
Designing Read/Write Resource-Oriented Services

Kenneth M. Anderson
University of Colorado, Boulder

CSCI 7818 — Lecture 9 — 10/22/2008

© University of Colorado 2008

Wednesday, October 22, 2008

Credit Where Credit is Due

• Portions of this lecture are derived from material in “RESTful Web Services”
by Leonard Richardson & Sam Ruby. As such, they are Copyright 2007 by
O’Reilly

2

Wednesday, October 22, 2008

Agenda

• Chapter 6: Read/Write Resource Oriented Services

• Discussion of some of the Web-based discussions that I referenced on the
class website

• Also presentations on Ruby on Rails and Roy Fielding’s dissertation

3

Wednesday, October 22, 2008

Last Time: Read-Only Services

• Discussed the following ROA design process

• Figure out the data set

• Split the data set into resources

• For each resource

• Name the resource with a URI

• Expose a subset of the uniform interface

• Design the representation accepted from the client

• Design the representation served to the client

• Integrate the resource with other resources using links and forms

• Consider the typical course of events: what’s supposed to happen?>

• Consider error conditions: what might go wrong?

4

Wednesday, October 22, 2008

Last Time: URIs

• Path Variables (for discoverable resources)

• /{planet}/[{scoping-information/][{place-name}]

• Query Variables (for algorithmic resources)

• http://maps.example.com/Earth?show=Springfield

• Use “/” to model hierarchy (or containment) in resources

• Use “;” or “,” in URIs when dealing with non-hierarchical scoping information

• Use “;” when order is not important

• http://mixer.example.com/color-blends/red;blue

• Use “,” when order is important

• http://map.example.com/Earth/{lat},{long}

5

Wednesday, October 22, 2008

Read/Write Resource-Oriented Services

• Same process, but now we examine full range of uniform interface operations

• Build matrix with resource types as rows, and operations as columns

• Indicate what operations apply to which types

• provide example URIs and discussion of what will happen

• especially in the case of POST and PUT

• PUT: create or modify resource

• POST: append content to existing resource OR append child
resource to parent resource (blog entries)

• Two questions to help

• Will clients be creating new resources of this type?

• Who’s in charge of determining the new resource’s URI? Client or
Server? If the former, then PUT. If the latter, then POST.

6

Wednesday, October 22, 2008

New Issues: Authentication and Authorization

• Now that we are allowing a client to change stuff on our server, we need

• Authentication: problem of tying a request to a user

• Authorization: problem of determining which requests to let through for a
given user

• HTTP provides mechanisms to enable this (HTTP Basic/Digest) and other
web services roll their own (Amazon’s public/private key on subset of request)

• Another Issue: Privacy

• Can’t transmit “private information” in the clear; need to use HTTPS

• Another Issue: Trust

• How do you trust your client software to do the right thing?

• Especially in today’s environment with malware becoming harder and
harder to discern

7

Wednesday, October 22, 2008

Coming Up Next

• Chapter 10: ROA versus Big Web Services

• Need more volunteers for presentations for lecture 10!

• Will start Web 2.0 portion of the course at lecture 11

8

Wednesday, October 22, 2008

