2

2

!
dr =

 
1�

p
2

2

!
r3

3

#
6

0

= 36
⇣
2�

p
2
⌘

Region 2: We have

R
2

:

Z
6

p
2

6

Z
arcsin(6/r)

⇡/4

r2 cos ✓ d✓dr =

Z
6

p
2

6

r2 sin ✓

#
arcsin(6/4)

⇡/4

dr =

Z
6

p
2

6

r2

 
6

r
�

p
2

2

!
dr =

Z
6

p
2

6

6r � r2
p
2

2
dr = 3r2 � r3

p
2

6

#
6

p
2

6

= 36
⇣p

2� 1
⌘

Then

Area R = Area R
1

+Area R
2

= 36
⇣
2�

p
2
⌘
+ 36

⇣p
2� 1

⌘
= 36



12.4 Applications of Double Integrals

Average Value of a Function

Recall that for function y = f(x), the average value of f over the interval (a, b) can be
computed by

favg =
1

b� a

Z b

a

f(x) dx

This concept is easily extended to functions f(x, y) over a region R. We have

favg =
1

Area of R

ZZ

R

f(x, y) dA =

RR
R
f(x, y) dARR

R
dA

Mass

Suppose that some thin material is described by the region R in the xy-plane and its density
is described by ⇢(x, y). Then we can compute the mass of the object by integrating over the
density:

M =

ZZ

R

⇢(x, y) dA

This should make intuitive sense because the integrand together with the small area unit is

⇢(x, y) dA ⇡ ⇢(xk, yk)�Ak.

So when taking the double integral we’re summing up the masses of all the little area elements
in R.

Example: Find the mass of the thin plate bounded by the y-axis and the lines y = x and
y = 2� x with density ⇢(x, y) = 6x+ 3y + 3.

Solution: First we draw a picture of the plate

x

y

2

(1, 1)

y = 2� x

y = x



To calculate the mass M of the plate we integrate ⇢(x, y) = 6x + 3y + 3 over the triangular
region

M =

Z
1

0

Z
2�x

x

6x+ 3y + 3 dydx

=

Z
1

0

6xy +
3

2
y2 + 3y

�
2�x

x

dx

=

Z
1

0

12� 12x2 dx

= 12x� 4x3

⇤
1

0

= 12� 4

= 8

Moments

For functions and domains of a single variable (think about a metal rod) we compute moments
in the following way

m
1

g

x
1

m
2

g

x
2

m
3

g

x
3

Summing up the torques from the point masses we have

Sum of Torques = (m
1

x
1

g +m
2

x
2

g +m
3

x
3

g) = g (m
1

x
1

+m
2

x
2

+m
3

x
3

)

The quantity in parentheses is the first moment. Now, if we suppose that the line is a thin
metal rod that has nonconstant density, we can compute the first moment using an integral:

First Moment =

Z b

a

x⇢(x) dx

Extending this argument to two variables is fairly straightforward. In this case we have two
first moments to worry about. One that causes the object to want to rotate about the x-axis,
and one that causes it to want to rotate about the y-axis.



Moment About x-Axis

x

y

y

mass = dA ⇢(x, y)

Then y⇢(x, y) dA is the first moment about the x-axis for just one of the little area units.
To get the first moment of the object we have to sum up these infinitesimal moments using
an integral.

First Moment about x-axis = Mx =

ZZ

R

y⇢(x, y) dA

First Moment about y-axis = My =

ZZ

R

x⇢(x, y) dA

The center of mass of a thin metal plate is the point (x̄, ȳ) such that the moments in the
x-direction and y-direction are zero. One way to think of this is that the x-component of the
center of mass is the line x = x̄ such that My about this point is zero. Then we have

0 =

ZZ

R

(x� x̄) ⇢(x, y) dA ) x̄

ZZ

R

⇢(x, y) dA =

ZZ

R

x⇢(x, y) dA )

x̄M = My ) x̄ =
My

M

Similarly, the y-component of the center of mass is the line y = ȳ such that Mx about this
point is zero. We again have

0 =

ZZ

R

(y � ȳ) ⇢(x, y) dA ) ȳ

ZZ

R

⇢(x, y) dA =

ZZ

R

y⇢(x, y) dA )

ȳM = Mx ) ȳ =
Mx

M

So we have

(x̄, ȳ) =

✓
My

M
,
Mx

M

◆



Example: Find the center of mass of the thin plate bounded by the y-axis and the lines
y = x and y = 2� x with density ⇢(x, y) = 6x+ 3y + 3.

Solution: First we draw a picture of the plate

x

y

2

(1, 1)

y = 2� x

y = x

In order to find the center of mass of the plate we first need to calculate the mass M , and
the first moments Mx and My.

M =

Z
1

0

Z
2�x

x

6x+ 3y + 3 dydx

=

Z
1

0

6xy +
3

2
y2 + 3y

�
2�x

x

dx

=

Z
1

0

12� 12x2 dx

= 12x� 4x3

⇤
1

0

= 12� 4

= 8

Mx =

Z
1

0

Z
2�x

x

y (6x+ 3y + 3) dydx

=

Z
1

0

3xy2 + y3 +
3

2
y2

�
2�x

x

dx

=

Z
1

0

14� 6x� 6x2 � 2x3 dx

= 14x� 3x2 � 2x3 � 1

2
x4

�
1

0

= 14� 3� 2� 1

2

=
17

2



My =

Z
1

0

Z
2�x

x

x (6x+ 3y + 3) dydx

=

Z
1

0

6x2y +
3

2
xy2 + 3xy

�
2�x

x

dx

=

Z
1

0

12x� 12x3 dx

= 6x2 � 3x4

⇤
1

0

= 6� 3

= 3

Then the center of mass is given by

(x̄, ȳ) =

✓
My

M
,
Mx

M

◆
=

✓
3

8
,
17

16

◆

x

y

2

(1, 1)

Moments of Inertia

Moments of inertia, sometimes called second moments, have to do with the amount of torque
that would be necessary to acheive a desired angular acceleration about an axis. Since it
takes more force to get heavy object rotating with a certain angular acceleration the moments
of inertia are kind of mass terms. They are similar to first moments, but instead of using the
distance from the axis of rotation we used the squared distance. We have

Ix =

ZZ

R

y2⇢(x, y) dA and Iy =

ZZ

R

x2⇢(x, y) dA

So Ix and Iy tell us the torque necessary to rotate an object with a particular angular
acceleration about the x- and y-axis, respectively. We can also ask about the torque necessary
to rotate an object about a point. This is called the polar moment of inertia and is given by

I
0

=

ZZ

R

�
x2 + y2

�
⇢(x, y) dA

Notice that I
0

= Ix + Iy.



Example: Find the moments of inertia about the x and y-axes and the origin for the metal
plate in the previous example.

Solution: Ix =

Z Z

R

y2⇢(x, y) dA

=

Z
1

0

Z
2�x

x

y2 (6x+ 3y + 3) dy dx

=

Z
1

0

2xy3 +
3

4
y4 + y3

�
2�x

x

dx

=

Z
1

0

20� 20x+ 4x3 � 4x4 dx

= 20x� 10x2 + x4 � 4

5
x5

�
1

0

dx

= 20� 10 + 1� 4

5

=
51

5

Iy =

Z Z

R

x2⇢(x, y) dA

=

Z
1

0

Z
2�x

x

x2 (6x+ 3y + 3) dy dx

=

Z
1

0

6x3y +
3

2
x2y2 + 3x2y

�
2�x

x

dx

=

Z
1

0

12x2 � 12x4 dx

= 4x3 � 12

5
x5

�
1

0

dx

= 4� 12

5

=
8

5

I
0

=

Z Z

R

�
x2 + y2

�
⇢(x, y) dA

=

Z Z

R

x2⇢(x, y) dA+

Z Z

R

y2⇢(x, y) dA

= Iy + Ix

=
8

5
+

51

5

=
59

5



Radii of Gyration

The radius of gyration is kind of like the ceneter of mass but with second moments instead
of first moments. It tells you that a particle of mass M at distance R away from a given axis
has the same moment of inertia as the plate. The formulas for the radii of gyration are given
by

Rx =

r
Ix
M

Ry =

r
Iy
M

R
0

=

r
I
0

M

Example: Find the moments of inertia and radii of gyration for the thin plate bounded by
the curves x = y � y2 and x+ y = 0 if the density is given by ⇢(x, y) = x+ y.

Solution: The plate looks like the following

x

y

x+ y = 0 x = y � y2

(�2, 2)

Notice that if we integrated in the order dy dx we would have to use two di↵erent integrals
to cover R. Instead we integrade inthe order dx dy. We have

M =

Z
2

0

Z y�y2

�y

x+ y dx dy =
8

15

Ix =

Z
2

0

Z y�y2

�y

y2 (x+ y) dx dy =
64

105

Iy =

Z
2

0

Z y�y2

�y

x2 (x+ y) dx dy =
64

315

I
0

= Ix + Iy =
64

105
+

65

315
=

256

315



Then the radii of gyration are given by

Rx =

r
Ix
M

=

s
64/105

8/15
=

r
8

7

Ry =

r
Iy
M

=

s
64/315

8/15
=

r
8

21

R
0

=

r
I
0

M
=

s
256/315

8/15
=

r
32

21



12.5 Triple Integrals

Let E be some three-dimensional region in space

�x

�y

�z

Let �xk�yk�zk = �Vk be the kth volume element and (xk, yk, zk) be some point in �Vk.
Then we have

lim
N!1

nX

k=1

f (xk, yk, zk) �Vk =

ZZZ

E

f(x, y, z) dV

The simplest region E is the box

E = [a, b]⇥ [c, d]⇥ [r, s] = {(x, y, z) | a  x  b, c  y  d, r  z  s}

Example: Evaluate the following integral

Z
1

0

Z
2

0

Z ⇡

0

xy sin (z) dzdydx = �
Z

1

0

Z
2

0

(xy cos (x) |⇡
0

) dydx

= 2

Z
1

0

Z
2

0

xy dydx = 2

Z
1

0

 
xy2

2

����
2

0

!
dx

= 2

Z
1

0

2x dx = 2x2

��1
0

= 2

Note that the 3D version of Fubini’s Theorem says that as long as f is continuous we’re
allowed to switch the order of integration. So we could have done

Z ⇡

0

Z
1

0

Z
2

0

xy sin (z) dydxdz = 2

What if the region E is more complicated than a box? First let’s notice that

Volume of E =

ZZZ

E

dV

so for simplicity let’s take f(x, y, z) = 1 for now.



x

y

z

R

E

g
1

(x, y)

g
1

(x, y)

To setup the limit of integration with respect to dz first, we draw z-lines similar to the way
we drew x- and y-lines to figure out double integrals. If all of the z-lines enter the region E
at z = g

1

(x, y) and leave through z = g
2

(x, y) then we have

Volume of E =

ZZ

R

Z g2(x,y)

g1(x,y)

dz dA

The region R is the projection of E into the xy-plane. We then determine the region of
integration for R in the usual way. In this case we have

Volume of E =

Z b

a

Z h2(x)

h1(x)

Z g2(x,y)

g1(x,y)

dzdydx

Geometric Interpretation

Volume of E =

ZZ

R

Z g2(x,y)

g1(x,y)

dz dA =

ZZ

R

(g
2

(x, y)� g
1

(x, y)) dA

The integrand [g
2

(x, y)� g
1

(x, y)] dA is the volume of the column with height (g
2

(x, y)� g
1

(x, y))
over the small area element dA. So

ZZ

R

Z g2(x,y)

g1(x,y)

dz dA =

ZZ

R

(g
2

(x, y)� g
1

(x, y)) dA

says fill up E with columns and sum up over R.



Example: Find the volume of the region in the first quadrant bounded by x + y = 4 and
y2 + 4z2 = 16.

First we draw a picture.

x

y

z

First we notice that if we draw lines in the z-direction that they will all enter the region on
the lower surface z = 0 and leave the region on the top surface, which solving for z becomes

z =

r
4� y2

4

We can start setting up the integral with just the z limits in place. We have

ZZ

R

Z q
4� y

2

4

0

dz dA

where R is the 2D region we obtain by projecting the surface onto the xy-plane. The region
R looks like

x

y

x+ y = 4

To determine the x and y-limits in the triple integral based on the projected region R we
can choose to integrate either in the order dx dy or dy dx just as easily. We’ll do dx dy.



Integrating in x we see that all x-lines enter the region at x = 0 and leave at x = 4 � y.
Finally, we see that the smallest value of y in the region is y = 0 and the largest is y = 4.
Plugging this info into the triple integral we have

Z
4

0

Z
4�y

0

Z q
4� y

2

4

0

dz dx dy

Evaluating this integral for the total volume in the region, we have

Z
4

0

Z
4�y

0

Z q
4� y

2

4

0

dz dx dy =

Z
4

0

Z
4�y

0

r
4� y2

4
dx dy

=

Z
4

0

(4� y)

r
4� y2

4
dy

=

Z
4

0

4

r
4� y2

4
dy �

Z
4

0

y

r
4� y2

4
dy

= 8⇡ � 32

3

where here the first integral is evaluated using a trig substitution with y = sin ✓ and the

second with a u-sub with u = 4� y2

4
.

Example: Find the volume of the region E bounded by z = x2 + 3y2 and z = 8� x2 � y2.

The picture below displays the top surface in blue, the bottom surface in black, and the curve
of intersection in red.

x
y

z

We notice that if we draw lines in the z-direction that they will all enter the region on the
lower surface z = x2 + 3y2 and leave the region on the top surface z = 8� x2 � y2. Plugging
these into the integral we have

ZZ

R

Z
8�x2�y2

x2
+3y2

dz dA



where R is the 2D region we obtain by projecting the surface onto the xy-plane. To find
this region we need to project the curve of intersection of the two surfaces into the xy-plane.
Setting the two surfaces equal we have

x2 + 3y2 = 8� x2 � y2 ) x2 + 2y2 = 4

which is an ellipse in the xy-plane.

x

y

2

p
2

If we integrate in the order dy dx then the y limits are defined by

�
r

2� x2

2
 y 

r
2� x2

2

Finally, the smallest x value encountered in the region is �2 and the largest is 2. Plugging
these into the integral we have

Z
2

�2

Z q
2�x

2

2

�
q

2�x

2

2

Z
8�x2�y2

x2
+3y2

dz dy dx

If we evaluate this integral we find that the volume of the region E is 8⇡
p
2.

Example: Find the average value of f(x, y, z) = xyz in the region E in the first octant and
bounded by the planes x = 2, y = 2 and z = 2.

To find the average value of a function we need to compute

favg =

ZZZ

E

xyz dV
ZZZ

E

dV

Since the region E is just a box it’s pretty easy to figure out the limits of integration. We
have



ZZZ

E

xyz dV =

Z
2

0

Z
2

0

Z
2

0

xyz dx dy dz

=

Z
2

0

Z
2

0

x2

2
yz

�
2

0

dy dz

=

Z
2

0

Z
2

0

2yz dy dz

=

Z
2

0

y2z
⇤
2

0

dz

=

Z
2

0

4z dz

= 2z2
⇤
2

0

= 8

Since the integral in the denominator is just the volume of E which is a cube with side lengths
2 we know that

ZZZ

E

dV = 8

which gives favg =
8

8
= 1.

Example: Find the volume of the region E bounded by y = x2 + z2 and y = 4.

The first surface is a poraboloid that opens up along the positive y-axis. The second surface
is the plane through y = 4 that is parallel to the xz-plane. If we decide to integrate in the
order dzdydx then regions E and R looks as follows:

x
y

z

x

y

y = x2

and we have

Z
2

�2

Z
4

x2

Z p
y�x2

�
p

y�x2

dzdydx



If we integrate in the order dydxdz then we have

x2 + z2  y  4

and the projection into the xz-plane looks like

x

z

and the integral becomes

Z
2

�2

Z p
4�z2

�
p
4�z2

Z
4

x2
+z2

dydxdz

Even better, we could convert to polar coordinates for the integral in the xz-plane. Then we
have

Z
2

�2

Z p
4�z2

�
p
4�z2

Z
4

x2
+z2

dydxdz =

Z
2⇡

0

Z
2

0

⇥
4� r2

⇤
rdrd✓

Example: Switch the order of integration in the following integral to dx dz dy.

Z
1

0

Z
1

p
x

Z
1�y

0

f(x, y, z) dz dy dx

To switch the order of integration in a triple integral we need to be able to draw the region
E described by the limits of integration. It’s usually helpful to sketch the bounding surfaces
in the inner-most integral as well as the region R described by the outer two integrals. The
bounding surfaces and the region R look as follows



x

y

z

x

y

z

Combining these two pictures we get the following region E

x

y

z

x

y

z

Since we’re asked to integrate first with respect to x we draw x-lines as shown in blue in the
picture above. From the picture we can see that the x-line enters the region E in the plane
x = 0 and exits on the surface y =

p
x , x = y2. Then the triple integral looks like

ZZ

R

Z y2

0

f(x, y, z) dx dA

where R is the region obtained by projecting out the x-direction onto the yz-plane. This
region looks like

y

z

z = 1� y

Then, from the picture of R we can fill in the limits on y and z. The final integral in the
new order is

Z
1

0

Z
1�y

0

Z y2

0

f(x, y, z) dx dz dy



Triple Integration in Cylindrical Coordinates

Recall that in 2D we can represents points and curves in Polar Coordinates

x

y
r

✓

x = r cos ✓

y = r sin ✓

r2 = x2 + y2

tan ✓ =
y

x

Cylindrical coordinates give us a good way to describe surfaces and curves that are
symmetric about the z-axis. They are essentially polar coordinates with height!

x

y

z

✓

(r, ✓, 0) = (x, y, 0)

(r, ✓, z) = (x, y, z)

r

x = r cos ✓

y = r sin ✓

z = z

Usually we define r � 0 by convention, but this is not strictly necessary.

Example: Describe the surface r = c in cylindrical coordinates where c is a constant.

r = c in the xy-plane is a circle with radius c. Since z does not appear in the equation the
circle in the xy-plane is extended in the z-direction and we get a cylinder. The portion of
the first quadrant looks like the following

x

y

z

c



Example: Describe the surface z = r in cylindrical coordinates.

Note that the level curves of the surface are r = z
0

where z
0

is a constant. These are circles
in the z = z

0

plane with radius z
0

which traces out a cone. If we abide by the convention
that r � 0 then this is a half-cone that lies above the xy-plane. The portion of the cone in
the first quadrant looks like

x

y

z

Integration in Cylindrical Coordinates

A general integral of a function f(x, y, z) over the 3D region E looks like

ZZZ

E

f(x, y, z) dV

where in Cartesian coordinates dV = dx dy dz. We saw in class that the volume element in
Cylindrical coordinates is

dV = r dz dr d✓

Example: Evaulate the following integral using Cylindrical coordinates where the region E
is bounded below by z = x2 + y2 and above by the z = 4 plane.

ZZZ

E

p
x2 + y2 dV

As always, the first step is to draw a picture. The lower bounding surface is a paraboloid
that can be written in cylindrical coords as z = x2 + y2 = r2. The top surface is just a plane
parallel to the xy-plane at height 4 on the z-axis.



x

y

z

If we draw z-lines we note that they all enter the region E first through the paraboloid, and
leave through the plane z = 4. Thus we can carry out the triple integral in the order dz dr d✓,
and the z-limits of the integral look like

ZZ

R

Z
4

r2

p
x2 + y2 dz dA

where the region R is the projection of the surface into the xy-plane. Since the curve of
intersection of the two surfaces is a circle with radius 2, the region R looks like

x

y

2

We can now setup the outer limits of the triple integral. The radius ranges from 0 to 2 and
the angle ✓ from 0 to 2⇡. We then have

Z
2⇡

0

Z
2

0

Z
4

r2

p
x2 + y2 r dz dr d✓



The last step is to write the integrand in polar coordinates. We have
p
x2 + y2 = r. So the

final integral is

Z
2⇡

0

Z
2

0

Z
4

r2
r2 dz dr d✓ =

128⇡

15

Example: Find the volume of the solid E bounded on the outside by the cylinder x2+y2 = 1,
above by z = 4 and below by z = 1� x2 � y2.

The region is inside a cylinder of radius 1, below the plane z = 4, and above the upsidedown
parabaloid z = 1�x2�y2. On the left I’ve drawn the region here in the first quadrant because
it’s easier to see, but keep in mind we’re finding the volume of E in the whole domain. On
the right I’ve drawn the projection of E onto the xy-plane.

x

y

z

x

y

1

If we draw z-lines for the region E we see that each line enters the region on the paraboloid
on the bottom and leaves through the plane on the top. Note that in cylindrical coordinates,
the paraboloid is given by

z = 1� x2 � y2 = 1� r2

Setting up the r and ✓ limits based on the region R, which is a unit circle, we have

Z
2⇡

0

Z
1

0

Z
4

1�r2
r dz dr d✓ =

7⇡

2



Example: Evaluate

Z
2

�2

Z p
4�x2

�
p
4�x2

Z
2

p
x2

+y2

�
x2 + y2

�
dz dy dx

Clearly, there are too many square-roots in this integral to do it in Cartesian coordinates.
But, there are enough things involved that look like circles that we should consider converting
to cylindrical coordinates. Since we’re integrating with respect to z first, the limits on the
inner-most integral tell us that z starts on the surface z =

p
x2 + y2 and stops on the plane

z = 2. The bottom surface is the cone z =
p
x2 + y2 = r.

The projection of the region into the xy-plane is defined by the outer two integrals. The
middle integral with respect to y indicates that y starts on the bottom of the circle or a
radius 2, defined by y =

p
4� x2, and stops on the top of the same circle. Since x ranges

from �2 to 2 we know that it is the entire circle.

Thus, the region E (showing only the portion in the first quadrant) and the region R look
as follows

x
y

z

x

y

2

We now have a good idea of the limits of integration. The last step is to convert the integrand
into cylindrical coordinates . We have

x2 + y2 = r2

The integral in cylindrical coordinates is then

Z
2⇡

0

Z
2

0

Z
2

r

r2 r dz dr d✓ =

Z
2⇡

0

Z
2

0

Z
2

r

r3 dz dr d✓ =
16⇡

5



Triple Integration in Spherical Coordinates

Spherical Coordinates give us a good way to describe surfaces and curves that are sym-
metric about the origin.

x

y

z

✓

�

(x, y, 0)

⇢

(⇢, ✓,�) = (x, y, z)

r

x = ⇢ sin� cos ✓

y = ⇢ sin� sin ✓

z = ⇢ cos�

x2 + y2 + z2 = ⇢2

Usually we define ⇢ � 0 and 0  �  ⇡ by convention, but this is not strictly necessary.

Example: Describe the surface ⇢ = c where c is a constant.

The surface is defined by the fact that each point is exactly c units from the origin, which
defines a sphere of radius c.

Example: Describe the surface ✓ = c where c is a constant.

The surface ✓ = c contains all points where the points projection into the xy-plane makes an
angle of c from the x-axis. This traces out a half plane which looks like

x

y

z

✓



Example: Describe the surface � = c where c is a constant.

The surface � = c is a cone. Whether the cone opens upwards or downwards depends on if
0  c  ⇡

2

or ⇡
2

 c  ⇡. Two examples of the surface shown in the first quadrant are below

x

y

z

x

y

z

Volume Element: In spherical coordinates we have dV = ⇢2 sin� d⇢ d✓ d�.

Example: Let E be the unit sphere E = {(x, y, z) | x2 + y2 + z2  1} and compute the
integral

ZZZ

E

e(x
2
+y2+z2)

3/2

dV

Since the region E is a sphere, it’s pretty easy to set up the limits of integration. A sphere
is the analogue of the box in Cartesian coordinates in the sense that the limits of integration
will all be consant. For a sphere of radius 1 we have

0  ⇢  1 0  ✓  2⇡ 0  �  ⇡

Next we need to convert the integrand into spherical coordinates. We have

e(x
2
+y2+z2)

3/2

= e(⇢
2)

3/2

= e⇢
3

Inserting the appropriate limits of integration, integrand, and volume element in spherical
coordinates we have

Z ⇡

0

Z
2⇡

0

Z
1

0

e⇢
3
⇢2 sin� d⇢ d✓ d� =

4⇡ (e� 1)

3



Example: Use spherical coordinates to find the volume of the ice cream cone bounded below
by z =

p
x2 + y2 (the cone) and above by the sphere x2 + y2 + z2 = z (the ice cream).

As always, the first thing we want to do is draw a picture. But first we need to get a better
handle on the sphere that makes the ice cream. Completing the square we have

x2 + y2 + z2 = z , x2 + y2 +

✓
z � 1

2

◆
2

=
1

4

so the ice cream is a sphere of radius 1/2 centered at the point (0, 0, 1/2). Now we can draw
the picture. When we’re certain that the region of integration is symmetric about the z-axis,
it is often helpful to draw the picture in what we call the zr-plane, where the r axis is any
line starting at the origin and laying completely in the xy-plane. The entire region can then
be visualized by revolving the cross-section about the z-axis.

r

z

To get a better idea of the intersection points of the two surfaces, let’s convert them to
spherical coordinates. We have

Cone : z =
p

x2 + y2 , z = r , ⇢ sin� = ⇢ cos� , � =
⇡

4

Sphere : z = x2 + y2 + z2 , ⇢ cos� = ⇢2 , cos� = ⇢

Suppose we want to integrate over the region E in the order d⇢ d� d✓. To determine the
limits for ⇢ we can draw ⇢-lines, or lines on which ✓ and � are held fixed and ⇢ is allowed to
vary. Several such lines are shown in the rz-plane below.

r

z

We can see that each of the ⇢-lines start at ⇢ = 0 and stop at the sphere defined by ⇢ = cos�.
To determine the limits on � we notice that the smallest value � takes on in the region is 0



and the largest is ⇡/4. Since the ice cream cone goes all the way around the z-axis we must
have 0  ✓  2⇡. We can then compute the volume via the following integral

Z
2⇡

0

Z ⇡/4

0

Z
cos�

0

⇢2 sin� d⇢ d� d✓ =
⇡

8

Example: Convert the following integral to spherical coordinates:

Z
2⇡

0

Z p
3/4

0

Z p
1�r2

1/2

r dz dr d✓

We begin by figuring out exactly what the region of integration is. Let’s look at the limits
of integraton in order.

z: Starts at z =
1

2
plane, stops at z =

p
1� r2 ) z2 + r2 = 1 ) ⇢ = 1

r: Starts at r = 0, stops at r =
q

3

4

. Note z = 1

2

) 1

4

+ r2 = 1 ) r2 = 3

4

✓: 1 full revolution

r

z

1

2

Now let’s set up the integral in sphereical coordinates using the order d⇢ d� d✓. If we draw
⇢-lines we get the following picture

r

z

1

2

From the picture you can see that ⇢ starts on the plane z = 1

2

and stops on the sphere ⇢ = 1.
Converting the plane to spherical coordinates we have



z =
1

2
, ⇢ cos� =

1

2
, ⇢ =

sec�

2

So the bounds on ⇢ are:
sec�

2
 ⇢  1.

The smallest value of � is � = 0 and the largest is � = tan�1

 p
3/4

1/2

!
= tan�1

�p
3
�
.

Since the region is one full revolution around the z-axis, we have 0  ✓  2⇡.

Then the integral that gives us the volume of the region is

Z
2⇡

0

Z
tan

�1(
p
3)

0

Z
1

sec�

2

⇢2 sin� d⇢ d� d✓

Example: Setup the previous integral in the order d� d⇢ d✓.

To determine the limits of integration with respsect to � we need to draw �-lines on our
figure. �-lines are curves that hold ⇢ and ✓ fixed and allowed � to vary.

r

z

1

2

From the picture we can see that � always starts at � = 0 and ends on the plane z =
1

2
. To

set up the limits of integration we need to write the plane in terms of �

z =
1

2
, ⇢ cos� =

1

2
, � = cos�1

✓
1

2⇢

◆

The smallest value of ⇢ in the region is ⇢ =
1

2
and the largest is ⇢ = 1.

And again ✓ goes from 0 to 2⇡. We then have

Z
2⇡

0

Z
1

1/2

Z
cos

�1( 1
2⇢)

0

⇢2 sin� d� d⇢ d✓



Example: Convert the following integral from cylindrical coordinates to spherical coordi-
nates

Z
2⇡

0

Z
2

0

Z
4

2

r dz dr d✓ +

Z
2⇡

0

Z
4

2

Z
4

r

r dz dr d✓

Let’s draw seperate pictures for each integral and then combine them. Since 0  ✓  2⇡
we know that the region makes one full revolution about the z-axis. As such, it’s enough to
draw the pictures in the rz-plane. These regions look as follows:

r

z

2

4

2
r

z

2

4

2 4

Combining these two regions we get

r

z

2

4

2 4

(z = 2)  ⇢  (z = 4) , 2 sec�  ⇢  4 sec�

0  �  ⇡

4
0  ✓  2⇡

So we have

Z
2⇡

0

Z ⇡

4

0

Z
4 sec�

2 sec�

⇢2 sin� d� d⇢ d✓ =
56⇡

3



12.8 Change of Variables in Multiple Integrals – Examples

Example: Evaluate
RR

R
xy dA where R is the region in the first quadrant bounded by the

curves y = x, y = 3x, xy = 1, and xy = 3.

First we draw a picture of the region R.

y

x

y = x

y = 3x

xy = 1

xy = 3

1
p
3

At the very least we would need to break the region into two to compute the integral. Let’s
see what happens under a change of variables.

Notice that if we let u = xy then the hyperbolas will turn into straight lines in the new
coordinate system. Then, if we let v = y then the straight lines will turn into porabolas. So
we have

u = xy
v = y

, x =
u

v
y = v

To figure out the region of integration S in the new coordinate system we convert each of
the boundaries of R into curves in terms of u and v. We have

R S
xy = 1 u = 1
xy = 3 u = 3
y = x u = v2

y = 3x u = v2/3

The region S looks like



v

u

v =
p
u

v =
p
3u

u = 1

u = 3

1 3

The Jacobian of the transformation is given by

@ (x, y)

@ (u, v)
=

����
1/v �u/v2

0 1

���� =
1

v

Then

ZZ

R

xy dA =

ZZ

S

u

����
1

v

���� dvdu =

ZZ

S

u

v
dvdu =

Z
3

1

Z p
3u

p
u

u

v
dvdu

=

Z
3

1

u ln
⇣p

3u
⌘
� u ln

�p
u
�
du =

Z
3

1

u

2
ln

✓
3u

u

◆
du =

ln(3)

2

Z
3

1

u du

=
ln(3)

2

u2

2

�
3

1

=
ln(3)

4
(9� 1) = 2 ln(3)



Example: Evaluate

ZZ

R

cos

✓
y � x

y + x

◆
dA where R is the trapezoid in the first quadrant with

vertices (1, 0), (2, 0), (0, 1) and (0, 2).

First we draw a picture of the region R.

y

x

1 2

1

2

x+ y = 2

x+ y = 1

x = 0

y = 0

R

We have to look at a couple of options for the change of variables. It’s tempting to try to
choose a transformation that would map the trapezoidal region R into a rectangular region
in the uv-plane (u = x + y and v = y would do this). But, the bigger problem is that we
don’t know the anti-derivative of the integrand. To this end, we choose a transfomation that
makes the anti-derivative easier to find. In this case that transformation is

u = y + x and v = y � x.

We need to solve for the reverse transformation which gives x and y in terms of u and v. To
do this, we add the two transformations together and solve for y, and then subtract the two
equations and solve for x:

u+ v = 2y ) y =
u+ v

2
u� v = 2x ) x =

u� v

2

To get the image region S in the uv-plane we transform each of the boundaries of R:

R Boundaries S Boundaries
x+ y = 2 u = 2
x+ y = 1 u = 1
x = 0 u = v
y = 0 u = �v



The the regions S looks like

v

u

1

2

�1

�2

u = 1 u = 2

u = v

u = �v

S

OK, so the new region is not quite a rectangle, but at least it will take only one integral to
evaluate.

The Jacobian of the transformation is given by

@ (x, y)

@ (u, v)
=

����
1/2 �1/2
1/2 1/2

���� =
1

2

Then

ZZ

R

cos

✓
y � x

y + x

◆
dA =

ZZ

S

cos
⇣v
u

⌘ ����
1

2

���� dvdu =
1

2

Z
2

1

Z u

�u

cos
⇣v
u

⌘
dvdu

1

2

Z
2

1

u sin
⇣v
u

⌘ iu
�u

du =
1

2

Z
2

1

u (sin (1)� sin (�1)) du = sin (1)

Z
2

1

u du =
3

2
sin (1)



Example: Compute the volume of the general ellipsoid described by

x2

a2
+

y2

b2
+

z2

c2
= 1

OK, this would kinda suck even in cylindrical or spherical coordinates. But with a change of
variables it’s a cinch! Consider the change of variables

x = au
y = bv
z = cw

) u2 + v2 + w2 = 1

Then

Volume =

ZZZ

E

dV =

ZZZ

S

����
@(x, y, z)

@(u, v, w)

���� dudvdw

Where

����
@(x, y, z)

@(u, v, w)

���� =

������

a 0 0
0 b 0
0 0 c

������
= abc

Then

Volume =

ZZZ

E

dV = abc

ZZZ

S

dudvdw = abc (Volume of Sphere with Radius 1) =
4

3
⇡abc

Example: Compute the volume of the intersection of the surfaces x2 + y2 + z2 = 1 and
x2 + y2 + z2 = 2z.

The first surface is clearly a sphere of radius 1 centered at the origin. The second surface is
also a sphere. To see this we put all the terms on one side and complete the square:

x2 + y2 + z2 = 2z ) x2 + y2 + z2 � 2z = 0 ) x2 + y2 + (z � 1)2 = 1

So the second surface is a sphere of radius one centered at the point (0, 0, 1). Since both
surfaces are symmetric about the z-axis, we sketch their intersection in the rz-plane:



r

z

Since the resulting solid is symmetric about the z-axis it actually makes more sense to
integrate using cylindrical coordinates. The two surfaces in cylindrical coords are given by

x2 + y2 + z2 = 1 , r2 + z2 = 1 and x2 + y2 + (z � 1)2 = 1 , r2 + (z � 1)2 = 1

Integrating first with respect to z we have

V =

ZZZ

E

dV =

ZZ

R

Z p
1�r2

1�
p
1�r2

dz dA

where the region R is the projection of E into the xy-plane. To find R we need to find the
projection of the curve of intersection in the xy-plane. Since we’ve argued that the solid is
symmetric about the z-axis, we can instead find the points of intersection of the two curves
in the rz-plane and revolve them about the z-axis. We have

r2 = 1� z2 ) 1� z2 + (z � 1)2 = 1 ) �z2 + z2 � 2z + 1 = 0 z =
1

2

Substituting this into the first equation we have

r2 = 1� 1

4
) r = ±

p
3

2

So the projection of E into the xy-plane is a cricle of radius
p
3/2. Setting up the limits of

integration for the circle we have

V =

ZZZ

E

dV =

Z
2⇡

0

Z p
3/2

0

Z p
1�r2

1�
p
1�r2

rdzdrd✓



=

Z
2⇡

0

Z p
3/2

0

h
2r
p
1� r2 � r

i
drd✓ =

Z
2⇡

0

Z
1

1/4

p
u dud✓ �

Z
2⇡

0

Z p
3/2

0

r drd✓

=

Z
2⇡

0

2

3
u3/2

�
1

1/4

d✓ �
Z

2⇡

0

r2

2

�p
3/2

0

d✓ =
2

3

Z
2⇡

0

✓
1� 1

8

◆
d✓ � 3

8

Z
2⇡

0

d✓ =
2

3

1

8
2⇡

✓
2

3

◆✓
7

8

◆
2⇡ �

✓
3

8

◆
2⇡ =

5⇡

12



Standard Problem 1: Consider the surface described by

�
x2 + y2 + z2 + A2 � a2

�
2

= 4A2

�
x2 + y2

�
where A > a

(a) Using cylindrical coordinates, find a simple equation for the cross-section of the surface
in the rz-plane (that is, an arbitrary plane of constant ✓) and sketch the cross-section.

(b) Using the result of (a), find an equation in cylindrical coordinates for the cross-section
(or cross-sections) of the surface in the xy-plane and sketch the cross-section.

(c) Using the result of (a) and (b) identify the surface.

(d) Using a triple integral in cylindrical coordinates, find the volume inside the surface.

(a) First we need to get a better handle on just what this thing is, which is a little easier in
cylindrical coordinates. We have

�
r2 + z2 + A2 � a2

�
2

= 4A2r2

Taking square roots of both sides we have

�
r2 + z2 + A2 � a2

�
2

= 4A2r2 ) r2 + z2 + A2 � a2 = 2Ar

r2 + z2 + A2 � a2 = 2Ar ) r2 � 2Ar + A2 + z2 = a2 ) (r � A)2 + z2 = a2

This is a circle of radius a centered at the point (A, 0) in the rz-plane.

r

z

(b) Let’s look at cross-sections of the surface in the xy-plane by setting z = 0:

(r � A)2 = a2 ) r = A± a

So the cross-sections in the xy-plane are circles of radii A+ a and A� a:



x

y

(c) It should be clear now that the surface described by the given equation is a torus where
A is the radius of the big circle and a is the radius of the little cross-sectional circles.

(d) We can compute the volume of the torus directly in cylindrical coordinates. Integrating
with respect to z first we see that the cross-section in the rz-plane is bounded by the top
and bottom halfs of the little circle, described by

z = ±
q

a2 � (r � A)2

Then r goes from A� a to A+ a. We then have

V =

Z
2⇡

0

Z A+a

A�a

Z p
a2�(r�A)

2

�
p

a2�(r�A)

2
r dzdrd✓ = 2

Z
2⇡

0

Z A+a

A�a

r

q
a2 � (r � A)2 drd✓

Using the substitution (r � A) = a cos t we have dr = �a sin t dt which gives

V = 2

Z
2⇡

0

Z
0

⇡

(A+ a cos t)
p

a2 (1� cos2 t) (�a sin t) dtd✓

= 2

Z
2⇡

0

Z ⇡

0

(A+ a cos t)
p

a2 (1� cos2 t) (a sin t) dtd✓

= 2

Z
2⇡

0

Z ⇡

0

�
Aa2 sin2 t+ a3 cos t sin2 t

�
dtd✓

= 2

Z
2⇡

0

Z ⇡

0

Aa2 sin2 t dtd✓ + 2

Z
2⇡

0

Z ⇡

0

a3 cos t sin2 t dtd✓

= 4⇡Aa2
t

2
� sin (2t)

4

����
⇡

0

= 2⇡2Aa2

Note that the second integral is zero because cos t sin2 t is odd about t = ⇡
2

on [0, ⇡].



Standard Problem 2

(a) Consider an arbitrary region R with area A in the rz-plane. The location of the r-
component of the center of mass is given by

r̄ =

RR
R
r dr dzRR

R
dr dz

=
1

A

ZZ

R

r dr dz

Then notice that we can write

Ar̄ =

ZZ

R

r dr dz

which will be useful later.

(b) The volume of revolution in cylindrical coordinates is given by

V =

ZZ

R

Z
2⇡

0

r d✓ dr dz

(c) Since the integrand does not depend on ✓, we have

V = 2⇡

ZZ

R

r dr dz

Now using the result from part (a) we have

V = 2⇡Ar̄

which is Pappus’ Theorem for volumes of revolution.

(d) We now want to use this result to determine the volume of a cone with height H and
radius R. We have

V = 2⇡

Z R

0

Z H�(H/R)r

0

rdzdr = 2⇡

Z R

0

✓
Hr � H

R
r2
◆

dr

= 2⇡

 
H
r2

2
� H

R

r3

3

����
R

0

!
=

4

3
⇡R2

which is what we expect for the volume of a cone.



(e) Now we verify the result of the theorem using a sphere of radius R. For simplicity, we
will only consider the sphere for z > 0 and multiply by 2 to get the total volume. We
have

V = 2 (2⇡)Ar̄ = 4⇡

Z R

0

Z p
R2�z2

0

r dr dz = 2⇡

Z R

0

R2 � z2 dz

= 2⇡

 
R2z � z3

3

����
R

0

!
= 2⇡

2

3
R2 =

4

3
⇡R3

(f) Newton lived from 1642 to 1727 and Leibniz lived from 1646 to 1716.

(g) Pappus lived from 290 to 350.



13.1/13.2 Vector Fields, Work, Flow, and Line Integrals

In many physical applications we want to show how a body acts in the presence of a force
field. This could be a gravitational force field, electromagnetic force field or the force
a particle feels while moving through a fluid velocity field.

When the direction and magnitude of a force depend on the point in space we represent this
with a vector field.

Definition: A vector field is a function F which assigns a vector to each point in space.

In 2D: F(x, y) = P (x, y) i+Q(x, y) j = hP (x, y) , Q(x, y)i

In 3D: F(x, y, z) = P (x, y, z) i+Q(x, y, z) j+R(x, y, z)k = hP (x, y, z) , Q(x, y, z) , R(x, y, z)i

If the component functions P,Q, and R are continuous (di↵erentiable) then we say F is
continuous (di↵erentiable).

It’s often helpful to visualize a vector field F by plotting it

Example: F(x, y) = xi+ yj

x

y

F (2, 2)

F (0, 3)

Chris Ketelsen

APPM 2350

Chapter 13

November 15, 2015



Example: F(x, y) = �yi+ xj

x

y

F (2, 2)

F (0, 3)

Note that it looks like for this vector field, each vector points in a direction tangent to the
circle centered at the origin on which the point lies. We can check this analytically by noting
that for any point (x, y) the vector G = �xi�yj points directly from the point to the origin.
Then, dotting these two fields together, we have

F ·G = �xy + xy = 0

Gradient Fields

We’ve already seen vector fields in this class. Note that for any scalar function f(x, y), the
gradient F = rf is a vector field. Specifically, it’s the vector field that points in the direction
of greatest increase of the scalar function f .

Definition: If F = rf then we call f the potential function of F.

Example: Compute the vector field F associated with the potential function

f(x, y, z) =
mMGp

x

2 + y

2 + z

2

F = rf = � mGMx

(x2 + y

2 + z

2)3/2
i� mGMy

(x2 + y

2 + z

2)3/2
j� mGMz

(x2 + y

2 + z

2)3/2
k

This is the gravitational field acting on a body with mass m towards a body with mass M
centered at the origin. Notice that for any (x, y, z) the field F points towards the origin and
has magnitude inversely proportional to the distance from the origin.



Every scalar field f gives rise to a vector field F through the gradient, but does every field
F have a potential function?

The answer is NO. Fields that do have a potential function are special and they’re called
conservative vector fields.

Work Done by Force Along a Curve

How much work is done by a gravitational field on a space ship as it travels along a specified
curve?

Given a force field F = Pi+Qj+Rk and smooth curve c : r(t) = g(t) i+ h(t) j+ k(t)k for
a  t  b.

Recall that Work = Force⇥Distance

Fk

Tk

�sk

[Work]k = [Component of Fk in direction of Tk] (�sk)

= (Fk ·Tk)�sk

Summing up all the work chunks along the curve we have

WN =
NX
k=1

(Fk ·Tk)�sk

lim
N!1

WN = W =

Z t=b

t=a

F ·Tds

There are many di↵erent ways to write this integral. First notice that

Tds =
v

|v|ds =
dr

dt

dt

ds

= dr

So we could instead write

W =

Z t=b

t=a

F · dr or W =

Z t=b

t=a

F · dr
dt

dt



Note that the last expression is the first one that is useful for computation.

Example: Find the work done by the field F = xyi+yj�yzk over the curve r(t) = ti+t

2j+tk
for 0  t  1.

First we need to compute dr/dt. We have

F = t

3i+ t

2j� t

3k ) dr

dt

= i+ 2tj+ k

Then

W =

Z 1

0

�
t

3i+ t

2j� t

3k
�
· (i+ 2tj+ k) dt =

Z 1

0

�
t

3 + 2t3 � t

3
�
dt =

Z 1

0

2t3 dt =
1

2

Estimating Work Done by a Vector Field

Suppose that a particle is traveling in a gravitational field along some smooth curve C. If
the particle is moving with the vector field, then the field is doing work on the particle. If
the particle is traveling against the vector field, then the particle is the one doing the work,
or you can say that the vector field is doing negative work on the particle.

x

y

Positive Work

x

y

Negative Work

Orientation matters when integrating over vector fields!

Given a parameterization of a curve C, the curve �C indicates that traversal of the curve
backwards. Then

Z
�C

F · dr = �
Z
C

F · dr

This makes sense since we compute the integral over C as a regular integral over the interval
a  t  b:

Z
C

F · dr =
Z b

a

F · dr
dt

dt = �
Z a

b

F · dr
dt

dt = �
Z
C

F · dr



Fluid Flow

Suppose F = P i+Qj+ Rk is a velocity field of a fluid. Let C be a smooth curve described
by the parameterization r(t) = x(t) i + y(t) j + z(t)k for a  t  b. The analogue of work
done by a force field in the fluids setting is called the flow of the fluid. It is a measure of
how much the fluid field moves along the curve C.

Flow =

Z
C

F · dr =
Z
C

F ·T ds =

Z b

a

F · dr
dt

dt =

Z b

a

Pdx+Qdy +Rdz

The last formulation of the flow/work integral is new, but it follows directly from the usual
definition. We have

F · dr
dt

dt = [P i+Qj+Rk] ·

dx

dt

i+
dy

dt

j+
dz

dt

k

�
dt

= [P i+Qj+Rk] · [dxi+ dyj+ dzk]

= Pdx+Qdy +Rdz

If the curve C is closed then the flow is called circulation.

Example: Find the flow of the fluid velocity field F = (x� z) i + xk along the curve C

parameterized by r(t) = cos ti+ sin tk for 0  t  ⇡.

F = (cos t� sin t) i+ cos tk
dr

dt

= � sin ti+ cos tk

Flow =

Z ⇡

0

F · dr
dt

dt

=

Z ⇡

0

⇥
� cos t sin t+ sin2

t+ cos2 t
⇤
dt

=

Z ⇡

0

[1� cos t sin t] dt

=

Z ⇡

0


1� sin 2t

2

�
dt

= t+
cos 2t

4

�⇡
0

=

✓
⇡ +

1

4

◆
�

✓
0 +

1

4

◆
= ⇡



Flux Across a Plane Curve

Consider a planar flow F = P i + Qj and a smooth planar curve C parameterized by r(t) =
x(t) i+y(t) j. The fluid flux is the rate at which fluid crosses a curve. If the curve is a closed
loop then the flux is the rate at which fluid is entering or leaving the loop.

Fknk

�sk

[Flux]k = [Component of Fk in direction of nk] (�sk)

= (Fk · nk)�sk

Summing all of the contributions to the flux around the curve and taking the limit as the
number of subintervals goes to infinity we have

Flux =
NX
k=1

[Fk · nk]�sk
N!1���!

Z
C

F · n ds

The normal vector n is a vector orthogonal to both T and k. Both T⇥ k and k⇥T satisfy
this, but by convention we assume n = T ⇥ k and that the curve C is traversed in the
counterclockwise direction. Then n is called the outward pointing normal and is given
by

n = T⇥ k =


dx

ds

i+
dy

ds

j

�
⇥ k =

dy

ds

i� dx

ds

j ) F · n = P

dy

ds

�Q

dx

ds

Then Flux =

I
C

F · n ds =

I
C

Pdy �Qdx =

Z t=b

t=a

Pdy �Qdx



Example: Find the flux and circulation of F = �yi+ xj around the curve C parameterized
by r(t) = cos ti+ 4 sin tj for 0  t  2⇡.

We have

P = �4 sin t Q = cos t

dx = � sin t dt dy = 4 cos t dt

Flux =

Z 2⇡

0

Pdy �Qdx

=

Z 2⇡

0

[�16 sin t cos t+ sin t cos t] dt

= �15

Z 2⇡

0

sin t cos t dt

= �15

2

Z 2⇡

0

sin 2t dt

= �15

4
cos 2t

�2⇡
0

= 0

Circulation =

Z 2⇡

0

Pdx+Qdy

=

Z 2⇡

0

⇥
4 sin2

t+ 4 cos2 t
⇤
dt

=

Z 2⇡

0

4 dt

= 8⇡

General Line Integrals

The integrals that we used to compute work, flow, flux, etc. in the previous section have
been special applications of line integrals.

In 1D we integrate a function f(x) over some interval [a, b]:

I =

Z b

a

f(x) dx

If f ⌘ f(x, y) we can do something similar along a smooth curve in space.

Let C be a smooth curve parameterized by r(t) = x(t) i+ y(t) j



In 1D we found I =

Z b

a

f(x) dx by breaking up [a, b] into tiny chunks

a

b

�xk

f(xk)

Then SN =
NX
k=1

f(xk) �xk
N!1���!

Z b

a

f(x) dx

If f ⌘ f(x, y) we can do something similar along a smooth curve in space.

Let C be a smooth curve parameterized by r(t) = x(t) i+ y(t) j

�sk

f(xk, yk)

Then SN =
NX
k=1

f(xk, yk) �sk
N!1���!

Z
C

f(x, y) ds

Recall that
ds

dt

= |v(t)| =

s✓
dx

dt

◆2

+

✓
dy

dt

◆2

dt. Then equating ds = |v(t)| dt we have

Z
C

f(x, y) ds =

Z b

a

f(x(t) , y(t)) |v(t)| dt =
Z b

a

f(x(t) , y(t))

s✓
dx

dt

◆2

+

✓
dy

dt

◆2

dt



Example: Evaluate

Z
C

xy

4
ds where C is the right half of the circle described by x

2+y

2 = 16.

First we need to parametrize the curve C. We have r(t) = 4 cos ti+ 4 sin tj for �⇡

2
 t  ⇡

2
.

Then f(x(t) , y(t)) = 45 cos t sin4
t and |v(t)| =

q
(�4 sin t)2 + (4 cos t)2 = 4

Z
C

xy

4
ds =

Z ⇡/2

�⇡/2

�
45 cos t sin4

t

�
4 dt = 46

Z ⇡/2

�⇡/2

cos t sin4
t dt

Let u = sin t ) du = cos t dt ) �1  u  1

= 46
Z 1

�1

u

4
du = 46

u

5

5

�1
�1

= 46
2

5

Geometric Interpretation

If f(x, y) � 0 on C then

Z
C

f(x, y) ds is the area over C under the curve f(x(t) , y(t)). Think

of this as the area of a curtain hanging from the rod described by the curve with x- and
y-components described by r(t) and height f(x(t) , y(t)):

x

y

z

CC

What if the curve C is not smooth? If C can be written as a union of curves that are smooth,
say C = C1 [ C2 then we have

Z
C

f ds =

Z
C1

f ds+

Z
C2

f ds



Example: Evaluate

Z
C

2x ds where C consists of curves C1 and C2 where C1 is the parabola

y = x

2 from (0, 0) to (1, 1) and C2 is the line segment connecting (1, 1) to (1, 2).

x

y

(1, 1)

(1, 2)

C1 : x = t y = t

2 0  t  1

C2 : x = 1 y = t 1  t  2

Z
C1

2x ds =

Z 1

0

2t |v(t)| dt =
Z 1

0

2t
p
1 + 4t2 dt =

5
p
5� 1

6Z
C2

2x ds =

Z 2

1

2 (1) |v(t)| dt =
Z 2

1

2 (1)
p
12 dt =

Z 2

1

2 dt = 2

Z
C

2x ds =

Z
C1

2x ds+

Z
C2

2x ds =
5
p
5 + 11

6

Line Integrals in 3D

Consider the function f(x, y, z) and the curve C parameterized by r(t) = x(t) i+y(t) j+z(t)k
for a  t  b. Then the integral of f(x, y, z) over the curve C is given by

Z
C

f(x, y, z) ds =

Z b

a

f(x(t) , y(t) , z(t)) |v(t)| dt

=

Z b

a

f(x(t) , y(t) , z(t))

s✓
dx

dt

◆2

+

✓
dy

dt

◆2

+

✓
dz

dt

◆2

dt

Example: Find the mass of a wire in the shape of a helix described by the curve C : x =
t, y = cos t, z = sin t for 0  t  2⇡ if the density at any point is equal to the square of the
distance from the origin.

We have

�(x, y, z) = x

2+ y

2+ z

2 = t

2+cos2 t+sin2
t = t

2+1 |v(t)| =
q
1 + (� sin t)2 + cos2 t =

p
2

M =

Z
C

�(x, y, z) ds =

Z 2⇡

0

p
2
�
1 + t

2
�
dt =

p
2

✓
t+

t

3

3

◆�2⇡
0

=
p
2

✓
2⇡ +

8⇡3

3

◆



13.3 The Fundamental Theorem for Line Integrals

Recall that we said that some vector fields could be written as the gradient of a scalar
function, i.e. F = rf . When this happened we said that f is the potential function of F.

Definition: When a vector field F can be written as the gradient of a potential function, we
say that F is a conservative vector field.

Lots of nice things happen when a vector field is conservative.

Recall that the work done by the vector field F on a particle moving along path C with initial
point A and terminal point B is given by

Work =

Z
C

F · dr

Consider several paths that all start at A and end at B:

A

B

If the work done by the vector field F is the same for any path that starts at A and ends at
B then we say the work integral

W =

Z
C

F · dr

is path independent and write

W =

Z
C

F · dr =
Z B

A

F · dr

It turns out that a work integral is path independent precisely when the vector field F is
conservative.

OK, so if a planar field F is conservative, we know that work integrals over F are path
independent. Suppose you wanted to compute

W =

Z
C

F · dr



where the curve C starts and ends at the points A and B, respectively. How does the path
independence of the integral make it easier to compute?

We could of course abandon the potentially complicated initial curve C and just compute W
over a straight line connecting A and B. This would definitely be easier if C was something
really nasty.

BUT IT’S TOTALLY BETTER THAN THIS!

The Fundamental Theorem for Line Integrals: Let F be a conservative vector field
where F = rf for some f . Let C be a smooth curve with initial point A and terminal point
B. Then

Z
C

F · dr =
Z B

A

F · dr = f(B)� f(A)

This means that if F is conservative, and we know its associated potential function, then we
can evaluate the work integral simply by subtracting the value of the potential at the initial
point from the value of the potential at the terminal point!

Notice that this expression looks kinda familiar. If F = rf then rf is kinda like the
derivative of f , or put another way, f is kinda like an anti-derivative of F. The Calc I version
of the fundamental theorem says

Z b

a

f

0(x) dx = f(b)� f(a)

where f is the anti-derivative of f 0(x).

Example: The potential function for the field F = (y + 2) i + (x� 2y) j is f(x, y) = 2x +
xy � y

2. Compute the work done by the vector field on a particle traveling on the path
r(t) = cos ti+ 2 sin tj for 0  t  ⇡.

Note that the start and end points of the path C are A = (1, 0) and B = (�1, 0). Then

W =

Z
C

F · dr =
Z B

A

F · dr = f (B)� f (A) = f (�1, 0)� f (1, 0) = �2� 2 = �4

The Fundamental Theorem for Line Integrals works for space curves and vector fields in three
dimensions just as easily.



Example: Consider the fluid velocity field F = yzi + xzj + xyk = r (xyz). Find the flow
along any curve C that starts at A = (�1, 3, 9) and ends at B = (1, 6,�4).

We have

Z
C

F ·dr =
Z B

A

F ·dr = f (1, 6,�4)�f (�1, 3, 9) = (1) (6) (�4)� (�1) (3) (9) = �24+27 = 3

OK, so how the heck does this work?

Proof Sketch: Let F = rf and let a smooth curve C be described by r(t) = x(t) i+y(t) j+
z(t)k for a  t  b, where the initial and terminal points are defined byA = (x(a) , y(a) , z(a))
and B = (x(b) , y(b) , z(b)), respectively.

Notice that on the curve C we have f ⌘ f (x (t) , y (t) , z (t)). Then, using the Chain Rule to
di↵erentiate w.r.t. t we have

df

dt

=
@f

@x

dx

dt

+
@f

@y

dy

dt

+
@f

@z

dz

dt

=


@f

@x

i+
@f

@y

j+
@f

@z

k

�
·

dx

dt

i+
dy

dt

j+
dz

dt

k

�
= rf · dr

dt

Then

Z
C

F · dr =
Z t=b

t=a

F · dr
dt

dt =

Z t=b

t=a

df

dt

dt = f(x(t) , y(t) , z(t))]ba = f(B)� f(A)

Cool Consequences of the Fundamental Theorem

So far we have assumed that the curve C is smooth. In reality, the Fundamental Theorem
works as long as C is piecewise smooth.

Theorem: Let F = rf and suppose that C = C1 [C2 where C1 starts at point A and ends
at point D and C2 starts at point D and ends at point B. Then

Z
C

F · dr =
Z
C1

F · dr+
Z
C2

F · dr = (f(D)� f(A)) + (f(B)� f(D)) = f(B)� f(A)



Theorem: If F is conservative then
H
C
F · dr = 0 for any closed piecewise-smooth curve C.

Proof Sketch: Take an arbitrary closed curve C and break it up into C1 and C2 as follows.

A B

C1

C2

Then

Z
C

F · dr =
Z
C1

F · dr+
Z
C2

F · dr = (f(B)� f(A)) + (f(A)� f(B)) = 0

OK, so two questions naturally arise:

1. How do we know if F is conservative?

2. If it is conservative, how do we find its potential function f?

Let’s consider only planar vector fields for now. Let F = P (x, y) i+Q(x, y) j. If the component
functions P and Q have continuous first partial derivatives, then if F = rf for some f we
have

P =
@f

@x

and Q =
@f

@y

Since the partial derivatives of P and Q are continuous, we have by Clairaut’s theorem

@P

@y

=
@

2
f

@x@y

=
@

2
f

@y@x

=
@Q

@x

(1)

Thus a vector field F is conservative only if it satisfies (1). This also means that we can use
(1) as a test to see if F is conservative.



Example: Determine if the field F = (y + 2) i+ (x� 2y) j is conservative.

We have

@P

@y

= 1 = 1 =
@Q

@x

So F is conservative.

Once we know that F is conservative we can start looking for it’s potential function. The
process is straightforward. We illustrate it with an example.

Example: Consider the vector field from the previous example: F = (y + 2) i + (x� 2y) j.
We want to determine a scalar function f such that F = rf .

If F = rf then equating the components of the two we have

@f

@x

= P = (y + 2) (2)

@f

@y

= Q = (x� 2y) (3)

Integrating (2) with respect to x we have

f(x, y) =

Z
P dx =

Z
(y + 2) dx = xy + 2x+ g(y) (4)

The function g(y) is there because it vanishes when taking the derivative with respect to x.
Our goal is now to determine g(y) which will fill out the expression for f(x, y). Notice that
we now have two ways to get to @f/@y. We know from (3) that it is equal to Q, but we also
know that we can get it by taking the partial of (4) w.r.t. y. Setting these two expressions
equal we have

x� 2y = x+ g

0(y) (5)

Solving (5) for g0(y) we have

g

0(y) = �2y ) g (y) = �y

2 +D (6)

where D is some arbitrary constant. Substituting the expression for g (y) into (4) we have

f(x, y) = xy + 2y � y

2 +D



So we’ve determine the potential function f up to an arbitrary constant. Of course, that
constant doesn’t matter for our purposes. We’ll generally be using the potential function f

in the Fundamental Theorem, for which the constant is irrelevant since

Z
C

F · dr = f(B)� f(A) =
⇣
f̂(B) +D

⌘
�
⇣
f̂(A) +D

⌘
= f̂(B)� f̂(A)

There is a similar process for checking to see if a three dimensional vector field is conservative,

Let F = P i + Qj + Rk where P , Q, and R have continuous first partial derivatives. If F is
conservative then there exists a potential function f such that F = rf . Then

F = P i+Qj+Rk =
@f

@x

i+
@f

@y

j+
@f

@z

k

Proceeding as in the planar case, we have

@P

@y

=
@

@y

✓
@f

@x

◆
=

@

2
f

@y@x

=
@

2
f

@x@y

=
@

@x

✓
@f

@y

◆
=

@Q

@x

So if F is conservative it must be the case that
@P

@y

=
@Q

@x

. But that’s not all...

Playing the same kind of games with the other two variable combinations we also find two
more conditions that F must satisfy if it is conservative. Combining them here with the first
condition we have

@P

@y

=
@Q

@x

@P

@z

=
@R

@x

@Q

@z

=
@R

@y

So, to check to see if a three dimensional vector field is conservative, we check the above
conditions.

Example: Determine if the following field is conservative: F = 2xyi+ (x2 � z

2) j� 2yzk

We have

@P

@y

= 2x
@Q

@x

= 2x X

@P

@z

= 0
@R

@x

= 0 X

@Q

@z

= �2z
@R

@y

= �2z X

So the field is conservative. Once we know that the field is conservative, we can find the
potential function f using an integration method similar to the one done above for planar
flows.



Example: Determine the potential function for the field F = 2xyi+ (x2 � z

2) j� 2yzk

Equating all components of the equation F = rf we have

P =
@f

@x

= 2xy (7)

Q =
@f

@y

= x

2 � z

2 (8)

R =
@f

@z

= �2yz (9)

Integrating (7) w.r.t. x we have

f(x, y) =

Z
2xy dx = x

2
y + g(y, z) (10)

The function g(y, z) is there because it vanishes when taking the partial derivative w.r.t. x.
Then, since we know that Q = @f/@y we take the partial of our current expression (10) w.r.t.
y and sit it equal to Q. We have

x

2 � z

2 =
@

@y

�
x

2
y + g(y, z)

�
= x

2 +
@g

@y

(11)

Solving for @g/@y in (11) we have

@g

@y

= �z

2 (12)

Integrating (12) w.r.t. y will give us an expression for g. We have

g(y, z) =

Z
�z

2
dy = �yz

2 + h(z) (13)

where here we need the h(z) function because it would vanish when taking the derivative
w.r.t. y. So, updating our expression for f(x, y) with our newfound g(y, z) we have

f(x, y) = x

2
y � yz

2 + h(z) (14)

The only piece of information we haven’t used yet is equation (9). Taking the derivative of
f w.r.t. z and setting it equal to R we have



�2yz =
@

@z

�
x

2
y � yz

2 + h(y)
�
= �2yz + h

0(z) ) h

0(z) = 0 ) h(z) = C (15)

Updating our expression for f(x, y) we then have f(x, y) = x

2
y � yz

2 + C which, dropping
the irrelevant constant, becomes

f(x, y) = x

2
y � yz

2

13.4/13.5 Curl, Divergence, and Green’s Theorem in the
Plane

Last time we argued that the gradient operator acted like a kind of derivative. Specifically
it’s a derivative operator that takes a scalar function and returns a vector:

r =
@

@x

i+
@

@y

j+
@

@z

k ) rf(x, y, z) =
@f

@x

i+
@f

@y

j+
@f

@z

k

There are two other derivative-like operators that deal with vectors that are important in
physics and engineering. The first one we’ll talk about is called the curl operator:

curl F = r⇥ F =

������
i j k
@x @y @z

P Q R

������ =
✓
@R

@y

� @Q

@z

◆
i+

✓
@P

@z

� @R

@x

◆
j+

✓
@Q

@x

� @P

@y

◆
k

Notice that, unlike the gradient operator, the curl operator takes a vector and returns a
vector.

OK, so what does the curl of a vector field F tell us?

The curl tells us about rotations. It’s easiest to picture when we interpret F as a fluid velocity
field. curl F (x, y, z) tells us how the fluid particles are rotating about the point (x, y, z).

Notice that curl F is a vector, which means it has a direction and a magnitude. The direction
tells us that the fluid at the point (x, y, z) is tending to rotate about the axis defined by curl F .
The length of curl F tells us how fast the fluid is rotating.

(x, y, z)

curl F



Example: Compute curl F for F = �yi+ xj

We have

curl F =

������
i j k
@x @y @z

�y x 0

������ = (0� 0) i+ (0� 0) j+ (1 + 1)k = 2k

Recall that this vector field looks as follows

x

y

F (2, 2)

F (0, 3)

There are several things to notice in this example:

1. The field F is planar, so the i and j components of curl F will always be zero, meaning
that any nonzero components of curl F will be in the k-direction. This means that the
main rotations that are happening are in the xy-plane, which makes sense for a planar
flow.

2. Since curl F is constant, all of the rotation in the fluid has the same magnitude. This
means if we were to put a little paddle-wheel in the fluid, no matter where it went it
would always rotate counter-clockwise at the same rate.



Example: Compute curl F for F = xi+ yj

We have

curl F =

������
i j k
@x @y @z

x y 0

������ = (0� 0) i+ (0� 0) j+ (1� 1)k = 0

Recall that this vector field looks as follows

x

y

F (2, 2)

F (0, 3)

Notice that for this planar flow the curl is zero everywhere. This means if we put a little
paddle-wheel in the flow the boat would travel along the vector field arrows away from the
origin, but it would not spin at all. When this happens we say that a flow is irrotational.

Fact: Let f be some scalar function with continuous second partial derivatives . Then

curl (rf) = r⇥rf = 0

Proof: We have

curl rf =

������
i j k
@x @y @z

fx fy fz

������ = (fzy � fyz) i+ (fxz � fzx) j+ (fyx � fxy)k = 0

This is a useful vector calculus identity, but it also has some cool implications for vector
fields. Recall that we said that F is conservative if it can be written as F = rf . Since
a conservative vector field is a gradient of a scalar function, we can check whether F is
conservative by checking to see if it behaves like a gradient when you take it’s curl.



Fact: If F has component functions with continuous partial derivatives, and curl F = 0,
then F is conservative.

Example: Verify that the field F = 2xyi+ (x2 � z

2) j� 2yzk is conservative.

We do this by taking computing curl F and see if it’s zero.

curl F =

������
i j k
@x @y @z

2xy (x2 � z

2) �2yz

������ = (�2z + 2z) i+ (0� 0) j+ (2x� 2x)k = 0 X

so F is conservative.

OK, so now we have a handle of what the curl of a vector field does. We’re now prepared to
state a special case of one of the most important theorems in vector calculus.

Green’s Theorem in the plane gives us a relationship between circulation and flux through
a closed curve and an area integral over the region inclosed by the curve. There are two
forms of Green’s Theorem. One for circulation and one for flux. Today we’ll only tackle the
circulation form.

Let F = P (x, y) i+Q(x, y) j be a planar flow and let C be a counter-clockwise oriented simple
closed curve.

Recall that in the fluid setting, the circulation around a closed curve is given by

Circulation =

I
C

F · dr =
I
C

P dx+Qdy

Green’s Theorem for circulation is as follows

I
C

F · dr =
I
C

P dx+Qdy =

ZZ
D

✓
@Q

@x

� @P

@y

◆
dA =

ZZ
D

(curl F) · k dA

This should make intuitive physical sense for fluid flows. It says that the total amount that
the fluid is moving around a closed curve is equal to the sum of all the tiny rotations inside
the curve. In this context, we can think of curl F as a circulation density.



Example: Use Green’s Theorem to compute the circulation of the field F = 2yi+x

2j around
the counter-clockwise oriented curve C defined by the lines x = 0, y = 0 and y = 1 � x in
the first quadrant.

x

y

1

1

y = 1� x

Notice that if we wanted to compute the circulation with a line integral, we’d need three
di↵erent integrals with three di↵erent parameterizations for the parts of the curve. But with
Green’s Theorem, we can turn it into one area integral over the interior of the triangular
region.

First we need to compute curl F. We have

curl F =

������
i j k
@x @y @z

2y x

2 0

������ = (0� 0) i+ (0� 0) j+ (2x� 2)k = 2 (x� 1)k

Then

Z
C

F · dr =
ZZ

D

2 (x� 1) dA =

Z 1

0

Z 1�x

0

2 (x� 1) dydx =

Z 1

0

�2 (x� 1)2 dx = �2

3

Geometric Extensions

Consider a river whose fluid velocity is described by the planar flow F = P i+Qj. Now, rivers
have depth, so if the flow is truly planar this means that underneath in a give z-cross-section,
the fluid is behaving the same as it is on the surface. If the fluid field has some non-trivial
curl near a point (x, y, z) then we consider how much a little chunk of fluid is rotating in a
plane other than the xy-plane.

Now, think about what would happen if we could see just the fluid flow in a plane that has
unit normal vector u that is not parallel to k. In that little slice, is the fluid rotating?

The answer is yes. But how much is it rotating? Think about the case when u is makes a 45
degree angle with k. Then we still see some rotation, but it’s not as great. Now think about
the case when we look at the rotation in a plane with normal vector i or j. Because the flow
is planar, we don’t observe any fluid rotation in this plane.



OK, so how do we quantify this? It turns out that the rotation about u will be described by
the projection of curl F onto u. If we just want to know how fast the fluid is rotating in that
plane, we look for the component of curl F in the direction of u, which we compute using a
dot product.

Component of Rotation in Direction of Unit Vector u = curl F · u

(x, y, z)

Projucurl F

curl F

Recall that the gradient vector rf gave a vector that pointed in the direction of maximum
increase of f . Under the above interpretation of the curl, we see that curl F is also a vector
that tells us a maximum about a vector field. It tell us the plane in which the maximum
rotation of the fluid occurs.

OK, let’s take a second and see if we can figure out exactly where curl F comes from. For
simplicity, we’ll just consider a planar flow and attempt to derive the k component of the
curl.

Let F = P (x, y) i+Q(x, y) j and consider the counter-clockwise oriented curve traversing the
boundary of the following box

(x, y) �x (x+�x, y)

(x+�x, y +�y)�x

(x, y +�y)

�y�y

Let’s setup the circulation around the box. Since the circulation is just the sum of the flow
around each side we have, we can approximate the flow around each side as follows

Top: F (x, y +�y) · (�i)�x = �P (x, y +�y)�x

Bottom: F (x, y) · i�x = P (x, y)�x

Right: F (x+�x, y) · j�y = Q (x+�x, y)�y

Left: F (x, y) · (�j)�y = �Q (x, y)�y



Adding the contributations to the circulation from the top and the bottom we have

Top + Bottom : � (P (x, y +�y)� P (x, y))�x ⇡ �@P

@y

�y�x

Adding the contributations to the circulation from the left and the right we have

Left + Right : (Q(x+�x, y)�Q(x, y))�y ⇡ @Q

@x

�x�y

Adding the circulations together and dividing by the area of the box will give us a kind of
circulation density:

circulation around rectangle

area of rectangle
⇡ @Q

@x

� @P

@y

= (curl F) · k

Now, what happens if we do the same thing with Flux?

Writing the outward flux through each part of the curve we have

Top: F (x, y +�y) · j�x = Q (x, y +�y)�x

Bottom: F (x, y) · (�j)�x = �Q (x, y)�x

Right: F (x+�x, y) · i�y = P (x+�x, y)�y

Left: F (x, y) · (�i)�y = �P (x, y)�y

Again, adding the contributions from the top and bottom gives

Top + Bottom : (Q(x, y +�y)�Q(x, y))�x ⇡ @Q

@y

�y�x

then adding the contributions from the left and right

Left + Right : (P (x+�x, y)� P (x, y))�y ⇡ @P

@x

�x�y

Adding the four contributions together and dividing by the area to get a density we have

flux through rectangle

area of rectangle
⇡ @P

@x

+
@Q

@y

= div F

The operator that gives us the flux density is the last of the vector related di↵erential
operators, called the divergence operator.



div F =
@P

@x

+
@P

@y

+
@P

@z

= r · F

Example: Consider again the vector field F = xi+ yj. Compute div F.

We have

div F = r · F =
@x

@x

+
@y

@y

= 1 + 1 = 2

This means that at any point (x, y) there is a net flux out of the region. If you have a vector
field F such that div F < 0 then that means there is a net inward flux into a point. Let’s
think about the physical scenarios where you could have a positive or negative flux into a
point (or at least, a very small area around a point). One way that you could get an outward
flux at a point is if there is a source at that point. Think about putting a garden hose into
a stream and turning on the water. Fluid is rushing out the point at the end of the garden
hose because new fluid is entering the system there. Alternatively, one way that you could
have a negative flux at a point would be if the point is a sink. Think about the flow of water
in a bathtube. Fluid is being removed from the system through the drain, so there is a net
inward flux at that point.

Now consider the case where the flow has no sources or sinks. Can there still be a net flux
into or out of a point (and by extension, a positive or negative divergence at that point)?
The answer is of course yes. If div F > 0 at a point this means that there is a net flux of
fluid out of that point, which means that the fluid is expanding. Similarly, if div F < 0 at a
point then there is a net flux of fluid into the point. If the fluid is not disappearing (i.e. the
point is not a sink) then the fluid must be compressing.

A fluid described by a field with no sources or sinks such that div F = 0 is one where there
is no compression or expansion anywhere. In this case we call the fluid incompressible.

Example: Consider again the vector field F = �yi+ xj. Compute div F.

We have

div F = r · F = � @

@x

(y) +
@

@y

(x) = 0

so the fluid is incompressible.

OK, we’re now ready to formulate the flux version of Green’s Theorem in the plane.

Let F = P (x, y) i+Q(x, y) j be a planar flow and let C be a counter-clockwise oriented simple
closed curve.

Recall that in the fluid setting, the flux through a closed curve is given by



Flux =

I
C

F · nds =
I
C

P dy �Qdx

Green’s Theorem for Flux is as follows

I
C

F · nds =
I
C

P dy �Qdx =

ZZ
D

✓
@P

@x

+
@Q

@y

◆
dA =

ZZ
D

div F dA

This should make intuitive physical sense for fluid flows. It says that the net flux through a
closed curve is equal to the sum of all the tiny fluxes inside the curve. In this context, we
can think of div F as a flux density.

Example: Consider the fluid velocity field F = �xi� yj and let C be the counter-clockwise
oriented circle of radius R centered at the origin. Find the outward flux through the curve.

Using Green’s Theorem we have

I
C

F · nds =
ZZ

D

div FdA =

ZZ
D

(�1� 1) dA = �2

Z 2⇡

0

Z R

0

rdrd✓ = �2⇡R2

Notice that the flux is negative because fluid is rushing into the circle.

Example: Use Green’s Theorem to compute the flux of the field F = 2yi+ x

2j through the
counter-clockwise oriented curve C defined by the lines x = 0, y = 0 and y = 1 � x in the
first quadrant.

x

y

1

1

y = 1� x

Notice again that if we wanted to compute the flux with a line integral, we’d need three
di↵erent integrals with three di↵erent parameterizations for the parts of the curve. But with
Green’s Theorem, we can turn it into one area integral over the interior of the triangular
region.



But in this case it’s even easier. Notice that

div F = 0

indicating that the fluid is incompressible and there are no sources or sinks. Then we have

I
C

F · nds =
ZZ

D

div F dA =

ZZ
D

0 dA = 0

Example: Use Green’s Theorem to compute the counterclockwise circulation and outward
flux of the field F = hxy, y2i around and through the boundary of the region enclosed by the
curves y = x

2 and y = x in the first quadrant.

The curve and enclosed region looks as follows:

x

y

1

1

We need to compute the curl and the divergence of F. We have

r⇥ F =

������
i j k

@x @y @z

xy y

2 0

������ = (0� x)k = �xk and r · F = y + 2y = 3y

We then have

Circ =

ZZ
D

�x dA = �
Z 1

0

Z x

x2

x dy dx = �
Z 1

0

x

2 � x

3
dx =

1

4
� 1

3
= � 1

12

Flux =

ZZ
D

3y dA =

Z 1

0

Z x

x2

3y dy dx =
3

2

Z 1

0

x

2 � x

4
dx =

1

2
� 3

10
=

1

5



Green Theorem’s for Areas

We can also use Green’s Theorem to compute the area of regions using line integrals. Note
that this is a trick! There is NO PHYSICS HERE!

Recall that the two forms of Green’s Theorem are

I
C

Pdy �Qdx =

ZZ
R

✓
@P

@x

+
@Q

@y

◆
dA and

I
C

Pdx+Qdy =

ZZ
R

✓
@Q

@x

� @P

@y

◆
dA

and recall that if the integrand in the double integral is identically one then we get the area
of the region R. So, our goal is to MAKE UP a vector field F such that its divergence is 1
or the k-component of its curl is 1, and then compute the line integral over that field instead.
Notice that

Area(R) =

ZZ
R

1 dA =

ZZ
R

✓
1

2
+

1

2

◆
dA

Then we could choose F = P i+Qj such that

@P

@x

=
@Q

@y

=
1

2
for example P =

x

2
and Q =

y

2

and then using the Flux form of Green’s Theorem, we have

ZZ
R

✓
1

2
+

1

2

◆
dA =

I
C

x

2
dy � y

2
dx ) Area(R) =

1

2

I
C

xdy � ydx

Similarly we could use the Circulation form of Green’s Theorem with Q =
x

2
and P = �y

2
and have

ZZ
R

✓
1

2
+

1

2

◆
dA =

I
C

�y

2
dx+

x

2
dy ) Area(R) =

1

2

I
C

xdy � ydx

We can come up with simpler formulae as well. Consider using the Flux form of Green’s
theorem with the (made up) vector field F = hx, 0i. Then P = x and we have

ZZ
R

(1 + 0) dA =

I
C

x dy ) Area(R) =

I
C

x dy



Or we could use the Flux form of Green’s theorem with the (made up) vector field F = h0, yi.
Then Q = y and we have

ZZ
R

(0 + 1) dA = �
I
C

y dx ) Area(R) = �
I
C

y dx

Any of these three formulae are equally valid, and can be used to compute the area of a the
region enclosed by the curve C

Area(R) =

I
C

x dy = �
I
C

y dx =
1

2

I
C

xdy � ydx

Example: Use a line integral to find the area of a circle with radius a

We parameterize the curve as follows: r(t) = a cos ti+ a sin tj for 0  t  2⇡. Then

x = a cos t ) dx = �a sin t dt and y = a sin t ) dy = a cos t dt

Then

A =
1

2

Z 2⇡

0

a

2 cos2 t+ a

2 sin2
t dt =

1

2

Z 2⇡

0

a

2
dt =

1

2
a

22⇡ = ⇡a

2

Example: Use a line integral to find the area of an ellipse
x

2

a

2
+

y

2

b

2
= 1.

We have x(t) = a cos t and y = b sin t for 0  t  2⇡.

Using the formula A =

I
C

x dy we have

x = a cos t and dy = b cos tdt

A =

Z 2⇡

0

ab cos2 t dt =
ab

2

Z 2⇡

0

1 + cos (2t) dt =
ab

2
2⇡ = ab⇡



Example: Use a line integral to find the area of an astroid parameterized by r(t) =⌦
cos3 t, sin3

t

↵
for 0  t  2⇡.

An astroid (not to be confused with an asteroid) looks like this

x

y

1

1

We’ll use the area formula A = �
I
C

y dx for this one. We have

x(t) = cos3 t ) dx = �3 sin t cos2 t dt and y(t) = sin3
t

Then

A = 3

Z 2⇡

0

sin4
t cos2 t dt = mathemagic =

3⇡

8

Note: You can also do similar tricks to turn double integrals for centers of mass and moments
of inertia into line integrals. You’ll explore this in your homework.



13.7 Surface Integration

Suppose we want to find the surface area of a surface S described by the function g(x, y, z) = c

where c is a constant. Or, similarly, suppose we know that the density of a thin metal shell
described by surface S and we want to integrate over S to find the mass. Both of these things
require us to be able to integrate over surfaces. Consider the following picture.

��

�A

��

S

R

p = k

We do surface integration in a similar fashion to every other form of integration we’ve done
so far. We come up with a formula for the surface area of the little surface area element ��,
evaluate the function on the little surface area chunk, add up the contribution from all the
little chunks, and then take the limit as the number of chunks goes to infinity. In the end we
have something that looks like

ZZ
S

f(x, y, z) d�

If we only want to compute the area of the surface then we perform the integral with
f(x, y, z) = 1, or

SA =

ZZ
S

d�

We compute surface integrals similar to the way we compute line integrals. With line integrals
we had to write the little arc length element ds in terms of a 1D element dt, i.e.

ds = |v|dt

where |v| was the Jacobian of the transformation from the curved space to a line. Then we
computed the line integral according to

Z
C

f(x, y, z) ds =

Z b

a

f(x(t) , y(t) , z(t)) |v|dt



For surface integrals we will write the surface area element d� in S in terms of the area element
dA in R obtained by projecting d� onto one of the coordinate planes. The transformation
looks like

d� =
|rg|

|rg · p|dA

where g is the function defining the surface and p is the vector in the direction in which we
project S onto the chosen coordinate plane. For example, in the picture above, imagine that
the plane of projection is the xy-plane, then we project S along the vector p = k.

In general, we compute the surface integral according to

ZZ
S

f(x, y, z) d� =

ZZ
R

f(x, y, z)
|rg|

|rg · p|dA

The steps needed to compute the surface integral are as follows

1. Choose coordinate plane to project surface onto and define unit vector p

2. Determine region of projection R

3. Compute |rg| and |rg · p| and construct integrand (Jacobian + Function)

4. Eliminate extra variables using the surface equation g(x, y, z) = c

5. Evaluate regular area integral over R

Example 1: Compute the surface area of the hemisphere of radius 1 above the xy-plane.

The equation of a sphere of radius 1 is given by g(x, y, z) = x

2 + y

2 + z

2 = 1. If we draw the
hemisphere we have

x

y

z



We choose to project the surface into the xy-plane. We make this choice because projecting
into either of the other coordinate planes would cause the surface to fold over itself. This is
not, strictly speaking, impossible, but it would require computing two surface integrals. For
example, if we projected the surface into the yz-plane we would need to do the part of the
surface defined for x > 0 separately from the part of the surface defined for x < 0.

If we project onto the xy-plane then we have p = k.

The projected region R is the circle described by x

2 + y

2 = 1.

To find the integrand, we need to compute |rg| and |rg · p|

rg = h2x, 2y, 2zi ) |rg| =
p
4x2 + 4y2 + 4z2 and |rg · p| = |rg · k| = |2z|

Note that since the surface lies above the xy-plane we do not need the absolute values around
the 2z term. Since we’re finding the surface area of the hemisphere, the only thing in the
integrand is the Jacobian

|rg|
|rg · p| =

p
4x2 + 4y2 + 4z2

2z
=

p
x

2 + y

2 + z

2

z

Since we’ve projected the surface into the xy-plane we can’t have z in the integrand. To
eliminate the z variables we use the equation of the surface: x2 + y

2 + z

2 = 1

p
x

2 + y

2 + z

2

z

=
1p

1� x

2 � y

2

We then have

ZZ
S

d� =

ZZ
R

1p
1� x

2 � y

2
dA

Since the region R is the unit circle in the xy-plane we convert to polar coordinates. The
integral then becomes

ZZ
S

d� =

ZZ
R

1p
1� x

2 � y

2
dA =

Z 2⇡

0

Z 1

0

1p
1� r

2
r dr d✓ = 2⇡

This agrees with our geometric intuition because the surface area of a unit sphere is 4⇡ and
here we are just finding the area of the top half.



Deriving the Jacobian of the Transformation

So far we’ve stated the transformation between d� and dA as fact. Let’s see where it comes
from. First we make the assumption that we can approximate the surface area element �� by
it’s tangent plane. This is reasonable since in the end we’re going to take the limit as the size
of �� ! 0. In this limit the surface area element appears very flat and the approximation
is valid. Consider the following picture

vk

uk

p
rg

�k

�Ak

��k

We now try to find a relationship between the area elements ��k and �Ak. Since ��k is a
rectangle, we can find it’s area by taking the magnitude of the cross-product of vectors uk

and vk

��k = |uk ⇥ vk|

Note that this area is not the same as �Ak unless �Ak and ��k are parallel. To get the
area of the projection we use

�Ak = |(uk ⇥ vk) · p|

This should be believable because if (uk ⇥ vk) (which is parallel to rg) is parallel to p then
the quantity �Ak as defined above will be large. If (uk ⇥ vk) is not parallel to p then �Ak

gets smaller. Then, by the definition of the dot product

�Ak = |(uk ⇥ vk) · p|
= |(uk ⇥ vk)| |p| |cos (�k)|
= ��k |cos (�k)|

Solving this expression for ��k we have



��k =
�Ak

|cos (�k)|

Taking the limit as the size of the surface area elements goes to 0 we have

d� =
dA

|cos (�)|

Now we need to compute |cos (�)| in terms of quantities that we know. We have

|rg · p| = |rg| |p| |cos (�)|
= |rg| |cos (�)|

Rearranging this expression we have

1

|cos (�)| =
|rg|

|rg · p|

and finally

d� =
|rg|

|rg · p|dA

Example 2: Find the area of the paraboloid z = x

2 + y

2 cut by the plane z = 4.

To determine the function g(x, y, z) = c that describes the surface, we need to put all the
variables on one side of the equals sign and all the constants on the other. Moving the z to
the other side of the equation of the paraboloid we have

g(x, y, z) = x

2 + y

2 � z

To help choose the direction of projection it is usually a good idea to plot the surface.

x

y

z



We again want to project the surface into the xy-plane, so we choose p = k.

Since the paraboloid is cut by the plane z = 4, the projected region R is given by

z = x

2 + y

2 ) 4 = x

2 + y

2

which is a circle of radius 2.

To find the integrand, we need to compute |rg| and |rg · p|

rg = h2x, 2y,�1i ) |rg| =
p

4x2 + 4y2 + 1 and |rg · p| = |rg · k| = |�1| = 1

Then we have

|rg|
|rg · p| =

p
4x2 + 4y2 + 1

1
=

p
4x2 + 4y2 + 1

Note that this time z does not appear in the integrand, so we don’t need to eliminate any
variables. We then have

ZZ
S

d� =

ZZ
R

p
4x2 + 4y2 + 1 dA

Since R is a circle of radius 2 in the xy-plane we again want to use polar coordinates. So we
have

ZZ
S

d� =

ZZ
R

p
4x2 + 4y2 + 1 dA =

Z 2⇡

0

Z 2

0

p
4r2 + 1 r dr d✓ =

⇡

6

⇣
17
p
17� 1

⌘



Example 3: Integrate the function f(x, y, z) = x + y + z over the portion of the plane
2x+ 2y + z = 2 in the first octant.

The surface in the first octant looks like the following

x

y

z

1

1

2

The function describing the surface is g(x, y, z) = 2x+ 2y + z

We have some freedom in choosing which coordinate plane to project the surface S onto.
Just to mix things up, let’s project S into the yz-plane. Then the projection vector is p = i.
Then projection R in the yz-plane looks like

y

z

2

1

z = 2� 2y

Computing the Jacobian we have

rg = h2, 2, 1i ) |rg| = 3 and |rg · p| = |rg · i| = 2



Substituting into the surface integral we have

ZZ
S

(x+ y + z) d� =

ZZ
R

(x+ y + z)
3

2
dA

Since we’ve projected S into the yz-plane we must eliminate x from the integrand. Solving
the surface equation for x we have

2x+ 2y + z = 2 ) x = 1� y � z

2

Substituting this into the integrand and setting up the limits of integration for R we have

ZZ
R

(x+ y + z)
3

2
dA =

3

2

Z 1

0

Z 2�2y

0

⇣
1 +

z

2

⌘
dz dy = 2

Sometimes we want to integrate over a surface S that is the union of multiple surfaces, say
S = S1 [ S2 [ S3. To integrate over S we break the integral up into multiple integrals over
each of the constituent surfaces:

ZZ
S

f d� =

ZZ
S1

f d� +

ZZ
S2

f d� +

ZZ
S3

f d�

Example 4: Integrate the function f(x, y, z) = xyz over the surface of the unit cube in the
first octant.

The unit cube in the first octant looks like

x

y

z

A

B

C

The surface S of the cube is the union of its six faces. In theory we should compute six
separate integrals, one for each face. However, we see that the function we’re integrating,
f(x, y, z) = xyz is zero on the three sides of the cube lying in the coordinate planes, so we
can skip them. We need to integrate over the top, side, and front facing sides which I’ve
labeled A, B, and C, respectively. We handle each one separately.



Side A: The top surface of the cube lies in the plane g(x, y, z) = z = 1. We must project
the surface into the xy-plane since projecting into either of the other coordinate planes with
result in a region R that is just a straight line. Note that the projection in the y-plane is the
unit square in the first quadrant.

Computing the Jacobian of the transformation, we have

rg = h0, 0, 1i ) |rg| = 1 and |rg · p| = |rg · k| = 1

which gives d� = dA. This should not be surprising since the surface is a plane parallel to
the xy-plane. We then have

ZZ
SA

(xyz) d� =

ZZ
R

(xyz) dA

We use the surface equation z = 1 to eliminate z from the integrand. Then

ZZ
SA

(xyz) d� =

ZZ
R

(xyz) dA =

Z 1

0

Z 1

0

xy dxdy =
1

4

The other two surfaces of interest are similar. We have

Side B: The side surface of the cube lies in the plane g(x, y, z) = y = 1. Our only option is
to project into the xz-plane choosing p = j. We then have

rg = h0, 1, 0i ) |rg| = 1 and |rg · p| = |rg · j| = 1 ) d� = dA

Then

ZZ
SB

(xyz) d� =

ZZ
R

(xyz) dA =

Z 1

0

Z 1

0

xz dxdy =
1

4

and for the front side we have

Side C: The side surface of the cube lies in the plane g(x, y, z) = x = 1. Projecting the
surface into the yz-plane and choosing p = i we have

rg = h1, 0, 0i ) |rg| = 1 and |rg · p| = |rg · i| = 1 ) d� = dA

Then

ZZ
SC

(xyz) d� =

ZZ
R

(xyz) dA =

Z 1

0

Z 1

0

yz dxdy =
1

4



Finally, we add the contributions from each nonzero face to obtain

ZZ
S

(xyz) d� =

ZZ
SA

(xyz) d� +

ZZ
SB

(xyz) d� +

ZZ
SC

(xyz) d� =
3

4

Flux Through a Surface

We want to compute the flux of a vector field through some surface S. If you think of F as a
fluid velocity field, and the surface S as a thin permeable membrane, then the flux through
the surface S is the rate at which fluid is flowing through the membrane.

But before we can compute flux, we need to talk about what kinds of surfaces we can work on.
The first requirement is that the surface be smooth, or at least a union of smooth surfaces.
For example, the cube in the previous example is not smooth, but it is a union of its six faces
which are themselves smooth. The second requirement on the surface is that it is orientable.

Definition: A smooth surface S is orientable or 2-sided if it is possible to define an
outward pointing unit normal vector n that varies continuously with position.

In other words, an orientable surface is one where if you move an outward pointing normal
vector all the way around the surface it will be pointing in the same direction when it returns
to where it started. Most surfaces that we can picture in real life are orientable, e.g. spheres,
planes, etc. An example of a surface that is not orientable is the Mobius Strip.

We’re now ready to talk about flux through a surface. We proceed in a similar fashion to
the definition of flux through a curve for a planar flow. Suppose the fluid velocity field
can be written as F = P (x, y, z) i + Q(x, y, z) j + R(x, y, z)k. We divide the surface into
infinitesimally small surface area chunks d� and compute the flux through each one. We
then add up the flux through the little chunks (via a surface integral) to obtain the total flux
through the surface.

Consider the following surface area element shown with a unit outward pointing normal
vector n and the fluid velocity field F evaluated at some point on d�.

n
F

d�

The fluid flowing through the surface area element does so in a direction normal to the
surface. To compute this flux we take the dot product of F with the unit normal vector n
and multiply by the area of the surface area element. In other words

flux through d� = (F · n) d�



To compute the total flux through the surface we add up all the small surface area elements
to obtain

Flux =

ZZ
S

(F · n) d�.

Note that the quantity (F · n) is a scalar function and so this looks just like the surface
integrals we described in the previous section.

Before we proceed, we should say what we mean by outward pointing unit normal vector n.
Usually, if the surface is curved in some way, we choose the normal vector to point towards
the outside of the curve. For example, given the two possible normal vectors on the surface
of a sphere, we choose the one that points away from the sphere’s center.

We compute the unit normal vector to the surface as

n = ± rg

|rg|

where the sign is chosen so that the vector points outward from the surface. Then we have

F · n = F · ± rg

|rg|

Recalling the definition of the transformation between d� and dA, we have

d� =
|rg|

|rg · p|dA

Combining these in the surface integral we have

Flux =

ZZ
S

(F · n) d� =

ZZ
R

F · ± rg

|rg|
|rg|

|rg · p|dA =

ZZ
R

F · ±rg

|rg · p|dA



Example 5: Find the flux of the fluid velocity field F = yzj + z

2k through the surface
y

2 + z

2 = 1 cut by the planes z = 0, x = 0, and x = 1.

Let’s draw the surface along with its projection into the xy-plane.

x

y

z

x

y

(1, 1)

(1,�1)

Let’s compute the integrand of the Flux integral. First we need to choose the sign on the
normal vector so that it’s pointing outward from the surface. We eliminated n from the Flux
integral, but rg points in the same direction, so we need to choose the sign on rg so that
it points outward from the surface. We have

rg = h0, 2y, 2zi

To make it easier to see the direction, we plug some point on the surface into rg. Let’s pick
the point (0, 0, 1). Then

rg(0, 0, 1) = h0, 0, 2i

which points straight up and outward from the surface. So in the expression for the Flux
integral we choose +rg. We also have

|rg · p| = |rg · k| = |2z| = 2z

Note that we don’t need the absolute value sign because z is greater than zero everywhere
on the surface. Then

F · rg

|rg · p| =
⌦
0, yz, z2

↵
· h0, 2y, 2zi

2z
=

2y2z + 2z3

z

= y

2 + z

2

Setting up the integral we have

Flux =

ZZ
S

(F · n) d� =

Z 1

�1

Z 1

0

�
y

2 + z

2
�
dxdy

The integral is still not computable in it’s current state because we’re integrating with respect
to x and y but have a z in the integrand. We need to use the equation of the surface to



eliminate the z variable. Recalling that the equation of the surface is y2 + z

2 = 1 we have

Flux =

ZZ
S

(F · n) d� =

Z 1

�1

Z 1

0

dxdy = 2

Example 6: Find the flux of the fluid velocity field F = h�2, 2y, zi through the cylinder
y = e

x in the first octant cut by the planes y = 2 and z = 1.

Note that the surface y = e

x does not have a z in it, so the surface looks like the curve y = e

x

in the xy-plane and then propagated straight up in the z-direction. We have now plot the
surface and its projection into the yz-plane.

x

y

z

y

z

1 2

1

Note that we chose p = i and projected into the yz-plane. We could have just as easily
chosen p = j and projected into the xz-plane. Since we projected into the yz-plane our final
integrand should not have any x’s in it.

To get the function g that describes the surface, we need to move all the variables in the
surface equation to one side of the equation. We then have

g(x, y, z) = y � e

x ) rg = h�e

x
, 1, 0i

We need to choose the sign on rg so that it points outward from the surface (or away from
the yz-plane). We want the i-component of rg to be pointing in the positive x-direction,
which means we need to flip the sign on rg. So we choose

�rg = hex,�1, 0i and so |rg · p| = |rg · i| = |ex| = e

x

Then the integrand of the Flux integral is

F · �rg

|rg · p| = h�2, 2y, zi · he
x
,�1, 0i
e

x
=

�2ex � 2y

e

x
= �2� 2

y

e

x



But on the surface we have y = e

x and so

F · �rg

|rg · p| = �2� 2
y

y

= �4

Plugging this into the Flux integral and setting up the limits of integration on R we have

Flux =

ZZ
S

(F · n) d� =

Z 1

0

Z 2

1

(�4) dydz = �4



13.8 Stokes’s Theorem

Recall that Green’s Theorem for Circulation in a planar flow F = P (x, y) i+Q(x, y) relates
the circulation around a closed curve to the integral of curl F · k over the region interior to
the curve:

I
C

F · dr =
ZZ

R

(r⇥ F) · k dA

Now picture a surface in three dimensions and a fluid velocity field F = P (x, y, z) i +
Q (x, y, z) j + R (x, y, z)k. Let C be the bounding curve of S oriented counterclockwise
with respect to the surfaces outward pointing normal (in this case, pointing out of the page)
and consider the circulation of F around C.

y

z

0

0

�

+

Notice that for the pictured vector field F the flow around the sides of the bounding curve
is zero, and the flow along the top and bottom curves have equal and opposite flows. So we
have

I
C

F · dr = 0

Further notice that on S we have curl F = 0.

Now consider the same surface S and a slightly di↵erent vector field F.

y

z

0

0

+

+



Notice that again the flow along the sides of the bounding curve C is zero, but this time the
flow along the top and bottom are both positive. This means that we have

I
C

F · dr = small and positive

Notice also that curl F = 0 on the majority of S, but curl F > 0 in the part of S where the
direction of the vector field changes.

Consider again the same surface S but with one more vector field F.

y

z

+

+

+

+

This time we have a positive flow along each section of the bounding curve C, so

I
C

F · dr = large and positive

and this time we have a nontrivial curl F on all parts of the surface S.

So, it should at least be believable that curl F on the surface S is related to the circulation
around the bounding curve C. In fact, this fact is expressed by one of the most important
theorem’s in Calculus.

Stokes’s Theorem: Let F be a vector field with continuous first partial derivatives, and S

a surface with counterclockise oriented bounding curve C. Then we have

I
C

F · dr =
ZZ

S

[(r⇥ F) · n] d�

Note that as with the standard flux calculation, we have

n d� =
±rg

|rg · p| dA )
ZZ

S

[(r⇥ F) · n] d� =

ZZ
R

(r⇥ F) · ±rg

|rg · p| dA

where R is the projection of S along vector p.



Example: Use Stokes’s Theorem to compute the circulation of the field F = y

3i�x

3j around
the counterclockwise oriented boundary curve C of the hemisphere x2+y

2+z

2 = 4 for z � 0.

First, we draw a picture:

x

y

z

Note that C is described by x

2 + y

2 = 4 when z = 0. We then have

r⇥ F =
�
�3x2 � 3y2

�
k rg = 2xi+ 2yj+ 2zk |rg · k| = |2z| = 2z

n d� =
rg

|rg · k| dA =
xi+ yj+ zk

z

dA

Then

ZZ
R

�
�3x2 � 3y2

�
k·
✓
xi+ yj+ zk

z

◆
dA =

ZZ
R

�
�3x2 � 3y2

�
z

z

dA = �
ZZ

R

�
3x2 + 3y2

�
dA

Converting to polar coordinates we have

= �3

Z 2⇡

0

Z 2

0

r

2
r dr d✓ = �3

Z 2⇡

0

r

4

4

�2
0

d✓ = �3 (2⇡) (4) = �24⇡



Let’s look at some consequences of Stokes’s Theorem a bit more...

I
C

F · dr =
ZZ

S

(r⇥ F) · n d�

This says that circulation around the counterclockwise oriented curve C can be computed
using any surface S that has C as it’s boundary curve. Since we’re free to pick any surface
that has C as it’s bounding curve, we can compute surface integrals of (r⇥ F ) · n over
complicated surfaces by choosing a simpler surface with the same bounding curve.

Example: Compute the flow of the vector field from the previous example around the
bounding curve of the surface S described by z = 0 and bounded by x

2 + y

2 = 4.

Notice that S is the flat circular disc in the xy-plane with the same boundary curve as the
hemisphere in the previous example. The picture looks as follows:

x

y

z

This time we have

r⇥ F =
�
�3x2 � 3y2

�
k rg = k |rg · k| = |1| = 1

Then

I
C

F · dr =
ZZ

R

�
�3x2 � 3y2

�
k · k dA = �3

ZZ
R

�
x

2 + y

2
�
dA = �24⇡

Remark: Notice that we got the same answer as before, and recovered Green’s Theorem for
planar flows.



Example: Use Stokes’s Theorem to evaluate
H
C
F ·dr where F = (xz) i+(xy) j+(3xz)k and

C is the boundary of the plane 2x+ y + z = 2 in the first octant traversed counterclockwise
as viewed from above.

x

y

z

1

2

2

We have

r⇥ F =

������
i j k
@x @y @z

xz xy 3xz

������ = h0, x� 3z, yi rg = h2, 1, 1i |rg · k| = 1

Then

(r⇥ F) · n d� = h0, x� 3z, yi · h2, 1, 1i dA = (x+ y � 3z) dA

Then by Stokes’s Theorem we have

I
C

F · dr =
Z 1

0

Z 2�2x

0

(x+ y � 3z) dA =

Z 1

0

Z 2�2x

0

(7x+ 4y � 6) dA = �1



Example: Use Stokes’s Theorem to evaulate
H
C
F · dr where F = hx2

z, xy

2
, z

2i and C is
the curve of intersection of the plane x + y + z = 1 and the cylinder x

2 + y

2 = 9 oriented
counterclockwise when viewed from above.

Notice that C is the boundary curve of the elliptical disc that lies on the plane and inside
the cylinder.

We have

r⇥ F =

������
i j k
@x @y @z

x

2
z xy

2
z

2

������ = ⌦
0, x2

, y

2
↵

rg = h1, 1, 1i |rg · k| = 1

r⇥ F · n d� =
⌦
0, x2

, y

2
↵
· h1, 1, 1i dA =

�
x

2 + y

2
�
dA

ZZ
R

x

2 + y

2
dA =

Z 2⇡

0

Z 3

0

r

3
drd✓ =

Z 2⇡

0

r

4

4

�3
0

d✓ = 2⇡
81

4
=

81⇡

2



Example: Given F = (xz) i + (yz) j + (xy)k, compute

ZZ
S

(r⇥ F) · n d�, where S is the

portion of the sphere x2+y

2+ z

2 = 4 above the xy-plane and inside the cylinder x2+y

2 = 1.

The picture on the left shows the hemisphere and the cylinder together. The picture on the
right shows the portion of the hemisphere inside the cylinder along with it’s bounding curve.

x

y

z

x

y

z

Solution 1: First we try to compute the surface integral directly, using the hemisphere as
S. We have

r⇥ F =

������
i j k
@x @y @z

xz yz xy

������ = hx� y, x� y, 0i rg = h2x, 2y, 2zi |rg · k| = |2z| = 2z

Then

ZZ
R

hx� y, x� y, 0i · hx, y, zi
z

dA =

ZZ
R

x

2 � y

2

z

dA =

ZZ
R

x

2 � y

2p
4� x

2 � y

2
dA

This is UGLY!!

Solution 2: Let’s use Stokes’s Theorem to write the surface integral as a line integral around
the bounding curve of the surface. We have

r(t) =
D
cos t, sin t,

p
3
E

for 0  t  2⇡

dr = h� sin t, cos t, 0i dt

F(r(t)) =
Dp

3 cos t,
p
3 sin t, sin t cos t

E
ZZ

S

(r⇥ F) · n d� =

Z 2⇡

0

F · dr =
Z 2⇡

0

�
p
3 sin t cos t+

p
3 sin t cos t dt =

Z 2⇡

0

0 dt = 0



Solution 3: Let’s compute the surface integral over a simpler surface with the same boundary
curve C. The simplest option is to choose S to be the surface g = z =

p
3 inside the cylinder

x

2 + y

2 = 1.

The desired surface is a disc in the z =
p
3 plane, which looks as follows:

x

y

z

Then

rg = k |rg · k| = 1

ZZ
R

hx� y, x� y, 0i · h0, 0, 1i dA =

ZZ
R

0 dA = 0



Stokes’s Theorem and Closed Surfaces

Fact: If S is a closed oriented surface then

ZZ
S

(r⇥ F) · n d� = 0

Consider the closed surface shown below

We don’t know how to compute the surface integrals over surfaces that are not one-to-one.
Instead we can break up the surface S into a top surface S1 and a bottom surface S2 where
the top and bottom surface meet along the counterclockwise oriented curve C.

n1
S1

n2

S2

Then

ZZ
S

(r⇥ F) · n d� =

ZZ
S1

(r⇥ F) · n d� +

ZZ
S2

(r⇥ F) · n d�

We’d like to use Stokes’s Theorem to relate each of the surface integrals to a line integral
around the bounding curves of S1 and S2 (which happen to be the same curve). But, remem-
ber that to use Stokes’s Theorem we must have the bounding curve oriented counterclockwise
with respect to the unit outward pointing normal. Notice that for S1 the curve, as shown in
the picture, is oriented counterclockwise w.r.t. n1. But, for S2 the curve is oriented clockwise
w.r.t. n2. This means that when we use Stokes’s Theorem to rewrite the sufrace integral
over S2 we must integrate over the curve traversed backwards. So, we have

ZZ
S1

(r⇥ F) ·n d�+

ZZ
S2

(r⇥ F) ·n d� =

I
C

F · dr+
I
�C

F · dr =
I
C

F · dr�
I
C

F · dr = 0



Example: Let S be the paraboloid z = a (1� x

2 � y

2), for z � 0, where a > 0 is a constant.
Let F = hx� y, y + z, z � xi. For what value(s) of a (if any) does

RR
S
(r⇥ F) · n d� have

its maximum value?

x

y

z

x

y

z

x

y

z

Using Stoke’s Theorem we can see that the value of the surface integral does not depends on
the height of the surface. Since the surface has the same bounding curve for any value of a
we can write the sufrace integral as

I
C

F · dr =
ZZ

S

(r⇥ F) · n d�

where C is the unit circle x2 + y

2 = 1. Let’s use the line integral formulation to compute the
surface integral. We parameterize the curve C as r = hcos t, sin t, 0i for 0  t  2⇡. Then
r

0(t) = h� sin t, cos t, 0i and we have

ZZ
S

(r⇥ F) · n d� =

Z 2⇡

0

hcos t� sin t, sin t,� cos ti · h� sin t, cos t, 0i dt

=

Z 2⇡

0

� sin t cos t+ sin2
t+ sin t cos t dt

=

Z 2⇡

0

sin2
t dt = ⇡

Stokes’s Theorem and Conservative Fields

Recall that if a vector field F is conservative, then the circulation around any closed curve C
is zero. Last time we proved this using the Fundamental Theorem of Line Integrals. Stokes’s
Theorem gives us an alternative proof. Recall that a fields is conservative if it satisfies
r⇥ F = 0. Then from Stokes’s Theorem we have

I
C

F · dr =
ZZ

S

(r⇥ F) · n d� =

ZZ
S

0 · nd� = 0



Example: The goal is to evaluate
RR

S
(r⇥ F) · n d�, where F = hyz,�xz, xyi and S is the

surface of the upper half of the ellipsoid x

2 + y

2 + 2z2 = 1 for z � 0.

The surface S looks as follows:

x

y

z

We could of course compute the curl of F and integrate it directly over the surface of the
ellipsoid. Thankfully, Stokes’s Theorem gives us two better options.

Option 1: The ellipsoid is not a particularly easy surface to integrate over. Recall that we
can integrate (r⇥ F) · n over any surface that has the same bounding curve as S with the
same orientation. Instead of the ellipsoid, we choose to integrate over the disc in the xy-plane
bounded by the circle x

2 + y

2 = 1.

x

y

z

The outward pointing normal vector is clearly n = k, so we have

ZZ
S

(r⇥ F) · n d� =

ZZ
R

(r⇥ F) · k dA

The curl of F is given by

r⇥ F =
i j k
@x @y @z

yz �xz xy

= h2x, 0,�2zi

Then

ZZ
S

(r⇥ F) · n d� =

ZZ
R

h2x, 0,�2zi · k dA = �2

ZZ
R

z · k dA = �2

ZZ
R

0 · k dA = 0



Option 2: The other option is we can use Stokes’s Theorem to write the surface integral as
a line integral around the unit circle. Parameterizing the circle we have r = hcos t, sin t, 0i
and r0 = h� sin t, cos t, 0i which givesZZ

S

(r⇥ F) · n d� =

Z 2⇡

0

h0, 0, sin t cos ti · h� sin t, cos t, 0i dt =
Z 2⇡

0

0 dt = 0

Example: The French physicist Andre-Marie Ampere discovered that an electrical current
I in a wire produces a magnetic field B. A special case of Ampere’s Law relates the current
to the magnetic field through the equation

I
C

B · dr = µI

where µ is a physical constant and C is a closed curve through which the wire passes. Assume
that the current I is given in terms of the current density J as

I =

ZZ
S

J · n d�

where S is an oriented surface with C as a boundary. Use Stokes’s Theorem to show that an
equivalent form of Ampere’s Law is the following partial di↵erential equation:

r⇥B = µJ

We have by Stokes’s Theorem

µI = µ

ZZ
S

J · n d� =

I
C

B · dr =
ZZ

S

(r⇥B) · nd�

Moving the terms to the same side of the equation we have

ZZ
S

[(r⇥B)� µJ] · n d� = 0

Since this is true for any surface S with a boundary curve C and any normal vector n it
must be the case that r⇥B = µJ.



Example: Let S be the surface defined by z = x

2 + y

2 for z  4. Compute the flux of the
vector field F = h�3xz2, 0, z3i through the surface S.

We need to compute

Flux =

ZZ
S

F · n d�

Now, we wouldn’t normally use Stokes’s Theorem to compute fluxes, but if we can find a
vector field G such that F = (r⇥G) then we can use Stokes’s Theorem to instead compute

Flux =

ZZ
S

F · n d� =

ZZ
S

(r⇥G) · n d� =

I
C

G · dr

where C is the boundary curve of S. Recall that when we learned about the curl, we proved
the identity r · r ⇥ G = 0. So, if F can be written as a curl, it must be divergence free.
Indeed, for our F we have

r · F = �3z2 + 0 + 3z2 = 0.

If we assume that G = hGx, Gy, Gzi then we need

r⇥G =
i j k
@x @y @z

Gx Gy Gz

=
⌦
�3xz2, 0, z3

↵

The components of G must satisfy the following three equations for the curl

✓
@Gz

@y

� @Gy

@z

◆
= �3xz2,

✓
@Gz

@x

� @Gx

@z

◆
= 0,

✓
@Gy

@x

� @Gx

@y

◆
= z

3

A little guess and check shows that G = h0, xz3, 0i works. Then we have

Flux =

ZZ
S

F · n d� =

I
C

⌦
0, xz3, 0

↵
· dr

The boundary curve C is the circle x2+y

2 = 4 in the z = 4 plane which can be parametrized
by

r = h2 cos t, 2 sin t, 4i ) r0 = h�2 sin t, 2 cos t, 0i

Then we have

Flux =

ZZ
S

F · n d� =

Z 2⇡

0

(2 cos t) (4)3 (2 cos t) dt = 256

Z 2⇡

0

cos2 t dt = 256⇡



13.9 The Divergence Theorem

Recall that the Flux form of Green’s Theorem gave us a way to compute the flux of a planar
flow F = P (x, y) i+Q(x, y) j through a closed curve by integrating the divergence of F over
the interior of the curve:

I
C

F · n d� =

ZZ
R

r · F dA

Recall that the divergence r · F = div F at a point (x, y, z) can be interpreted as a flux
density. In the case that F is a planar flow we can interpret this flux density as a rate
per unit area that fluid is flowing into or out of a region. When we added up all the little
divergences in the interior of the curve (via integration) we obtained the total flux across the
boundary of the bounding curve C.

Today we will extend this concept to non-planar flows of the form F = P (x, y, z) i +
Q(x, y, z) j + R(x, y, z)k and flux through surfaces. The generalization of the Flux form
of Green’s Theorem for a closed planar curve is called the Divergence Theorem:

The Divergence Theorem: Let F be a fluid veloicty field with continuous first partial
derivatives, S be a closed, simple surface with outward pointing normal vector n, and E be
the interior region of S. Then

ZZ
S

F · n d� =

ZZZ
E

r · F dV

This says that the rate at which fluid is leaving a closed surface S is equal to the integral of
div F over the interior of the region enclosed by S.

This should make intuitive sense. When we integrate div F over the region E we are implicitly
breaking up the region E into little volume chunks, evaluating div F on each of the chunks,
and adding up the contributions of each chunk. Since div F on each chunk gives us the net
volume-flux through that little chunk, adding them all up gives the net volume flux in the
entire region.



Example 1: Verify the Divergence Theorem by finding the flux of the field F = hxy, yz, xzi
through the surface of the cube cut from the 1st octant by x = y = z = 1.

The surface S looks like

x

y

z

We first compute the flux directly via
RR

S
F · nd�. The surface of the cube is the union of

each of its six faces. We can make life easier by realizing that on the three sides lying in the
three coordinate planes we have F · n = 0, indicating that flux across those surfaces is 0.
We now need to compute the flux through front, top, and side faces lying o↵ the coordinate
planes. We then have

ZZ
S

F · nd� =

ZZ
Front

F · nd� +

ZZ
Top

F · nd� +

ZZ
Side

F · nd�

Front: The front face lies in the plane x = 1. Plugging this into the vector field we have
F = hy, yz, zi along the front face. The outward pointing unit vector is n = i. Finally, since
the front face is parallel to the yz plane we have d� = dydz. Then the flux integral becomes

ZZ
Front

F · nd� =

Z 1

0

Z 1

0

hy, yz, zi · h1, 0, 0i dydz =

Z 1

0

Z 1

0

y dydz =
1

2

Top: The top face lies in the plane z = 1. Plugging this into the vector field we have
F = hxy, y, xi along the top face. The outward pointing unit vector is n = k. Finally, since
the top face is parallel to the xy plane we have d� = dxdy. Then the flux integral becomes

ZZ
Top

F · nd� =

Z 1

0

Z 1

0

hxy, y, xi · h0, 0, 1i dydz =

Z 1

0

Z 1

0

x dxdy =
1

2



Side: The side face lies in the plane y = 1. Plugging this into the vector field we have
F = hx, z, xzi along the side face. The outward pointing unit vector is n = j. Finally, since
the side face is parallel to the xz plane we have d� = dxdz. Then the flux integral becomes

ZZ
Side

F · nd� =

Z 1

0

Z 1

0

hx, z, xzi · h0, 1, 0i dydz =

Z 1

0

Z 1

0

z dxdz =
1

2

Summing the flux across the three nonzero faces we find

ZZ
S

F · nd� =

ZZ
Front

F · nd� +

ZZ
Top

F · nd� +

ZZ
Side

F · nd� =
1

2
+

1

2
+

1

2
=

3

2

OK, that was tedious. Instead of computing the flux directly using surface multiple integrals,
we can use the Divergence Theorem to compute it via a single volume integral. We first need
to compute r · F = divF.

r · F =
@

@x

(xy) +
@

@y

(yz) +
@

@z

(xz) = y + z + x

We then have

ZZ
S

F · n d� =

ZZZ
E

r · F dV

=

Z 1

0

Z 1

0

Z 1

0

x+ y + z dxdydz

=

Z 1

0

Z 1

0

1

2
+ y + z dydz

=

Z 1

0

1 + z dz =
3

2

as expected.



Divergence Theorem Intuition

In our discussions on the Flux Form of Green’s Theorem for planar flows, we interpretted
div F as a flux density where the units were flux per area. When the vector field F is
nonplanar we can interpret div F again as a flux density, but this time the units are flux per
volume. The Divergence Theorem can firm up this interpretation.

Let P0(x, y, z) be a point in space and Ba a ball with center at P0 and small radius a.

Since Ba is small, the vector field F does not change much in Ba and we have

div F(P ) ⇡ div F(P0)

for all points P in Ba. Then the flux across the surface of Ba (which we’ll call Sa) is

ZZ
Sa

F · n d� =

ZZZ
Ba

div F dV

⇡
ZZZ

Ba

div F(P0) dV

⇡ div F(P0)

ZZZ
Ba

dV

⇡ div F(P0) ⇥ Volume of Ba

Now, this approximation gets better as a ! 0, so we have

div F(P0) = lim
a!0

1

Vol(Ba)

ZZ
Sa

F · n d�

which has dimensions Flux per unit Volume. In other words, the divergence of F is a volume
flux density.

If div F(P0) > 0 then the net flow is outward near P0 and P0 is called a source.

If div F(P0) < 0 then the net flow is inward near P0 and P0 is called a sink.



Example: Consider the vector field div F = 2x+ 2y which looks like the following:

x

y

P2

P1

P3

We can see from the picture that the indicated points satisfy

div F(P1) < 0 ) P1 is a sink

div F(P2) > 0 ) P2 is a source

div F(P3) = 0 ) P3 is neither



Example 2: Find the outward flux of the field F = hy, xy,�zi through the surface S

bounded on the sides by the cylinder x2 + y

2 = 4, on the top by the paraboloid z = x

2 + y

2,
and the bottom by z = 0.

The surface in three dimensions looks like the following

x

y

z

Instead of directly computing the flux through each of the three surfaces making up S we’ll
use the Divergence Theorem straight away. We have

r · F = 0 + x� 1 = x� 1

To integrate over the region E inside of the surface S we should probably use cylindrical
coordinates. The solid drawn in the zr-plane looks like

r

z

4

2

z = r

2



We then have

ZZ
S

F · n d� =

ZZZ
E

x� 1 dV

=

Z 2⇡

0

Z 2

0

Z r2

0

(r cos ✓ � 1) r dzdrd✓

=

Z 2⇡

0

Z 2

0

r

3 (r cos ✓ � 1) drd✓

=

Z 2⇡

0

32

5
cos ✓ � 4 d✓ = �8⇡

Example 3: Find the outward flux of the field F = hx3
, ze

x
, 3zy2i through the surface S

given by the cylinder x2 + y

2 = 1 capped on the ends by the planes z = �1 and z = 2.

We want to use the Divergence Theorem so we first take the divergence of F. We have

r · F = 3x2 + 0 + 3y2 = 3x2 + 3y2

We want to use cylindrical coordinates for the cylinder. The divergence of F in cylindrical
coordinates of of course r · F = 3r2. Setting up the triple integral we then have

ZZ
S

F · n d� =

ZZZ
E

r · F dV

=

Z 2⇡

0

Z 1

0

Z 2

�1

�
3r2

�
rdzdrd✓

= 3

Z 2⇡

0

Z 1

0

Z 2

�1

r

3
dzdrd✓

= 9

Z 2⇡

0

Z 1

0

r

3
drd✓

=
9

4

Z 2⇡

0

d✓

=
9

4
(2⇡) =

9⇡

2



We originally stated the Divergence Theorem only for surfaces surrounding simple regions.
It turns out the theorem still holds for certain non-simple regions. Consider computing the
flux through the boundary of the surface defined by 2 concentric spheres of radius RI and
RO, respectively. Note that in this case there are two outward pointing normals. One that
points outward from the surface of the larger sphere, and one that points outwards toward
the origin for the inner sphere.

We do this by considering what happens when we split the sphere in half across the xy-plane
and insert the temporary surface z = 0. We then have surfaces S1 and S2 which look like

x

y

z

n1

�k x

y

z

n2

k

Now consider the flux through each of the two washer-shaped surfaces we created by dividing
the sphere in half. Notice that both surfaces occupy the same place in space, and thus their
values of F are the same. But, on the top surface we have n1 = �k and on bottom surface
we have n2 = k. The contributions to the total flux integral on these surfaces cancel out
because we have

F · n1 = F · (�k) = � (F · n2)

We then have, by the Divergence Theorem,

ZZ
S

F·n d� =

ZZ
S1

F·n d�+

ZZ
S2

F·n d� =

ZZZ
E1

r·F dV +

ZZZ
E2

r·F dV =

ZZZ
E

r·F dV

Thus the Divergence Theorem holds for regions defined by concentric spheres!

Example 4: Find the outward flux through the surface formed by concentric spheres of radii
1 and 2 by the field F = h5x3 + 12xy2, y3 + e

y sin z, 5z3 + e

y cos zi.

We need to compute the divergence of F

r · F = 15x2 + 12y2 + 3y2 + e

y sin z + 15z2 � e

y sin z = 15x2 + 15y2 + 15z2



We should compute the triple integral in sphereical coordinates, so we have

r · F = 15x2 + 15y2 + 15z2 = 15⇢2

Then the volume integral is

ZZ
S

F · n d� =

ZZZ
E

r · F dV =

Z 2⇡

0

Z ⇡/2

0

Z 2

1

�
15⇢2

�
⇢

2 sin� d⇢d�d✓

= 15

Z 2⇡

0

Z ⇡/2

0

Z 2

1

⇢

4 sin� d⇢d�d✓ = 186⇡

Example 5: Calculate the flux of the field F = xi+ yj through the open cone z =
p

x

2 + y

2

for 0  z  3.

Notice that the Divergence Theorem does not directly apply here because the cone is not a
closed surface. However, we can be clever and create a closed surface by adding a top to the
cone that lies in the plane z = 3. If we denote the surface of the cone and the top cap by C

and T respectively, we then have the clused surface S = C [ T . Then, using the Divergence
Theorem we have

ZZ
S

F · n d� =

ZZ
C

F · n d� +

ZZ
T

F · n d� =

ZZ
E

r · F dV

Rearranging this expression for the flux through the cone we have

ZZ
C

F · n d� =

ZZZ
E

r · F dV �
ZZ

T

F · n d�

So we can compute the flux through the cone by computing the triple integral of the di-
vergence of F over the region E and then subtracting the flux through the top cap T . We
have

r · F = 2

Updating our expression for the flux through the cone, we have

ZZ
C

F · n d� = 2

ZZZ
E

dV �
ZZ

T

F · n d�

The volume of a cone with height 3 and top radius 3 we have

2

ZZZ
E

dV = 2⇡ 32
3

3
= 18⇡



Now we need to compute the flux through the top cap of the cone. This should in general
be easier than the sides of the cone because it is just a flat plane. However, we can make it
a bit easier here by recognizing that the vector field F lies completely in the plane. Since F
is parallel to surface T there can be no flux through it. Thus we have

ZZ
T

F · n d� = 0

and we have

ZZ
C

F · n d� = 18⇡

Example 6: Consider the flux through surface C defined by the cylinder x2+y

2 = 4 between
z = �2 and z = 2 of the field given by

F =
x

(x2 + y

2 + z

2)3/2
i+

y

(x2 + y

2 + z

2)3/2
j+

z

(x2 + y

2 + z

2)3/2
k

Show that the flux through the cylinder C is the same as the flux through the sphere S of
radius 1 and oriented outward.

We might be tempted to use the Divergence Theorem to compute each of the fluxes simulta-
neously, but we cannot do this in this case because the vector field F is not continuous at the
origin so div F is undefined there. However, if we form the surface defined by the cylinder
with outward pointing normal and the sphere with inward pointing normal we can use the
Divergence Theorem because the origin is not in the region. We then have

ZZ
C

F · n d� �
ZZ

S

F · n d� =

ZZZ
E

r · F dV

Note that the minus in the left-hand side is necessary because we defined S with outward
pointing normal, but to use the Divergence Theorem on the non-simple region E we need
the normal pointing inward. Next we compute the divergence of F. We have

r · F =
�2x2 + y

2 + z

2

(x2 + y

2 + z

2)5/2
i+

�2y2 + x

2 + z

2

(x2 + y

2 + z

2)5/2
j+

�2z2 + x

2 + y

2

(x2 + y

2 + z

2)3/2
k = 0

Then plugging in our expression for the Divergence Theorem we have

ZZ
C

F · n d� �
ZZ

S

F · n d� = 0 )
ZZ

C

F · n d� =

ZZ
S

F · n d�

In fact, because r ·F = 0, the fluxes through any closed surfaces that contain the origin will
be equal.



Example 7: Consider a fluid with density ⇢ (x, y, z) and velocity field ~v (x, y, z). In class we
said that when a fluid has no sources, the divergence of the fluid field at some point must
correspond to a change in density (i.e. the fluid is either expanding or being compressed). It
turns out, that there is a nifty partial di↵erential equation that models this behavior, called
the continuity equation for a fluid. It is given by

@⇢

@t

+r · (⇢~v) = 0

This equation basically says that the change in the density of the fluid must be balanced out
by the divergence of the the density times the velocity field. We will derive this equation with
some help from the Divergence Theorem. The Divergence Theorem is exceptionally useful
when working in systems where some physical quantity is conserved. In this case, since there
are no sources or sinks in the system, mass of the fluid is conserved. The equations that
describe these conserved quantities are called conservation laws. We proceed as follows.

Consider an arbitrary closed surface S with interior region E. The flux of the fluid (in units
volume/time) across the surface S is given by

Volume Flux =

ZZ
S

~v · n d�

where n is the outward pointing normal of the surface. We can obtain the mass flux by
multiplying the velocity field by the density. Then we have

Mass Flux =

ZZ
S

(⇢~v) · n d�

Now, assuming that there are no sources or sinks inside the region E conservation of mass
says the outward mass flux of the fluid through the surface S must be equal to the rate of
decrease of the total mass of the fluid in E. In pseudo-equations we have

Outward Mass Flux = Rate of Decrease of Mass in E

or, more mathematically

ZZ
S

(⇢~v) · n d� = �@M

@t

Now, the mass of the fluid in E can be easily computed via

M =

ZZZ
E

⇢ dV

Plugging this expression into the conservation of mass equation above we have

ZZ
S

(⇢~v) · n d� = � @

@t

ZZZ
E

⇢ dV = �
ZZZ

E

@⇢

@t

dV



From the Divergence Theorem we have

ZZ
S

(⇢~v) · n d� =

ZZZ
E

r · (⇢~v) dV

Plugging this expression into the previous conservation equation and collecting all terms on
the left-hand side, we have

ZZZ
E


@⇢

@t

+r · (⇢~v)
�
dV = 0

Now, notice that our surface S and volume E were completely arbitrary. That means
that the expression above must hold for any volume in space. Now, for the integral to be
truly zero it must be the case that it’s integrand is identically zero. In other words

@⇢

@t

+r · (⇢~v) = 0

This is the continuity equation and is used in almost all models of compressible fluids.


