
Unifying Strategies for Web Augmentation
Niels Olof Bouvin

Aarhus University,
Department of Computer Science,

Aabogade 34A, DK8200 Aarhus N, Denmark
bouvin@daimi.aau.dk

ABSTRACT
Since the beginning of the WWW, tools have been devel-
oped to augment the functionality of the Web. This paper
provides an investigation of hypermedia tools and systems
integrating the World Wide Web with focus on functionality
and the techniques used to achieve this functionality. Simi-
larities are found and based on this, a new framework, the
Arakne framework, for developing and thinking about Web
augmentation is presented. The Arakne framework is flexi-
ble and supports most kinds of Web augmentation. Finally
an implementation of the Arakne framework is described
and discussed.

KEYWORDS
Web Integration, Open Hypermedia Systems, Open Hyper-
media Protocol, Collaboration on the Web, Unifying inter-
faces, Common Reference Architecture for open hyperme-
dia systems, Java

INTRODUCTION
The World Wide Web has in an amazing short time span
become the hitherto largest hypertext and is pervasive in
everyday life as few things before. This success has in part
been attributed to the simple architecture behind the Web: A
stateless file transfer protocol (HTTP), an universal Internet
naming scheme (URL) and an easily understood document
format (HTML). These standards have (largely) been ad-
hered to, and this has enabled the creation of a large amount
of software, be it Web servers or browsers to work together
to the benefit of all.

The success of this simple and hugely scaleable architecture
has come, from the standpoint of the hypermedia research
community, at some costs, as the Web itself is lacking in the
ways of more advanced (but ironically often far older) hy-
permedia systems. Web links are unidirectional jump links,
embedded in the HTML documents, severely diminishing
the flexibility of use. There is yet no widespread support for
collaborative ‘authoring, though an initiative such as
WebDAV [131) holds great promise.

An important development in the hypermedia community in
the nineties has been the focus on and development of open

Permission to makt: digital or hard copi,, of all or part ~tfthis work for

per~mal or class~~on~ US IS ganted without fee prwiided that copies

arc not rrude or tlistrlbutcd Ihr prvlil or commercial advnnlapc and that

topics bear this notlcc and the tillI citation on ~hc first page. TO COP>

&w-wise. to republish, to post on xrw!~‘s or to redistribute to lists.

rquirzs prior sprcific pumission ar&or il fee.

Hypertext 99 Darmstndt Germany
Copyright ACM 1999 l-58113-064-3/99/2...$5.00

hypermedia systems integrating third-party applications.
Significant work has been done in systems such as Micro-
Cosm [9][20], HyperDisco [44][45], HOSS [32], DHM
[14][151, and Chimera [11. These systems have all addressed
the problem of augmenting third-party applications, and the
lessons learned are important guidelines for future work of
Web augmentation. Based on these experiences,, taxono-
mies and studies have been developed, by Whitehead [43],
Granbaek & Wiil [17], and Wiil & asterbye [46][48], to
help researchers and developers discuss and reason about
the open hypermedia field and how to utilise hypermedia in
third-party applications. Given this experience of integration
it should come as no surprise that the open hypermedia
community was quick to develop open hypermedia Web
integrations, e.g. DLS [7], DHM/WWW [16], and Chimera
[2]. This article will investigate how they and others
achieved their goals of Web augmentation.

Adhering to standards has a large part of the success of the
Web and the very size of the Web has enormous inertia, so
an attempt to replace the Web with something perhaps more
advanced in certain aspects is, if not doomed, then up
against tremendous odds. Clearly this is not the way to im-
prove the Web. An approach that retains the benefits of the
Web as well as adding new desired functionality is the de-
velopment of systems that operate within Web standards, be
it HTTP, HTML, browsers, or servers. This is in spirit with
Meyrowitz’ call for hypermedia integration in third-party
applications [27], and the amount and quality of work done
using this approach would suggest that it is at the very least
possible.

AN OVERVIEW OF WEB AUGMENTATION STRATEGIES
As the scope of this article is to study the techniques used in
Web augmentation tools, an overview of augmentation
approaches is in order. This overview will work at two lev-
els of abstraction: first a broad grouping based on the func-
tionality of the tools and later a more specific characterisa-
tion of the individual tool. This characterisation will be
based on the chosen approach to common problems, such as
storage, Web browser integration, level of support for col-
laboration, and so forth. The former level of abstraction will
let us discuss and compare related tools, while the latter will
allow us to recognise reoccurring themes in the approaches
taken.

A tool shall be considered a Web hypermedia augmentation
tool, if it through integration with a Web browser, a HTTP
proxy or a Web server adds content or controls not con-
tained within the Web pages themselves to the effect of
allowing structure to be added to the Web page directly or
indirectly, or to navigate such structure. The purpose of such

91

a tool is help users organise, associate, or structure informa-
tion found on the Web. This activity may be done by a sin-
gle user or in collaboration with others.

Following this definition, the purpose of the Web augmen-
tations reviewed for this article is to help users structuralise
their Web work. Either by adding structure and displaying it,
or by extracting structure already present and making it
more visible. The displayed structure may be malleable,
allowing the user to modify it. The Web augmentation tools
reviewed for this article have been divided into four catego-
ries:

+ Annotations/Discussion support
+ Link creation and transversal
+ Guided tours
l Structuring/Spatial

We claim no universality to this categorisation, but have
found it handy when discussing the Web augmentation tools
and their use.

A Web augmentation tool can be classified by the schema
summarised in Table 1. Thus a tool can either be a part of a
Web browser; it can be an closely integrated tool loaded on
runtime; it can reside temporarily within the browser as an
applet or an ActiveX control; it can be an application run-
ning the user’s computer; or it can be located elsewhere (in
that case more often than not as a H’X”TP server or proxy).

The Web augmentation tool can either have no storage re-
quirements; it can store it data locally on the host computer,
or remotely on a server.

Many of these Web augmentation tools modify Web pages,
either to insert interfaces of their own or to add structure
(e.g. links) to the Web page. This modification can take
place at the Web server (perhaps a Web server translating a
proprietary data format into HTML), by calling CGI-scripts
that return modified pages, by using a special proxy, or by
modifying the Web pages as or after they are displayed in
the Web browser.

As for the collaborative aspect, a Web augmentation tool
can either be strictly personal, i.e. relevant to a single user
only; the created data or structures can be shared (e.g. send
to another user or placed on a Web site); the structures can
browsed or edited by turn-taking (asynchronously); or users
can collaborale through the structures in real time (synchro-
nously).

WEB AUGMENTATION TOOLS
In this section we will describe various Web augmentation
tools focusing on the elements introduced by Table 1. The
scope of this article does not allow for a comprehensive
study nor a general survey, so only a subset of the existing
Web augmentation tools is presented.

Annotations/Discussion support
Bush envisioned marginalia in the Memex [5], and the inter-
est in annotations and how they should be supported by
hypermedia has not diminished over the years, as witnessed

by the investigation done by Marshall 1251.

The first widely successful Web browser, NCSA Mosaic
[30], gave the user the opportunity to create annotations to
Web pages. The annotations were personal and stored lo-
cally. Later, this feature fell out of favour with Web browser
developers.

Recognising that annotations whilst useful for the individual
are even more beneficial for a community, several collabo-
rative annotation tools have been created. Rascheisen et
al.[35][36] have developed ComMentor, which have used
for several purposes, including content rating and annota-
tions. The system employs a Mosaic [30] browser, modified
to provide an interface to the annotation server, which con-
sists of a collection of CGI-scripts. The user has alongside
with the browser a merge library, which inserts comments
and links to comments into the Web pages. Annotations are
stored in sets, of which the user may activate an arbitrary

Method of integration

A part of the browser
Browser add-ons
Within the browser (plug-ins, applets and JavaScript)
Without the browser, local
Without the browser, remote
Within the proxy
Within the Web server

Location of storage

No storage

Local storage
Remote storage

Web page modification

No modification
At the Web server
CGI-scripts at a Web server
At the proxy
In the browser

Level of collaboration supported

Personal
Shareable
Asynchronous collaborative

, Synchronous collaborative

Table I - A classification scheme of Web augmentation tools

number. Collaborative annotation is supported through di-
viding users into groups that may share sets of annotations.
A set of annotations can be set to be private, available to a
group, or publicly available. Annotations are displayed
using in-place markers (small pictures) indicating either the
nature of the annotation or the author’s identity. An annota-
tion while write-protected may also be annotated.

Another system is CritLink Mediator, part of CritSuite [lo],
which is specialised to provide support for ‘critical discus-
sions’. CritLink employs predefined typed links (support,
issue, comment, query) akin to many hypermedia systems,
such as IBIS [34] and TEXTNET [40]. The comments are
created by a mix of CGI-scripts, Web forms, and JavaScript
and stored either on a designated server or in the user’s own
Web space as ordinary Web pages. Links to the comments

92

are inserted into Web pages by use of a Web server effec-
tively acting as a proxy server. The pages are also modified
to include a tool bar used for navigation, annotation, and the
launch of CritMap [39], a tool that generates maps of neigh-
bourhood Web pages. Links in pages presented by the server
are modified to go through the server. As comments are
Web pages in their own right, they can also be commented
on. There are only one set of annotations and no notion of
groups, though the individual user is identified.

Creating links
As noted in the introduction, quite a few research projects
have addressed the issue of adding external structures to
Web pages. An excellent investigation of the various ap-
proaches taken by the open hypermedia community can be
found in [2]. There are two main approaches: links (or other
kinds of structural information) are either displayed along-
side the Web page or inserted into the Web page. The for-
mer case requires either a program to display this structure
or a browser window where the structure has been converted
to HTML. The latter case involves modifying HTML pages
on the fly, which can be done at three places: at the origin,
in transit or at arrival, i.e. the Web server, the HTTP proxy,
or the Web browser.

Chimera [1][2] is an example of a system, where experi-
ments with either displaying structure information in a sepa-
rate program (an applet) or making the structure server ac-
cessible through HTTP have been carried out. By modifying
a Web server to interpret HTTP requests as requests to a
Chimera server to which the Web server is hooked up and in
turn translating the Chimera structures to HTML, a user is
able to browse the hypermedia structure using an ordinary
Web browser. This experiment was extended upon by the
creation of a Java applet capable of displaying Chimera
hypermedia structures. By the combination of a special Web
server, CGI-scripts and cookies, this applet was inserted into
all pages displayed in the Web browser, giving the user
immediate access to Chimera services.

Hyper-G [26] is a more specialised system, as it to achieve
full functionality relies on a special document format (HTF
- Hypertext Format), a special server, and a custom
browser. It is however possible to interface to the system
using an ordinary Web browser using a special WWW-
gateway, that will translates HTF document and hypermedia
structure to HTML. The hypermedia system offers strong
support for hierarchical structures and searching, and allows
users without a special browser to create links using forms.
In recent versions HyperWave [22] (as the system is now
known) offers an advanced interface utilising Java-applets
and JavaScript inserted into Web pages by the HyperWave
server.

DLS [6] (Distributed Link Service) is based on the Micro-
Cosm hypermedia system [7][9][20]. The first DLS systems
used a wrapper to attach a link service menu to a browser
(this integration being dependent on whether an integration
existed for the user’s browser), thus creating a (in the termi-
nology of Whitehead in [43]) shim integration with a third
party application. Links were followed by selection of text
and selecting ‘Follow Link’ in the attached menu. This

93

would cause the wrapper to contact the link server with an
URL encoding the request, resulting in a Web page of the
matching links. To address the problem of having to install
special software and to make links more visible, an inter-
faceless version was developed that used a link server proxy
to insert links in Web pages as requested by the user. The
user used a form to configure which link bases to use and
how the link should be presented in the document (to make
the distinction between links belonging in the document and
inserted links clear). Due to performance issues (beyond
‘conventional’ links, Microcosm offers computation inten-
sive links, such as keyword links, person links and citation
links) and copyright and authors’ rights concerns about
adding content to Web pages, a new design was introduced
with the AgentDLS [8]. Rather than offering synchronous
links (presented together and simultaneously with the docu-
ment), links are now displayed in a separate window. This
improves the performance of browsing considerably, as the
users’ primary window of interest does not have to wait for
links to be resolved. The linking service thus takes on a
more advisory nature. This system is implemented by using
a proxy that (as seen by the Web browser) acts as a normal
proxy but also sends the displayed document to a link server
agent that resolves the links relevant to the document. The
display of these links is handled by having the AgentDLS
browser window request a page from the link server agent
with regular intervals.

The Devise Hypermedia group, of which the author is a
member, has also made various Web integrations with its
Dexter-based hypermedia system [14][1.51. The first attempt
was DHM/WWW [161. The architecture consisted of a Java-
applet communicating through a CGI-script to a DHM
server. When the user requested a document by typing its
URL in the applet, the applet would retrieve the document
while querying the DHM server for endpoints in the docu-
ment. The endpoints retrieved was inserted into the Web
page as it was being downloaded and displayed in a Web
browser window using JavaScript. All links in the Web page
were modified so that a click on a link would result in the
applet being invoked, allowing it repeat the above described
process. The links and endpoints from the DHM server
could also be inspected and browsed within the applet. This
version had several shortcomings: it was dependent on the
user not using bookmarks or entering URLs in the Web
browser itself, as such actions would cause the applet to be
terminated as its own page would be unloaded. Furthermore
it was unable to handle frames (as the loading of a new ‘top’
frame set would also cause the unloading of the applet) and
was limited by the ‘sandbox’ imposed for security reasons
on Java appletsl. While supported by the DHM server, the
DHMiWWW applet could only handle one context (that is
one set of hypermedia structures) and had no user concept.
A second version, Navette [3], was developed to address
some of these issues. Navette was a signed Java applet,
allowing the system to use Web pages from arbitrary Web

1 The Java ‘sandbox’ security limits a Java applet in vari-
ous ways. Most crucial to DHM/WWW was the restriction
of network contact exclusively
server, thus making DHM/WWW
pages from other web servers.

to the originating web
unable to work with web

servers. To speed up communication with the DHM server,
TCP/IP and optimistic caching of hypermedia structures
(e.g. retrieving a whole context rather than only resolving
one link) were used. This version also handled multiple
contexts and users. The frame problem remained, and Web
pages were still displayed using JavaScript, which made for
noticeable degraded performance when browsing with
Navette. Simultaneously with Navette, the Webvise client
[18], a custom integration with the Microsoft Internet Ex-
plorer [28] was being developed. Operating as an applica-
tion rather an applet removed the limitations put on
DHM/WWW and Navette, and using the Microsoft Internet
Explorer [28] rather than the Netscape Communicator [31]
allowed Webvise to insert links after the browser had dis-
played the document, thus improving performance consid-
erably. This is done through DOM [11] and the COM-
interface available through the Internet Explorer. A second
version of Navette has been developed addressing the prob-
lems of prior releases using the Arakne framework, which
will described below.

Guided tours
Guided tours and trails have been a part of hypermedia from
the very beginning [.5], when Bush introduced the concept of
the trail linking related documents together. Trigg did more
recent groundbreaking work in [41]. Several existing sys-
tems try to exploit this idea with Web documents.

Walden’s Paths [12][37] is a system designed mainly to be
used in an educational setting, where a teacher composes
trails for students to follow. The teacher uses either the Path
Authoring Tool (a Java application) or VIKI [38] combined
with a browser as an authoring tool. Trails are stored on a
Path Server, which through the use of CGI scripts acts as a
proxy while modifying the pages to provide an interface to
the path. The interface consists of blocks in the top and the
bottom of the page. This block is a graphical representation
of (a part of) the path plus additional annotations written by
the path author. As all documents go through the Path Serv-
ers (links in the documents are modified to achieve this),
students can go ‘off path’ and still return to the path by
pressing a button in the interface block. State is communi-
cated by adding arguments into the URL given to the Path
Server’s CGI-scripts. The Walden’s Paths has been ex-
tended with regards to collaborative aspects, allowing stu-
dents to author and share paths of their own. Additionally
work has been done to extend upon the linear path by adding
conditional blanches. The logic to support this is handled by
the Path Server, thus still making all functionality accessible
from a standard Web browser.

Another Web-based guided tour system is Ariadne [23],
which is a Java-based applet. Ariadne operates in an exter-
nal window to the browser and controls the browser through
JavaScript. A guided tour in Ariadne is a directed graph, as
opposed to the linear (with branches) path of Walden’s
Paths. The Ariadne user interface supports both browsing
and editing of guided tours. The tours are stored as compos-
ites on the Dexter-based DHM [151 server. Leaving the Web
pages untouched has several advantages to the Walden’s
Path approach, as 1) it reduces overhead and complexity as
Web documents do not have go through an extra server, and

2) entering URLs or using bookmarks does not pose a
problem. On the other hand users are required to use a Java-
enabled Web browser rather than any Web browser, though
that currentIy is not a strong requirement. The Ariadne sys-
tem has recently been adapted to work within the Arakne
framework, which will be described in more detail below.

Structuring/Spatial
Spatial hypermedia as described by Marshall & Shipman
[24] and as implemented in VIKI [37] is a new kind of hy-
permedia application, where link structures are no longer
explicit but rather implicit based on the spatial relationship
between objects. This has become a very powerful tool for
organising and structuring, and few hypermedia systems are
in more need of organisation and structure than the Web.

Web Squirrel [42] is a URL management system, that uses a
spatial metaphor to help users organise their URLs into
‘information farms’. The user creates Neighbourhoods onto
which URLs are dragged and dropped. The Neighbourhoods
and the URLs are arranged spatial as the user wishes, and
are analysed by software agents that can create links be-
tween URLs according to user’s rating of the Web sites and
maintain link integrity. The user can create new agents using
a scripting language. The information farms are stored lo-
cally, but can be distributed to other users of Web Squirrel,
exported as HTML, or converted to the Hot Sauce MCF
format.

Hot Sauce 1211 is a spatial hypermedia plug-in created by
Apple. Hot Sauce displays a zoomable 2D representation of
a collection of collections and documents. This structure is
stored using the XML [47] based Meta Content Format [191,
a general format to describe meta content (MCF has thus
much wider application than its use in Hot Sauce). Links
and collections of links are arranged spatial and the user can
zoom in and out, move about, and open collections within
the collection. If the user double-clicks on a link, the docu-
ment is retrieved in a separate window, allowing the user to
continue to navigate using Hot Sauce. The Hot Sauce is a
media viewer and as such retrieves its MCF file from a Web
server.

SUMMARY OF STRATEGIES FOR WEB AUGMENTA-
TION
The tools and systems described above have addressed
many problems pertaining to the current Web, and have
utilised a lot of different techniques to attempt to solve these
problems. The Web augmentation strategies are, using the
schema introduced in Table 1, summarised in Table 2. We
will below outline some general trends and describe some of
the aspects of writing Web augmentation tools that make
developing them hard.

Some patterns become apparent. All of the tools reviewed
are responsive and need to be aware of the user’s actions, be
it to record the URL of the current Web page or to perform
link and endpoint computations. All need to provide the user
with a user interface (though it might be very discreet at
most times, as in the ‘interfaceless’ DLS). Most of the tools
need to store data somewhere and most choose to do this on
a remote server, thus raising the need to able to communi-

94

cate over network. The communication is often handled by
CGI-scripts, which is problematic, as the tool only gets data
when it requests it - the server cannot notify the tool of
changes. Many of the tools modify Web pages, and most of
the implementations of this functionality would have a hard
time interoperating with each other, as they in turn would
modify pages and links, quite possibly corrupting each
other’s data. Most of the Web page modifications are not
robust to things such as frames and JavaScript, and many
have a problem with forms. The tools relying on modifying
link with CGI-scripts rather than using a proxy are fragile to
the use of bookmarks or directly entered URLs. The tools

mentation.

The Arakne framework is an object-oriented, component-
based, three-layered model aimed at providing Web aug-
mentation tools a unified access to structure servers, proxies,
and Web browsers. It is an instantiation of the Common
Reference Architecture (CoReArc) for open hypermedia
systems, as described by Granbaek & Wiil [17]. CoReArc
divides the architecture of hypermedia systems into three
layers: The content layer (displaying and handling docu-
ments, displaying structure), the service layer (handling
navigation, integration, collaboration etc.), and the structure

Tool Method of Integration Storage Web page modification Collaboration support
ComMentor Part of browser, CGI-scripts Remote Local proxy Asynchronous
CritLink Mediator Within browser, JavaScript, forms; CGI-scripts Remote CGI-scripts Asynchronous
Chimera Web server Remote No Asynchronous
Chimera Within browser, apple& Web server; cookies, Remote Web server Asynchronous

CGI-scripts
Hyper-G Part of browser/Within browser, forms; web- Remote Web server Asynchronous

server;
HyperWave Within browser, applet, JavaScript, forms; Remote Web server Asynchronous

web-server
DLS Without browser, local; within browser, forms Remote No Asynchronous
DLS Within browser, forms; proxy Remote Proxy Asynchronous
AgentDLS Within browser, separate window; proxy Remote No Asynchronous
DHM/WWW Within browser, applet, JavaScript, CGI-scripts Remote Web browser Shared
Navette Within browser, applet, JavaScript Remote Web browser Asynchronous
Webvise Without browser, local Remote Web browser Asynchronous

Walden’s Paths Within browser, JavaScript, forms; CGI-scripts Remote CGI-scripts Shareable
Ariadne Within browser, applet, JavaScript Remote No Asynchronous

Web Squirrel Without browser, local Local No Shareable
Hot Sauce Within browser, plug-in Remote No Shareable

Table 2 - Summary of Web augmentation strategies

that modify Web pages through a proxy are hard to use with
other tools that rely on proxies to be informed of the user’s
actions, unless either of the proxies can it be modified to use
the other as a proxy. Furthermore the use of proxies requires
the user to modify the Web browser configuration which can
be unwieldy if the user does not wish to continually use the
tool relying on the proxy. These problems to which there
generally are no easy solutions, make it difficult for the
developer to create Web augmentation tools.

TOWARDS A COMMON FRAMEWORK
We are aware pf no single “silver bullet”, or all encompass-
ing solution, that will solve all the problems described
above. However, the similarities between the described Web
augmentation tools would suggest that it should be possible
to describe and model their functionality in a common
framework. This could provide workers in the field with a
tool for future conceptual and practical development. Trying
to create such a tool, we have come up with the Arakne
framework.

The Arakne framework is a conceptual model, which has
been implemented as an environment for Web augmentation
tools. The implementation is just one implementation of a
general framework. The practical issues raised by the sum-
mary above will be dealt in the description of the imple-

layer (storage and retrieval of structure).

The Arakne framework is aimed at modelling Web aug-
mentation tools, and the elements contained in the model
should now be familiar.

A diagram of the framework can be seen in Figure 1. The
framework may support any number of Web augmentation
tools. These tools (known as ‘navlets’) are dependent on
four core components of the Arakne framework: the Opera-
tions, the Hyperstructure Store, the Browser, and the Proxy.
The navlet is the domain specific part of a Web augmenta-
tion tool. It provides a user interface as well as special logic
to handle the specific domain. This may include deciding
which links to display in a Web page based on information
retrieved from the Hyperstructure Store component, or inter-
facing to the Proxy component for analysis of documents.
Depending on the situation the computation and analysis
may be carried out by the navlet or by another component.

The Operations component models the communication with
the structure server layer. This component will thus typically
support the same services as the structure server(s). This is
where on the wire issues, such as network communication,
marshalling, and multiplexing, are handled.

95

Content layer

Service layer

Structure layer

.
i Arakne
: .
: : Web
: Navlet Bean 1 Navlet Bean 2 : l-4 l3r,....,..T. .
: A : t

,; : : . . : : : : : :
I Web Server

.

Structure
Server

L .
I

Figure I - The Arakne Framework

The Hyperstructure Store is the interface between the nav-
lets and the Operations. The Hyperstructure Store provides
convenience functions for the navlets, as well as caching the
results of the queries retrieved with Operations. The Hyper-
structure Store will also alert navlets to changes in the
structures they subscribe to.

Arakne framework. We will in this section argue for the
genera1 applicability of the Arakne framework in each of the
general Web augmentation categories introduced earlier, and
specify the mapping of one representative from each cate-
gory to the Arakne framework.

The Proxy component models the modification and analysis
of Web content. Depending on their domain, navlets may
require the Proxy to modify Web pages, and these requests
for modifications are collected by the Proxy and used to
modify the Web page. Other navlets may require access to
the content of a Web page and the Proxy also handles this.

The Browser component models the user’s Web browser.
Through the Browser navlets can retrieve and modify the
state of the Web browser such as which URL is currently
displayed; the structure of the current frame set; whether a
selection has been made in a frame and if so, what and
where.

Annotation tools are in their functional requirements similar
to link creation tools and will dealt with as one, Both need to
retrieve hypermedia structures stored on a server, which are
handled by the Operations and the Hyperstructure Store
components. Many of these tools need to modify Web pages
in order to insert links or annotations, which is handled
through the Proxy component. Support for collaboration is
handled at different levels. The Hyperstructure Store com-
ponent is able to handle sets of structures as well multiple
users. Notifications from the structure servers are handled
by the Operations component and forwarded to the Hyper-
structure Store component, which notifies navlets, depend-
ing on what events they subscribe to.

The situation depicted in Figure 1 is a situation of two nav-
lets, where Navlet Bean 1 is a link creation tool, and thus
needs access to the Proxy in order to insert links into Web
pages. Navlet Bean 2 is a guided tour tool and does not
modify Web pages; and is not connected to the Proxy. Both
however need to be able to tell and set the state of the cur-
rently displayed documents, as well as retrieving data from
the structure server through the Hyperstructure Store.

The ComMentor system, described in [35], has three main
elements apart from the structure servers and the Web serv-
ers; namely the merge library, the interactive renderer, and
the user context control application. The merge library han-
dles the tasks of the Operations, Hyperstructure Store, and
Proxy components. The modifications made to the Mosaic
browser combined with the code handling it in the user
context control application makes up the Browser compo-
nent.

Mapping Web Augmentation Tools to Arakne The AgcntDLS 1x1 architecture consists of a link server
If we review the models of the Web augmentation tools agent, that analyses Web pages sent to it by a HTTP proxy
described in this paper, most can be mapped to the abstract and based on this uses link resolvers and link bases to con-

96

pile a list of relevant links. The role of the proxy is a simple
case of the Proxy component with the twist that documents
are sent to two parties. The link server agent acts as a com-
bined Operations and Hyperstructure Store component. The
analysis performed by link resolvers also would seem to
belong to this component, depending on the set-up of the
navlet. The Browser component’s responsibility - letting the
system set or get the state of the Web browser - is handled
at two levels: in the Proxy component (what document is
displayed now?) and in the AgentDLS window, where users
can directly influence, what URL to display in their Web
browser.

Guided tour tools require a structure server for storage of the
tours as well as the ability to communicate with this server.
This can be modelled through the Operations and Hyper-
structure Store components. To keep track of where the
reader is on the trail (and to put the reader back on track, if
need be), it must be possible to set and read the state of a
Web browser, which is modelled through the Browser com-
ponent. Some guided tour tools, e.g. Walden’s Paths, modify
the Web pages to add comments and interface. While it may
not be necessary for interface reasons in the Arakne frame-
work (this could be handled by a navlet), it certainly can be
done through the use of the Proxy component.

Could the current implementation of Walden’s Path be fitted
within the Arakne model? In this case, some of the Arakne
components collapse into one. The Path Server acts as the
Proxy, Hyperstructure Store, and Operations components,
by handling both external structures (guided tours) and Web
page modification. The Browser component aspect is han-
dled by the modification of links that keeps the system (i.e.
the Path Server) aware of the state of the Web browser. The
interface aspects of the navlet are the header and footer of
the displayed Web pages that give the user a possibility to
interact with the system.

Spatial and structuring Web augmentation tools certainly
need structure servers and information about the currently
display Web page just as the rest of the above described
tools. However, the main focus of the spatial/structure tools
described in this paper has been on the user interface and the
ability to analyse and process structure and relationships
using user written scripts. The user interface is handled by
the navlet itself. While the navlet of course would serve as
the front-end, the scripting capability fits best within the
Hyperstructure Store component, where all structure is
stored during run-time and where the Operations component
can be directly accessed.

AN IMPLEMENTATION OF THE ARAKNE FRAMEWORK
A system called the Arakne applet has been developed as a
part of the Coconut project. The immediate goal of the im-
plementation was to try out the soundness of the Arakne
framework by integrating the guided tour tool Ariadne and
the link creation tool Navette. The system has undergone
some development and has proven robust to the interchange
of components.

The system was originally developed as a Java applet run-
ning in Netscape Communicator [3 11. The components

within the dotted line in Figure 1 were a part of this particu-
lar implementation. This was an implementation choice; as
can be seen from the previous section, the framework itself
posits no such requirements on the location of the individual
components.

The components in Figure 1 correspond to Java classes in
the Arakne applet. The interfaces between components are
handled in the MVC (Model View Control) idiom, where
the ‘view’ (e.g. a graph displaying a guided tour) is loosely
coupled through events to the actual data, the ‘model’.
Modifications of data is handled as requests through the
‘controller’ and if granted notified to the view through the
use of events.

The Hyperstructure Store class caches structure retrieved
through the Operations class and is the only interface to the
structure servers given to the navlet beans. This is done to
improve performance (by not retrieving the same informa-
tion twice) and to ensure data integrity between the Hyper-
structure Store and the structure servers. The Hyperstructure
Store provides the navlet beans with a rich set of conven-
ience methods, which are translated into queries to the
structure servers by the Operations class.

The Browser class encapsulates the needed functionality to
communicate with a Web browser, in the original case the
Netscape Communicator. The interface is relatively simple
and can be adapted to another browser.

The Proxy class is a small proxy running as a thread in the
applet. The Netscape Communicator can via JavaScript be
set up to use a proxy on the fly, and when the Arakne applet
is running, the Proxy class acts as a proxy for the browser.
The Proxy class uses whatever proxy the browser was con-
figured to use, and when the Arakne applet is terminated,
everything is returned to normal. The Proxy handles re-
quests for Web page modifications and the correct display of
frames (thus allowing user to link into frame sets).

All of the classes visible to the navlet beans, the Hyper-
structure Store class, the Proxy class, and the Browser class
generate events that the navlet beans may subscribe to. The
navlet beans are currently restricted to being Java beans and
to follow some design guidelines. The current implementa-
tion supports only compile time integration of navlet beans
giving the user a fixed number of available navlet beans, but
future versions of the Arakne applet should be able to load
navlet beans on runtime so that the user can retrieve navlet
beans from different servers.

The current version of Netscape Communicator2 has a very
limited API for browser integration as well as a faulty Java
socket implementation. This lead to the abandonment of the
Communicator as the supported Web browser at a time
where most components as well as two navlets were finished
or nearing completion. The Microsoft Internet Explorer was
chosen as the new supported Web browser. This choice has
brought some costs, as the Arakne applet is now not only
browser-dependent (which was also the case before), but

2 Version 4.5

97

now also platform dependent, as Java is not supported in the
Microsoft Internet Explorer on anything but the Windows
platform.

The migration to the Internet Explorer also served as a (un-
intended) test of how much code needed to be rewritten to
accommodate the change. This code rewrite has been light.
The Browser class has been redone, as the Internet Explorer
is controlled not through JavaScript, but through a COM
interface. Furthermore some unique features such as the
ability to operate on selected text in a browser window
through the use of right-click menus have been exploited in
some changes in user interface, e.g. link creation.

The Internet Explorer does not allow proxy configuration
through JavaScript or other means, which has led to some
major changes in the Proxy component. The current version
relies on the DHMProxy [181 for Web page modification.
This is expected to change as the DOM model [l l] gives
excellent possibilities for Web page analysis and modifica-
tion, after the Web page has been rendered by the Web
browser. This work is expected to be heavily dependent on
the experiences from the Webvise application [181.

The current version uses the Devise Hypermedia server as a
structure server. This is changing rapidly however, as a new
Hyperstructure Store class is being developed to use a new
Operations component that utilises the Open Hypermedia
Protocol [33]. This has numerous advantages. The OHP is a
powerful protocol with a good and general data model.
Among the interesting features of OHP is the support for
sessions, so that e.g. link following happens simultaneously
on several machines as demonstrated at the demo at Hyper-
text 98. Finally the open hypermedia community supports
the OHP and the data model, so that the Arakne applet may
communicate with other structure servers such as OHP
compliant Microcosm or HyperDisco servers.

The synchronous collaborative aspects of the Arakne applet
have been put on hold until the OHP is fully integrated,
though the system as it is supports asynchronous collabora-
tion.

Currently the Arakne applet supports the Ariadne and
Navette navlet beans. The user is thus able to create links in
documents while creating guided tours, which was not pos-
sible before. Each of the navlet beans occupies an internal
window in the Arakne applet. The Arakne applet provides
the interface for logging on to structure servers and the se-
lection of contexts.

The Navette navlet has recently been extended to support
linking to and from segments in video and audio clips
through the Mimicry system [4]. Most temporal media plug-
ins do not have APIs well suited for the needs of open hy-
permedia, which has led to the development of the Mimicry
player. The Mimicry player is a Java applet capable of han-
dling most video and audio formats, and it provides a rich
API for open hypermedia integration.

Future Plans
Future plans for the Arakne applet include more navlet

beans. Currently a spatial navlet bean is under development.
The navlets currently supported are not aware of each other,
but future versions of Arakne will support inter-navlet
communication. The Microsoft Internet Explorer is not
expected to be the only Web browser supported by future
Arakne applets. The upcoming Mozilla 5.0 holds great
promise in this regard. Another area of interest to the devel-
opers is the implications of XLink and XPointer.

Experiences of the Development of the Arakne Applet
How does the current Arakne applet compare to the prob-
lems raised in the summary of strategies for Web augmenta-
tion? Network communication is handled through sockets
by the Operations Component, and the client maintains a
socket connection, so that the structure servers may contact
it. The Arakne applet has so far only supported navlets or-
thogonal to each other, so there is currently no experiences
with regards to two navlets trying to modify the same Web
page. However the architecture has only one component, the
Proxy component, allowed to modify Web pages, so it
should be possible to contain and perhaps avoid most prob-
lems. The Arakne applet is currently dependent on a proxy
with the usual advantages (all browsing activities are ‘cap-
tured’ by the system) and disadvantages (the user needs to
configure the Web browser to use the proxy). The proxy can
use other proxies without problems, though the use of two
Web page modifying proxies certainly would lead to unde-
fined results. The proxy handles frame sets and inserts links
through the use of JavaScript and DOM, so that Web pages
are (visibly) modified on arrival rather than in transit, which
solves many problem regarding dynamically created docu-
ments and frame sets. The Arakne applet is a Java applet
with the limitations imposed on Java applets. The security
restrictions are handled through digital signing. The Arakne
applet is fairly secure from being unloaded by mistake, as it
runs in a separate non-resizable browser window with dis-
abled menus and toolbars. A consequence of the integration
with the Microsoft Internet Explorer is that a user can not
just download and use the Arakne applet. Certain files have
to be installed by the user to provide the Arakne applet with
right-click menus. This process can however be largely
automated.

Some of the solutions found in the Arakne applet are strictly
browser and platform dependent. This is very unfortunate,
and the only thing that can remedy the situation is a new
standard Java API for Web browsers. This API should at
least provide functionality similar to that of the API of the
Microsoft Internet Explorer, but do so in a browser inde-
pendent way. Given the current Web browser situation, we
think that such an API is unlikely to appear anytime soon, SO

the next best solution would be a Web browser that provided
a platform independent API. Whether or not Mozilla 5.0 will
provide such an API remains to be seen.

CONCLUSION
Web augmentation tools will in all probability remain a part
of the Web, as researchers and users will continue to explore
the boundaries of what hypermedia is and what it can be
used to. An understanding of the strategies employed in
Web augmentation is needed to make the next generation of
Web augmentation tools easier to envision, develop and use.

98

We have investigated the recurring themes and techniques
found in current Web augmentation tools. Based on this, we
have developed and described the Arakne framework, and
shown that the Arakne framework accommodates existing
Web augmentation tasks, and that most tools can be mod-
elled using the framework. A shared framework for these
tools could benefit analysis and communication as well as
development, and it is hoped that the Arakne framework is a
step in the direction of the creation of such a framework.

The interesting and challenging part of creating a Web aug-
mentation tool is not the nitty-gritty of interfacing to a Web
browser or writing a proxy. The interesting part, at least in
the author’s experience, is to create tools that can help users
structure their work and their browsing, and by implement-
ing the Arakne applet some of the work needed to provide a
full infrastructure for Web augmentation tools have been
developed.

The Web has succeeded through (more or less) strict adher-
ence to open standards that have been jointly developed by
the interested parties. This has led to the development of
standard tools usable for all. The continuation of this trend is
crucial to the future development of the Web. The Open
Hypermedia System initiative if supported by the hyperme-
dia community can be become a shared standard from which
the entire hypermedia community will benefit.

ACKNOWLEDGEMENTS
The author is a member of the Coconut project
(hltn://www.cit.dklcoconut/), a joint research project consisting
of Department of Computer Science, Aarhus University and
Tele-Danmark Internet. The Danish National Centre for IT-
Research (hm:Nwww.cit.dkl) supports the Coconut project.

The author wishes to thank Jesper Jiihne for valuable discus-
sion of Arakne, RenC Thomsen for adding to the code, Kaj
Gr@nbzk for valuable advice, and the anonymous reviewers
for good suggestions to structure this paper.

REFERENCES

[II

PI

[31

[41

[51

Anderson, K. M., Taylor, R. N., and Whitehead JR., E.
J. (1994). Chimera: Hypertext for heterogeneous soft-
ware environments. In Proceedings of ECHT 94 Con-
ference, pp. 97-107, Edinburgh, Scotland.

Anderson, K. M. (1997) Integrating Open Hypermedia
Systems ,with the World Wide Web. In Proceedings of
the ACM Hypertext 97 Conference, pp. 157-166,
Southampton, England.

Bouvin, N. 0. (1998). Designing Open Hypermedia
Applets: Experiences and Prospects. In Proceedings of
the ACM Hypertext 98 Conference, pp. 28 l-282, Pitts-
burgh, USA.

Bouvin, N. O., and Schade, R. (1999). Integrating tem-
poral media with open hypermedia on the WWW.
Submitted for publication.

Bush, V. (1945). As we may think. In The Atlantic
Monthly 176, 1 (July 1945), pp. 101-108.

[61

[71

@I

[91

Carr, L. A., De Roure, D., Hall, W., and Hill, G. (1995).
The distributed link service: A tool for publishers,
authors and readers. In Proceedings of the 4” Interna-
tional World Wide Web 95 Conference, Boston, USA.

Carr, L. A., Hill, G., De Roure, D., Hall, W., and Davis,
H. (1996). Open information services. In Computer
Networks and ISDN Systems, 28, pp 1027-1036, 1996.

Carr, L. A., Hall, W., and Hitchcock, S. (1998). Link
services or link agents? . In Proceedings of the ACM
Hypertext 98 Conference, pp. 113-l 22, Pittsburgh,
USA.

Davis, H., Hall, W., Heath, I., Hill, G., and Wilkins, R.
(1992). Towards an integrated information environment
wiih open hypermedia systems. In Proceedings of the
ACM Hypertext 92 Conference, pp. 18 l- 190, Milan, It-
aly.

[IO] CritSuite. htte://crit.or!z/htto://crit.orp/index.html

[1 I] Document Object Model. htto:Nwww.w3c.ore/TWREC-
DOM-Level-l/

[121 Furuta, R., Shipman III, F. M., Marshall, C. C., Bren-
ner, D., and Hsieh, H-W. (1997). Hypertext Paths and
the World-Wide Web: Experiences with Walden’s
Paths. In Proceedings of the ACM Hypertext 97 Confer-
ence, pp. 167-176, Southampton, England.

[131 Goland, Y., Whitehead, J., Faizi, A., Carter, S., Jensen,
D. (1998). Extensions for Distributed Authoring on the
World Wide Web - WebDAV.
httD://\vww.ics.uci.edu/-eiw/authoring/orotocol/draft-ietf-

webdav-Drotocol-08.Ddf

[141 Gr@nb=k, K., and Trigg, R. H. (1994). Design issues
for a Dexter-based hypermedia system. In Communica-
tions of the ACM, 37 (2) February, pp. 40-49, 1994.

[151 Grenbek, K., and Trigg, R. H. (1996). Toward a Dex-
ter-based model for open hypermedia: Unifying em-
bedded references and link objects. In Proceedings of
the ACM Hypertext 96 Conference, pp.149-160,
Washington DC, USA.

[161 Gr@nbaek, K., Bouvin, N. O., and Sloth, L. (1997).
Designing Dexter-based hypermedia services for the
World Wide Web. In Proceedings of the ACM Hyper-
text 97 Conference, pp. 146-156, Southampton, Eng-
land.

[171 Gronbzk, K., and Will, U. K. (1997). Towards a com-
mon reference architecture for open hypermedia. In
JoDI, Journal of Digital Information, l(2), 1997.
htto://iodi.ecs.soton.ac.uk/Articles/vOl/i02/GronbaW

[18]Gr@nbzk, K., Sloth, L., and 0rbak, P. (1999).
Webvise: Browser and proxy support for open hyper-
media structuring mechanisms on the WWW. Submit-
ted for publication.

99

[191 Guha, R. V., and Bray, T. (Eds.). Meta content frame-
work using XML. t~ttr,://w\vw.textualitv.com/mcf/NOTE-
MCF-XML.html

[20] Hall, W., David, H., and Hutchings, G. (1996). Re-
thinking Hypermedia: The Microcosm Approach. Klu-
wer Academic Publishers, Norwell, USA.

[21] Hot Sauce. http://www.xspace.net/download/index.html

[22] HyperWave. http://www.hynerwave.com/

[23] Jiihne, J., Jensen, A. T., and Granbzk, K. (1998). Ari-
adne: A Java-based guided tour system for the World
Wide Web. In Proceedings of the 7”’ International
World Wide Web 98 Conference, Brisbane, Australia.

[24] Marshall, C. C., and Shipman III, F. M. (1995). Spatial
hypertext: Designing for change. In Communications of
the ACM, 38 (8) August, pp. 88-97, 1995.

[25] Marshall, C. C. (1998). Toward an ecology of hypertext
annotation. . In Proceedings of the ACM Hypertext 98
Conference, pp. 40-49, Pittsburgh, USA.

[26] Maurer, H. (Ed.) (1996). Hyper-G now, HyperWave:
The next generation web solution, Addison-Wesley,
Harlow. 1996.

[27] Meyrowitz, N. (1989). The missing link: Why we’re all
doing hypertext wrong. In Barrett, E. (ed.). The society
of text: Hypertext, hypermedia and the social construc-
tion of information, pp. 107- 114, MIT Press, Cam-
bridge, Massachusetts., USA, 1989.

[28] Microsoft Internet Explorer. htto://www.microsoft.com/ie/

[29] Mozilla. http://www.moziIla.org/

[30] NCSA Mosaic.
httn://www.ncsa.uiuc.edu/SDC;/Sol’tware/Tvlosaic/

[3 l] Netscape Communicator.
httn:Nhome.netscane.com/download/index.httnl?cu=diude~a~~

[32] Niirnberg, P. J., Leggett J. J., Schneider, E., and
Schnase, J. L. (1996) Hypermedia operating systems: A
new paradigm for computing. In Proceedings of the
ACM Hypertext 96 Conference, pp.l94-202, Washing-
ton DC, USA.

[33] The Open Hypermedia Systems Work Group.
httn:Nwww.ohswg.ord

[34] Rittel, H. and Webber, M. (1973). Dilemmas in general
theory of planning. In Policy Sciences, Vol. 4, 1973.

[35] Riischeisen, M., Mogensen, C., and Winograd, T.
(1995) Beyond browsing: Shared comments, SOAPS,
trails, and on-line communities. In Proceedings of the
3”’ International World Wide Web 95 Conference,
Darmstadt, Germany.

[36] Riischeisen, M., Winograd, T., and Paepcke, A. (1995).
Content ratings and other third-party value-added in-
formation: Defining an enabling platform. In D-Lib
Magazine, August 1995,
httn://www.dlib.or~dlib/aupust9S/stan~or~~~r~~sc~~eisen.html

[37] Shipman III, F. M., Furuta, R., Brenner, D., Chung, C-
C., and Hsieh, H-W. (1998). Using paths in the class-
room: Experiences and adaptations. In Proceedings of
the ACM Hypertext 98 Conference, pp. 267-276, Pitts-
burgh, USA.

[38] Shipman III, F. M., Furuta, R., and Marshall, C. C.
(1997). Generating web-based presentations in spatial
hypertext. In Proceedings of the 1997 International
Conference on International User Inteeaces, pp. 7 l-
78, Orlando, USA.

[39] Stanley, T. (1998). Contextures: Focus + context +
texture. In Proceedings of the ACM Hypertext 98 Con-
ference, pp. 295-296, Pittsburgh, USA.

[40] Trigg, R. H. and Weiser, M. (1986). TEXTNET: A
network-based approach to text handling. In ACM
Trans. OfJice Information. Systems 4, 1 (Jan 1986), pp
l-23.

[41] Trigg, R. H. (1988). Guided tours and tabletop: tools for
communicating in a hypertext environment. In ACM
Trans. Ofice Information. Systems 6,4, pp 398-414,
1988.

[42] Web Squirrel.
httn://www.eastgate.corn/suuirrel/Welcome.html

[43] Whitehead Jr., E. J. (1997). An architectural model for
application integration in open hypermedia environ-
ments. In Proceedings of the ACM Hypertext 97 Con-
ference, pp. 1-12, Southampton, England. .

[44] Wiil, U. K. and Leggett, J. J. (1996). The HyperDisco
approach to open hypermedia systems. In Proceedings
of the ACM Hypertext 96 Conference, pp. 140-148,
Washington DC, USA.

[45] Wiil, U. K. and Leggett, J. J. (1997). HyperDisco: col-
laborative authoring and Internet distribution. In Pro-
ceedings of the ACM Hypertext 97 Conference, pp. 13-
23, Southampton, England.

[46] Wiil, U. K., and asterbye, K. (1998). Using the Flag
taxonomy to study hypermedia system interoperability.
In Proceedings of the ACM Hypertext 98 Conference,
pp. 188-197, Pittsburgh, USA.

[47] XML - Extensible Markup Language.
htt~:llwww.w3c.or~XMLl

[48] asterbye, K., and Wiil, U. K. (1996). The Flag taxon-
omy of open hypermedia systems. In Proceedings of the
ACM Hypertext 96 Conference, pp. 129-139, Washing-
ton DC, USA.

100

