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Agenda

• Yahoo Pipes

• Atom Publishing Protocol

• Discussion of Chapter 10 of Textbook

• But first…

• a discussion of some pointers sent to me by Steven

• and one of my own on “the first servers”
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Chapter 10: A comparison of ROA and BWS

• Chapter 10 spends time examining Big Web Services (BWS, aka WS-*) and 
how they compare with REST and ROA

• The chapter does not contain detailed coverage of BWS technologies but 
covers enough to examine how the philosophies line up

• Starts with Web comparison

• Web is based on resources; BWS do not expose resources

• To implement RPC on top of the Web goes against its grain

• Web is based on URIs and links; BWS: one URI, no links

• Web is based on HTTP; BWS hardly uses HTTP’s features

• As a result, BWS are not addressable, cacheable, well connected, and they 
don’t respond to a uniform interface; understanding one does not mean you’ll 
understand the next, and they tend to have interoperability problems
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What problems are BWSs trying to Solve?

• The authors describe a typical example application that BWSs try to solve

• Typical Travel Agent Scenario

• Book flight, rental car, and hotel

• Requires coordination with multiple external entities

• Time-constrained: Airline may be willing to hold “seat 24C” for 5 mins.

• Thus BWSs are trying to solve:

• the design of process-oriented, brokered distributed services

• The authors assert that since the ROA is turing-complete, it can be used to 
solve these problems as well

• it would require careful resource design, with some resources having 
limited value: such as the “hold search 24C for 5 mins.” resource
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SOAP

• SOAP as described by Richardson and Ruby

• “You can take any XML document (…), wrap it in two little XML elements, 
and you have a valid SOAP document. For best results, though, the 
document’s root element should be in a namespace.”

• The key benefit of SOAP is transport independence

• since body and headers (“stickers on the envelope”) are all contained 
within the SOAP envelope, any transport can be used to send SOAP 
messages

• in practice, though, only HTTP is used

• Nothing too objectionable here: “SOAP is mainly infamous for the 
technologies built on top of it.”
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The Resource-Oriented Alternative

• The difference between the RPC-based approach facilitated by SOAP and the 
REST-based approach is explained by analogy with OO and structured 
programming languages

• In the latter

• my_function(object, argument)

• In the former

• object->my_method(argument)

• To convert, start pulling resources out from behind the single URI of BWS

• You’ll find groups of resources that “behave” the same enabling a uniform 
interface: analogous to polymorphism in OO languages
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WSDL

• The authors work through the simplest possible example of using WSDL

• For a service that lives at http://www.soapware.org/weblogsCom

• This service exposes one operation “ping”

• ping takes two strings and returns a pingResult structure

• The pingResult structure consists of a boolean and a string

• Lets view what it takes to define this service in WSDL
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First, define the pingResult Type

<types>

<s:schema targetNamespace=”uri:weblogscom”>

<s:complexType name=”pingResult”>

<s:sequence>

<s:element minOccurs=”1” maxOccurs=”1” 
name=”flerror” type=”s:boolean” />

<s:element minOccurs=”1” maxOccurs=”1” 
name=”message” type=”s:string” />

</s:sequence>

</s:complexType>

</s:schema>

</types>
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Second, define the ping messages
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<message name=”pingRequest”>

<part name=”weblogname” type=”s:string” />

<part name=”weblogurl” type=”s:string” />

</message>

<message name=”pingResponse”>

<part name=”result” type=”tns:pingResult” />

</message>
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Third, define the port type
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<portType name=”pingPort”>

<operation name=”ping”>

<input message=”tns:pingRequest” />

<output message=”tns:pingResponse” />

</operation>

</portType>

The definition is still abstract. It could be implemented 
in a number of ways. So, now we need to specify the 
concrete information.
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Fourth, bind the portType to an implementation
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<binding name=”pingSOAP” type=”tns:pingPort”>

<soap:binding style=”rpc” transport=”http://schemas.xmlsoap.org/soap/http” />

<operation name=”ping”>

<soap:operation soapAction=”/weblogUpdates” style=”rpc” />

<input>

<soap:body use=”encoded” namespace=”uri:weblogscom” encodingStyle=”http://
schemas.xmlsoap.org/soap/encoding/” />

</input>

<output>

<soap:body use=”encoded” namespace=”uri:weblogscom” encodingStyle=”http://
schemas.xmlsoap.org/soap/encoding/” />

</output>

</operation>

</binding>

Now we must bind this “binding” to a service that provides an enpoint URI
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Fifth, define the service
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<service name=”weblogscom”>

<document>For a complete description of this service...</document>

<port name=”pingPort” binding=”pingSoap”>

<soap:address location=”http://rpc.weblogs.com:80/” />

</port>

</service>
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WSDL Breakdown

• That’s a lot of work to define a single operation that accepts two strings and 
returns a boolean and a string!

• WSDL makes no simplifying assumptions, everything has to be specified 
every time you write a new spec

• As a result of this complexity, tools become the real story and you 
become dependent on your tools

• The problem from the authors perspective is that

• you move further and further away from the Web

• the generated interfaces tend to be brittle

• different tools generate slightly different WSDL files leading to 
interoperability problems

• None of these complexities help solve the travel broker problem, and these 
complexities attack other desirable characteristics (simplicity/scalability)
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Resource-Oriented Alternative

• WSDL serves two main purposes in BWSs

• It describes the interface the service exposes

• It describes the representation formats

• In resource-oriented services, these functions are often unnecessary or can 
be handled with much simpler standards

• The uniform interface solves the first, using pre-defined formats, such as 
Atom or HTML can solve the latter

• From REST perspective, the problem with WSDL is that it encourages the 
design of single endpoint services with all functionality exposed via 
overloaded POST operations

• It also has no provisions for defining hypertext links (as its focus is on 
operations, not resources)
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UDDI

• UDDI is the “yellow pages” for WSDL

• A way for clients to look up a service that fits there needs

• Surprisingly, UDDI is even MORE complex than WSDL (as we’ve seen)

• The vision of UDDI was one of multiple registries

• a fully-replicated Internet-scale registry for businesses

• and a private registry behind the firewall of any company that wanted to 
host one

• The latter model has occurred since single companies can devote resources 
to ensure quality control on the information contained in the registry

• A public UDDI registry maintained by IBM/Microsoft shut down in 2006 
after containing entries for 50K business, unfortunately quality control on 
this information was low and the service did not get adopted
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Resource-Oriented Alternative

• The author’s concede that there is no silver bullet to this problem

• An automated system that helps people find hotels has a built-in economic 
incentive for hotel chains to game the system

• Take a look at the behavior around the iTunes App Store

• http://www.dragthing.com/blog/?p=30

• http://hothardware.com/News/iPhone-App-Developers-Gaming-
The-System/

• http://www.betanews.com/article/
Some_iPhone_app_devs_game_the_system_for_higher_placement/
1216051901

• For REST, the closest equivalent to UDDI are search engines

• They help (human) clients find the resources they are looking for

• spammers can (and do) game this system however
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What about X?

• The rest of Chapter 10 takes a “What about X?” approach where X is one of

• security

• reliable messaging

• transactions

• BPEL, ESB, and SOA

• In each case, there are more specifications on the BWSs side

• The books recommendation typically follows the form of

• Make sure you really need this

• If so, attempt to port a BWS approach to HTTP headers to gain some 
of the benefits
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Coming Up Next

• Next week: Introduction to Web 2.0

• Any volunteers for some initial Web 2.0 presentations?

• Social Networking Sites: Ning, Facebook, MySpace

• Web 2.0 News Sites: newsvine.com

• AJAX

• Javascript Toolkits for Rich Application Development

• Google App Engine, Amazon’s EC2, Microsoft Windows Azure

• etc.
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