
ROA vs. Big Web Services

Kenneth M. Anderson
University of Colorado, Boulder

CSCI 7818 — Lecture 10 — 10/29/2008

© University of Colorado 2008

Tuesday, November 4, 2008



Agenda

• Yahoo Pipes

• Atom Publishing Protocol

• Discussion of Chapter 10 of Textbook

• But first…

• a discussion of some pointers sent to me by Steven

• and one of my own on “the first servers”

2

Tuesday, November 4, 2008



Chapter 10: A comparison of ROA and BWS

• Chapter 10 spends time examining Big Web Services (BWS, aka WS-*) and 
how they compare with REST and ROA

• The chapter does not contain detailed coverage of BWS technologies but 
covers enough to examine how the philosophies line up

• Starts with Web comparison

• Web is based on resources; BWS do not expose resources

• To implement RPC on top of the Web goes against its grain

• Web is based on URIs and links; BWS: one URI, no links

• Web is based on HTTP; BWS hardly uses HTTP’s features

• As a result, BWS are not addressable, cacheable, well connected, and they 
don’t respond to a uniform interface; understanding one does not mean you’ll 
understand the next, and they tend to have interoperability problems

3

Tuesday, November 4, 2008



What problems are BWSs trying to Solve?

• The authors describe a typical example application that BWSs try to solve

• Typical Travel Agent Scenario

• Book flight, rental car, and hotel

• Requires coordination with multiple external entities

• Time-constrained: Airline may be willing to hold “seat 24C” for 5 mins.

• Thus BWSs are trying to solve:

• the design of process-oriented, brokered distributed services

• The authors assert that since the ROA is turing-complete, it can be used to 
solve these problems as well

• it would require careful resource design, with some resources having 
limited value: such as the “hold search 24C for 5 mins.” resource

4

Tuesday, November 4, 2008



SOAP

• SOAP as described by Richardson and Ruby

• “You can take any XML document (…), wrap it in two little XML elements, 
and you have a valid SOAP document. For best results, though, the 
document’s root element should be in a namespace.”

• The key benefit of SOAP is transport independence

• since body and headers (“stickers on the envelope”) are all contained 
within the SOAP envelope, any transport can be used to send SOAP 
messages

• in practice, though, only HTTP is used

• Nothing too objectionable here: “SOAP is mainly infamous for the 
technologies built on top of it.”

5

Tuesday, November 4, 2008



The Resource-Oriented Alternative

• The difference between the RPC-based approach facilitated by SOAP and the 
REST-based approach is explained by analogy with OO and structured 
programming languages

• In the latter

• my_function(object, argument)

• In the former

• object->my_method(argument)

• To convert, start pulling resources out from behind the single URI of BWS

• You’ll find groups of resources that “behave” the same enabling a uniform 
interface: analogous to polymorphism in OO languages

6

Tuesday, November 4, 2008



WSDL

• The authors work through the simplest possible example of using WSDL

• For a service that lives at http://www.soapware.org/weblogsCom

• This service exposes one operation “ping”

• ping takes two strings and returns a pingResult structure

• The pingResult structure consists of a boolean and a string

• Lets view what it takes to define this service in WSDL

7

Tuesday, November 4, 2008



First, define the pingResult Type

<types>

<s:schema targetNamespace=”uri:weblogscom”>

<s:complexType name=”pingResult”>

<s:sequence>

<s:element minOccurs=”1” maxOccurs=”1” 
name=”flerror” type=”s:boolean” />

<s:element minOccurs=”1” maxOccurs=”1” 
name=”message” type=”s:string” />

</s:sequence>

</s:complexType>

</s:schema>

</types>

8

Tuesday, November 4, 2008



Second, define the ping messages

9

<message name=”pingRequest”>

<part name=”weblogname” type=”s:string” />

<part name=”weblogurl” type=”s:string” />

</message>

<message name=”pingResponse”>

<part name=”result” type=”tns:pingResult” />

</message>

Tuesday, November 4, 2008



Third, define the port type

10

<portType name=”pingPort”>

<operation name=”ping”>

<input message=”tns:pingRequest” />

<output message=”tns:pingResponse” />

</operation>

</portType>

The definition is still abstract. It could be implemented 
in a number of ways. So, now we need to specify the 
concrete information.

Tuesday, November 4, 2008



Fourth, bind the portType to an implementation

11

<binding name=”pingSOAP” type=”tns:pingPort”>

<soap:binding style=”rpc” transport=”http://schemas.xmlsoap.org/soap/http” />

<operation name=”ping”>

<soap:operation soapAction=”/weblogUpdates” style=”rpc” />

<input>

<soap:body use=”encoded” namespace=”uri:weblogscom” encodingStyle=”http://
schemas.xmlsoap.org/soap/encoding/” />

</input>

<output>

<soap:body use=”encoded” namespace=”uri:weblogscom” encodingStyle=”http://
schemas.xmlsoap.org/soap/encoding/” />

</output>

</operation>

</binding>

Now we must bind this “binding” to a service that provides an enpoint URI

Tuesday, November 4, 2008

http://schemas.xmlsoap.org/soap/http
http://schemas.xmlsoap.org/soap/http
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/encoding/


Fifth, define the service

12

<service name=”weblogscom”>

<document>For a complete description of this service...</document>

<port name=”pingPort” binding=”pingSoap”>

<soap:address location=”http://rpc.weblogs.com:80/” />

</port>

</service>

Tuesday, November 4, 2008

http://rpc.weblogs.com:80
http://rpc.weblogs.com:80


WSDL Breakdown

• That’s a lot of work to define a single operation that accepts two strings and 
returns a boolean and a string!

• WSDL makes no simplifying assumptions, everything has to be specified 
every time you write a new spec

• As a result of this complexity, tools become the real story and you 
become dependent on your tools

• The problem from the authors perspective is that

• you move further and further away from the Web

• the generated interfaces tend to be brittle

• different tools generate slightly different WSDL files leading to 
interoperability problems

• None of these complexities help solve the travel broker problem, and these 
complexities attack other desirable characteristics (simplicity/scalability)

13

Tuesday, November 4, 2008



Resource-Oriented Alternative

• WSDL serves two main purposes in BWSs

• It describes the interface the service exposes

• It describes the representation formats

• In resource-oriented services, these functions are often unnecessary or can 
be handled with much simpler standards

• The uniform interface solves the first, using pre-defined formats, such as 
Atom or HTML can solve the latter

• From REST perspective, the problem with WSDL is that it encourages the 
design of single endpoint services with all functionality exposed via 
overloaded POST operations

• It also has no provisions for defining hypertext links (as its focus is on 
operations, not resources)

14

Tuesday, November 4, 2008



UDDI

• UDDI is the “yellow pages” for WSDL

• A way for clients to look up a service that fits there needs

• Surprisingly, UDDI is even MORE complex than WSDL (as we’ve seen)

• The vision of UDDI was one of multiple registries

• a fully-replicated Internet-scale registry for businesses

• and a private registry behind the firewall of any company that wanted to 
host one

• The latter model has occurred since single companies can devote resources 
to ensure quality control on the information contained in the registry

• A public UDDI registry maintained by IBM/Microsoft shut down in 2006 
after containing entries for 50K business, unfortunately quality control on 
this information was low and the service did not get adopted

15

Tuesday, November 4, 2008



Resource-Oriented Alternative

• The author’s concede that there is no silver bullet to this problem

• An automated system that helps people find hotels has a built-in economic 
incentive for hotel chains to game the system

• Take a look at the behavior around the iTunes App Store

• http://www.dragthing.com/blog/?p=30

• http://hothardware.com/News/iPhone-App-Developers-Gaming-
The-System/

• http://www.betanews.com/article/
Some_iPhone_app_devs_game_the_system_for_higher_placement/
1216051901

• For REST, the closest equivalent to UDDI are search engines

• They help (human) clients find the resources they are looking for

• spammers can (and do) game this system however

16

Tuesday, November 4, 2008

http://www.dragthing.com/blog/?p=30
http://www.dragthing.com/blog/?p=30
http://hothardware.com/News/iPhone-App-Developers-Gaming-The-System/
http://hothardware.com/News/iPhone-App-Developers-Gaming-The-System/
http://hothardware.com/News/iPhone-App-Developers-Gaming-The-System/
http://hothardware.com/News/iPhone-App-Developers-Gaming-The-System/
http://www.betanews.com/article/Some_iPhone_app_devs_game_the_system_for_higher_placement/1216051901
http://www.betanews.com/article/Some_iPhone_app_devs_game_the_system_for_higher_placement/1216051901
http://www.betanews.com/article/Some_iPhone_app_devs_game_the_system_for_higher_placement/1216051901
http://www.betanews.com/article/Some_iPhone_app_devs_game_the_system_for_higher_placement/1216051901
http://www.betanews.com/article/Some_iPhone_app_devs_game_the_system_for_higher_placement/1216051901
http://www.betanews.com/article/Some_iPhone_app_devs_game_the_system_for_higher_placement/1216051901


What about X?

• The rest of Chapter 10 takes a “What about X?” approach where X is one of

• security

• reliable messaging

• transactions

• BPEL, ESB, and SOA

• In each case, there are more specifications on the BWSs side

• The books recommendation typically follows the form of

• Make sure you really need this

• If so, attempt to port a BWS approach to HTTP headers to gain some 
of the benefits

17

Tuesday, November 4, 2008



Coming Up Next

• Next week: Introduction to Web 2.0

• Any volunteers for some initial Web 2.0 presentations?

• Social Networking Sites: Ning, Facebook, MySpace

• Web 2.0 News Sites: newsvine.com

• AJAX

• Javascript Toolkits for Rich Application Development

• Google App Engine, Amazon’s EC2, Microsoft Windows Azure

• etc.

18

Tuesday, November 4, 2008


