Roy Fielding’s PHD
Dissertation

Chapter's 5 & 6 (RES

)

Architectural Styles and
the Design of Network-
based Software
Architectures

Roy Fielding
University of California - lrvine
2000

Chapter 5

Representational State Transfer
(REST)

Deriving REST

e Walkthrough of the process of deriving rest

e Two Perspectives on Architectural Design
Blank Slate

Whole System Needs

Emphasizes Restraint and System Context

REST

Starting with the Null State

e Null State is the system
without constraints

e The WWW is the Null
state for REST

e No distinguishing
boundaries between

components
(architecturally)

Figure 5-1. Null Style

Client - Server Constraints

) Server
Client 2\ P\ P\
O °¢¢
R

Figure 5-2. Client-Server

e Separation of Concerns
User Interface vs. Data Storage
Improves portability and scalability
Allows components to evolve independantly

Statelessness

e Communication must

be stateless

e Session state kept
entirely on client

e Improves:
Visibility
Reliability
Scalability

e Design Trade-offs

Possible decrease in
network performance

Reduces server control
over application behavior

Depends on correct
implementation of
semantics across
multiple clients

Client - Stateless - Server

Client

Server

(D

Figure 5-3. Client-Stateless-Server

OO0
Y%

Caches

e Requires data e Design Trade-offs
responses to be labled Can reduce reliability
cacheable or not Stale data

e Improves Major changes in the

server not updated in

Network efficiency the cache

Reduces average latency

Client-Cache-Stateless-Server

00T
00

Client

(O

Client+Cache

Figure 5-4. Client-Cache-Stateless-Server

State of the Early Web

e Web pre-1994

e Developers quickly
exceeded early design

Dynamically generated
responses

Server-side scripts

Browsers

édmlngm + Common protocol + Format nogotln>

Servers/Gateways
© 1992 Tim Berners-Lee, Robert Cailliau, Jean-Frangois Groff, C.E.R.N.

Figure 5-5. Early WWW Architecture Diagram

000
000
o0
®
Uniform Interface
e Distinguishes REST from e Design trade-offs
other network based styles Degrades efficiency
e Implementations decoupled Information is not in a
from services form specific to the
e Additional Constraints application
|dentification of resources Designed to work well for
Manipulation of resources the Web (large-grain)
through representations hypermedia data transfer
Self-descriptive messages May not be optimal for
Hypermedia as the engine other situations

of application state

Uniform-Client-Cache-
Stateless-Server

:

- L °g¢

Client Connector: ()) Client+Cache: §)) Server Connector: (() Server+Cache: C ®

Figure 5-6. Uniform-Client-Cache-Stateless-Server

000
L X J
[
Layered System
e Adds hierarchical layers e Design Trade-offs
Creates a bound on Adds overhead and
overall system latency to the processing
complexity of data increasing user
Promotes substrate perceived latency
iIndependence This can be mitigated
e Provides encapsulation with shared caches on
organizational
e Improves Scalability boundaries

Load balancing

Uniform-Layered-Client-Cache-
Stateless-Server

Client Connector: ()) Client+Cache:)) Server Connector: C () Server+Cache: (S

Figure 5-7. Uniform-Layered-Client-Cache-Stateless-Server

Code-On-Demand

e Optional Constraint

o Al

ows extension of client functionality
Reduces the number of pre-implemented features

mproves system extensibility

e [rade-off

Reduces visiblility

REST

Client Connector; ()) Client+Cache: &)) Server Connector: (() Server+Cache: (&)

Figure 5-8. REST

X X)
- - 0000
REST Derivation by
o000
n o0
Constraints -
. 5 p]’o
replicated g g’r?z),]b uniform interface
separated Y W
RR CS GD VM U
&
i,
on-demand stateless b‘”s;p ., mobile simple
Y Y "?){P &y Y visible
SR
shared extensible reusable
Y Y

\J
It
LCSSS)75, ~(LCODCSSS REST

Figure 5-9. REST Derivation by Style Constraints

REST Architectural Elements

e REST focuses on
The roles of components
Constraints upon component interaction

Component’s interpretation of significant data
elements

Data Elements

e The nature and state of data is a key aspect
of REST

e REST uses a shared understanding of data
types with metadata, but limits the scope of
what is revealed to the interface

e Components communicate by transferring a
representation of a resource

(X
o0
o0
o0
Y
Data Elements :
Table 5-1. REST Data Elements

Data Element Modern Web Examples

resource the intended conceptual target of a hypertext reference

resource identifier URL, URN

representation HTML document, JPEG image

representation metadata | media type, last-modified time

resource metadata source link, alternates, vary

control data if-modified-since, cache-control

Resources and Resource oo
Identifiers

e Any information that can be named can be a
resource

Resource R is a temporally varying membership

function M R(t), which for time t maps to a set of
entities, or values, which are equivalent

e A resource identifier is chosen to best fit the
nature of the concept being identified

Representations

e A representation is a sequence of bytes plus
representation metadata

e May also include resource metadata

Information about the resource not specific to the
representation
e Data format of a representation known as a
media type

Design of a media type may influence user
perceived latency

Connectors

e Encapsulate the activities of accessing
resources and transferring resource
representations

Provide clean separation of concerns

Provide substitutability by hiding implementations
and allowing them to be replaced

e Remember REST is stateless

Connectors

Table 5-2. REST Connectors

Connector | Modern Web Examples

client libwww, libwww-perl
server libwww, Apache API, NSAPI
cache browser cache, Akamai cache network

resolver bind (DNS lookup library)

tunnel SOCKS, SSL after HTTP CONNECT

Components

Table 5-3. REST Components

Component

Modern Web Examples

origin server

Apache httpd, Microsoft IIS

gateway Squid, CGI, Reverse Proxy
proxy CERN Proxy, Netscape Proxy, Gauntlet
user agent Netscape Navigator, Lynx, MOMspider

Process view of REST

Origin Server

Prox Gateway

@ ..
tthL— (O—orb_>
@ O

User Agent

Client Connector: ()) Client+Cache: &) Server Connector: (() Server+Cache: (&)
Figure 5-10. Process View of a REST-based Architecture

Connector View of REST

e [he mechanics of communication

e Clients examine resource identifier in order to
determine communication mechanism

REST does not restrict communication protocol

Data View of REST

e Control state concentrated into the
representations received in response to
Interactions

Steady state reached when there are no more
outstanding requests

e Application state stored and controlled by the
user agent

