
UDDI

Universal Description, Discovery
and Integration protocol

Elizabeth Fischer

History of UDDI

First specification proposed in 2000 by
IBM, Ariba and Microsoft
Most current version of specification
v3.02 in September 2005
Control of UDDI given to OASIS – info
found in uddi.org

Purpose of UDDI

“A UDDI registry, either for use in the
public domain or behind the firewall,
offers a standard mechanism to classify,
catalog and manage Web services, so
that they can be discovered and
consumed. “ UDDI V3.0.2 specification

Basic goals of UDDI
Framework for describing and discovering
business services, and service providers
Defines data structures and APIs for
publishing services descriptions to the registry
and querying the registry
Support developers in finding information
about services
Determine the security and transport
protocols supported by a given Web service
Support looking for services based on a
general keyword

Ways to Use a UDDI registry
White Pages
 Obtaining listings of organizations, contact info,

list of general services provided

Yellow Pages
 Look up information via standardized or user-

defined taxonomies. UDDI supports standardized
and user-defined classifications

Green pages
 Full descriptions of individual web services.

Provided by pointers to service descriptions, which
are usually stored outside of the registry

Structure of UDDI
XML documents
APIs are specified in WSDL with SOAP
binding
UDDI registry itself can be accessed as
a web service
Supports four core data structures:
 businessEntity
 businessService
 bindingTemplate
 tModel

Relationship of UDDI Core Data Types

businessEntity fields

<identifierBag>
 <keyedReference
 tModelKey="uddi:uddi.org:ubr:identifier:dnb.com:d-u-n-s"
 keyName="SAP AG"
 keyValue="31-626-8655" />
</identifierBag>

businessService fields

businessService
Each businessService structure represents a logical grouping of
Web services. At the service level, there is still no technical
information provided about those services; rather, this structure
allows the ability to assemble a set of services under a common
rubric. Each businessService is the logical child of a single
businessEntity. Each businessService contains descriptive
information – again, names, descriptions and classification
information -- outlining the purpose of the individual Web
services found within it. For example, a businessService
structure could contain a set of Purchase Order Web services
(submission, confirmation and notification) that are provided by
a business.

bindingTemplate fields

bindingTemplate

Each bindingTemplate structure represents an individual Web
service. In contrast with the businessService and businessEntity
structures, which are oriented toward auxiliary information
about providers and services, a bindingTemplate provides the
technical information needed by applications to bind and
interact with the Web service being described. It must contain
either the access point for a given service or an indirection
mechanism that will lead one to the access point.
Each binding Template is the child of a single businessService.
The containing parents, a bindingTemplate can be decorated
with metadata that enable the discovery of that
bindingTemplate, given a set of parameters and criteria.

tModel fields

<tModel tModelKey=“uddi:uddi.org:v3_publication”>
 <name>uddi-org:publication_v3</name>
 <description>UDDI Publication API V3.o</description>
 <overviewDoc>
 <overviewURL useType=“wsdlInterface”>
http://uddi.org/wsdl/uddi_api_v3_binding.wsdl#UDDI_Publication_
SoapBinding</overviewURL>
 </overviewDoc>
 <overviewDoc>
 <overviewURL useType=“text”>
 http://uddi.org/pubs/uddi_v3.htm#PubV3
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName=“uddi-org:types:wsdl”
 keyValue=“wsdlSpec”
 tModelKey=“uddi:uddi.org:categorization:types” />

tModel describing the UDDI API

tModel
… The UDDI information model is based on this notion of
shared specifications and uses tModels to engender this
behavior. For this reason, tModels exist outside the parent-child
containment relationships between the businessEntity,
businessService and bindingTemplate structures.
Each distinct specification, transport, protocol or namespace is
represented by a tModel. … To describe a Web service that
conforms to a particular set of specifications, transports, and
protocols, references to the tModels that represent these
concepts are placed in the bindingTemplate. In such a way,
tModels can be re-used by multiple bindingTemplates. The
bindingTemplates that refer to precisely the same set of tModels
are said to have the same "technical fingerprint" and are of the
same type. In this way, tModels can be used to promote the
interoperability between software systems.

Data encoded in tModels

Transport and protocol definitions such as HTTP and SMTP.
Value sets including identifier systems, categorization systems
and namespaces. Structured categorizations using multiple
value sets called "categorization groups.“
Postal address formats.
Find qualifiers used to modify the behavior of the UDDI find_xx
APIs.
Use type attributes that specify the kind of resource being
referred to by a URI reference.

Registering tModels

UDDI.org will publish them on their members
section
Registration is “limited to tModels that
represent a well-known concept and/or are
owned by a well-known standards group, an
industry vertical or a consortium”
Must conform to UDDI best practices for
coding
See currently registered tModels here

UDDI Registry keys

Each entity is assigned a unique key
V3 allows keys to be defined in a way
that they are unique across registries
Now URI-based, patterned on DNS
names
UDDI key for UDDI API itself is
uddi:uddi.org:categorization:types

UDDI Registry API

Six separate APIs that can be used by: service
providers, requesters and other registries
UDDI Inquiry API
UDDI Publishers API
UDDI Security API
UDDI Custody and Ownership Transfer API
UDI Subscription API
UDI Replication API

UDDI Inquiry API

Intended for developers looking to locate
services, and for clients at run-time for
dynamic binding
 find_business, find_service, find_binding,

find_tModel
 get_businessDetail, get_serviceDetail,

get_bindingDetail, get_tModelDetail

Purposes for UDDI Registries

Public implementation – UDDI Universal
Business Registry – now disbanded -
see here
Stated purpose now seems to be within
a business infrastructure See vendor
toolkits available

