XML and SOAP

Kenneth M. Anderson
University of Colorado, Boulder
CSCI 7818 — Lecture 2 — 09/03/2008

Thursday, September 4, 2008

Credit Where Credit is Due

e Portions of this lecture are derived from material in “Web Services: Principles
and Technology” by Michael P. Papazoglou and its accompanying instructors
materials. As such, they are Copyright 2008 by Pearson/Prentice Hall

Thursday, September 4, 2008

Course Prep.

e To keep you informed
* I’'m going to be practicing “dust in Time” lecture prep for this class
e Be prepared for lectures to be “rough around the edges”

e Be prepared to ask questions and participate in discussions to
smooth things out

¢ \/olunteer to follow-up on week N’s topic in week N+1
e Many reasons
e ABET, OO A&D, Programming, Lab Remodel, Family, etc.

* My apologies and please bear with me!

Thursday, September 4, 2008

L ecture Goals

e Present an Overview of Web Technologies
e | ay foundation for discussion of Web Services Technologies
e Present an Overview of XML

e XML is the underlying foundation of nearly all Web Service specifications
(known collectively as WS-*)

e Structure:
e Multiple presentations from Ken (Web Tech/XML?)
e One presentation by Jude Allred on XML

e One presentation by Matt Novinger on parsing/generating XML

Thursday, September 4, 2008

Web Technologies

e Will make use of slides located here:

e <http://www.cs.colorado.edu/~kena/classes/7818/f06/lectures/06/index.html>

e for this portion of the lecture

Thursday, September 4, 2008

http://www.cs.colorado.edu/~kena/classes/7818/f06/lectures/06/index.html
http://www.cs.colorado.edu/~kena/classes/7818/f06/lectures/06/index.html

Chapter 3: XML

e XML stands for Extensible Markup Language

e |t is a “markup language generator” in that it can be used to define many
different markup languages

e \What is a markup language?

e |t is a method for distinguishing text from instructions in typesetting
systems

e Example: <center>This is a <i>very serious</i> matter.</center>
e This is a very serious matter

e <center> and <i> are called tags. Tags in XML have a clear start (<i>) and a
clear end (</i>) if they contain content. If they do not contain content, then
they both start and end with a special syntax (
).

Thursday, September 4, 2008

BSackground

e XML was developed to address concerns about HTML

¢ |n particular, HTML mixes document structure and document presentation
In one language

e This makes it difficult to change a document’s presentation while keeping
its structure the same

e Note: the situation has changed now with XHTML/CSS/Javascript

e Originally, HTML was meant to address the same concern; it was just
supposed to specify document structure, not presentation

e but the browser wars quickly changed that!

e |[n particular, users cared about the presentation of their information, and
quickly demanded presentation features

e , <center>, <margin>, etc.

Thursday, September 4, 2008

An additional problem

e An additional problem can be seen by viewing the HTML source of the the
CNN website

e This page is filled with “headlines” and text/images that support those
headlines

e A “*major” headline looks like this

® <H3>Earliest certified election
results in Florida: 6 p.m. EST</H3>

e A “minor’headline looks like this

e • Bush sues 4
counties over absentee ballots

e |s the difference intuitive? :-)

e Disclaimer: the above code is taken from a few years back

Thursday, September 4, 2008

The problem explained

® The problem is that
e presentation concerns (i.e. making the web page look good)
e are overriding structural concerns (i.e. this information is a headline)

e The fact that one paragraph is a headline and another is supporting text is
completely lost in the HTML

e |f you wanted to write a program to search this web page and list all
headlines, you would need to code knowledge of CNN’s presentation rules to
figure out where the headlines are hiding

e To make matters worse, if CNN changes its presentation, you would have
to change your program!

Thursday, September 4, 2008

The XML approach

e Imagine if the source for CNN’s webpage looked like this

e <story>

e <headline class=“important”>Election returns due at 6 PM EST.</
headline>

e <supportingText>Blah Blah Blah...</supportingText>
e </story>

® Here, structure is preserved

e |t would be very easy to write a program to grab the headlines out of this
document

e S0, how do we handle presentation?

e XSLT, which is covered later in this lecture

Thursday, September 4, 2008

10

Software Engineering Benefits

e XML attacks an accidental difficulty of software engineering
e Having to define your own file formats
e Having to write parsers for these formats

e \With XML, you can define file formats in a standard way, and any XML parser
can be used to parse the file

* You never have to write a parser again!

e | threw out hundreds of lines of code from my hypermedia system when |
converted my preference files to XML!

Thursday, September 4, 2008

XML definitions

e An XML document consists of the following parts
e a Document Type Definition (or DTD)
e Data

e The DTD defines the structure of the data. A parser can read the DTD and
know how to parse the data that follows it

e As such, XML documents are said to be “self-describing”: all the
information for parsing the data is contained in the document itself

Thursday, September 4, 2008

12

Note

e This lecture is presenting a simplified view of the XML standard

¢ In particular, the standard supports a number of ways of associating a DTD
with an XML document

e \We will cover only one of these mechanisms in this lecture, known as the
internal DTD

e For more information, buy a book on XML, visit <http://www.xml.com/>, or
read the XML standard at:

e <http://www.w3.0rg/TR/2000/REC-xmI-20001006>

e Note: the spec is not for the “faint of heart”. | would recommend
starting with an XML book

Thursday, September 4, 2008

13

XML Syntax Rules

e XML imposes a number of syntax rules that make it easier to parse than
HTML

e All tags must be closed, e.g.
e <p>HTML lets you skip the closing p tag, XML does not.</p>
e Note: the closing tag must match the opening tag!

e
 - In HTML, you can have single tags like
 to introduce a
horizontal break in the document. The
 tag has no content
associated with it; XML requires tags with no content to explicitly end
with a trailing slash, hence
.

Thursday, September 4, 2008 14

XML Syntax

Rules, continued

e Additional syntax rules

e All attribute values must be quoted

e ¢.g. HTML allows the following

e <p align=center>blah blah blah</p>

e XML requires the following

e <p align="center">blah blah blah</p>

® There are many others

e concerning legal characters, comments, etc. See the spec for details.

Thursday, September 4, 2008

15

Well-Formed XML Documents

e XML documents are considered well-formed if they conform to the XML
Syntax rules

¢ Well-formed documents can be parsed by any XML Parser without the need
fora DTD

¢ |t can use the syntax rules to parse the document cleanly, but without the
DTD it does not know if the document is valid

Thursday, September 4, 2008

16

Valid XML Documents

e An XML document is considered “valid” if
e (1) it is well-formed and
e (2) it conforms to the rules specified in its associated DTD

e That is, if the DTD says that a <p> tag can only contain tags and
plain text, then a <p> tag which contains an tag would be
considered invalid

Thursday, September 4, 2008

17

Parts of an XML document

e XML declaration
* Document declaration
e \We will be showing a document declaration with an embedded DTD
* This is only one type of XML document declaration
e There are various ways of linking XML docs to DTDs
e You can now ignore DTDs altogether and use XML Schemas instead

e Data

Thursday, September 4, 2008

18

XML Declaration

e An XML document begins with this tag

e <?xml version=*1.0"7?>
* The question marks denote a “processing instruction”
¢ This instruction is for an XML parser

e |ts provides the parser with additional information about the XML
document

e An XML document can contain additional processing instructions

e The parser will pass these instructions to the client that asked the parser
to parse the document

e Can contain other attributes such as encoding and standalone

Thursday, September 4, 2008

19

Document Declaration

* The document declaration comes after the XML Declaration
e [ts tag name is DOCTYPE
* There are two forms
* internal
e <IDOCTYPE greeting [...DTD Goes Here... |>
e external
e <IDOCTYPE greeting SYSTEM “greeting.dtd”]>

e \We will cover the first form

Thursday, September 4, 2008

20

DTD Syntax

e The DTD is where you declare the elements (a.k.a. tags) and attributes that
will appear in your XML document

¢ In defining elements, you use regular expressions to declare the order in
which elements are to appear

e Attributes can be associated with elements and can have default values
associated with them

e NOTE: DTD syntax does NOT follow XML formatting rules

e This is the primary motivation behind XML Schema: to allow the schema of
an XML document BE another valid, well-formed XML document

e “|ts turtles all the way down...”

¢ | ets look at an example

Thursday, September 4, 2008

21

DD for a Class Gradebook

e <IDOCTYPE gradebook |

e <IELEMENT
e <IELEMENT
e <IATTLIST
e <IELEMENT
e <IELEMENT
e <!ELEMENT
e <IELEMENT
e <IATTLIST

o]>

gradebook (class, student*)>
class (name, studentsEnrolled)>
class semester CDATA #REQUIRED>
name (#PCDATA)>
studentsEnrolled (#PCDATA)>
student (name, grade*)>

grade (#PCDATA)>

grade name CDATA #REQUIRED>

Thursday, September 4, 2008

22

What does this mean??

e This DTD defines a document whose root element is called gradebook

e The first element in gradebook has to be a class element followed by zero or
more student elements

¢ A class element contains a name and the number of student’s enrolled
e |t has a required attribute called semester

e A student contains a name and zero or more grades

e A name, a grade, and the studentsEnrolled are declared as having PCDATA or

“Parsed Character Data” as their content => this means that they contain
strings

* The grade element also has an attribute called name

Thursday, September 4, 2008

23

An example

e <?xml version=“1.0" ?2>
e <IDOCTYPE gradebook [..insert DTD from slide 19 here]>
e <gradebook>
e <class semester=“Fall 2004">
e <name>CSCI 3308</name>
e <studentsEnrolled>36</studentsEnrolled>
e </class>
e <student>
e <name>Ken Anderson</name>
e <grade name=*“lab0”>10</grade>
e <grade name=*"labl”>9</grade>
e </student>

e </gradebook>

Thursday, September 4, 2008

24

—lement Declarations

e Empty Elements
o <IEl EMENT BR EMPTY>
e Non-Empty Elements

o <I[ELEMENT NAME (CONTENT)>

e Content contains a regular expression of element names and/or Character
Data

e #PCDATA - strings are parsed for embedded elements (like searching for a
 tag within a <p> tag in HTML)

o #CDATA - strings are not parsed for embedded elements

Thursday, September 4, 2008

25

Regular

—X[Oressions in

e Elementl1, Element?2

¢ Element2 must follow Element

e Element1?

e Element is optional

e Element1+

—lement

e At least one Element1 tag must appear

e Element1”

e Zero or more Element1 tags may appear

e Element1 | Element2

e Either Element1 or Element2 may appear

Declarations

Thursday, September 4, 2008

26

—Xamples

e <IELEMENT p ((#PCDATA|B|I|[EM)+)>

e A p tag may contain text, or a B element, or an | element, or ...
o <IELEMENT name (first, middle?, last)

e A name consists of a first and last name and may contain a middle name
e <IELEMENT shoppinglist (item+)

e A shopping list contains one or more items

Thursday, September 4, 2008

27

Attribute Declarations

e Declaring attributes requires that you first declare the associated element
e You then use the ATTLIST element to declare the attributes
o <IELEMENT name (first, middle?, last)>
o <IATTLIST name
e age CDATA #REQUIRED
e height CDATA #IMPLIED
e gender (male|female) “female”>

e This example declares three attributes, one required and two implied
(optional), if no gender attribute is specified, it defaults to “female”

e See the spec. for complete details on ATTLIST tag

Thursday, September 4, 2008

28

—ntities

e XML needs a way for characters that indicate markup (such as the “<”and the
“>”) to be included in the content of an XML document

e This mechanism also needs to allow the inclusion of other chars. such as:
e characters from languages around the world
e symbols
® non-printing characters
® etcC.

e XML uses entities for this purpose. Entities have several ways in which they
can be specified, but the most common look like this:

e , &, “, >, <, etc.
e That is &KNAME;

e An XML processor (such as a Web browser) will expand these chars in place
before displaying the document

Thursday, September 4, 2008 29

Namespaces

e Sometimes it is necessary to combine the tags of two DTDs or schemas
(discussed next) into one XML document

e Since XML DTDs/schemas (hereafter schemas) can be created
independently, it is very easy for different schemas to choose the same

name for an element (tag)

e \When the tags of these conflicting schemas are merged, a name clash
occurs and it becomes ambiguous as to which element is being
referenced in the merged XML document

e Namespaces were added to XML 1.1 to address this problem
e Essentially, a schema’s tags can be associated with a namespace
e A namespace is given a prefix string and a URL (which must be unique)

e In an XML document, if a tag “foo” comes from namespace “x” then all
references to “foo” in the document appear as “<x:foo></x:foo>"

Thursday, September 4, 2008 30

<?xml version="1.0"?>

<definitions name="Procurement"
targetNamespace="http://example.com/procurement/definitions
xmlns:tns="http://example.com/procurement/definitions"
xmins:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/" >

WSDL makes extensive use of
namespaces; the document below
makes use of 4 namespaces

abstract
<message name="OrderMsg"> par"r
<part name="productName" type="xs:string"/>
<part name="quantity" type="xs:integer"/> messages
</message>
<portType name="procurementPort Type">
<operation name="orderGoods"> :
<input message = "OrderMsg"/> operation and
</operation> port type
</portType>
<binding name="ProcurementSoapBinding" type="tns:procurementPortType">
<soap:binding style="document" |_concrete
transport="http://schemas.xmlsoap.org/soap/http"/> part
<operation name="orderGoods">
<soap:operation soapAction="http://example.com/orderGoods" />
<input>
<soap:body use="literal"/> binding
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>
<service name="ProcurementService">
<port name="ProcurementPort" binding="tns:ProcurementSoapBinding"> por"r and
<soap:address location="http://example.com/procurement"/> service
</port>
</service>

</definitions>

Thursday, September 4, 2008

31

Default Namespace

¢ I[f an XML document includes an attribute of the form:
e xmlins="URI”

e that is, the xmlns attribute does not define a prefix, then this attribute is
asserting that all tags within the document that do not have a prefix belong to
this namespace

* In the previous example, all tags belonging to the WSDL namespace
appeared with no prefix on them

e Technically, this declaration defines the default namespace for the node it
appears on and all its children

¢ |n practice, since namespace declarations often appear on the root node,
it defines the default namespace for the entire document

Thursday, September 4, 2008

32

XML Schema Language (XSL)

e The XML Schema language is designed to take the place of DTDs and
¢ provide a standardized way to define XML document structures in XML
* no weird syntax to deal with as with DTDs
e standard located at: <http://www.w3.org/XML/Schema>
¢ allow the specification of more complicated XML structures

e |t does this by providing a set of simple types and a set of composition rules
that allow the specification of complex types

¢ | ets look at a simple example

Thursday, September 4, 2008

33

http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema

—xample (

BookStore.
<!ELEMENT
<!ELEMENT

<!ELEMENT

DTD)

dtd
BookStore (Book)+>
Book (Title, Author, Date,

Title (#PCDATA)>

<!ELEMENT Author (#PCDATA)>

<!ELEMENT

<!ELEMENT

<!ELEMENT

Date (#PCDATA)>
ISBN (#PCDATA)>

Publisher (#PCDATA)>

ISBN, Publisher)>

Thursday, September 4, 2008

34

<?xml version="1.0"7?>

<xsd:schema xmins:xsd="http:// www.w3.0rg/2001/XMLSchema" targetNamespace="http://www.books.org"

xmins="http://www.books.org" elementFormDefault="qualified">
<xsd:element name="BookStore">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="Book" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Book">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="Title" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="Author" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="Date" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="ISBN" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="Publisher" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Title" type="xsd:string"/>
<xsd:element name="Author" type="xsd:string"/>
<xsd:element name="Date" type="xsd:string"/>
<xsd:element name="ISBN" type="xsd:string"/>
<xsd:element name="Publisher" type="xsd:string"/>
</xsd:schema>

Same specification
using XSL

See

NOW Much

BE

ER It is!

Thursday, September 4, 2008

35

Built—in Datatype Hierarchwy

r--

all complex tyvpes

XSL Type Hiearchy

duration | |[dateTime timwme ||date ||[g¥earMonth ||g¥ear ||gMonthDhay ||gDhay | |gMonth
boolean ||base6&6dBinary hexEBinaryv ||fTloakt doulble | |lanvyURI | | ONane NOTATION
string decimal
normali=edString integer
token 2 W] S 0 s e i B g S o long | |[nonNegativeInteger
lancguage N=auane MIMTOEERN A e o s ey S) Sl e e e int ||unsignedLorng i g A P e e S By e S il
’
]
MNCHMNatme | | NMMTOEENS short unsignedInt
I IDREEF E BRI byvte | |lunsignedShort
' :
] |
SEF SN TP 2w o WS R 2 BN A un=signedByite

EEH ner type=s

complex types

built—3in priwmitiwe types

built—in deriwed types

deriwed by restriction

deriwed by list

deriwed by extension oxr

resttric

Zion

Thursday, September 4, 2008

36

An Instance Document (using previous schema)

“r<?xml version="1.0"?>
<BookStore xmlns=“http://www.books.org”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemaLocation="http://www.books.org/BookStore.xsd">
<Book>
<Title>My Life and Times</Title>
<Author>Paul McCartney</Author>
<Date>July, 1998</Date>
<ISBN>94303-12021-43892</ISBN>
<Publisher>McMillin Publishing</Publisher>
</Book>

</BookStore>

Thursday, September 4, 2008 37

http://www.books.org/
http://www.books.org/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

XSLT

e \Will use a separate set of slides to discuss XSLT

Thursday, September 4, 2008

38

Summary: XML

e XML provides the ability to create your own tagged language
e Provides ways to define tags, attributes, entities, etc.
e Either via DTDs or schemas
e Namespaces are used to avoid name clashes between schemas

e XSLT provides a way to specify (in XML) how XML documents can be
transformed

e relies on XSLT processor to do the actual transformation

Thursday, September 4, 2008

39

What’s Next?

e Chapter 4: SOAP

e Chapter 5: WSDL

e \/olunteers?

Thursday, September 4, 2008

40

