Courslets, a golf
Improvement web service

Peter Battaglia

Discussion

m Project Overview

m Design and Technologies Utilized
— Rails and REST
= URLs, URLs, URLs...
— Rails and Web Services

= What's exposed as a service?

= Active Resource
— What does it do?
— How do you use it?

— Web 2.0 “Features”
= Prototype and Scriptaculous

m Issues Encountered
m Conclusions
@ Demo’s

— Site Demo

— Sample Client Demo

Project Overview

m Purpose

— To create a REST-based web service and
sample client to track golf score statistics and
provide custom printable PDF course booklets

m Core Features
— REST-style architecture
— Customizable Drag N’ Drop Stats Page
— Auto-Complete Golf Course Search
— HTTP Authentication for web service clients

Design

m Rails and REST

= URLs
— Scaffolding

= Rails dynamically creates a set of named RESTful routes
for accessing your resources via URLs, this is accomBIished
by adding “map.resources :resource” in the routes.r

= creates all the basic CRUD support code for building your
application including generic views, an empty model class
and stubbed controller methods

— The URLs map directly to the actions (methods) in your
controller

— Example (rake routes):

= GET /qgolfers
{:controller=>"golfers", :action=>"index"}

= POST /?olfers
{:controller=>"golfers", :action=>"create"}

Design

m Rails and REST

= Named Routes

— For accessing the URLs in your Rails app, you can use
named routes, generated by Rails

— Example (rake routes):

= golf_courses GET /golf_courses
{:controller=>"golf_courses”, :action=>"index"}

= golf_courses_url can be used to reference the action
shown above

= <%= link_to "Golf Course List", golf_courses_path
-%>

Design

m Rails and REST

= Custom Routes
— Because sometimes you don’t want to follow conventions...

— If you need to create custom actions
= define the method in the controller

= create the view
= add the custom routes into our routes.rb

— Example:

map.resources :resource,:collection => {:search => :get}

In this example, we create a custom search action to
return a collection of resources for us

When the URL /search is invoked with HTTP GET, our
collection of resources will be returned to us

This also creates the URL: search_resources_path

Design

m Rails and REST

= Custom URLSs

— If you have actions that you would like to map to “clean”
URLSs, you can do this...

— map.login ‘/login’, :controller => 'session’, :action =>
‘new'

Design

m Rails and Web Services
= Rails has web service support baked right in!
= Example:
def index
@golfers = Golfer.find(:all, :order => "first_name ASC")
respond_to do [format]
format.html # index.html.erb
format.xml { render :xml => @golfers }
end

end
In this example, we can either render HTML for our standard client, or if the
client is requesting XML, we return them our list of golfers in XML format
You can also create custom formats to send back to the client (e.g. respond
to iPhone/iPod users)
Rails also provides URLs for your web service clients:

— formatted_golfers GET /golfers.:format
{:controller=>"golfers", :action=>"index"}

Design

m Rails and Web Services

= Active Resource Clients

— Active Resource connects business objects and REST web
services.

— AR implements object-relational mapping for REST web
services to provide transparent proxying capabilities between a
client (ActiveResource) and a RESTful service

— Model classes are mapped to remote REST resources by Active
Resource much the same way Active Record maps model
classes to database tables

— When a request is made to a remote resource, @ REST XML
request is generated, transmitted, and the result received and
serialized into a usable Ruby object

— AR is built on a standard XML format for requesting and
submitting resources over HTTP

Design

m Rails and Web Services

— Building an Active Resource Client

= To build a sample client
— generate a rails application, and controller
— Create a new class that extends ActiveResource
class Golfer < ActiveResource::Base
self.site = http://pbatt:12345@pclnxpbattaglia:3000/
end

= Then access the resource as you would in
ActiveRecord
@golfers = Golfers.find(:all)

Design

m Rails and Web 2.0

— Rails “Helpers”

= Rails provides helper methods for utilizing the Prototype and
Scriptaculous Libraries for creating AJAX controls and
interesting visual effects

= Examples:

— draggable_element("my_image", :revert => true)

— sortable_element("my_list", :url => { :action => "order" })

— link_to_remote "Reload”, :update => "posts”, :url => { :action
=> "reload" }, :complete => visual_effect(:highlight, "posts”,
:duration => 0.5)

= Why Not Use them??

— Too much magic for me...

Design

Rails and Web 2.0

— The manual way...
= Define CSS, define layout, using divs, and add JavaScript...
<script>
document.observe(‘dom:loaded’, function() {
var options = {
hoverclass: 'hover’,
constraint: false, containment: ['left’, 'right'],
dropOnEmpty: true, onUpdate: function(list) {
var methodStart = list.down('li") ? 'remove’ : 'add’;
listfmethodStart + 'ClassName']('empty");
3%
Sortable.create('left’, options);
Sortable.create('right’, options);

b9k

</script>

Issues

m No real issues...

m Rails has a tendency to hide the details
from the developer...fixing issues can take

a long time.
m Styling...hacking CSS can
m Creating a site that's com

De rough.

natible on all

platforms and browser sizes is a real pain.

Conclusions

m Rails is a phenomenal framework that
promotes productivity

m Building Web Services, and Web Service
clients on Rails is simple and often
enjoyable

m Site Demo
m Sample Client

