
Lecture 29: Agile Design and

Extreme Programming
Kenneth M. Anderson

Software Methods and Tools

CSCI 4448/6448 - Spring Semester, 2005

1

April 25, 2005 © University of Colorado, Boulder, 2005

2

Credit where Credit is Due
The material for this lecture is based on content from “Agile

Software Development: Principles, Patterns, and Practices” by

Robert C. Martin

As such, some of this material is copyright © Prentice Hall, 2003

April 25, 2005 © University of Colorado, Boulder, 2005

3

Goals for this lecture
(Very) Briefly introduce the concepts of Agile Design and Extreme

Programming

Also briefly discuss some of the other Agile methods

Agile Design is a design framework

Extreme Programming is one way to “implement” agile design

April 25, 2005 © University of Colorado, Boulder, 2005

4

Agile Development (I)
Agile development is a response to the problems of traditional

“heavyweight” software development processes

too many artifacts

too much documentation

inflexible plans

late, over budget, and buggy software

April 25, 2005 © University of Colorado, Boulder, 2005

5

Agile Development (II)
A manifesto (from the Agile Alliance)

“We are uncovering better ways of developing software by doing it

and helping others do it. Through this work we have come to value

individuals and interactions over processes and tools

working software over comprehensive documentation

customer collaboration over contract negotiation

responding to change over following a plan

That is, while there is value in the items on the right, we value the

items on the left more

April 25, 2005 © University of Colorado, Boulder, 2005

6

Agile Development (III)
From this statement of values, agile development has identified

twelve principles that distinguish agile practices from traditional

software life cycles

Lets look at five of them

Deliver Early and Often to Satisfy Customer

Welcome Changing Requirements

Face to Face Communication is Best

Measure Progress against Working Software

Simplicity is Essential

April 25, 2005 © University of Colorado, Boulder, 2005

7

Deliver Early and Often to

Satisfy Customer
MIT Sloan Management Review published an analysis of software

development practices in 2001

Strong correlation between quality of software system and the early

delivery of a partially functioning system

the less functional the initial delivery the higher the quality of the final

delivery!

Strong correlation between final quality of software system and

frequent deliveries of increasing functionality

the more frequent the deliveries, the higher the final quality!

Customers may choose to put initial/intermediate systems into

production use; or they may simply review functionality and provide

feedback

April 25, 2005 © University of Colorado, Boulder, 2005

8

Welcome Changing

Requirements
Welcome change, even late in the project!

Statement of Attitude

Developers in agile projects are not afraid of change; changes are

good since it means our understanding of the target domain has

increased

Plus, agile development practices (such as refactoring) produce

systems that are flexible and thus easy to change

April 25, 2005 © University of Colorado, Boulder, 2005

9

Face to Face Communication is

Best
In an agile project, people talk to each other!

The primary mode of communication is conversation

there is no attempt to capture all project information in writing

artifacts are still created but only if there is an immediate and

significant need that they satisfy

they may be discarded, after the need has passed

April 25, 2005 © University of Colorado, Boulder, 2005

10

Measure Progress against

Working Software
Agile projects measure progress by the amount of software that is

currently meeting customer needs

They are 30% done when 30% of required functionality is working

AND deployed

Progress is not measured in terms of phases or creating documents

April 25, 2005 © University of Colorado, Boulder, 2005

11

Simplicity is Essential
This refers to the art of maximizing the amount of work NOT done

Agile projects always take the simplest path consistent with their

current goals

They do not try to anticipate tomorrow’s problems; they only solve

today’s problems

High-quality work today should provide a simple and flexible system

that will be easy to change tomorrow if the need arises

April 25, 2005 © University of Colorado, Boulder, 2005

12

Extreme Programming
Extreme Programming (XP) takes commonsense software

engineering principles and practices to extreme levels

For instance

“Testing is good?”

then

“We will test every day” and “We will write test cases before we code”

As Kent Beck says extreme programming takes certain practices

and “sets them at 11 (on a scale of 1 to 10)”

April 25, 2005 © University of Colorado, Boulder, 2005

13

XP Practices
The best way to describe XP is by looking at some of its practices

There are fourteen standard practices, we’ll look at six important ones

Customer Team Member

User Stories

Pair Programming

Test-Driven Development

Collective Ownership

Continuous Integration

April 25, 2005 © University of Colorado, Boulder, 2005

14

Customer Team Member
The “customer” is made a member of the development team

A customer representative should be “in the same room” or at most

100 feet away from the developers

“Release early; Release Often” delivers a working system to the

customer; in between, the customer representative provides

continuous feedback to the developers

April 25, 2005 © University of Colorado, Boulder, 2005

15

User Stories (I)
We need to have requirements

XP requirements come in the form of “user stories” or scenarios

We need just enough detail to estimate how long it might take to

develop software to support this story

avoid too much detail, since the requirement will most likely change;

start at a high level, deliver working functionality and iterate based on

explicit feedback

April 25, 2005 © University of Colorado, Boulder, 2005

16

User Stories (II)
User stories are not documented in detail

we work out the scenario with the customer “face-to-face”; we give

this scenario a name

the name is written on an index card

developers then write an estimate on the card based on the detail they

got during their conversation with the customer

The index card becomes a “token” which is then used to drive the

implementation of a requirement based on its priority and estimated

cost

April 25, 2005 © University of Colorado, Boulder, 2005

17

Pair Programming
All production code is written by pairs of programmers working

together at the same workstation

One member drives the keyboard and writes code and test cases; the

second watches the code, looking for errors and improvements

The roles will switch between the two frequently

Pair membership changes once per day; so that each programmer

works in two pairs each day

this facilitates distribution of knowledge about the state of the code

throughout the entire team

Studies indicate that pair programming does not impact efficiency

of the team, yet it significantly reduces the defect rate!

[Laurie Williams, 2000] [Alistair Cockburn, 2001] [J. Nosek, 1998]

April 25, 2005 © University of Colorado, Boulder, 2005

18

Test-Driven Development
All production code is written in order to make failing test cases

pass

First, we write a test case that fails since the required functionality has

not yet been implemented

Then, we write the code that makes that test case pass

Iteration between writing tests and writing code is very short; on the

order of minutes

As a result, a very complete set of test cases is written for the

system; not developed after the fact

April 25, 2005 © University of Colorado, Boulder, 2005

19

Collective Ownership
A pair has the right to check out ANY module and improve it

Developers are never individually responsible for a particular module

or technology

This concept is a hard one for people to adopt, you will often hear

“Hey, I’m a team player, but I don’t want anyone mucking with my

code!”

April 25, 2005 © University of Colorado, Boulder, 2005

20

Continuous Integration
Developers check in code and integrate it into the larger system

several times a day

Simple Rule: first one to check-in “wins”; everyone else merges

Entire system is built every day; if the final result of a system is a

CD, a CD is burned every day; if the final result is a web site, they

deploy the web site on a test server, etc.

This avoids the problem of cutting integration testing to “save time

and money”

April 25, 2005 © University of Colorado, Boulder, 2005

21

Other Agile Methods
Scrum

Crystal

Feature-Driven Development

Lean Development

Adaptive Software Development

Dynamic Systems Development Method

See <http://www.agilealliance.org> for more information

April 25, 2005 © University of Colorado, Boulder, 2005

22

Scrum
Developed by Ken Schwaber

Definition

scrum, n. Sports. A play in Rugby in which the two sets of forwards

mass together around the ball and, with their heads down, struggle to

gain possession of the ball. The mass or formation of players during

such a play. Chiefly British. A disordered or confused situation

involving a number of people.

April 25, 2005 © University of Colorado, Boulder, 2005

23

Scrum, continued
Involves two lists

Product Backlog

essentially features of the desired system

Scrum Backlog

features for the next “scrum”

Involves three phases

Pre-Scrum planning meeting

Scrum

Post-Scrum demo and debriefing

Plan what you are going to do, do it, and then demo the current

system to your clients and get ready for the next planning meeting

April 25, 2005 © University of Colorado, Boulder, 2005

24

Crystal
Developed by Alistair Cockburn

Essentially a “life cycle generator”

You input parameters (domains) like

number of people on project

will defects in system cause loss of life

will defects in system cause loss of money

etc.

and out comes a life cycle tailored for your conditions

April 25, 2005 © University of Colorado, Boulder, 2005

25

Crystal, continued
Crystal’s notion of domains is interesting, since it addresses the

problem of comparing apples to oranges that sometimes occurs

when discussing different software life cycles

A life cycle for an 8-person web content project SHOULD be different

than the life cycle of a 500-person military project

April 25, 2005 © University of Colorado, Boulder, 2005

26

Feature Driven Development
Developed by Jeff De Luca and Peter Coad

Simple life cycle

Develop an overall system model

Build a feature list

Plan by feature

Iterate

Design by feature

Build by feature

April 25, 2005 © University of Colorado, Boulder, 2005

27

FDD, continued
Has one notable success story

“The Singapore Project”

A systems integration firm had failed to produce a system to

managing commercial loans for a large Singapore bank

After two years, they gave up, claiming the project was undoable

It had produced 3500 pages of use cases, an object model with hundreds

of classes, thousands of attributes, but no methods and no code!

April 25, 2005 © University of Colorado, Boulder, 2005

28

FDD, continued
Jeff and Peter were assigned to the project; they applied FDD

They first trashed the original object model and what they called the

“useless cases”!

A small team worked on the overall object model for about a month

They then worked on feature decomposition and planning for two

weeks;

They then implemented a small set of the features as “proof-of-

concept”

The bank was elated; in about two months, they were being shown

a system that actually did something!

At this point, Jeff increased his team to 50 members and they went on

to deliver 2000 features over the next 15 months

