
XML and SOAP

Kenneth M. Anderson
University of Colorado, Boulder

CSCI 7818 — Lecture 2 — 09/03/2008

1Thursday, September 4, 2008

Credit Where Credit is Due

• Portions of this lecture are derived from material in “Web Services: Principles
and Technology” by Michael P. Papazoglou and its accompanying instructors
materials. As such, they are Copyright 2008 by Pearson/Prentice Hall

2Thursday, September 4, 2008

Course Prep.

• To keep you informed

• I’m going to be practicing “Just in Time” lecture prep for this class

• Be prepared for lectures to be “rough around the edges”

• Be prepared to ask questions and participate in discussions to
smooth things out

• Volunteer to follow-up on week N’s topic in week N+1

• Many reasons

• ABET, OO A&D, Programming, Lab Remodel, Family, etc.

• My apologies and please bear with me!

3Thursday, September 4, 2008

Lecture Goals

• Present an Overview of Web Technologies

• Lay foundation for discussion of Web Services Technologies

• Present an Overview of XML

• XML is the underlying foundation of nearly all Web Service specifications
(known collectively as WS-*)

• Structure:

• Multiple presentations from Ken (Web Tech/XML*)

• One presentation by Jude Allred on XML

• One presentation by Matt Novinger on parsing/generating XML

4Thursday, September 4, 2008

Web Technologies

• Will make use of slides located here:

• <http://www.cs.colorado.edu/~kena/classes/7818/f06/lectures/06/index.html>

• for this portion of the lecture

5Thursday, September 4, 2008

http://www.cs.colorado.edu/~kena/classes/7818/f06/lectures/06/index.html
http://www.cs.colorado.edu/~kena/classes/7818/f06/lectures/06/index.html

Chapter 3: XML

• XML stands for Extensible Markup Language

• It is a “markup language generator” in that it can be used to define many
different markup languages

• What is a markup language?

• It is a method for distinguishing text from instructions in typesetting
systems

• Example: <center>This is a <i>very serious</i> matter.</center>

• This is a very serious matter

• <center> and <i> are called tags. Tags in XML have a clear start (<i>) and a
clear end (</i>) if they contain content. If they do not contain content, then
they both start and end with a special syntax (
).

6Thursday, September 4, 2008

Background

• XML was developed to address concerns about HTML

• In particular, HTML mixes document structure and document presentation
in one language

• This makes it difficult to change a document’s presentation while keeping
its structure the same

• Note: the situation has changed now with XHTML/CSS/Javascript

• Originally, HTML was meant to address the same concern; it was just
supposed to specify document structure, not presentation

• but the browser wars quickly changed that!

• In particular, users cared about the presentation of their information, and
quickly demanded presentation features

• , <center>, <margin>, etc.

7Thursday, September 4, 2008

An additional problem

• An additional problem can be seen by viewing the HTML source of the the
CNN website

• This page is filled with “headlines” and text/images that support those
headlines

• A “major” headline looks like this

• <H3>Earliest certified election
results in Florida: 6 p.m. EST</H3>

• A “minor”headline looks like this

• • Bush sues 4
counties over absentee ballots

• Is the difference intuitive? :-)

• Disclaimer: the above code is taken from a few years back

8Thursday, September 4, 2008

The problem explained

• The problem is that

• presentation concerns (i.e. making the web page look good)

• are overriding structural concerns (i.e. this information is a headline)

• The fact that one paragraph is a headline and another is supporting text is
completely lost in the HTML

• If you wanted to write a program to search this web page and list all
headlines, you would need to code knowledge of CNN’s presentation rules to
figure out where the headlines are hiding

• To make matters worse, if CNN changes its presentation, you would have
to change your program!

9Thursday, September 4, 2008

The XML approach

• Imagine if the source for CNN’s webpage looked like this

• <story>

• <headline class=“important”>Election returns due at 6 PM EST.</
headline>

• <supportingText>Blah Blah Blah…</supportingText>

• </story>

• Here, structure is preserved

• It would be very easy to write a program to grab the headlines out of this
document

• So, how do we handle presentation?

• XSLT, which is covered later in this lecture

10Thursday, September 4, 2008

Software Engineering Benefits

• XML attacks an accidental difficulty of software engineering

• Having to define your own file formats

• Having to write parsers for these formats

• With XML, you can define file formats in a standard way, and any XML parser
can be used to parse the file

• You never have to write a parser again!

• I threw out hundreds of lines of code from my hypermedia system when I
converted my preference files to XML!

11Thursday, September 4, 2008

XML definitions

• An XML document consists of the following parts

• a Document Type Definition (or DTD)

• Data

• The DTD defines the structure of the data. A parser can read the DTD and
know how to parse the data that follows it

• As such, XML documents are said to be “self-describing”: all the
information for parsing the data is contained in the document itself

12Thursday, September 4, 2008

Note

• This lecture is presenting a simplified view of the XML standard

• In particular, the standard supports a number of ways of associating a DTD
with an XML document

• We will cover only one of these mechanisms in this lecture, known as the
internal DTD

• For more information, buy a book on XML, visit <http://www.xml.com/>, or
read the XML standard at:

• <http://www.w3.org/TR/2000/REC-xml-20001006>

• Note: the spec is not for the “faint of heart”. I would recommend
starting with an XML book

13Thursday, September 4, 2008

XML Syntax Rules

• XML imposes a number of syntax rules that make it easier to parse than
HTML

• All tags must be closed, e.g.

• <p>HTML lets you skip the closing p tag, XML does not.</p>

• Note: the closing tag must match the opening tag!

•
 - In HTML, you can have single tags like
 to introduce a
horizontal break in the document. The
 tag has no content
associated with it; XML requires tags with no content to explicitly end
with a trailing slash, hence
.

14Thursday, September 4, 2008

XML Syntax Rules, continued

• Additional syntax rules

• All attribute values must be quoted

• e.g. HTML allows the following

• <p align=center>blah blah blah</p>

• XML requires the following

• <p align="center">blah blah blah</p>

• There are many others

• concerning legal characters, comments, etc. See the spec for details.

15Thursday, September 4, 2008

Well-Formed XML Documents

• XML documents are considered well-formed if they conform to the XML
Syntax rules

• Well-formed documents can be parsed by any XML Parser without the need
for a DTD

• It can use the syntax rules to parse the document cleanly, but without the
DTD it does not know if the document is valid

16Thursday, September 4, 2008

Valid XML Documents

• An XML document is considered “valid” if

• (1) it is well-formed and

• (2) it conforms to the rules specified in its associated DTD

• That is, if the DTD says that a <p> tag can only contain tags and
plain text, then a <p> tag which contains an tag would be
considered invalid

17Thursday, September 4, 2008

Parts of an XML document

• XML declaration

• Document declaration

• We will be showing a document declaration with an embedded DTD

• This is only one type of XML document declaration

• There are various ways of linking XML docs to DTDs

• You can now ignore DTDs altogether and use XML Schemas instead

• Data

18Thursday, September 4, 2008

XML Declaration

• An XML document begins with this tag

• <?xml version=“1.0”?>

• The question marks denote a “processing instruction”

• This instruction is for an XML parser

• Its provides the parser with additional information about the XML
document

• An XML document can contain additional processing instructions

• The parser will pass these instructions to the client that asked the parser
to parse the document

• Can contain other attributes such as encoding and standalone

19Thursday, September 4, 2008

Document Declaration

• The document declaration comes after the XML Declaration

• Its tag name is DOCTYPE

• There are two forms

• internal

• <!DOCTYPE greeting [...DTD Goes Here…]>

• external

• <!DOCTYPE greeting SYSTEM “greeting.dtd”]>

• We will cover the first form

20Thursday, September 4, 2008

DTD Syntax

• The DTD is where you declare the elements (a.k.a. tags) and attributes that
will appear in your XML document

• In defining elements, you use regular expressions to declare the order in
which elements are to appear

• Attributes can be associated with elements and can have default values
associated with them

• NOTE: DTD syntax does NOT follow XML formatting rules

• This is the primary motivation behind XML Schema: to allow the schema of
an XML document BE another valid, well-formed XML document

• “Its turtles all the way down…”

• Lets look at an example

21Thursday, September 4, 2008

DTD for a Class Gradebook

• <!DOCTYPE gradebook [

• <!ELEMENT gradebook (class, student*)>

• <!ELEMENT class (name, studentsEnrolled)>

• <!ATTLIST class semester CDATA #REQUIRED>

• <!ELEMENT name (#PCDATA)>

• <!ELEMENT studentsEnrolled (#PCDATA)>

• <!ELEMENT student (name, grade*)>

• <!ELEMENT grade (#PCDATA)>

• <!ATTLIST grade name CDATA #REQUIRED>

•]>

22Thursday, September 4, 2008

What does this mean?

• This DTD defines a document whose root element is called gradebook

• The first element in gradebook has to be a class element followed by zero or
more student elements

• A class element contains a name and the number of student’s enrolled

• It has a required attribute called semester

• A student contains a name and zero or more grades

• A name, a grade, and the studentsEnrolled are declared as having PCDATA or
“Parsed Character Data” as their content => this means that they contain
strings

• The grade element also has an attribute called name

23Thursday, September 4, 2008

An example

• <?xml version=“1.0” ?>

• <!DOCTYPE gradebook […insert DTD from slide 19 here]>

• <gradebook>

• <class semester=“Fall 2004”>

• <name>CSCI 3308</name>

• <studentsEnrolled>36</studentsEnrolled>

• </class>

• <student>

• <name>Ken Anderson</name>

• <grade name=“lab0”>10</grade>

• <grade name=“lab1”>9</grade>

• </student>

• </gradebook>

24Thursday, September 4, 2008

Element Declarations

• Empty Elements

• <!ELEMENT BR EMPTY>

• Non-Empty Elements

• <!ELEMENT NAME (CONTENT)>

• Content contains a regular expression of element names and/or Character
Data

• #PCDATA - strings are parsed for embedded elements (like searching for a
 tag within a <p> tag in HTML)

• #CDATA - strings are not parsed for embedded elements

25Thursday, September 4, 2008

Regular Expressions in Element Declarations

• Element1, Element2

• Element2 must follow Element1

• Element1?

• Element1 is optional

• Element1+

• At least one Element1 tag must appear

• Element1*

• Zero or more Element1 tags may appear

• Element1 | Element2

• Either Element1 or Element2 may appear

26Thursday, September 4, 2008

Examples

• <!ELEMENT p ((#PCDATA|B|I|EM)+)>

• A p tag may contain text, or a B element, or an I element, or …

• <!ELEMENT name (first, middle?, last)

• A name consists of a first and last name and may contain a middle name

• <!ELEMENT shoppinglist (item+)

• A shopping list contains one or more items

27Thursday, September 4, 2008

Attribute Declarations

• Declaring attributes requires that you first declare the associated element

• You then use the ATTLIST element to declare the attributes

• <!ELEMENT name (first, middle?, last)>

• <!ATTLIST name

• age CDATA #REQUIRED

• height CDATA #IMPLIED

• gender (male|female) “female”>

• This example declares three attributes, one required and two implied
(optional), if no gender attribute is specified, it defaults to “female”

• See the spec. for complete details on ATTLIST tag

28Thursday, September 4, 2008

Entities

• XML needs a way for characters that indicate markup (such as the “<”and the
“>”) to be included in the content of an XML document

• This mechanism also needs to allow the inclusion of other chars. such as:

• characters from languages around the world

• symbols

• non-printing characters

• etc.

• XML uses entities for this purpose. Entities have several ways in which they
can be specified, but the most common look like this:

• , &, “, >, <, etc.

• That is &NAME;

• An XML processor (such as a Web browser) will expand these chars in place
before displaying the document

29Thursday, September 4, 2008

Namespaces

• Sometimes it is necessary to combine the tags of two DTDs or schemas
(discussed next) into one XML document

• Since XML DTDs/schemas (hereafter schemas) can be created
independently, it is very easy for different schemas to choose the same
name for an element (tag)

• When the tags of these conflicting schemas are merged, a name clash
occurs and it becomes ambiguous as to which element is being
referenced in the merged XML document

• Namespaces were added to XML 1.1 to address this problem

• Essentially, a schema’s tags can be associated with a namespace

• A namespace is given a prefix string and a URL (which must be unique)

• In an XML document, if a tag “foo” comes from namespace “x” then all
references to “foo” in the document appear as “<x:foo></x:foo>”

30Thursday, September 4, 2008

 <?xml version="1.0"?>
<definitions name="Procurement"
 targetNamespace="http://example.com/procurement/definitions"
 xmlns:tns="http://example.com/procurement/definitions"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/" >

 <message name="OrderMsg">
 <part name="productName" type="xs:string"/>
 <part name="quantity" type="xs:integer"/>
 </message>

 <portType name="procurementPortType">
 <operation name="orderGoods">
 <input message = "OrderMsg"/>
 </operation>
 </portType>

 <binding name="ProcurementSoapBinding" type="tns:procurementPortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="orderGoods">
 <soap:operation soapAction="http://example.com/orderGoods"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

 <service name="ProcurementService">
 <port name="ProcurementPort" binding="tns:ProcurementSoapBinding">
 <soap:address location="http://example.com/procurement"/>
 </port>
 </service>
</definitions>

port and
service

binding

operation and
port type

messages

abstract
part

concrete
part

C
opy

righ
t S

pringe
r V

e
rla

g B
e
rlin H

e
id

e
lb

e
rg 2

0
0
4

WSDL makes extensive use of
namespaces; the document below
makes use of 4 namespaces

31Thursday, September 4, 2008

Default Namespace

• If an XML document includes an attribute of the form:

• xmlns=“URI”

• that is, the xmlns attribute does not define a prefix, then this attribute is
asserting that all tags within the document that do not have a prefix belong to
this namespace

• In the previous example, all tags belonging to the WSDL namespace
appeared with no prefix on them

• Technically, this declaration defines the default namespace for the node it
appears on and all its children

• In practice, since namespace declarations often appear on the root node,
it defines the default namespace for the entire document

32Thursday, September 4, 2008

XML Schema Language (XSL)

• The XML Schema language is designed to take the place of DTDs and

• provide a standardized way to define XML document structures in XML

• no weird syntax to deal with as with DTDs

• standard located at: <http://www.w3.org/XML/Schema>

• allow the specification of more complicated XML structures

• It does this by providing a set of simple types and a set of composition rules
that allow the specification of complex types

• Lets look at a simple example

33Thursday, September 4, 2008

http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema

Example (DTD)

BookStore.dtd

<!ELEMENT BookStore (Book)+>

<!ELEMENT Book (Title, Author, Date, ISBN, Publisher)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Author (#PCDATA)>

<!ELEMENT Date (#PCDATA)>

<!ELEMENT ISBN (#PCDATA)>

<!ELEMENT Publisher (#PCDATA)>

34Thursday, September 4, 2008

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.books.org"
 xmlns="http://www.books.org" elementFormDefault="qualified">
 <xsd:element name="BookStore">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="Book" minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Book">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="Title" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="Author" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="Date" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="ISBN" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="Publisher" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Title" type="xsd:string"/>
 <xsd:element name="Author" type="xsd:string"/>
 <xsd:element name="Date" type="xsd:string"/>
 <xsd:element name="ISBN" type="xsd:string"/>
 <xsd:element name="Publisher" type="xsd:string"/>
</xsd:schema>

Same specification
using XSL

See how much
BETTER it is!

35Thursday, September 4, 2008

XSL Type Hiearchy

36Thursday, September 4, 2008

An Instance Document (using previous schema)

“”<?xml version="1.0"?>
<BookStore xmlns=“http://www.books.org”
 xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation="http://www.books.org/BookStore.xsd">
 <Book>
 <Title>My Life and Times</Title>
 <Author>Paul McCartney</Author>
 <Date>July, 1998</Date>
 <ISBN>94303-12021-43892</ISBN>
 <Publisher>McMillin Publishing</Publisher>
 </Book>
 ...
</BookStore>

37Thursday, September 4, 2008

http://www.books.org/
http://www.books.org/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

XSLT

• Will use a separate set of slides to discuss XSLT

38Thursday, September 4, 2008

Summary: XML

• XML provides the ability to create your own tagged language

• Provides ways to define tags, attributes, entities, etc.

• Either via DTDs or schemas

• Namespaces are used to avoid name clashes between schemas

• XSLT provides a way to specify (in XML) how XML documents can be
transformed

• relies on XSLT processor to do the actual transformation

39Thursday, September 4, 2008

What’s Next?

• Chapter 4: SOAP

• Chapter 5: WSDL

• Volunteers?

40Thursday, September 4, 2008

