
1

Rational Unified Process as
Implemented at SNL

Karen M. Erickson
Data Systems Lead Engineer

Software Product Realization Organization
Department 5522 MS0974

Sandia National Laboratories
kmerick@sandia.gov

2

Topics

! Overview of SNL Satellite Ground
System Project

! Software Development Process based
on the RUP

! Lessons Learned

3

Satellite Ground System
Description

! Processes satellite telemetry data

! Acquire data from multiple satellites and
different downlinks

! Extract, process, store and display data

! Combine data into meaningful information
for the end users to enable their decisions

! Operational military system

! High rigor, Reliable, Maintainable

4

Satellite Ground Systems

! Two Satellite Ground Systems developed
in parallel to promote software reuse.

! Systems are subject to extensive
developmental control and testing by our
customers.

! The systems were developed for multiple
customers whose requirements can
conflict
! System must be optimized to meet all

requirements

5

System Development

! Full life cycle development – cradle to grave

! 8 years from inception to deployment

! Object Oriented Analysis and Design (UML)

! 130 Use Cases

! 5700 Classes

! Currently ~1 million LOC in C++

6

Software Development
Organization

! 65 Software Professionals in 15 teams
! System Engineering
! Requirements Analysis

! Architecture

! Software Design & Development
! Configuration and Build Management

! Systems Integration
! Integration Test

! Computer Engineers
! Deployment Engineers

! 1/3 to ! are developers at any one time

7

Complete System
Development

! To develop the system requires additional capabilities
! Independent Test Organizations

! System Test
! Mission Analysis and Simulation

! Research & Development
! Algorithms
! Simulators
! Modeling

! Support
! System Administration
! Development Environment Tool Development

! Additional 60 staff members, creating a multi-
disciplinary team

8

Software Development
Process

! The Software Development Process is
derived from the Rational Unified
Process (RUP)
! Iterative

! Use Case Driven

! Architecture Centric

! Object Oriented Methodology

! Supported by an integrated tool set

9

Iterative Development Process

! Supports full software development life
cycle from requirements to test every
iteration

! Requirements Capture

! Architecture Analysis

! Design

! Implementation

! Test

10

Use Case Driven

! Use Cases
!

Capture derived requirements
!

Describe the interaction of the user or
external interface with the system to
perform a single function

!

Use cases and scenarios drive the process
flow from requirements through testing

!

Provides coherent and traceable threads
through both the development and the
delivered system

11

Architecture Centric

! Focuses on early development and
baselining of a robust software
architecture
!

Facilitates parallel development
!

Minimizes rework
!

Increases reusability
!

Increases reliability

12

Object Oriented

! OO Methodology uses concepts of objects,
classes, and the associations between classes

! Unified Modeling Language (UML) is used as
the common notation in the RUP
!

Booch, Rumbaugh, Jacobson - The Unified
Modeling Language User Guide:

!

“…a graphical language for visualizing, specifying,

constructing, and documenting the artifacts of a
software-intensive system. The UML gives you a

standard way to write a system’s blueprints…”*

13

Tool Support

! The RUP is supported by tools that
automate large parts of the process

! Tools are used to create and maintain
the various artifacts from each process
step

! Tools support maintaining models to
describe the system design and
replaces paper documentation

14

Project Implementation of
RUP

! Requirements Capture
! System Specification

! Use Case Descriptions

! Architectural Analysis
! Use Case Realizations

! Subsystem Analysis Reports

! Design
! Use Case Design

! Class Design

! Implementation

! Coding

! Testing

! Integration Testing to

Use Cases

! System Testing to the
System Spec

15

Requirements Capture

Use Case

Model

System

Specs

Story

Boards

Use Cases

Mapping ICDs

16

Use Cases

! Describes the
interaction of the user
or external interface
with the system to
perform a single
function

! No specific
architecture or
implementation
expressed

Ground System User

GS1 Updates System Status

(from Ground System System-Clock Perspective)

GS2 Updates System Status

(from Ground System System-Clock Perspective)...)

Accesses the System

<<include>>

<<include>>

17

Use Case Descriptions
Typical Flow of Events

Actor Action System Response

1. This use case begins when the Ground
System User selects to gain access or
change current access to GS1/GS2
as an individual user.

1. The ADP Software requests the user
identification, password and user type.

2. The Ground System User enters a user
identification, password and user type.

3. The ADP Software displays the
appropriate user interface (based on the
user type).

4. The Ground System User optionally
selects to change the current user type
(with a valid user identification and
password). If not, go to step 9.

5. The ADP Software displays the
appropriate user interface (based on the
user type).

6. The Ground System User optionally
selects to change the current user
identification and password. If not, go

to step 12.

7. The ADP Software maintains the
current user interface (with a new user).

8. The Ground System User optionally
selects to change the current user
password.

9. The ADP Software requests the user’ s
current password, the new password,
and a confirmation of the new
password.

10. The Ground System User enters current
password, new password, and confirms
the new password.

11. The Ground System User can repeat
steps 5 and 7 and 9 as often as needed.

12. The Ground System User selects to
terminate their system access.

13. This use case ends when the user
interface is terminated.

Alternate Flow

18

Use Case Storyboards
Step 1

The user enters his user identification (Tom), password and user type (AMC) and selects

“OK”.

Figure 1: Log on Window

19

Use Case

Model Use Case

Descriptions

Architectural Analysis

Archi

Model

Storyboards

Subsystem

Analysis

Report

Use Case

Realizations

20

From Use Case to Realization

 : GS User : Log On Display : User M anager : System Status

Manager

 : Reporting : Authorization Info

1: Log On()

2: Request Log On(user_name, role, password)

3: Authorize()

4: Update System Status()

5: Report Log On Status Change()

6: Log On Reply()

1) Asynchronous

request/reply

pair. Reply

indicates

success/failure.

2) Only if

author ization

successful.

• Realizations shows how the system should behave
from an internal point of view

• One Realization for each Use Case

• Identifies and describes high-level system
components and associated responsibilities

• The collection of Realizations as a whole represents
one view of the Architecture

Typical Flow of Events

Actor Action System Response

1. This use case begins when the Ground
System User selects to gain access or
change current access to GS1/GS2
as an individual user.

1. The ADP Software requests the user
identification, password and user type.

2. The Ground System User enters a user
identification, password and user type.

3. The ADP Software displays the
appropriate user interface (based on the
user type).

4. The Ground System User optionally
selects to change the current user type
(with a valid user identification and
password). If not, go to step 9.

5. The ADP Software displays the
appropriate user interface (based on the
user type).

6. The Ground System User optionally
selects to change the current user
identification and password. If not, go
to step 12.

7. The ADP Software maintains the
current user interface (with a new user).

8. The Ground System User optionally
selects to change the current user
password.

9. The ADP Software requests the user’s
current password, the new password,
and a confirmation of the new
password.

10. The Ground System User enters current
password, new password, and

confirmsthe new password.

11. The Ground System User can repeat
steps 5 and 7 and 9 as often as needed.

12. The Ground System User selects to
terminate their system access.

13. This use case ends when the user
interface is terminated.

Alternate Flow

21

GS User

<<Boundary>>

Log On Display

<<entity>>

Reporting

<<ut ilit y>>

System Status Manager

<<control>>

User Manager

<<control>>

Authorization Info

<<enti ty>>

From Realization to Analysis
Classes

 : GS User : Log On Display : User M anager : System Status

Manager

 : Reporting : Authorization Info

1: Log On()

2: Request Log On(user_name, role, password)

3: Authorize()

4: Update System Status()

5: Report Log On Status Change()

6: Log On Reply()

1) Asynchronous

request/reply

pair. Reply

indicates

success/failure.

2) Only if

author ization

successful.

Realizations identify
analysis classes

Analysis classes are
captured in Subsystem
Analysis Reports (SARs)

22

Archi

Model

UCRs SARs

Design

Design

Model

Use Case

Model

UCRs

Use Case

Description

Story

Boards

System

Specs

23

Analysis Classes to
Design Classes

GS User

<<Boundary>>

Log On Display

<<entity>>

Reporting

<<ut ilit y>>

System Status Manager

<<control>>

User Manager

<<control>>

Authorization Info

<<enti ty>>

24

Design Classes

! A further elaboration of the Architecture

! Low-level: all details specified

! Suitable for generating source code framework

25

Implementation

! Implementation consists of

! Code generation from the model

! Filling in .cc files with detailed

implementation

! Code generation from the model

! Creates header files (.h)

! Data definitions

! Class interfaces

Design

Model

Source

Code

26

Code Inspections

! Code Inspections are a two step process

! Review the class design in the model

! Provides conceptual understanding and context

! Examine relationships

! Reviews details of data

! Inspect Code

! Focus on the implementation

! Reviews not necessary for headers because reviewed

with the model

27

Unit/Integration Test and
Delivery

! Components are controlled and built

! Unit testing is based on

! Subsystem Analysis Reports (SAR’s)

! Use Case Realizations (UCR’s)

! System is built and delivered to integration testbed

! Integration testing is based on Use Case
Descriptions

28

System Test

! System is built and delivered to system
testbed

! System Testing

! Based on System specs

! Use Cases provide guidance and context for how
to operate the system

! Mapping of specs to Use Cases through to design
provides traceability to help determine which test
cases to execute

! ~1000 specs

! >100 Use Cases

! Many to many mappings

29

Requirements Traceability

Use Case

 3

Use Case

 2

Use Case

 1

Spec 1

Spec 2

Spec 3

Spec 4

Realization

 3

Realization

 2

Realization

 1
Design Class 1

Design Class 2

Design Class 3

Design Class 4

Design Class 5

Design Class 6

Analysis

 Class 1

Analysis

Class 2

Analysis

Class 3

Analysis

Class 4

30

Site Delivery/Deployment

! System Tested release is delivered to
site

! System Verification Testing is performed

! Acceptance Testing is performed by the
customer

31

Operations & Maintenance

! O&M follows same development
process as original development

! Modifications are put in the field at pre-
defined intervals as requested by the
customer

32

Lessons Learned?

! Expectations vs. Reality

! Reflections

! SNL Success with the RUP

33

Expectations vs. Reality

! RUP expects

! Small projects built in a short amount of
time

! Short iterations

! Same people doing most of the steps of
the process

34

Expectations vs. Reality

! Sandia Reality

! Largest Software Development Project at SNL

! Cost Estimate predicted 8 years of development

! Iterations of 6 months

! Not long enough to complete a full life cycle

! Takes us approximately 18 months

! Division of responsibilities between teams

! No continuity of personnel in steps of process

! Handoffs between teams more formal than RUP

envisioned

35

Reflections

! Sandia was one of the original customers of the RUP.
! Our use of the RUP evolved as the RUP itself was evolving.

! We had a good working relationship with Rational.

! Opportunity to provide feedback to Rational and have it
incorporated into their product.

! Biggest project that had ever been built using RUP.

! Relationship changed when Rational was purchased by IBM.

! Process/Tool Development

! The process and tools did not meet our needs out of the box

! It took us several years to fully understand and implement the
process before we were very productive.

! We had to integrate a lot of the tools ourselves and make
them fit our version of the process.

36

SNL Success with the RUP

! Once the process was defined and the tools
well integrated we evolved into a highly
productive organization

! We were able to integrate 14 new staff members
one summer and still meet our deliverables that
iteration

! These two satellite ground systems are being
delivered on time, within budget and
meeting all requirements.

37

Conclusion

! The RUP provided a framework for
Sandia to develop a process that works
for our project.

! Sandia will be using our modified
version of the RUP on future projects.

