
Roy Fielding’s PHD
Dissertation

Chapter’s 5 & 6 (REST)



Architectural Styles and
the Design of Network-

based Software
Architectures

Roy Fielding
University of California - Irvine

2000



Chapter 5

Representational State Transfer
(REST)



Deriving REST

 Walkthrough of the process of deriving rest

 Two Perspectives on Architectural Design

 Blank Slate

 Whole System Needs

 Emphasizes Restraint and System Context

 REST



Starting with the Null State
 Null State is the system

without constraints
 The WWW is the Null

state for REST
 No distinguishing

boundaries between
components
(architecturally)



Client - Server Constraints

 Separation of Concerns
 User Interface vs. Data Storage
 Improves portability and scalability
 Allows components to evolve independantly



Statelessness
 Communication must

be stateless
 Session state kept

entirely on client
 Improves:

 Visibility
 Reliability
 Scalability

 Design Trade-offs
 Possible decrease in

network performance
 Reduces server control

over application behavior
 Depends on correct

implementation of
semantics across
multiple clients



Client - Stateless - Server



Caches
 Requires data

responses to be labled
cacheable or not

 Improves
 Network efficiency
 Reduces average latency

 Design Trade-offs
 Can reduce reliability

 Stale data
 Major changes in the

server not updated in
the cache



Client-Cache-Stateless-Server



State of the Early Web
 Web pre-1994
 Developers quickly

exceeded early design
 Dynamically generated

responses
 Server-side scripts



Uniform Interface
 Distinguishes REST from

other network based styles
 Implementations decoupled

from services
 Additional Constraints

 Identification of resources
 Manipulation of resources

through representations
 Self-descriptive messages
 Hypermedia as the engine

of application state

 Design trade-offs
 Degrades efficiency

 Information is not in a
form specific to the
application

 Designed to work well for
the Web (large-grain)
hypermedia data transfer
 May not be optimal for

other situations



Uniform-Client-Cache-
Stateless-Server



Layered System
 Adds hierarchical layers

 Creates a bound on
overall system
complexity

 Promotes substrate
independence

 Provides encapsulation
 Improves Scalability

 Load balancing

 Design Trade-offs
 Adds overhead and

latency to the processing
of data increasing user
perceived latency
 This can be mitigated

with shared caches on
organizational
boundaries



Uniform-Layered-Client-Cache-
Stateless-Server



Code-On-Demand

 Optional Constraint
 Allows extension of client functionality

 Reduces the number of pre-implemented features
 Improves system extensibility

 Trade-off
 Reduces visibility



REST



REST Derivation by
Constraints



REST Architectural Elements

 REST focuses on
 The roles of components
 Constraints upon component interaction
 Component’s interpretation of significant data

elements



Data Elements

 The nature and state of data is a key aspect
of REST

 REST uses a shared understanding of data
types with metadata, but limits the scope of
what is revealed to the interface

 Components communicate by transferring a
representation of a resource



Data Elements



Resources and Resource
Identifiers

 Any information that can be named can be a
resource
 Resource R is a temporally varying membership

function M R(t), which for time t maps to a set of
entities, or values, which are equivalent

 A resource identifier is chosen to best fit the
nature of the concept being identified



Representations

 A representation is a sequence of bytes plus
representation metadata

 May also include resource metadata
 Information about the resource not specific to the

representation
 Data format of a representation known as a

media type
 Design of a media type may influence user

perceived latency



Connectors

 Encapsulate the activities of accessing
resources and transferring resource
representations
 Provide clean separation of concerns
 Provide substitutability by hiding implementations

and allowing them to be replaced
 Remember REST is stateless



Connectors



Components



Process view of REST



Connector View of REST

 The mechanics of communication
 Clients examine resource identifier in order to

determine communication mechanism
 REST does not restrict communication protocol



Data View of REST

 Control state concentrated into the
representations received in response to
interactions
 Steady state reached when there are no more

outstanding requests
 Application state stored and controlled by the

user agent


