
W
eb

 S
er

vi
ce

s:
P

rin
ci

pl
es

 &
 T

ec
hn

ol
og

y

Slide 5.1

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

Mike P. Papazoglou
mikep@uvt.nl

Chapter 5
Describing Web services

Slide 5.2

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

Topics

•• Why is a service description needed?Why is a service description needed?
•• Web Service Description LanguageWeb Service Description Language

Slide 5.3

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

Why is a Service description needed?

• Web services must be defined in a consistent manner to be
discovered and used by other services and applications. Web
service consumers must determine the precise XML interface of
a web service:
– XML Schema alone cannot describe important additional details

involved in communicating with a Web service.
• Service description reduces the amount of required common

understanding and custom programming and integration:
– It is a machine understandable standard describing the operations of

a Web service.
– It specifies the wire format and transport protocol that the Web

service uses to expose this functionality.
– It can also describe the payload data using a type system.

• Service description + SOAP infrastructure isolates all
technical details, e.g., machine- and implementation language-
specific elements, away from the service requestor’s application
and the service provider’s Web service.

Slide 5.4

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

Topics

•• Why is a service descriptionWhy is a service description needed?needed?
•• Web Service Description LanguageWeb Service Description Language

Slide 5.5

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

Web Services Description Language

• The web services description language (WSDL) is the
XML-based service representation language used to
describe the details of the complete interfaces exposed by
Web services and thus is the means to accessing a Web
service.
– For instance, neither the service requestor nor the provider should

be aware of each other’s technical infrastructure, programming
language, or distributed object framework (if any).

Slide 5.6

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

WSDL as a contract

• A Web service description in WSDL is
an XML document that describes the
mechanics of interacting with a
particular Web service.

• It is inherently intended to constrain
both the service provider and the
service requestor that make use of
that service. This implies that WSDL
represents a “contract” between the
service requestor and the service
provider

• WSDL is platform and language
independent and is used primarily (but
not exclusively) to describe SOAP-
enabled services. Essentially, WSDL
is used to describe precisely
– what a service does, i.e., the operations the

service provides,
– where it resides, i.e., details of the protocol-

specific address, e.g., a URL, and
– how to invoke it, i.e., details of the data

formats and protocols necessary to access the
service’s operations.

Slide 5.7

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

Characteristics of WSDL

• Operations and messages are described abstractly.
• Defines bindings to message formats and protocols:

– Endpoints defined by binding concrete network protocol and
message format to abstract operations and messages.

– Can describe any endpoint regardless of the underlying
network protocol or message format.

– Defines how to locate the endpoint for the service:
• Example: URLs for HTTP.

• Defines extensible SOAP and HTTP extensions.

Slide 5.8

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

Structure of WSDL documents

• WSDL documents can be separated into distinct sections:
– The service-interface definition describes the general Web

service interface structure. This contains all the operations
supported by the service, the operation parameters, and abstract
data types.

– The service implementation part binds the abstract interface to a
concrete network address, to a specific protocol, and to concrete
data structures.

• A web service client may bind to such an implementation and invoke
the service in question.

• This enables each part to be defined separately and
independently, and reused by other parts.

• The combination of these two parts contains sufficient
information to describe to the service requestor how to
invoke and interact with the Web service at a provider’s
site.
– Using WSDL, a requestor can locate a web service and invoke any

of the publicly available operations.

Slide 5.9

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

WSDL document content

• Abstract (interface) definitions
– <types> data type definitions
– <message> operation parameters
– <operation> abstract description of service actions
– <portType> set of operation definitions

• Concrete (implementation) definitions
– <binding> operation bindings
– <port> association of an endpoint with a binding
– <service> location/address for each binding

• Also:
– <import> used to reference other XML documents

Slide 5.10

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

Web Service Interface Definition

• WSDL specifies a grammar and syntax
that describes Web services as a
collection of communicating endpoints.
– A complete WSDL definition contains all

of the information necessary to invoke a
web service.

• The data being exchanged between the
endpoints are specified as part of
messages and every kind of processing
activity allowed at an endpoint is
considered as an operation.

• WSDL is layered top of the XML
schema and provides the means to
group messages into operations and
operations into interfaces.
– Collections of permissible operations at

an endpoint are grouped together into
port types.

– WSDL also provides a way to define
bindings for each interface and protocol
combination along with the endpoint
address for each one.

Slide 5.11

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

<wsdl:definitions name="PurchaseOrderService"
 targetNamespace="http://supply.com/PurchaseService/wsdl"
 xmlns:tns="http://supply.com/ PurchaseService/wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soapbind="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:types>
 <xsd:schema
 targetNamespace="http://supply.com/PurchaseService/wsdl"
 <xsd:complexType name="CustomerInfoType">
 <xsd:sequence>
 <xsd:element name="CusNamer" type="xsd:string"/>
 <xsd:element name="CusAddress" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="POType">
 <xsd:sequence>
 <xsd:element name="PONumber" type="integer"/>
 <xsd:element name="PODate" type="string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="InvoiceType">
 <xsd:all>
 <xsd:element name="InvPrice" type="float"/>
 <xsd:element name="InvDate" type="string"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name="POMessage">
 <wsdl:part name="PurchaseOrder" type="tns:POType"/>
 < wsdl:part name="CustomerInfo" type="tns:CustomerInfoType"/>
 </wsdl:message>
 <wsdl:message name="InvMessage">
 <wsdl:part name="Invoice" type="tns:InvoiceType"/>
 </wsdl:message>
 <wsdl:portType name="PurchaseOrderPortType">
 <wsdl:operation name="SendPurchase">
 <wsdl:input message="tns:POMessage"/>
 <wsdl:output message="tns:InvMessage"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

Port type with
 one operation An operation with

request (input) &
response (output)
message

Data that is returned

Data that is sent

Abstract data type
definitions

Listing 1:Listing 1:
Example of WSDLExample of WSDL
interface definitioninterface definition

Slide 5.12

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

<types> element

• The WSDL <types> element serves as a container that
contains all abstract data types that define a Web service
interface.

• A <type> element in WSDL is comparable to a data type in
Java or C++.
– WSDL uses a few primitive data types that XML schema definition

(XSD) defines, e.g., int, float, long, short, string, boolean, and
allows developers to either use them directly or build complex data
types based on those primitive ones before using them in
messages.

– The data types and elements defined in the <types> element are
used by message definitions when declaring the parts (payloads)
of messages.

– Any complex data type that the service uses must be defined using
a <types> element.

• Listing 1 illustrates two complex types : POType and
InvoiceType.

Slide 5.13

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

<message> element

• The <message> element describes the payload of a message used by a web
service. A message consists of <part> elements, which are linked to <types>
elements.

• In Listing 1, the PurchaseOrder service defines two <message> elements to
describe the parameters and return values of that service.
– POMessage (also below) describes the input parameters of the service, while
– InvMessage represents the return (output) parameters.

<!-- message elements that describe input and output parameters for the
 PurchaseOrderService -->
<!--input message -->
<wsdl:message name="POMessage">
 <wsdl:part name="PurchaseOrder" type="tns:POType"/>
 <wsdl:part name="CustomerInfo" type="tns:CustomerInfoType”/>
</wsdl:message>
<! -- outputput message -->
<wsdl:message name="InvMessage">
 <wsdl:part name="Invoice" type="tns:InvoiceType"/>
</wsdl:message>

<!-- message element that describes input and output parameters -->
<wsdl:message name="POMessage">
 <wsdl:part name="PurchaseOrder" element="tns:PurchaseOrder"/>
</wsdl:message>

RPC-styleRPC-style
messagemessage

Document-styleDocument-style
messagemessage

Slide 5.14

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

<portType>, <operation> elements

• A <portType> element defines an abstract type and its operations but
not an implementation. A <portType> element is a logical grouping of
<operations> in a Web service.
– It describes the kinds of operations that a Web service supports – the

messaging mode and payloads – without specifying the Internet protocol or
physical address used.

– The <portType> element is central to a WSDL description; the rest of the
elements in the definition are essentially details that the <portType> element
depends upon.

• Operations in WSDL represent the methods exposed by the service:
they include the name of the method and the input and output
parameters.
– A typical <operation> element is composed of at most one <input> or

<output> element and any number of <fault> elements.

• The WSDL example in Listing 1 contains a <portType> named
PurchaseOrderPortType that supports a single <operation> called
SendPurchase.

Slide 5.15

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

WSDL Implementation

• The purpose of WSDL is to specify a Web service abstractly and
then to define how the WSDL developer will reach the
implementation of these services.

• The service implementation part of WSDL contains the elements
<binding>, <port>, and <service> and describes how a
particular service interface is implemented by a given service
provider.

• The service implementation describes
– where the service is located, or more precisely;
– which network address the message must be sent to in order to
invoke the web service;
– a WSDL service element.

• A service implementation document can contain references to
more than one service interface document by means of <import>
elements.

Slide 5.16

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

WSDL Elements Hierarchy
service-interface

service-im
plem

entation

Slide 5.17

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

<wsdl:definitions> . …
 <import namespace="http://supply.com/PurchaseService/wsdl"
 location="http://supply.com PurchaseService/wsdl/PurchaseOrder-interface.wsdl"/>
 <!-- location of WSDL PO interface from Listing-1-->
 <!-- wsdl:binding states a serialisation protocol for this service -->
 <!-- type attribute must match name of portType element in Listing-1-->
 <wsdl:binding name="PurchaseOrderSOAPBinding"
 type="tns:PurchaseOrderPortType">

 <!-- leverage off soapbind:binding synchronous style -->
 <soapbind:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http/"/>

 <wsdl:operation name="SendPurchase">

 <!-- again bind to SOAP -->
 <soapbind:operation
 soapAction="http://supply.com/ PurchaseService/wsdl/ SendPurchase" style="rpc"/>

 <!-- furthur specify that the messages in the wsdl:operation use SOAP -->
 <wsdl:input>
 <soapbind:body use="literal"
 namespace="http://supply.com/PurchaseService/wsdl"/>
 </wsdl:input>
 <wsdl:output>
 <soapbind:body use=“literal"
 namespace="http://supply.com/ PurchaseService/wsdl"/>
 </wsdl:output>

 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name=“PurchaseOrderService">
 <wsdl:port name=“PurchaseOrderPort" binding="tns:PurchaseOrderSOAPBinding">
 <!-- give the binding a network endpoint address or URI of service -->
 <soapbind:address location="http://supply.com:8080/PurchaseOrderService"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Network address of service

Service name

Bind an abstract operation
to this implementation and

map the abstract
input and output messages
to these concrete messages

Listing 2:Listing 2:
Example of WSDLExample of WSDL
implementationimplementation

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

Slide 5.18

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

<binding>, <port>, <service> elements

• The central element of the implementation description is the <binding>
element. This element specifies how the client and Web service should
exchange messages. The client uses this information to access the Web
service.

• A <binding> element contains information of how the elements in an abstract
service interface (<portType> element) are converted into concrete
representation in a particular combination of
– concrete protocols, e.g., SOAP or HTTP,
– messaging styles, e.g., RPC or documents styles, and
– formatting (encoding) styles, e.g., literal or SOAP encoding.

• A <port> element defines the location of a web service and we can think of it
as the URL where the service can be found. A <port> associates an endpoint,
for instance, a network address location or URL, with a specific WSDL
<binding> element.
– It is possible for two or more <port> elements to assign different URLs to the same

<binding> element. This might be, for instance, useful for load balancing or fail-over
purposes.

• A <service> element contains a collection (usually one) of WSDL <port>
elements. Each <service> element is named, and each name must be unique
among all services in a WSDL document.

Slide 5.19

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

 <wsdl:message name="POMessage">
 <wsdl:part name="PurchaseOrder" type=“tns:POType"/>
 < wsdl:part name=“CustomerInfo” type=“tns:CustomerInfoType”/>
 </wsdl:message>
 <wsdl:message name="InvMessage">
 <wsdl:part name=“Invoice" type=“tns:InvoiceType"/>
 </wsdl:message>

 <wsdl:portType name=“PurchaseOrderPortType">
 <wsdl:operation name=“SendPurchase">
 <wsdl:input message="tns:POMessage"/>
 <wsdl:output message="tns:InvMessage"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="POMessageSOAPBinding"
 type="tns:PurchaseOrderPortType">

 <soapbind:binding style=“rpc“
 transport="http://schemas.xmlsoap.org/soap/http/"/>
 <wsdl:operation name=“SendPurchase">

 <soapbind:operation style=“rpc“
 soapAction="http://supply.com/ PurchaseService/wsdl/ SendPurchase"/>

 <wsdl:input>
 <soapbind:body use=“literal"
 namespace="http://supply.com/PurchaseOrderService/wsdl"/>
 </wsdl:input>
 <wsdl:output>
 <soapbind:body use=“literal"
 namespace="http://supply.com/ PurchaseOrderService/wsdl"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

<?xml version= "1.0" encoding= "UTF-8" ?>
<soap:Envelope
xmlns:soapbind="http://schemas.xmlsoap.org/soap/envelope"
 xmlns:tns="http://supply.com/ PurchaseService/wsdl ">
 <soap:Body>
 <tns:SendPurchase>
 <POtype>
 <PONumber> 223451 </PONumber>
 <PODate> 10/28/2004 </PODate>
 </POtype>
 ……
 <tns:SendPurchase>
 </soap:Body>
</soap:Envelope>

Mapping the SendPurchase operation to an
RPC-style SOAP message

Slide 5.20

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

Connecting the service interface with the
service implementation

Slide 5.21

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

Elements of WSDL as part of
requestor–service interaction

Slide 5.22

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

Connecting the abstract and
concrete levels of a Web service.

Slide 5.23

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

• WSDL interfaces support four common
types of operations that represent
possible combinations of input and
output messages

• The WSDL operations correspond to
the incoming and outgoing versions of
two basic operation types:
– an incoming single message passing

operation and its outgoing counterpart
(“one-way” and “notification”
operations),

– the incoming and outgoing versions of a
synchronous two-way message
exchange (“request/response” and
“solicit response”).

• Any combination of incoming and
outgoing operations can be included in
a single WSDL interface:
– these four types of operations provide

support for both push and pull
interaction models at the interface level.

WSDL Message Exchange Patterns

Slide 5.24

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

One-way operation

• A one-way operation is an operation in which the service endpoint
receives a message, but does not send a response.
– An example of a one-way operation might be an operation representing

the submission of an order to a purchasing system. Once the order is sent,
no immediate response is expected.

– This message exchange pattern is typically thought of as asynchronous
messaging. In an RPC environment, a one-way operation represents a
procedure call to which no return value is assigned.

– A one-way message defines only an input message. It requires no output
message and no fault. Next to the request/response message exchange
pattern, this is the most popular message exchange pattern employed
today.

<!-- portTyepe element describes the abstract interface of a Web service -->
<wsdl:portType name="SubmitPurchaseOrder_PortType">
 <wsdl:operation name="SubmitPurchaseOrder">
 <wsdl:input name="order" message="tns:SubmitPurchaseOrder_Message"/>
 </wsdl:operation>
</wsdl:portType>

Slide 5.25

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

Request/response operation

• A request/response operation is an operation in which the
service end point receives a message and returns a message
in response.

• If an <operation> element is declared with a single <input>
element followed by a single <output> element, it defines a
request/response operation. By listing the <input> tag first, the
<operation> indicates that the Web service receives a message
that is sent by the client. Listing the <output> tag second
indicates that the Web service should respond to the message.

<!-- portTyepe element describes the abstract interface of a Web service -->
<wsdl:portType name="PurchaseOrder_PortType">
 <wsdl:operation name="SendPurchase">
 <wsdl:input message="tns:POMessage"/>
 <wsdl:output message="tns:InvMessage"/>
 </wsdl:operation>
</wsdl:portType>

Slide 5.26

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

Notification operation

• A notification operation is an operation in which the service
endpoint sends a message to a client, but it does not
expect to receive a response.

• This type of messaging is used by services that need to
notify clients of events.
– Notification is when a <portType> element contains an

<output> tag, but no <input> message definitions.
• Here the client (subscriber) has registered with the Web

service to receive messages (notifications) about an event.
– An example of this could be a service model in which events

are reported to the service and where the endpoint
periodically reports its status.

• No response is required in this case, as most likely the status
data is assembled and logged and not acted upon immediately.

Slide 5.27

Michael P. Papazoglou, Web Services, 1st Edition, © Pearson Education Limited 2008

Solicit/response operation

• A solicit/response operation is an operation in which the
service endpoint sends a message and expects to receive
an answering message in response.

• This is the opposite of the request/response operation since
the service endpoint is initiating the operation (soliciting the
client), rather than responding to a request.

• Solicit/response is similar to notification messaging, except
that the client is expected to respond to the Web service.

• With this type of messaging the <portType> element first
declares an <output> tag and then a <input> message
definition – exactly the reverse of a request/response
operation.
– An example of this operation might be a service that sends out

order status to a client and receives back a receipt.

