The Flag Taxonomy of Open Hypermedia Systems

Kasper Osterbye

Uffe Kock Wil

Department of Computer Science
Aalborg University
Fredrik Bajers Vej TE
9220 Aalborg Ost, Denmark
Email: {kasper, kock}@iesd.auc.dk

ABSTRACT

This paper presents a taxonomy for open hypermedia
systems. The purpose of the Flag! taxonomy is mani-
fold: (1) to provide a framework to classify and concisely
describe individual systems, (2) to characterize what an
open hypermedia system is, (3) to provide a framework
for comparing different systems in a system independent
way, and (4) to provide an overview of the design space
of open hypermedia systems.

The Flag taxonomy builds on the achievements of the
Dexter model. It extends the terminology of the Dex-
ter model to adequately cover issues that relate to open
hypermedia systems such as integration and use of third-
party applications to edit and display hypermedia com-
ponents.

Two of the most prominent open hypermedia systems,
DeVise Hypermedia and Microcosm, are used as case
studies. The Flag taxonomy is used to compare these
systems on a carefully selected set of aspects that distin-
guish open hypermedia systems from other hypermedia
systems.

KEYWORDS: Open hypermedia systems, Dexter mod-
el, taxonomy, link protocol, third-party viewers, inte-
gration

1 INTRODUCTION

The current trend in hypermedia systems design is to-
wards open, extensible and distributed multiuser sys-
tems. In the past few years, several open hyperme-
dia systems (OHSs) have been presented in the liter-
ature, including Sun’s Link Service [20], Proxhy [16],

IThe outline of the taxonomy resembles the Danish flag as well
as the flag of other Scandinavian countries.

Microcosm [4, 5, 15], Multicard [21], DeVise Hyperme-
dia (DHM) [9, 10, 11, 12], Hyperform [24], SP3 [1§],
Chimera [2] and HyperDisco [26]. The fact that each
of these OHSs have introduced their own hypermedia
data model, architectural framework and link protocol
(protocol for exchanging information with third-party
applications) makes it very difficult to discuss and com-
pare the different approaches in a system independent
way.

Existing hypermedia reference models, such as the Dex-
ter hypertext reference model [13], the Trellis hypertext
reference model [8] and Lange’s formal model of hyper-
text [17], do not adequately cover important aspects
that distinguish OHSs from other hypermedia systems
such as integration and use of third-party applications.

This paper presents the Flag taxonomy (in most places
referred to as “the taxonomy”), which builds on the ter-
minology of the Dexter model. The Dexter model was
developed by a group of leading hypermedia researchers
in a series of workshops from 1988 to 1990. The Dex-
ter model is an attempt to capture some of the best
design ideas from that time’s most prominent hyperme-
dia systems (e.g., Augment [7], Intermedia [19], KMS
[1], Neptune [6] and NoteCards [14]). Even though the
Dexter model pre-dates most OHSs, much of the Dexter
terminology is still valid when discussing OHSs [10].

The main idea behind the taxonomy is to distinguish
between storage aspects and runtime aspects on the one
hand, and structure and contents on the other hand.
This leads to four functional modules (FMs) and four
protocols (see Figure 1). Each FM provides functionality
to be used by its two neighbouring FMs through the
available protocols.

The taxonomy provides a system independent frame-
work for classifying, describing and comparing different
OHSs. Since the taxonomy builds on the Dexter termi-
nology, it can be used to contrast OHSs to other hyper-
media systems. The taxonomy can be used at different
levels of abstraction ranging from classifying hyperme-
dia systems into broad categories to an in depth analysis

(9]
Storage & Viewer Contents
o
Manager o
Storage Linking
=
Data model -% Session
= Structure
Manager % Manager
o
Storage Runtime

Figure 1: The Flag of hypermedia systems. It consists
of four rectangles and a cross with four arms. Each
rectangle represents a functional module of the sys-
tem, and each arm represents the protocol between
its two neighbouring modules.

of the individual FMs and protocols of the system.

The taxonomy relates to the Dexter model in the fol-
lowing manner. The data model manager corresponds
to the Dexter storage layer and is responsible for stor-
ing the structure of a hypertext. Anchors are used as
the “glue” between structure and contents. We also
maintain the three component types in the data model:
nodes, links and composites. However, the taxonomy is
deliberately very open regarding the data model man-
ager.

The explicit distinction on the runtime side between
structure and contents and the division of contents into
storage and runtime aspects, rearranges some Dexter
concepts. The Dexter runtime layer defines two impor-
tant concepts, instantiation (runtime presentation of a
component) and session. An instantiation consists of
three parts: a base instantiation (which represents the
component), a sequence of link markers (which repre-
sent the anchors), and a mapping from link markers to
anchors, linkAnchor. In the taxonomy, this mapping be-
longs to the session manager module, the base instanti-
ation and link markers belong to the viewer module, and
the session is the responsibility of the session manager
module.

An important issue made explicit by the taxonomy, is
that instantiations can be manipulated outside the struc-
tural part of the hypermedia system, which exposes the
problems of integration and use of third-party viewers.
We will use the term viewer to denote both applications
that can edit and display components. The introduc-
tion of the viewer module has also allowed the Dexter
within-component layer (corresponding to the storage
manager) to be placed next to the Dexter runtime layer
(in the form of the viewer module). This captures the
important fact that most third-party viewers store their
contents outside the hypermedia system.

The linking protocol is the runtime interface between
the viewer and the session manager. We consider it one
of the major contributions of the paper to discuss the
required functionality of the linking protocol.

Section 2 shows how the taxonomy can be used to clas-
sify existing hypermedia systems into broad categories
and to distinguish OHSs from other hypermedia sys-
tems. The taxonomy will be discussed in detail in Sec-
tion 3. The focus is on runtime aspects: (1) the session
manager module, (2) the viewer module, and (3) the
linking protocol and its relation to the viewer and the
session manager. To validate the usefulness of the tax-
onomy, we describe and contrast two prominent OHSs
in Section 4 using the taxonomy. Section 5 concludes
the paper.

2 HYPERMEDIA SYSTEM CATEGORIES

The taxonomy can be used to classify existing hyperme-
dia systems into broad categories, by cutting the Flag
in various ways (see Figure 2).

Monolithic
KMS, NoteCards

Hyperbase
Neptune, Sepia, EHTS

Embedded link
WWW

Link server
f Sun’s Link Service, Proxhy
Microcosm, Multicard, Chimera

Open hyperbase
DHM, SP3, HyperDisco

Figure 2: Different ways to slice a hypermedia system.
Shaded protocols are not used.

The monolithic approach to hypermedia systems is char-
acterized by having one module which is responsible for
all aspects of the system. KMS and NoteCards belong
to this category.

Hypermedia systems based on a hyperbase are charac-
terized by a storage module which handles both contents
and structure and a session manager (of varying sophis-
tication) assisting viewers in maintaining contents and
structure of the hypertext. The classic Neptune system
and more recent hypermedia systems like Sepia [22] and
EHTS [27] belong to this category.

The embedded link approach is a special case of the
hyperbase approach with only two modules, a storage
module and a runtime module. This approach does not
explicitly distinguish between contents and structure.
An example is the World-Wide Web (WWW) [3], with
the storage part being WWW servers and the runtime
part being WWW browsers (e.g., Mosaic and Netscape).

Link server based approaches are characterized by us-
ing third-party viewers to present and store the contents
part of the hypertext. Link servers consist of a link base,
which is responsible for storing the hypertext structure,
and a session manager, which is responsible for assisting
third-party viewers in maintaining structure. Sun’s Link
Service, Proxhy, Microcosm, Multicard and Chimera be-
long to this category.

The open hyperbase approach combines the hyperbase
and link server approaches into an approach consisting
of a storage module and a session manager. The stor-
age module is responsible for storing the structure and
is capable of storing the contents as well (if desired), or
let the storage of contents be the responsibility of third-
party viewers. The session manager is responsible for
assisting third-party viewers in maintaining structure
(and storing contents). DHM, SP3 and HyperDisco?
belong to this category.

From a software system developer’s point of view, all
categories of hypermedia systems presented in this sec-
tion (except the monolithic) can be considered open in
the sense that there exist well-defined protocols between
the different functional modules of the hypermedia sys-
tem. This type of openness makes it possible to create
new modules that adhere to the protocols (e.g., new
WWW servers and browsers).

From a hypermedia system developer’s point of view,
only the link server and the open hyperbase approaches
are considered open. The important matter in hyper-
media systems is the distinction between structure and
contents. The hyperbase and embedded link approaches
impose a specific hypermedia data model on the view-
ers (specifying both structure and contents formats). In
contrast, the link server and the open hyperbase ap-
proaches only impose a structure format on the viewers.
Allowing viewers to store contents in different formats
outside the hypermedia system is a basic requirement
for integrating and using third-party viewers with the
hypermedia system. Since the latter (more strict) defi-
nition of openness is preferred in this paper, the remain-
ing sections will focus on systems belonging to the link
server and open hyperbase categories.

2HyperDisco is based on Hyperform. Hyperform, being an
open, extensible hypermedia system development environment,
can be used to develop all categories of hypermedia systems.

Tailorability (and extensibility) is different from open-
ness. Tailorability is a feature of individual modules
(e.g., the session manager can be tailored to handle link
resolution differently), while openness is a feature of
the entire system. However, often openness depends on
tailorability of the modules to allow for seamless inte-
gration of third-party viewers (e.g., by re-mapping the
concepts from the viewer to the concepts of the session
manager. Tailorability is further discussed in Section 3.

3 THE FLAG TAXONOMY

The primary goal of the taxonomy is to map out the de-
sign issues of OHSs and their most common solutions.
The focus is on runtime modules (viewer and session
manager) and the link protocol. Before describing the
details of the taxonomy, general issues, which apply to
all FMs and to all protocols of the Flag, will be pre-
sented.

Functional Modules. The following issues apply to all
FMs regardless of their functional responsibilities:

e Tailorability. Each FM has functional responsibilities.
To what extent can these be tailored and by whom?

e Each FM is bordered by two protocols. Do both pro-
tocols exist in a particular system, and if they do, can
the FM handle one specific protocol, or can it handle
different protocols?

Tailorability is useful in all modules of an OHS and can
include many aspects. In this paper, tailorability is re-
stricted to the issues summarized in Figure 3. When
observing the means to achieve tailorability in FMs,
three broad categories of solutions should be considered.

Ve

(‘Source) (Dedicated) (Hypértext) (Runtime) (" Stat-up)

Figure 3: Aspects of tailorability for functional modules.

Source. Tailoring is performed at the source code level.
This does not necessarily mean that the tailor has to
understand all the details of the system. Source code
level tailoring is typically used in connection with sys-
tems organized as a (possibly object-oriented) frame-
work. DHM provides an extensible object-oriented frame-
work for both data model and session manager.

Dedicated. Tailoring is performed using a dedicated
mechanism. This can range from special-purpose lan-
guages, with an application programmers interface to

3In discussing issues and solutions, tazonomic diagrams like
that of Figure 3 will be used. Angled boxes are issues, and rounded
boxes are solutions.

operations in the FM, to graphical dialog boxes as known
from many Macintosh and Windows applications. Mi-
crocosm uses a dedicated tool to manipulate the orga-
nization of link filters.

Hypertext. Tailoring is performed by creating hypertext
structures, which are interpreted at runtime. The KMS
action language use this rare solution (e.g., for its control
structures).

Another aspect of tailorability is the dynamics of the
customization. The distinction here is when the cus-
tomization takes effect. Two possible solutions (among
many) are runtime, meaning that the customizations
take effect while the system is running, and start-up,
which means that the system must be shut down and
restarted for the customizations to take effect.

Protocols. Protocols have both a technical level, ad-
dressing how the two FMs next to the protocol exchange
commands, and a contents level, defining the command
repertoire of the protocol. The contents level of each
protocol will be addressed later. Issues regarding the
technical level are independent of the actual command
repertoire:

e medium (e.g., DDE, Apple Events, TCP/IP sockets,
internal library).

e format (e.g., (send object message . args)).

Normally, it is only the link protocol which is interesting
at the technical level because most third-party viewers
are not designed to use a specific (standard) commu-
nication protocol. This forces the session manager to
support a range of different communication protocols.
Davis et al. [1994] and Anderson et al. [1994] present
a number of different ways to communicate with third-
party viewers which are not designed to be integrated
into a hypermedia system. The common solution is to
build a wrapper for the third-party viewer, which trans-
forms the command repertoire of the link protocol into
whatever operations are available in the viewer. The use
of wrappers is shown in Figure 4, where the wrapper is
indicated as a thin line between the protocol and the
FMs?,

However, on some of the most common platforms there
is currently a move towards standardized interprocess
communication (OLE2 under Windows, and OpenDoc
under Macintosh and Motif). One can therefore hope
that the technical issues of protocols will soon cease to
be an issue.

In the following discussions of FMs and protocols, the
exact named parameterized operations provided from
each FM will not be discussed in connection with the FM

4The extended Flag resembles the Norwegian flag, which to
our great dismay gives a better description than the Danish flag.

Figure 4: The extended Flag. The line along the pro-
tocols adapts the functional module to the specific pro-
tocol.

itself, but will be considered to lie within the protocol
between the FM that provides the operation, and the
FM that uses it. This allow us to discuss FMs in a
more abstract manner and to talk about a given FM
conforming to more than one protocol (specific set of
operations).

3.1 Session Manager
The main responsibilities of the session manager are:

e Managing instantiations and tracking which viewers
are responsible for presenting them.

e Resolving link activation, taking into account the cur-
rent status of the session.

e Link availability, that is, controlling which links should
appear as link markers in an instantiation.

e Serving as a mediator of messages in a collaborative
setting.

e Coordinating the creation and maintenance of struc-
ture. This will be discussed together with the operations
of the linking protocol.

Third-party viewers are capable of manipulating the
contents of nodes outside the hypermedia system. This
leads to two problems: (1) anchor consistency: how to
maintain the linkAnchor mapping, and (2) contents lo-
cation: how to deal with the situations that occur when
node contents have been moved or (even worse) deleted
from outside the hypermedia system.

Two types of anchors exist: positional and keyword.
The anchor value of positional anchors specify a posi-
tion within the node contents, while the anchor value of
keyword anchors specify a generic part of the node con-
tents rather than a position. Keyword anchors are easy
to maintain and work quite well as demonstrated by lo-
cal and generic links in Microcosm. Figure 5 summarizes
some approaches to the anchor consistency problem for
positional anchors. In DHM, the problem is identified as
a special case of dangling links [10, case 4, page 43], but
no attempts are made to handle the problem. There are
two approaches to fully handle the problem. The first is
to require the viewers to maintain the anchors, the sec-
ond is to make different versions of the contents, at least
ensuring that the anchors are correctly aligned to the

previous contents. However, versioning is rarely what
is needed. HyperTED [23] applies heuristic methods to
solving the anchor consistency problem. The main chal-
lenge of heuristic solutions is to be able to detect incon-
sistency, so the system can inform the end-user that the
anchor is invalid.

(Versioning) (Maintained)

Figure 5: Anchor consistency issues for positional an-
chors.

The problem of node contents being moved to a differ-
ent location from outside the hypermedia system has
been addressed in HyperTED, which makes use of alias-
ing features of the Macintosh operating system to track
renaming and moving of files within a single file system.

Ignoring the issue of anchor consistency, there is still
room for interesting variations on how the resolver func-
tion is designed. Figure 6 summarizes the most impor-
tant issues and solutions. The first sub-issue is how the
link marker is resolved. Three solutions are presented:
(1) a specific link marker is statically bound to a specific
anchor, (2) the mapping from link marker to anchor is
computed, and (3) to emphasize that there is a whole
range of solutions to the resolution issue, the diagram
includes a “once” solution, where the link marker map-
ping is computed the first time a link marker is looked
up, and the mapping is hence static. When comput-
ing the link marker to anchor mapping as in both the
computed and once solutions, it is an issue what input
is used in the computation (including the actual link
marker, end-user id, session history, phase of the moon,
etc.).

Resolver function

Link marker Endpoint
resolution resolution

Figure 6: Resolver function issues.

Once the anchor has been found, the session manager
can obtain the link attached to the anchor and must
resolve the endpoints of the link. There are really two
issues here. How to generate the set of endpoints for
the link, and how to select which endpoints to present.
The taxonomy distinguishes between static generation,

which means that the endpoints are stored as part of
the link, and dynamic generation, where the endpoints
are computed. Selection has two possible solutions in
the taxonomy, one is to let the end-user chose between
all generated endpoints, the other is to let the system
automatically select some.

There is often a correlation between the link marker and
endpoint resolution issues, in that computed resolution
often yields many endpoints, which makes it necessary
to let the end-user decide which endpoint(s) to present.
When the link marker is statically bound to a specific
anchor and, therefore, to a specific link, it seems more
appropriate to give the author control over which nodes
should be presented, which implies that the system will
automatically determine this (based on structural infor-
mation given by the author).

There is also a correlation between anchor consistency
and resolver function issues. As mentioned above, one
way of addressing the consistency problem is to use key-
word anchors. This often means that the keyword res-
olution is computed, at least the first time the keyword
is looked up.

When a component is instantiated, it is important to
consider which links are to be instantiated as link mark-
ers. Some links might be private annotations which
should not be presented, or some links might require
special end-user status to follow, or even see. It is the
responsibility of the session manager to control which
link markers are available. In the link protocol pro-
posed in Section 3.3, there is an operation which will
insert link markers into an instantiation, thus allowing
the session manager to be in control of which anchors
are to be available in the instantiation.

When not all anchors are included as link markers in an
instantiation, it becomes difficult to maintain positional
anchor consistency for the excluded anchors.

Tailorability is especially important in connection with
the session manager, allowing flexibility in determining
link availability and link resolution.

Finally, to support multiuser settings, the session man-
ager must be able to receive notifications and determine
the appropriate actions to take (if any) [11, 25]. For ex-
ample, if the session manager is notified that a link has
been added to a node, it must pass on the notification to
viewers displaying this node, to inform them that link
markers are no longer up-to-date.

3.2 Viewer

The main responsibilities of viewers are to present and
manipulate the contents of hypermedia components.
When assessing a viewer from an OHS’s perspective, the
following issues are central:

e Contents storage. Will the viewer store its contents
by it self, or can it cooperate with the session manager
to do so?

e Anchor handling. How and to what extent can the
viewer maintain anchor values?

e Notification. To what extent can the viewer be used
in a collaborative hypermedia setting?

There are different levels at which a viewer can support
anchors. Figure 7 summarizes the anchor support issues
and solutions. As indicated, possible solutions of direc-
tionality are to support source and destination anchors,
which can either refer to values or objects within the
document or refer to the document as a whole.

Anchor support

[Direction | [Creation| [Activation |

[Storage]

[Source] [Dslination] (Imemal] [Extemal] [Internal] [Externalj

Figure 7: Aspects of viewers notion and awareness of
anchors.

The issue of anchor creation deals with how the end-user
creates an anchor, and the issue of activation deals with
how the end-user activates an anchor. For both of these
issues there are two possible solutions: (1) the viewer
allows the end-user to initiate the create and activate
commands inside the viewer (e.g., through a menu), or
(2) the end-user will have to indicate the link marker and
then issue the “activateLink” from the session manager.

Anchor storage can either be handled by the viewer it-
self, or by some mechanism outside the viewer. If the
viewer is able to store its anchors, there is a good chance
that anchors can be maintained in a consistent manner,
even when the contents are edited outside the hyperme-
dia system.

To support multiuser settings, viewers must be able to
receive notifications and perform appropriate actions in
response to them. For example, if a viewer is notified
that its current instantiation is no longer up-to-date, it
must somehow communicate this knowledge to the end-
user. How this is done depends on the collaboration
policies and capabilities of the viewer. Typical methods
in a synchronous collaborative setting would be to auto-
matically update the display or to inform the end-user
that the displayed instantiation is outdated and a more
recent version is available.

To illustrate the viewer issues, let us consider the usage
of Microsoft Word for Windows as a third-party viewer.

Word stores its contents in a proprietary format out-
side the hypermedia system. It can be notified as one
can call Word commands from outside using Windows
DDE. It can provide within-anchors for both source and
destinations through the usage of the Word concept of
“bookmarks”. A bookmark is a named region of the
text. The bookmark name can be used as the anchor
value, and Word stores bookmarks internally in the doc-
ument allowing the document to be safely edited outside
the hypermedia system, as long as bookmarks are not
deleted or renamed. Anchor creation and activation can
be done internally, because menus can be tailored by
means of the dedicated Word-basic language.

3.3 Linking Protocol

The main responsibility of the linking protocol is to pro-
vide the operations necessary to bind the viewer and ses-
sion manager functionality together. The link protocol
operations can typically be grouped into the following
categories:

e Link activation. When the end-user activates a link,
the viewer must inform the session manager of what link
marker was activated.

e Spawning viewers. When a document is to be pre-
sented, the viewer and session manger must exchange
document location, presentation information, and link
marker information.

e Creating and maintaining structure. When the end-
user, for instance, creates a new link, the viewer must in-
form the session manager of what link marker/selection
was activated.

e Collaborative notifications. When the session man-
ager receives notifications, these must be forwarded to
the appropriate viewers.

Despite the taxonomic approach of this paper, we have
found it useful to present a specific link protocol for
illustrative purposes. The discussion of link protocol
operations will take outset in the ten operations of the
Dexter runtime layer: openSession, openComponents,
presentComponent, followLink, newComponent, unPre-
sent, editInstantiation, realizeEdits, deleteComponent
and closeSession. In an OHS, the runtime functionality
is divided between the viewer and the session manager.
The Dexter model runtime operations will be revisited
from this perspective, leading to the Flag link protocol
(FLP) (Table 1).

The four operations openSession, closeSession, open-
Components and presentComponent are not intended
to be called from the viewer, and are therefore not part
of the link protocol. The session manager will have
its own user interface to enable opening and closing of
sessions. The openComponents and presentComponent
operations are internal operations used in particular by
“activateLink” (followLink in Dexter).

Session manager operations

activateLink FLP version of Dexter followLink. Resolve link marker, and present destination component.

newComponent?! Opens a new instantiation on a newly created component (as in Dexter).

unlnstantiate® FLP version of Dexter unPresent. Removes instantiation from session.

saveEdits FLP version of Dexter realizeEdits. Stores the contents of instantiation. Only necessary if
the viewer cannot store its own contents.

deleteComponent! As in Dexter, only we now call unInstantiate rather than Dexter unPresent.

setSelected Component

Set selected component to the component passed as parameter. The selected component is
used by the following two operations.

createSpecifier

Add specifier to selected link based on the link marker passed as parameter.

addToComponent

Add component passed as parameter to selected composite.

Viewer operations

presentInstantiation Retrieves and presents an instantiation.
presentAnchors Creates link markers for a set of anchors.
gotoAnchor Indicate an anchor as the destination in an activateLink operation.
savelnstantiation? Saves the changes done to an instantiation.
closeInstantiation? Closes the view of an instantiation.
Marks the contents in some clear way to indicate that the stored version is now newer than
markAsObsolete the one presented here. Specific implementations can do anything from deleting the contents,

to making it read-only or to change background color.

Table 1: Flag link protocol.

Notes: 1) If viewers store their own contents, these functions merely notifies the session manager that the action took place in
the viewer. 2) These operations are only needed if the session manager wants to implement secure closing of sessions, otherwise
saving and closing is initiated by the end-user directly in the viewer.

When presenting a hypermedia component (e.g., when
using activateLink) the presentation specification includes
information on what viewer should be invoked. Most
viewers can be invoked with a description of what com-
ponent to present. Alternatively, a running viewer can
be instructed to present a specific component using the
viewer operation “presentInstantiation”. Part of instan-
tiating a component is to visualize (a set of) its anchors
as link markers in the viewer. To do this, the session
manager call the viewer operation “presentAnchors”.
To indicate the destination of a link in a document, the
viewer operation “gotoAnchor” indicates the destination
link marker based on an anchor value.

The editInstantiation operation becomes part of the viewer

functionality and as such does not belong to the link
protocol. The realizeEdits operation saves the changes
done to a given instantiation. Most third-party viewers
will save their own contents — however, in the open hy-
perbase approach, the session manager should provide
a way for a viewer to store contents; in the FLP the
“saveEdits” operation replaces the realizeEdits opera-
tion.

Closing an instantiation, as in unPresent and delete-
Component, is now done by the viewers themselves.
However, to enable the session manager to track the
set of instantiations, the viewers must inform the ses-
sion manager when an instantiation is closed or deleted.

To emphasize the change of initiation, the Dexter un-
Present operation is renamed unInstantiate.

Though it is not strictly necessary, the FLP specifies
that the session manager must be able to instruct the
viewers to save and close the instantiation. The Dexter
closeSession specifies that closing the session can result
in loss of changes. The designer of the session manager
should be given the choice to implement a more accept-
able behaviour.

To enable structural editing, there is a need for an op-
eration to add new specifiers to a link, and to include
components into a composite. While this can be done
in several ways, the FLP specifies a simple protocol for
doing this. The session manager maintains a selected
component, which can be set by the setSelected Compo-
nent operation. To create a link between two nodes, the
newComponent operation creates a new link. The new
component is automatically made the selected compo-
nent. Then a node is located, and a link marker is cre-
ated. The createSpecifier is then called with the link
marker as argument, and a new specifier is created in
the selected link. This is repeated for other endpoints
of the link. To add a component to a composite is quite
similar. The composite is made the selected component,
and the addToComponent is issued from the viewer of
an existing instantiation.

In synchronous collaborative hypermedia systems, the
session manager must be able to track changes to the hy-
pertext (made by other end-users), and notify the end-
user of such changes. The FLP specifies two simple ways
to let the session manager address the viewer: “pre-
sentInstantiation” followed by “presentAnchors” can be
used to instruct the viewer to reload the contents and
present the current set of anchors, and “markAsObso-
lete” can be used to inform the viewer that the instan-
tiation is no longer current.

3.4 Other Functional Modules and Protocols

Since the main emphasis of this paper has been on run-
time aspects of the Flag, this section will only briefly
describe the remaining modules and protocols.

Data Model Manager. The Dexter model gives a rather
specific description of the fundamental data model, de-
tailing how components are to be realized, at least func-
tionally. Since the Dexter model has been published, im-
plementation based on the original model has revealed
some problems and open ends in the original specifi-
cation [10, 11]. New models such as the link server
approach in Microcosm are using a very different data
model than proposed by the Dexter model. Experiences
with DHM and Hyperform have emphasized the impor-
tance of having a general hypermedia data model frame-
work which can be extended and tailored towards the
specific needs of individual applications and application
areas.

Storage Manager. Even though the taxonomy does not
state anything specific about the data model, there is a
fundamental insight in separating the storage into struc-
ture and contents modules. The issue of contents storage
format pertains to the storage manager. If several view-
ers agree on a storage format (e.g., HTML), they can
share the same document contents, with some allowing
editing and others being passive viewers.

Presentation Protocol. This protocol defines the data model

operations available to the session manager, and it de-
fines the session manager call-back operations available
to the data model manager (e.g., in relation to cooper-
ative events).

Storage Protocol. The storage protocol encapsulates the
storage manager from both the viewer and the data
model manager. There is an important point to be made
here in relation to OHSs. While the storage manager
module can provide storage to third-party viewers, it
can also serve as information provider by delivering con-
tents in a format which can be interpreted by existing
viewers (e.g., ASCII, RTF, Postscript, etc.). In the ex-
tended Flag, the storage protocol has two places where
one can put a wrapper. If the wrapper is placed on the
data model manager (or viewer) side, it can be used to

introduce virtual (computed) contents. In this way var-
ious kinds of read-only information can be incorporated
into the hypermedia system (e.g., UNIX manual pages).

4 CASE STUDIES

To illustrate the differences between the two categories
of OHSs, “open hyperbase” and “link server”, we will
describe and compare DHM and Microcosm using the
taxonomic aspects presented in the previous section.

4.1 Open Hyperbase: DHM

The DHM system is described by Grgnbak and others
in [9, 10, 11, 12]. The first reference is particularly inter-
esting from the perspective of OHSs, since it describes
in some detail how third-party viewers can be added to
the system.

The data model manager and the session manager (both
based directly on the Dexter model) can be tailored in
the form of source code level customization, which takes
effect at runtime. This is done using an interpreter and
an object-oriented framework for the system.

Contents storage is either entirely the responsibility of
an object-oriented database, or node contents can be
handled by the viewers (in DHM terminology called ed-
itors). The link protocol is internal to the session man-
ager. Integration of third-party viewers are done using
wrappers on the viewer side of the link protocol.

Regarding anchor consistency, the DHM system either
depends on the viewer to do this, or there is no support
for this. The resolver function is flexible, as all solutions
are possible through tailoring. The default behaviour is
that the link marker resolution is static, and the end-
point selection is automatic (bring up all endpoints of a
link).

The DHM system is capable of handling viewers with all
kinds of anchor support (cf. Figure 7). The link protocol
has three levels, for fully open editors, semi-open editors
and closed editors. These levels reflect that the system
is able to handle viewers with different levels of anchor
awareness. It is not clear if the session manager provide
external anchor creation and activation in those cases
where the viewer is not able to do it by itself.

The link availability issue is not directly addressed in
any paper we know of, but the session manager should
be able to restrict which anchors are instantiated into
link markers, through tailoring of the instantiation con-
cept in the session manager.

The DHM system provides support for collaborative work
in both the data model manager and the session man-
ager. The notification mechanism allows different end-
users to be informed of changes done by other end-users,
and the locking mechanism allows collaboration in a se-

cure fashion.

4.2 Link Server: Microcosm

Microcosm is described in [4, 5, 15]. Microcosm is based
on a link-filter approach [15], which basically is a spe-
cial way of organizing the link marker resolver function,
merging static, once and computed. Endpoint selection
is manual.

Link marker resolution can be tailored using a dedicated
tool to manipulate the order in which link markers are
examined in the so called filter-chain. Adding new filter
types require source code level changes using a special
application programmers interface.

The anchor consistency issue is to a large extent solved
by extensive usage of keyword anchors, but the system
supports viewer maintained positional anchors as well.
The link protocol is based on a fixed command reper-
toire, but the flexibility of the resolver function makes
it de facto possible to have different levels of the link
protocol. The link protocol consists of a set of Windows
DDE calls. Integration of third-party viewers are done
using a number of different methods [5].

Like DHM, Microcosm will handle viewers with all kinds
of anchor support. As Microcosm is a link server ap-
proach, viewers are always responsible for storing their
own contents. The data model is very simple and does
not allow further specialization, for example, one cannot
easily create typed nodes and links.

The link-filter approach used by Microcosm directly ad-
dresses the issue of link availability, in that the filter
chain can be used to filter out those links that should
not be part of a specific instantiation.

In its present form, Microcosm does not address collab-
orative issues.

4.3 Comparison

The main difference between DHM and Microcosm is
that DHM allows the data model to be tailored, while
Microcosm does not. DHM allows the choice between
storing the node contents within the system, or exter-
nally, maintained by the viewer, where Microcosm re-
quires the viewer to store it. DHM has its link protocol
internal to the session manager, whereas the link pro-
tocol of Microcosm is specified in the form of an inter-
process communication protocol. This means, to adapt
a new viewer to the system, one has to specialize the
internals of DHM, whereas one does not have to do this
in Microcosm. The difference is illustrated in Figure 8,
where the dotted line indicates where the interprocess
communication takes place.

Microcosm is built around the resolver function, and
the link marker resolution of Microcosm seems to be

viewer viewer
linking - {--Tirking - -----4 -
session session
manager manager
@ DHM b) Microcosm

Figure 8: Two approaches to link protocols. a) as done
in the DHM system, and b) as done in the Microcosm
system. The dotted line indicates where the modules
are split into separate processes.

more readily tailorable than that of DHM. The link-filter
approach and the extensive usage of keyword anchors
gives Microcosm better mechanisms for flexible control
over link availability, though the issue can be addressed
in the DHM architecture. DHM supports collaborative
work through notification and lock mechanisms, where
Microcosm gives no support at all.

It seems like Microcosm is more suitable for integrating
third-party viewers, because the system is better geared
towards it. On the other hand, the DHM system pro-
vides a more suitable platform for writing new viewers,
because the data model can be tailored to better suit
the needs of new viewers.

5 CONCLUSION

The Flag taxonomy provides a framework which allow
us to: (1) classify existing hypermedia systems, (2) char-
acterize what an open hypermedia system is, and (3) ex-
amine (describe and compare) OHSs independent of the
particularities of specific systems. The taxonomy also
allowed us to differentiate between important features
such as openness and tailorability. Within the frame-
work of the Flag, we presented a number of issues and
possible solutions, in particular for the session manager
and viewer modules, which can serve as the basis for
a more detailed description of existing OHSs and as a
starting point for design of new OHSs. The taxonomic
diagrams will serve as check lists to help getting started
on a specific design.

In Section 2, we used the taxonomy to classify exist-
ing hypermedia systems into broad categories. However,
broad classification will often ignore interesting details.
For example, the WWW was characterized as a closed
hypermedia system, because it does not have a linking
protocol. However, WWW should not be dismissed so
easily. The WWW consists of two main functional mod-
ules, a server and a browser. The server sends HTML
encoded information on request from the browser, and
the browser then displays this information. But this
is only the case when the URL is “http”. If the URL
specifies that a “file” is to be retrieved, both the Mo-
saic and the Netscape browser has a file type mapping

which specifies what external application to use for pre-
senting the file. It is thus more fair to say that these
browsers serve as session managers, and the external
applications serve as viewers. However, the linking pro-
tocol is very simple, with viewers supporting only the
presentInstantiation operation. The Netscape browser
supports a vide range of operations which can be called
from the viewers, giving a rich linking protocol towards
the session manager.

In Section 4, we presented a description and comparison
of two existing OHSs, DHM and Microcosm. The de-
scriptions build strongly on the vocabulary established
in the taxonomy. The fact that none of these descrip-
tions are very long, indicates that the taxonomy pro-
vides a framework to understand and evaluate the gen-
eral characteristics of OHSs with minimal effort. There
are of course more subtle aspects of these systems which
can not be captured by describing the systems accord-
ing to the taxonomy. It serves as a check list to ensure
that one has indeed covered the necessary aspects of an
OHS.

One of the current trends in application development
is interoperability, allowing one application to draw on
the powers of other applications. We have given an ex-
ample link protocol, which provides insight into what
kind of functionality third-party viewers must support
to be integrated into a hypermedia system. Viewers
must be controllable from the session manager, which
is becoming the norm with systems such as DDE and
OLE2 under Microsoft Windows, and Apple events un-
der the Macintosh operating system. Viewers must also
be able to support anchors in one form or the other (e.g.,
bookmarks in Microsoft Word, or named cells in Excel).
Finally, viewers need to be tailorable to allow anchor
operations to be initiated conveniently from within the
viewer.

The taxonomy can serve as the basis for further develop-
ment into an actual reference model for OHSs by settling
on a specific data model (or an extensible framework)
and a framework for the session manager, and by spec-
ifying the unspecified protocols.

ACKNOWLEDGEMENTS

The participants at the ECHT ’94 Workshop on Open
Hypermedia Systems have all been influencing this work.
We are especially thankful to Serge Demeyer and David
Hicks who commented on an earlier draft of this paper.

REFERENCES
1. Akscyn, R.M., McCracken, D.L., and Yoder, E.A.
KMS: A distributed hypermedia system for manag-

ing knowledge in organizations. Commun. ACM, 31,
7 (July 1988), 820-835.

10.

11.

12.

13.

14.

15.

Anderson, K.M., Taylor, R.N., and Whitehead, E.J.
Chimera: Hypertext for heterogeneous software en-
vironments. In Proceedings of ECHT’94, ACM
Press, 1994, pp. 94-107.

Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen,
H.F., and Secret, A. The World-Wide Web. Com-
mun. ACM, 37, 8 (Aug. 1994), 76-82.

Davis, H., Hall, W., Heath, I., Hill, G., and Wilkins,
R. Towards an integrated information environment
with open hypermedia systems. In Proceedings of
ECHT’92, ACM Press, 1992, pp. 181-190.

Davis, H., Knight, S., and Hall, W. Light hyperme-
dia link services: A study of third party application
integration. In Proceedings of ECHT’94, ACM Press,
1994, pp. 41-50.

Delisle, N., and Schwartz, M. Neptune: A hyper-
text system for CAD applications. In Proceedings of
SIGMOD’86, ACM Press, 1986, pp. 132-143.

Engelbart, D.C. Authorship provisions in AUG-
MENT. In Proceedings of the COMPCON’8/, 1984,
pp. 465-472.

Furuta, R., and Stotts, P.D. The Trellis hypertext
reference model. In Proceedings of the NIST Hyper-
text Standardization Workshop, 1990, pp. 83-93.

Grgnbek, K., and Malhotra, J. Building tailorable
hypermedia systems: The embedded-interpreter ap-
proach. In Proceedings of OOPSLA’94, ACM Press,
1994, pp. 85-101.

Grgnbak, K., and Trigg, R.H. Design issues for a
Dexter-based hypermedia system. Commun. ACM,
37, 2 (Feb. 1994), 40-49.

Grgnbeak, K., Hem, J.A., Madsen, O.L., and Sloth,
L. Cooperative hypermedia systems: A Dexter-
based architecture. Commun. ACM, 37, 2 (Feb.
1994), 64-74.

Gronbaek, K. Composites in a Dexter-based hyper-
media framework. In Proceedings of ECHT’9, ACM
Press, 1994, pp. 59-69.

Halasz, F., and Schwartz, M. The Dexter hypertext
reference model. Commun. ACM, 37, 2 (Feb. 1994),
30-39.

Halasz, F.G. Reflections on Notecards: Seven is-
sues for the next generation of hypermedia systems.
Commun. ACM, 31, 7 (July 1988), 836-852.

Hill, G., Wilkins, R., and Hall, W. Open and recon-
figurable hypermedia systems: A filter-based model.
Hypermedia, 5, 2 (1993), 103-118.

16

17.

18.

19.

20.

21.

22.

Kacmar, C.J., and Leggett, J.J. Proxhy: A process-
oriented extensible hypertext architecture. ACM
Trans. Inf. Sys., 9, 4 (Oct. 1991), 399-419.

Lange, D.B. A formal model of hypertext. In
Proceedings of the NIST Hypertext Standardization
Workshop, 1990, pp. 145-166.

Leggett, J.J., and Schnase, J.L. Viewing Dexter
with open eyes. Commun. ACM, 37, 2 (Feb. 1994),
76-86.

Meyrowitz, N. Intermedia: The architecture and
construction of an object-oriented hypermedia sys-
tem and applications framework. In Proceedings of
OOPSLA’86, ACM Press, 1986, pp. 186—201.

Pearl, A. Sun’s link service: A protocol for open
linking. In Proceedings of Hypertert’89 , ACM Press,
1989, pp. 137-146.

Rizk, A., and Sauter, L. Multicard: An open hy-
permedia system. In Proceedings of ECHT’92, ACM
Press, 1992, pp. 4-10.

Streitz, N., Haake, J., Hannemann, J., Lempke, A.,
Schuler, W., Schiitt, H., and Thiiring, M. SEPIA:
A cooperative hypermedia authoring environment.
In Proceedings of ECHT’92, ACM Press, 1992, pp.
11-22.

23.

24.

25.

26.

27.

Vanzyl, A. Open hypermedia systems - comparisons
and suggestions for implementation strategies. In
Proceedings of the ECHT’94 Workshop on Open Hy-
permedia Systems. Dept. of Computer Science Tech-
nical Report R-94-2038. Aalborg Univ., Fr. Bajers
Vej 7E, 9220 Aalborg @, Denmark, 1994, pp. 11-15.

Wiil, U.K., and Leggett, J.J. Hyperform: Using ex-
tensibility to develop dynamic, open and distributed
hypertext systems. In Proceedings of ECHT’92,
ACM Press, 1992, pp. 251-261.

Wiil, U.K., and Leggett, J.J. Concurrency control
in collaborative hypertext systems. In Proceedings
of Hypertext’93, ACM Press, 1993, pp. 14-24.

Wiil, U.K., and Leggett, J.J. The HyperDisco ap-
proach to open hypermedia systems. In Proceedings
of Hypertext’96, ACM Press, 1996.

Wiil, UK. Issues in the design of EHTS: A
multiuser hypertext system for collaboration. In
Proceedings of HICSS-25, IEEE Computer Society
Press, 1992, pp. 629-639.

