
Business Process Execution
Language for Web Services
(BPEL)

Mark Lewis-Prazen
Web Services

Fall, 2006

Outline

• Brief History of BPEL
• Context
• Definition
• Composition vs. Choreography
• Examples – Templates
• Examples – Business
• Implementations
• Limitations/Strengths/the Future

BPEL – A Brief History

• BPELWS (Business Process Execution Language for Web Services) is a
process modeling language.
• Developed by IBM, Microsoft, and BEA
• Version 1.1, 5 May 2003

• It supersedes XLANG (Microsoft) and WSFL(IBM).

• It is built on top of WSDL.

• For descriptions of what services do and how they work, BPELWS
references port types contained in WSDL documents

• Today BPEL represents the widely accepted standard in web service
composition.

• BPEL supports the specification of both composition schemas and
coordination protocols, taking advantage of their similarity.

BPEL Development

• WSDL 1.1, XML Schema 1.0: data model
• XPath 1.0: data manipulation (default)
• Microsoft, IBM, Siebel Systems, BEA Systems, SAP
• Version 1.1: 5/03 (supercedes v1.0, 8/02)
• Standardization: OASIS Web Services Business

Process Execution Language - v2.0 – Draft - WSBPEL
– OASIS

Brief Definition & Purpose

• A language, grammar, or notation for specifying business
process protocol and behavior based on Web Services
– An abstract XML description that exports/imports

functionality via Web Service interfaces
– Executable language to define control logic for

coordinating Web Services
– Strong roots in traditional flow models

• To model business interactions as a workflow
• An aggregation/orchestration of Web services
• Cross-enterprise automated business

BPEL - Overview
• BPEL is a block-structured programming language,

allowing recursive blocks but restricting definitions and
declarations to the top level.

• The language defines activities as the basic components of
a process definition.

• Structured activities prescribe the order in which a
collection of activities take place.
– Ordinary sequential control between activities is

provided by sequence, switch, and while.
– Concurrency and synchronization between activities is

provided by flow.
– Nondeterministic choice based on external events is

provided by pick.

BPEL Overview

• The implementation logic for a service is defined in XML
documents by executable and abstract process specifications.

• Such a process consists of:
- roles taking part in the message in message exchanges
- port types supported by the roles and the process itself
- orchestration and other aspects of process definition
- correlation information, how to route messages.

• BPEL assumes processes and partners to be WSDL messages
with specified port types and operations.

Types of Processes

• Abstract process (public):
– Business protocol/process definition: potential execution order

of operations from a collection of Web services; data shared
between these Web services

– WSDL-based interface: operations allowed, messages
exchanged, partners involved; allow interoperability between
the process and other Web services

• Executable process/application (private):
– Model actual behavior of participants in a business interaction

(e.g., event handling, branching)
– Private workflows conveying internal details (logic, state)
– Lifecycle

 WSDL and BPEL

• WSDL interface defines:
– Public entry and exit points
– Specific operations allowed
– Data types and messages to describe the information that

passes between process requests

• BPEL describes how to:
– Sequence operations
– Control logic and state
– Coordinate interactions between the process and its partners

WSDL-Based Web Services Stack

CS-WS

BTP

UDDI
BPEL BPML
WS-Transaction
WS-Coordination

WSCI
WSCL

WSDL

SOAP
HTTP, FTP, SMTP, etc.

WSEL

Discovery

Bus process/workflow

Transactions

Choreography

Conversations

Nonfunctional description

Service description

XML-based messaging

Network/transport

The WSDL Stack - Revised

BPEL Specification

BPEL Composition/Component Model

• Deals with the implementation of an application (then
offered as a service) whose application logic then involves
the invocation of operations offered by other services

• New service is the composite service

• Invoked services are component services

BPEL Composition Model

• Specifying the order of service invocations, depending on
conditions

• Need for abstraction models and languages for such
descriptions:

- activity diagrams
- statecharts
- petri-nets
- pi-calculus
- activity hierarchies
- rule-based orchestration approaches

Composition Schema

• Specifies the “process” of the composite service – the
workflow of the service

• Different clients interact with the service, thereby
satisfying their specific needs
– Specific execution of the composite schema for a given

client is an orchestration instance

BPEL Orchestration Model
• … combines the activity diagram and the activity hierarchy

approaches.
• Ordering constraints among activities are defined by structured

activities (grouping other basic or structured activities):
- Sequence: definition of an arranged sequence
- Switch: … like in C, Java; branching according

to a conditions/case
- Pick: execution of an activity upon a specific

associated event
- While: repeated execution of an activity while a

condition is “true”
- Flow: parallel execution of activities; completes after each

activity has terminated. (from WSFL)
• Flows can be combined with links to connect source and target

activities (supporting multiple incoming and outgoing links, as well a
associated conditions and join-constructs).

BPEL Orchestration Model

decide on
shipper

arrange
logistics

complete
production
scheduling

initiate
production
scheduling

source target

link

Concurrent sequence activities in flow

BPEL Orchestration Model

Orchestration (Choreography)

• Coordination of conversations of N peer conversations in
terms of

• Roles
• Message exchanges
• Constraints on order

Composition vs. Choreography

• Composition is about implementing new services
• Choreography is about global modelling of N peers to prove

correctness and run-time discovery of possible partners
– Composition schema of A dictates coordination protocols that it

can support (i.e. the choreographies it can participate in) ; Without
the information provided by the coordination protocol the order in
which operations have to be invoked while executing a composite
web-service would be difficult to determine.

• While specifications of composite services are usually kept private,
coordination protocols on the other hand are available to the public and
often also advertised by means of Web service registries.

Coordination Protocols and
 Composition Schemas

• The definition of a protocol imposes constraints on the composition
schema of the Web service implementing it.

• Protocol definitions are often used to guide the design of composition
schemas, but the inverse route, building the role – specific protocol
from the internal process is also possible.

• Process oriented languages take different routes in how they address
composition, protocols and the relationships between them

– Workflow languages
- focus on internal implementation and provide
minimal or no support for abstract processes.

Features

• Partner links and roles (model the business relationship)

• Sequence vs. parallel flow

• Synchronization of concurrent flows (source and target specification)

• Event handlers: asynchronous msgs, errors/faults

• Data handling: variables, property definition, data extraction and
assignment

• Scope (group a set of activities)

Basic Structure

<process>
 <partners>

 <partnerLink name=‘ncname’ myRole=‘ncname’
partnerRole=‘ncname’/>

 <variables>
 <correlationSets>
 <faultHandlers>
 <compensationHandler>
 <eventHandlers>
 <onMessage> | <onAlarm>
ACTIVITIES

Process Model - Activities

Basic Activities

• Basic activities—instructions that interact with an external
entity:
– receive (incoming message)
– reply (outgoing response or notification message)
– invoke (call a web service)

Structured Activities

• Structured activities—manage overall process flow and
define underlying programming logic:

– ordering: sequence, flow

– conditional looping: while

– dynamic branching: switch

BPEL Handlers and Scopes

• A scope is a set of (basic or structured) activities.

• Each scope can have two types of handlers associated:
• Fault handlers. Many can be attached, for different fault

types.
• Compensation handlers. A single compensation handler

per scope.

How Handlers Work

• A compensation handler can reverse the work performed by an already
completed scope
– A compensation handler can only be invoked by the fault handler or

compensation handler of its immediate enclosing scope

• A fault handler defines alternate execution paths when a fault occurs
within the scope.

• Typical scenario:
1. Fault is thrown (returned by invocation or explicitly by process)
2. Execution of scope is terminated
3. Appropriate fault handler located
4. Main execution is compensated to “undo” business effects of unfinished

work.

Correlation Defined

• BPEL can model many types of interactions:
– simple stateless interactions
– Stateful, asynchronous interactions.

• Correlation sets provide support for the stateful types:
– CSs represent the data that is used to maintain the state of the interaction
– At the process end of the interaction, CSs allow incoming messages to

reach the right process instance.
• What is a correlation set?

– A set of business data fields that capture the state of the interaction
(“correlating business data”). For example: a “purchase order number”, a
“customer id”, a sales invoice, etc.

– Each set is initialized once
– Sets values do not change in the course of the interaction.

Summary of Constructs

<receive>
<reply>
<invoke>
<variable>
<assign>, <copy>
<catch>, <throw>
<terminate>
<wait>
<empty>
<sequence>, <flow>

<links>, <link>, <source>, <target>
<switch>, <case>, <otherwise>
<while>
<pick>
<onMessage>
<onAlarm>
<scope>
<compensate>
<correlations>

Example

Example

The WSDL portType offered by
the service to its customer

Messages

Roles

<definitions targetNamespace="http://manufacturing.org/wsdl/purchase"
 xmlns:sns="http://manufacturing.org/xsd/purchase"
…
<message name="POMessage">
 <part name="customerInfo" type="sns:customerInfo"/>
 <part name="purchaseOrder" type="sns:purchaseOrder"/>
</message>
…
<message name="scheduleMessage">
 <part name="schedule" type="sns:scheduleInfo"/>
</message>
<portType name="purchaseOrderPT">
 <operation name="sendPurchaseOrder">
 <input message="pos:POMessage"/>
 <output message="pos:InvMessage"/>
 <fault name="cannotCompleteOrder"
 message="pos:orderFaultType"/>
 </operation>
</portType>
…
<slnk:serviceLinkType name="purchaseLT">
 <slnk:role name="purchaseService">
 <slnk:portType name="pos:purchaseOrderPT"/>
 </slnk:role>
</slnk:serviceLinkType> …
</definitions>

Example
<process name="purchaseOrderProcess"
 targetNamespace="http://acme.com/ws-bp/purchase"
…
 <partners>
 <partner name="customer"
 serviceLinkType="lns:purchaseLT"
 myRole="purchaseService"/>
 …
 </partners>

 <containers>
 <container name="PO" messageType="lns:POMessage"/>
 <container name="Invoice"
 messageType="lns:InvMessage"/>
 …
 </containers>

 <faultHandlers>
 <catch faultName="lns:cannotCompleteOrder"
 faultContainer="POFault">
 <reply partner="customer"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 container="POFault"
 faultName="cannotCompleteOrder"/>
 </catch>
 </faultHandlers>
…

This section defines the data
containers used by the process,
providing their definitions in terms of
WSDL message types.

This section defines the
different parties that interact
with the business process in the
course of processing the order.

This section contains fault handlers
defining the activities that must be
executed in response to faults.

Example – The Process

…
 <sequence>

 <receive partner="customer"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 container="PO">
 </receive>

 <flow>
 …

 </flow>

 <reply partner="customer"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 container="Invoice"/>
 </sequence>

</process>

Example – The Process
<flow>

 <links>
 <link name="ship-to-invoice"/>
 <link name="ship-to-scheduling"/>
 </links>

 <sequence>
…

 <invoke partner="shippingProvider"
 portType="lns:shippingPT"
 operation="requestShipping"
 inputContainer="shippingRequest"
 outputContainer="shippingInfo">
 <source linkName="ship-to-invoice"/>
 </invoke>

 <receive partner="shippingProvider"
 portType="lns:shippingCallbackPT"
 operation="sendSchedule"
 container="shippingSchedule">
 <source linkName="ship-to-scheduling"/>
 </receive>
 </sequence>
…
<flow>

Activities are executed sequentially

The flow construct provides concurrency and synchronization

Activity Call

Activity call

Web Services Lifecycle

Publication
/ Discovery

WSDL, WSEL

DAML-S

Meteor-S (WSDL
Annotation)

BPWSJ,
Commercial BPEL
Execution Engines,

Intalio n3, HP
eFlow

Semantics Required for
Web Processes

Execution
Semantics

QoS
Semantics

Functional
/ Operational

Semantics

Data
/ Information

Semantics

Development
/ Description
/ Annotation

Composition

Execution

BPEL, BPML,
WSCI, WSCL,

DAML-S,
METEOR-S

(SCET, SPTB)

From a Transition System to WS-BPEL

A New Chance of Success for
 Composition

• Service composition shares many similarities with
workflow technology, with many in the business process
being web service operations rather than conventional
applications.

• Considering the limited success of traditional application
integration the question of how, if at all, web services will
manage to overcome these limitations.

• Limitations of Conventional Composition Middleware

• Opportunities for Web Service Composition Middleware

Limitations of Conventional
 Composition Middleware

• Conventional middleware is generally very flexible,
thus each time a new component is to be incorporated
the programmer faces a considerable development
effort.

• So far, attempts to create a standard composition model
had only limited success. Partly because of the
difficulties arising during the definitions of such
standards but mainly because of the fact that different
vendors don't agree on how such standards should
look.

• Established standards, such as CORBA are often too
low level to be of any real use in EAI or Web services.

Opportunities of Web service
 Composition Middleware

• Web services offer well-defined interfaces and their
individual behavior is specified in registries.

• The already established standards WDSL, XML and
SOAP make web services well suited for composition,
almost eliminating the need to manually integrate different
components often arising in conventional composite
applications.

• When such efforts still arise the developer at least does not
have to worry about the different language used in these
components, since they all are built using a common one.

Opportunities of Web service
 Composition Middleware

• BPEL an already established standard for composing and
modeling web services exists, and new ones are likely to
appear in the future with the goal to make web service
development easier.

• All these arguments would suggest that web service
composition, still in his infancy, will do better than
workflow management did.

BPEL - Some Critiques

• No human interaction modeling; so needs rollback and
restart: BPEL4People ; a need for human intervention
when a process stalls (has SAP and IBM support)

• No support for sub-process interaction: requires new
process definition (a code reuse issue)

• BPEL can only represent multi-party collaborations that
have a "center" of control. (Ariba/CommerceOne - some
B2B agent in the middle)

• BPMN waiting on the wings? Lack of tool investment in
BPEL will make BPMN more appealing; BPMN hides
translation of BPs into XML; so BPEL is redundant?

BPELWS Implementations

BPWS4J Engine:

IBM Business Process Execution Language for Web Services JavaTM Run
Time (BPWS4J)

Platform to execute BPEL4WS processes:
Needs BPELWS documents and the WSDL interfaces for clients and
services to be invoked during execution.

Includes an editor (Eclipse plug-in) for BPEL.

Works on Websphere Application Server and Apache Tomcat.

BPELWS Implementations

Oracle BPEL Process Manager:

Former Collaxa BPEL Orchestration Server.

Also comes with an Eclipse plug-in for describing the service.

Offers monitoring of execution of business flows.

Standalone server.

More Information
• http://blogs.zdnet.com/service-oriented/?p=644
• http://www-128.ibm.com/developerworks/library/ws-bpel
• http://www-106.ibm.com/developerworks/library/ws-bpelwp
• http://www.alphaworks.ibm.com/tech/bpws4j
• Peltz, C., “Web Services Orchestration and Choreography,” Computer, IEEE,

October 2003, pp 46-52
• http://www.oasis-open.org/committees/workgroup.php?wg_abbrev=wsbpel
• http://www.collaxa.com/
• http://xml.coverpages.org/bpel4ws.html
• http://www.research.ibm.com/journal/sj/452/khalaf.html
• http://www.ebizq.net/blogs/it_directions/archives/2006/02/bpmn_will_kill.php
• http://xml.coverpages.org/ni2005-10-13-a.html
• http://xml.coverpages.org/ni2005-08-26-a.html

