Ydddddy

Lecture 27: Life Cycles and OO
Design Methods

Kenneth M. Anderson

Object-Oriented Analysis and Design
CSCI 4448/6448 - Spring Semester, 2005

Ydddddy

Goals for this Lecture

e Review the concepts of software engineering life cycles

& Introduce the notion of an object-oriented design method

¢s Hint: its another name for “life cycle”

& Present an introduction of Agile design methods

¢ Hint: yet another name for “life cycle”

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

3 RN AUR AR

Background

& In Software Engineering:

¢ “Process is King”

¢» We want our activities to be coordinated and planned, e.g.
“engineered”

& The reason?

¢ A high quality process should increase our ability to create a high quality
product

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

4 VNORRAON)

Software Life Cycle

& A series of steps that organizes the development of a software
product

& Duration can be from days to years
&% Consists of

¢» people (!)

& overall process

¢s intermediate products

¢» stages of the process

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

5 VNORRAON)

Phases of a Software Life Cycle

& Standard Phases

¢» Requirements Analysis & Specification
¢» Design

¢» Implementation and Integration

s Operation and Maintenance

¢» Change in Requirements

¢s Testing throughout!

&» Phases promote manageability and provide organization

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

6 RN AUR AR

Traditional Life Cycles

e The Waterfall Method (developed in the early 70s)

¢» Many variations, including the “waterfall with feedback” version

& Rapid Prototyping

¢» use of prototypes to establish requirements, followed by Waterfall
& Feature-Driven Design (used by Microsoft)

¢» highly iterative based on features, software is built each day
& Spiral Model

¢s Introduced risk management as a core concept

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

7 VNORRAON)

& Life cycles make software development
¢» predictable
¢» repeatable
¢» measurable
& efficient
& High-quality processes should lead to high-quality products

¢» at least it improves the odds of producing good software

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

8 RN AUR AR

Survey of OOA&D Methods

& Generalization

¢» Taken from “SE: A Practitioner’s approach, 4th ed.” by Roger S.
Pressman, McGraw-Hill, 1997

& The Booch Method

¢ The Jacobson Method

e The Rambaugh Method

¢ The Unified Software Process

¢e Information on the four methods taken from
¢» Graham, |. Object-Oriented Methods, Addison-Wesley, 3rd Ed., 2001

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

9 RN AUR AR

OO Methods In general...

& Obtain customer requirements for the OO System

¢» Identify scenarios or use cases

¢» Build a requirements model
¢ Select classes and objects using basic requirements
¢ Identify attributes and operations for each object
¢ Define structures and hierarchies that organize classes
& Build an object-behavior model

D

¢ Build an object-relationship model
B

ese R

eview the OO analysis model against use cases

¢» Once complete, move to design and implementation: These phases
simply elaborate the previously created models with more and more

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

10 VNORRAON)

Background on OO Methods

¢ An OO Method should cover and include

¢e requirements and business process modeling
¢» a lightweight, customizable process framework
¢ project management
¢» component architecture
¢» system specification
& use cases, UML, architecture, etc.
¢» component design and decomposition
es testing throughout the life cycle

¢» QA and configuration management

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

11 VNORRAON)

The Booch Method

¢ Identify classes and objects

¢» Propose candidate objects
¢» Conduct behavior analysis
& ldentify relevant scenarios
s Define attributes and operations for each class
s Identify the semantics of classes and objects
es Select scenarios and analyze
¢» Assign responsibility to achieve desired behavior
¢ Partition responsibilities to balance behavior
¢» Select an object and enumerate its roles and responsibilities

s Define operations to satisfy the responsibilities

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

12 RN AUR AR

& Identify relationships among classes and objects
es Define dependencies that exist between objects
¢» Describe the role of each participating object
¢» Validate by walking through scenarios
¢ Conduct a series of refinements
¢» Produce appropriate diagrams for the work conducted above
ss Define class hierarchies as appropriate
¢» Perform clustering based on class commonality
¢ Implement classes and objects
¢» In analysis and design, this means specify everything!

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

13 VNORRAON)

The Jacobson Method

& Object-Oriented Software Engineering

¢» Primarily distinguished by the use-case
¢» Simplified model of Objectory

¢» Objectory evolved into the Rational Unified Software Development
Process

¢» For more information on this Objectory precursor, see

& Jacobson, l., Object-Oriented Software Engineering, Addison-Wesley,
1992,

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

14 VNORRAON)

Jacobson, continued

Identify the users of the system and their overall responsibilities

Build a requirements model

@
¢» Define the actors and their responsibilities
¢» Ildentify use cases for each actor

¢» Prepare initial view of system objects and relationships

¢» Review model using use cases as scenarios to determine validity

& Continued on next slide

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

15 ARAVRRRON)

Jacobson, continued

¢ Build analysis model
¢» Identify interface objects using actor-interaction information
¢» Create structural views of interface objects
¢ Represent object behavior

& Isolate subsystems and models for each

¢» Review the model using use cases as scenarios to determine validity

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

16 VNORRAON)

The Rumbaugh Method

¢ Object Modeling Technique (OMT)

¢» Rumbaugh, J. et al., Object-Oriented Modeling and Design, Prentice-
Hall, 1991

¢ Analysis activity creates three models

¢» Object model
& Objects, classes, hierarchies, and relationships

¢» Dynamic model

& object and system behavior
& Functional model

& High-level Data-Flow Diagram

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

17 VNORRAON)

¢ Develop a statement of scope for the problem
¢ Build an object model
ss Identify classes that are relevant for the problem
+» Define attributes and associations
& Define object links
o

rganize object classes using inheritance

¢ Develop a dynamic model
¢» Prepare scenarios
¢» Define events and develop an event trace for each scenario
¢ Construct an event flow diagram and a state diagram

¢» Review behavior for consistencv and completeness

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

18 VNORRAON)

Rumbaugh, continued

& Construct a functional model for the system

¢s Identify inputs and outputs

¢» Use data flow diagrams to represent flow transformations

¢» Develop a processing specification for each process in the DFD
¢s Specify constraints and optimization criteria

& Iterate!

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

Rational Unified Process:

Overview

Ydddddy

PRODUCT CYCLEA1 CYCLE 2 CYCLE 3 - CYCLE N
CYCLES
PHASES INCEPTION ELABORATION CONSTRUCTIOM TRANSITION

ol NN

iteration iteration iteration Hemnnn Il«em*ljnn Ilﬂrﬂlinn iteration Immmm

ITERATIONS 4 2 3 e

/\

CORE Requirements Analysis Design Implementation Test
WORKFLOWS
4} April 19, 2005 © University of Colorado, Boulder, 2005 4}
YLl

¢ High-level planning for the project
¢» Determine the project’s scope

& If necessary
¢» Determine business case for the project

% Estimate cost and projected revenue

4} April 19, 2005 © University of Colorado, Boulder, 2005

21 RN AUR AR

Elaboration

& Develop requirements and initial design

¢ Develop Plan for Construction phase
& Risk-driven approach

¢» Requirements Risks

¢» Technological Risks
¢s Skills Risks

P

¢» Political Risks

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

22 RN AUR AR

Requirements Risks

¢e Is the project technically feasible?

¢ Is the budget sufficient?

¢ Is the timeline sufficient?

¢ Has the user really specified the desired system?

& Do the developers understand the domain well enough?

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

23 VNORRAON)

Dealing with Reqgs. Risks

& Construct models to record Domain and/or Design knowledge

¢e Domain model (vocabulary)
¢ Use Cases
¢» Design model

& Class diagrams

& Activity diagrams

¢ Prototype construction

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

24 RN AUR AR

Dealing with Reqgs. Risks

¢ Begin by learning about the domain

e Record and define jargon
¢» Talk with domain experts
& Oftentimes end-users!
& Next construct Use cases
¢» What are the required external functions of the system?

¢» lterative process; Use Cases can be added as they are discovered

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

25 VNORRAON)

Dealing with Reqgs. Risks

¢ Finally, construct Design model

¢» Class diagrams identify key domain concepts and their high-level
relationships

¢s Activity diagrams highlight the domain’s work practices
¢» A major task here is identifying parallelism that can be exploited later

& Be sure to consolidate iterations into a final consistent model

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

26 VNORRAON)

Dealing with Reqgs. Risks

¢ Build prototypes

¢» Used only to help understand requirements
¢o Throw them all out!
¢» Do not be tied to an implementation too early
¢» Make use of rapid prototyping tools
¢ 4th Generation Programming Languages
& Scripting and/or Interpreted environments

& Ul Builders

¢ Be prepared to educate the client as to the purpose of the
prototype

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

27 RN AUR AR

Technology Risks

& Are you tied to a particular technology?

& Do you “own” that technology?
& Do you understand how different technologies interact?
& Techniques

¢» Prototypes!

¢» Class diagrams, package diagrams

¢s “Scouting” — evaluate technology early

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

28 VNORRAON)

¢» Do the members of the project team have the necessary skills and
background to tackle the project?

& If not, try
¢e Training
& Consulting
¢» Mentoring

¢» Hiring people with the required skills

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

29 VNORRAON)

Political Risks

¢» How well does the proposed project mesh with corporate culture?
¢» Consider the attempt to use Lotus Notes at Arthur Anderson

& Lotus Notes attempts to promote collaboration
¢ Arthur Anderson consultants compete with each other!

¢» Consider e-mail: any employee can ignore the org chart and mail the
CEO!
ill the project directly compete with another business unit?

w
Will it be at odds with some higher level manager’s business plan?

¢ Any of these can kill a project...

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

30 RN AUR AR

Reference

e Lotus Notes vs. Arthur Anderson

¢s Orlikowski, W. J. (1992). "Learning from Notes: Organizational Issues
in Groupware Implementation". Proceedings of ACM CSCW'92
Conference on Computer-Supported Cooperative Work: 362-369.

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

31 RN

Ending Elaboration

¢s Baseline architecture constructed

es List of Use cases (with estimates)
¢ Domain Model
¢» Technology Platform

e AND
& Risks identified
¢ Plan constructed

& Use cases assigned to iterations

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

32 RN

Construction

& Each iteration produces a software product that implements the
assigned Use cases

¢» Additional analysis and design may be necessary as the
implementation details get addressed for the first time

& Extensive testing should be performed and the product should be
released to (some subset of) the client for early feedback

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

33 RN AUR AR

Transition

¢e Final phase before release 1.0

& Optimizations can now be performed

¢» Optimizing too early may result in the wrong part of the system being
optimized

¢» Largest boosts in performance come from replacing non-scalable
algorithms or mitigating bottlenecks

44} April 19, 2005 © University of Colorado, Boulder, 2005 %1}

