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Credit Where Credit is Due

e Portions of this lecture are derived from material in “Web Services: Principles
and Technology” by Michael P. Papazoglou and its accompanying instructors
materials. As such, they are Copyright 2008 by Pearson/Prentice Hall
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Course Prep.

e To keep you informed
* I’'m going to be practicing “dust in Time” lecture prep for this class
e Be prepared for lectures to be “rough around the edges”

e Be prepared to ask questions and participate in discussions to
smooth things out

¢ \/olunteer to follow-up on week N’s topic in week N+1
e Many reasons
e ABET, OO A&D, Programming, Lab Remodel, Family, etc.

* My apologies and please bear with me!
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L ecture Goals

e Present an Overview of Web Technologies
e | ay foundation for discussion of Web Services Technologies
e Present an Overview of XML

e XML is the underlying foundation of nearly all Web Service specifications
(known collectively as WS-*)

e Structure:
e Multiple presentations from Ken (Web Tech/XML?)
e One presentation by Jude Allred on XML

e One presentation by Matt Novinger on parsing/generating XML

Thursday, September 4, 2008



Web Technologies

e Will make use of slides located here:

e <http://www.cs.colorado.edu/~kena/classes/7818/f06/lectures/06/index.html>

e for this portion of the lecture
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Chapter 3: XML

e XML stands for Extensible Markup Language

e |t is a “markup language generator” in that it can be used to define many
different markup languages

e \What is a markup language?

e |t is a method for distinguishing text from instructions in typesetting
systems

e Example: <center>This is a <i>very serious</i> matter.</center>
e This is a very serious matter

e <center> and <i> are called tags. Tags in XML have a clear start (<i>) and a
clear end (</i>) if they contain content. If they do not contain content, then
they both start and end with a special syntax (<br />).

Thursday, September 4, 2008



BSackground

e XML was developed to address concerns about HTML

¢ |n particular, HTML mixes document structure and document presentation
In one language

e This makes it difficult to change a document’s presentation while keeping
its structure the same

e Note: the situation has changed now with XHTML/CSS/Javascript

e Originally, HTML was meant to address the same concern; it was just
supposed to specify document structure, not presentation

e but the browser wars quickly changed that!

e |[n particular, users cared about the presentation of their information, and
quickly demanded presentation features

e <font>, <center>, <margin>, etc.
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An additional problem

e An additional problem can be seen by viewing the HTML source of the the
CNN website

e This page is filled with “headlines” and text/images that support those
headlines

e A “*major” headline looks like this

® <H3><A href="..." class="tl">Earliest certified election
results in Florida: 6 p.m. EST</A></H3>

e A “minor’headline looks like this

e &nbsp; &nbsp; &#149; &nbsp;<a href="...">Bush sues 4
counties over absentee ballots</a><br>

e |s the difference intuitive? :-)

e Disclaimer: the above code is taken from a few years back
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The problem explained

® The problem is that
e presentation concerns (i.e. making the web page look good)
e are overriding structural concerns (i.e. this information is a headline)

e The fact that one paragraph is a headline and another is supporting text is
completely lost in the HTML

e |f you wanted to write a program to search this web page and list all
headlines, you would need to code knowledge of CNN’s presentation rules to
figure out where the headlines are hiding

e To make matters worse, if CNN changes its presentation, you would have
to change your program!
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The XML approach

e Imagine if the source for CNN’s webpage looked like this

e <story>

e <headline class=“important”>Election returns due at 6 PM EST.</
headline>

e <supportingText>Blah Blah Blah...</supportingText>
e </story>

® Here, structure is preserved

e |t would be very easy to write a program to grab the headlines out of this
document

e S0, how do we handle presentation?

e XSLT, which is covered later in this lecture
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Software Engineering Benefits

e XML attacks an accidental difficulty of software engineering
e Having to define your own file formats
e Having to write parsers for these formats

e \With XML, you can define file formats in a standard way, and any XML parser
can be used to parse the file

* You never have to write a parser again!

e | threw out hundreds of lines of code from my hypermedia system when |
converted my preference files to XML!
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XML definitions

e An XML document consists of the following parts
e a Document Type Definition (or DTD)
e Data

e The DTD defines the structure of the data. A parser can read the DTD and
know how to parse the data that follows it

e As such, XML documents are said to be “self-describing”: all the
information for parsing the data is contained in the document itself
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Note

e This lecture is presenting a simplified view of the XML standard

¢ In particular, the standard supports a number of ways of associating a DTD
with an XML document

e \We will cover only one of these mechanisms in this lecture, known as the
internal DTD

e For more information, buy a book on XML, visit <http://www.xml.com/>, or
read the XML standard at:

e <http://www.w3.0rg/TR/2000/REC-xmI-20001006>

e Note: the spec is not for the “faint of heart”. | would recommend
starting with an XML book
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XML Syntax Rules

e XML imposes a number of syntax rules that make it easier to parse than
HTML

e All tags must be closed, e.g.
e <p>HTML lets you skip the closing p tag, XML does not.</p>
e Note: the closing tag must match the opening tag!

e <br /> - In HTML, you can have single tags like <br> to introduce a
horizontal break in the document. The <br> tag has no content
associated with it; XML requires tags with no content to explicitly end
with a trailing slash, hence <br />.
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XML Syntax

Rules, continued

e Additional syntax rules

e All attribute values must be quoted

e ¢.g. HTML allows the following

e <p align=center>blah blah blah</p>

e XML requires the following

e <p align="center">blah blah blah</p>

® There are many others

e concerning legal characters, comments, etc. See the spec for details.
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Well-Formed XML Documents

e XML documents are considered well-formed if they conform to the XML
Syntax rules

¢ Well-formed documents can be parsed by any XML Parser without the need
fora DTD

¢ |t can use the syntax rules to parse the document cleanly, but without the
DTD it does not know if the document is valid
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Valid XML Documents

e An XML document is considered “valid” if
e (1) it is well-formed and
e (2) it conforms to the rules specified in its associated DTD

e That is, if the DTD says that a <p> tag can only contain <b> tags and
plain text, then a <p> tag which contains an <em> tag would be
considered invalid
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Parts of an XML document

e XML declaration
* Document declaration
e \We will be showing a document declaration with an embedded DTD
* This is only one type of XML document declaration
e There are various ways of linking XML docs to DTDs
e You can now ignore DTDs altogether and use XML Schemas instead

e Data
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XML Declaration

e An XML document begins with this tag

e <?xml version=*1.0"7?>
* The question marks denote a “processing instruction”
¢ This instruction is for an XML parser

e |ts provides the parser with additional information about the XML
document

e An XML document can contain additional processing instructions

e The parser will pass these instructions to the client that asked the parser
to parse the document

e Can contain other attributes such as encoding and standalone
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Document Declaration

* The document declaration comes after the XML Declaration
e [ts tag name is DOCTYPE
* There are two forms
* internal
e <IDOCTYPE greeting [ ...DTD Goes Here... |>
e external
e <IDOCTYPE greeting SYSTEM “greeting.dtd”]>

e \We will cover the first form
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DTD Syntax

e The DTD is where you declare the elements (a.k.a. tags) and attributes that
will appear in your XML document

¢ In defining elements, you use regular expressions to declare the order in
which elements are to appear

e Attributes can be associated with elements and can have default values
associated with them

e NOTE: DTD syntax does NOT follow XML formatting rules

e This is the primary motivation behind XML Schema: to allow the schema of
an XML document BE another valid, well-formed XML document

e “|ts turtles all the way down...”

¢ | ets look at an example
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DD for a Class Gradebook

e <IDOCTYPE gradebook |

e <IELEMENT
e <IELEMENT
e <IATTLIST
e <IELEMENT
e <IELEMENT
e <!ELEMENT
e <IELEMENT
e <IATTLIST

o]>

gradebook (class, student*)>
class (name, studentsEnrolled)>
class semester CDATA #REQUIRED>
name (#PCDATA)>
studentsEnrolled (#PCDATA)>
student (name, grade*)>

grade (#PCDATA)>

grade name CDATA #REQUIRED>
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What does this mean??

e This DTD defines a document whose root element is called gradebook

e The first element in gradebook has to be a class element followed by zero or
more student elements

¢ A class element contains a name and the number of student’s enrolled
e |t has a required attribute called semester

e A student contains a name and zero or more grades

e A name, a grade, and the studentsEnrolled are declared as having PCDATA or

“Parsed Character Data” as their content => this means that they contain
strings

* The grade element also has an attribute called name
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An example

e <?xml version=“1.0" ?2>
e <IDOCTYPE gradebook [..insert DTD from slide 19 here]>
e <gradebook>
e <class semester=“Fall 2004">
e <name>CSCI 3308</name>
e <studentsEnrolled>36</studentsEnrolled>
e </class>
e <student>
e <name>Ken Anderson</name>
e <grade name=*“lab0”>10</grade>
e <grade name=*"labl”>9</grade>
e </student>

e </gradebook>
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—lement Declarations

e Empty Elements
o <IEl EMENT BR EMPTY>
e Non-Empty Elements

o <I[ELEMENT NAME (CONTENT)>

e Content contains a regular expression of element names and/or Character
Data

e #PCDATA - strings are parsed for embedded elements (like searching for a
<b> tag within a <p> tag in HTML)

o #CDATA - strings are not parsed for embedded elements
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Regular

—X[Oressions in

e Elementl1, Element?2

¢ Element2 must follow Element

e Element1?

e Element is optional

e Element1+

—lement

e At least one Element1 tag must appear

e Element1”

e Zero or more Element1 tags may appear

e Element1 | Element2

e Either Element1 or Element2 may appear

Declarations
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—Xamples

e <IELEMENT p ((#PCDATA|B|I|[EM)+)>

e A p tag may contain text, or a B element, or an | element, or ...
o <IELEMENT name (first, middle?, last)

e A name consists of a first and last name and may contain a middle name
e <IELEMENT shoppinglist (item+)

e A shopping list contains one or more items
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Attribute Declarations

e Declaring attributes requires that you first declare the associated element
e You then use the ATTLIST element to declare the attributes
o <IELEMENT name (first, middle?, last)>
o <IATTLIST name
e age CDATA #REQUIRED
e height CDATA #IMPLIED
e gender (male|female) “female”>

e This example declares three attributes, one required and two implied
(optional), if no gender attribute is specified, it defaults to “female”

e See the spec. for complete details on ATTLIST tag
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—ntities

e XML needs a way for characters that indicate markup (such as the “<”and the
“>”) to be included in the content of an XML document

e This mechanism also needs to allow the inclusion of other chars. such as:
e characters from languages around the world
e symbols
® non-printing characters
® etcC.

e XML uses entities for this purpose. Entities have several ways in which they
can be specified, but the most common look like this:

e &nbsp;, &amp;, &ldquo;, &gt;, &lt;, etc.
e That is &KNAME;

e An XML processor (such as a Web browser) will expand these chars in place
before displaying the document
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Namespaces

e Sometimes it is necessary to combine the tags of two DTDs or schemas
(discussed next) into one XML document

e Since XML DTDs/schemas (hereafter schemas) can be created
independently, it is very easy for different schemas to choose the same

name for an element (tag)

e \When the tags of these conflicting schemas are merged, a name clash
occurs and it becomes ambiguous as to which element is being
referenced in the merged XML document

e Namespaces were added to XML 1.1 to address this problem
e Essentially, a schema’s tags can be associated with a namespace
e A namespace is given a prefix string and a URL (which must be unique)

e In an XML document, if a tag “foo” comes from namespace “x” then all
references to “foo” in the document appear as “<x:foo></x:foo>"
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<?xml version="1.0"?>

<definitions name="Procurement"
targetNamespace="http://example.com/procurement/definitions
xmlns:tns="http://example.com/procurement/definitions"
xmins:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/" >

WSDL makes extensive use of
namespaces; the document below
makes use of 4 namespaces

abstract
<message name="OrderMsg"> par"r
<part name="productName" type="xs:string"/>
<part name="quantity" type="xs:integer"/> messages
</message>
<portType name="procurementPort Type">
<operation name="orderGoods"> :
<input message = "OrderMsg"/> operation and
</operation> port type
</portType>
<binding name="ProcurementSoapBinding" type="tns:procurementPortType">
<soap:binding style="document" |_concrete
transport="http://schemas.xmlsoap.org/soap/http"/> part
<operation name="orderGoods">
<soap:operation soapAction="http://example.com/orderGoods" />
<input>
<soap:body use="literal"/> binding
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>
<service name="ProcurementService">
<port name="ProcurementPort" binding="tns:ProcurementSoapBinding"> por"r and
<soap:address location="http://example.com/procurement"/> service
</port>
</service>

</definitions>
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Default Namespace

¢ I[f an XML document includes an attribute of the form:
e xmlins="URI”

e that is, the xmlns attribute does not define a prefix, then this attribute is
asserting that all tags within the document that do not have a prefix belong to
this namespace

* In the previous example, all tags belonging to the WSDL namespace
appeared with no prefix on them

e Technically, this declaration defines the default namespace for the node it
appears on and all its children

¢ |n practice, since namespace declarations often appear on the root node,
it defines the default namespace for the entire document
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XML Schema Language (XSL)

e The XML Schema language is designed to take the place of DTDs and
¢ provide a standardized way to define XML document structures in XML
* no weird syntax to deal with as with DTDs
e standard located at: <http://www.w3.org/XML/Schema>
¢ allow the specification of more complicated XML structures

e |t does this by providing a set of simple types and a set of composition rules
that allow the specification of complex types

¢ | ets look at a simple example
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—xample (

BookStore.
<!ELEMENT
<!ELEMENT

<!ELEMENT

DTD)

dtd
BookStore (Book)+>
Book (Title, Author, Date,

Title (#PCDATA)>

<!ELEMENT Author (#PCDATA)>

<!ELEMENT

<!ELEMENT

<!ELEMENT

Date (#PCDATA)>
ISBN (#PCDATA)>

Publisher (#PCDATA)>

ISBN, Publisher)>
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<?xml version="1.0"7?>

<xsd:schema xmins:xsd="http:// www.w3.0rg/2001/XMLSchema" targetNamespace="http://www.books.org"

xmins="http://www.books.org" elementFormDefault="qualified">
<xsd:element name="BookStore">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="Book" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Book">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="Title" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="Author" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="Date" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="ISBN" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="Publisher" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Title" type="xsd:string"/>
<xsd:element name="Author" type="xsd:string"/>
<xsd:element name="Date" type="xsd:string"/>
<xsd:element name="ISBN" type="xsd:string"/>
<xsd:element name="Publisher" type="xsd:string"/>
</xsd:schema>

Same specification
using XSL

See

NOW Much

BE

ER It is!

Thursday, September 4, 2008

35



Built—in Datatype Hierarchwy

r--

all complex tyvpes

XSL Type Hiearchy
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string decimal
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]
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I IDREEF E BRI byvte | |lunsignedShort
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complex types

built—3in priwmitiwe types

built—in deriwed types

deriwed by restriction

deriwed by list

deriwed by extension oxr

resttric
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An Instance Document (using previous schema)

“r<?xml version="1.0"?>
<BookStore xmlns=“http://www.books.org”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemaLocation="http://www.books.org/BookStore.xsd">
<Book>
<Title>My Life and Times</Title>
<Author>Paul McCartney</Author>
<Date>July, 1998</Date>
<ISBN>94303-12021-43892</ISBN>
<Publisher>McMillin Publishing</Publisher>
</Book>

</BookStore>
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XSLT

e \Will use a separate set of slides to discuss XSLT
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Summary: XML

e XML provides the ability to create your own tagged language
e Provides ways to define tags, attributes, entities, etc.
e Either via DTDs or schemas
e Namespaces are used to avoid name clashes between schemas

e XSLT provides a way to specify (in XML) how XML documents can be
transformed

e relies on XSLT processor to do the actual transformation
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What’s Next?

e Chapter 4: SOAP

e Chapter 5: WSDL

e \/olunteers?
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