
Lecture 27: Life Cycles and OO 

Design Methods
Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 4448/6448 - Spring Semester, 2005

1

April 19, 2005 © University of Colorado, Boulder, 2005

2

Goals for this Lecture
Review the concepts of software engineering life cycles

Introduce the notion of an object-oriented design method

Hint: its another name for “life cycle”

Present an introduction of Agile design methods

Hint: yet another name for “life cycle”



April 19, 2005 © University of Colorado, Boulder, 2005

3

Background
In Software Engineering:

“Process is King”

We want our activities to be coordinated and planned, e.g. 

“engineered”

The reason?

A high quality process should increase our ability to create a high quality 

product

April 19, 2005 © University of Colorado, Boulder, 2005

4

Software Life Cycle
A series of steps that organizes the development of a software 

product

Duration can be from days to years

Consists of

people (!)

overall process

intermediate products

stages of the process



April 19, 2005 © University of Colorado, Boulder, 2005

5

Phases of a Software Life Cycle
Standard Phases

Requirements Analysis & Specification

Design

Implementation and Integration

Operation and Maintenance

Change in Requirements

Testing throughout!

Phases promote manageability and provide organization

April 19, 2005 © University of Colorado, Boulder, 2005

Traditional Life Cycles
The Waterfall Method (developed in the early 70s)

many variations, including the “waterfall with feedback” version

Rapid Prototyping

use of prototypes to establish requirements, followed by Waterfall

Feature-Driven Design (used by Microsoft)

highly iterative based on features, software is built each day

Spiral Model

Introduced risk management as a core concept

6



April 19, 2005 © University of Colorado, Boulder, 2005

7

Summary
Life cycles make software development

predictable

repeatable

measurable

efficient

High-quality processes should lead to high-quality products

at least it improves the odds of producing good software

April 19, 2005 © University of Colorado, Boulder, 2005

8

Survey of OOA&D Methods
Generalization

Taken from “SE: A Practitioner’s approach, 4th ed.” by Roger S. 

Pressman, McGraw-Hill, 1997

The Booch Method

The Jacobson Method

The Rambaugh Method

The Unified Software Process

Information on the four methods taken from

Graham, I. Object-Oriented Methods, Addison-Wesley, 3rd Ed., 2001



April 19, 2005 © University of Colorado, Boulder, 2005

9

OO Methods In general...
Obtain customer requirements for the OO System

Identify scenarios or use cases

Build a requirements model

Select classes and objects using basic requirements

Identify attributes and operations for each object

Define structures and hierarchies that organize classes

Build an object-relationship model

Build an object-behavior model

Review the OO analysis model against use cases

Once complete, move to design and implementation: These phases 

simply elaborate the previously created models with more and more 

detail, until it is possible to write code straight from the models

April 19, 2005 © University of Colorado, Boulder, 2005

10

Background on OO Methods
An OO Method should cover and include

requirements and business process modeling

a lightweight, customizable process framework

project management

component architecture

system specification

use cases, UML, architecture, etc.

component design and decomposition

testing throughout the life cycle

QA and configuration management



April 19, 2005 © University of Colorado, Boulder, 2005

11

The Booch Method
Identify classes and objects

Propose candidate objects

Conduct behavior analysis

Identify relevant scenarios

Define attributes and operations for each class

Identify the semantics of classes and objects

Select scenarios and analyze

Assign responsibility to achieve desired behavior

Partition responsibilities to balance behavior

Select an object and enumerate its roles and responsibilities

Define operations to satisfy the responsibilities

April 19, 2005 © University of Colorado, Boulder, 2005

12

Booch, continued
Identify relationships among classes and objects

Define dependencies that exist between objects

Describe the role of each participating object

Validate by walking through scenarios

Conduct a series of refinements

Produce appropriate diagrams for the work conducted above

Define class hierarchies as appropriate

Perform clustering based on class commonality

Implement classes and objects

In analysis and design, this means specify everything!



April 19, 2005 © University of Colorado, Boulder, 2005

13

The Jacobson Method
Object-Oriented Software Engineering

Primarily distinguished by the use-case

Simplified model of Objectory

Objectory evolved into the Rational Unified Software Development 

Process

For more information on this Objectory precursor, see

Jacobson, I., Object-Oriented Software Engineering, Addison-Wesley, 

1992.

April 19, 2005 © University of Colorado, Boulder, 2005

14

Jacobson, continued
Identify the users of the system and their overall responsibilities

Build a requirements model

Define the actors and their responsibilities

Identify use cases for each actor

Prepare initial view of system objects and relationships

Review model using use cases as scenarios to determine validity

Continued on next slide



April 19, 2005 © University of Colorado, Boulder, 2005

15

Jacobson, continued
Build analysis model

Identify interface objects using actor-interaction information

Create structural views of interface objects

Represent object behavior

Isolate subsystems and models for each

Review the model using use cases as scenarios to determine validity

April 19, 2005 © University of Colorado, Boulder, 2005

16

The Rumbaugh Method
Object Modeling Technique (OMT)

Rumbaugh, J. et al., Object-Oriented Modeling and Design, Prentice-

Hall, 1991

Analysis activity creates three models

Object model

Objects, classes, hierarchies, and relationships

Dynamic model

object and system behavior

Functional model

High-level Data-Flow Diagram



April 19, 2005 © University of Colorado, Boulder, 2005

17

Rumbaugh, continued
Develop a statement of scope for the problem

Build an object model

Identify classes that are relevant for the problem

Define attributes and associations

Define object links

Organize object classes using inheritance

Develop a dynamic model

Prepare scenarios

Define events and develop an event trace for each scenario

Construct an event flow diagram and a state diagram

Review behavior for consistency and completeness

April 19, 2005 © University of Colorado, Boulder, 2005

18

Rumbaugh, continued
Construct a functional model for the system

Identify inputs and outputs

Use data flow diagrams to represent flow transformations

Develop a processing specification for each process in the DFD

Specify constraints and optimization criteria

Iterate!



April 19, 2005 © University of Colorado, Boulder, 2005

19

Rational Unified Process: 

Overview

April 19, 2005 © University of Colorado, Boulder, 2005

20

Inception
High-level planning for the project

Determine the project’s scope

If necessary

Determine business case for the project

Estimate cost and projected revenue



April 19, 2005 © University of Colorado, Boulder, 2005

21

Elaboration
Develop requirements and initial design

Develop Plan for Construction phase

Risk-driven approach

Requirements Risks

Technological Risks

Skills Risks

Political Risks

April 19, 2005 © University of Colorado, Boulder, 2005

22

Requirements Risks
Is the project technically feasible?

Is the budget sufficient?

Is the timeline sufficient?

Has the user really specified the desired system?

Do the developers understand the domain well enough?



April 19, 2005 © University of Colorado, Boulder, 2005

23

Dealing with Reqs. Risks
Construct models to record Domain and/or Design knowledge

Domain model (vocabulary)

Use Cases

Design model

Class diagrams

Activity diagrams

Prototype construction

April 19, 2005 © University of Colorado, Boulder, 2005

24

Dealing with Reqs. Risks
Begin by learning about the domain

Record and define jargon

Talk with domain experts

Oftentimes end-users!

Next construct Use cases

What are the required external functions of the system?

Iterative process; Use Cases can be added as they are discovered



April 19, 2005 © University of Colorado, Boulder, 2005

25

Dealing with Reqs. Risks
Finally, construct Design model

Class diagrams identify key domain concepts and their high-level 

relationships

Activity diagrams highlight the domain’s work practices

A major task here is identifying parallelism that can be exploited later

Be sure to consolidate iterations into a final consistent model

April 19, 2005 © University of Colorado, Boulder, 2005

26

Dealing with Reqs. Risks
Build prototypes

Used only to help understand requirements

Throw them all out!

Do not be tied to an implementation too early

Make use of rapid prototyping tools

4th Generation Programming Languages

Scripting and/or Interpreted environments

UI Builders

Be prepared to educate the client as to the purpose of the 

prototype



April 19, 2005 © University of Colorado, Boulder, 2005

27

Technology Risks
Are you tied to a particular technology?

Do you “own” that technology?

Do you understand how different technologies interact?

Techniques

Prototypes!

Class diagrams, package diagrams

“Scouting” — evaluate technology early

April 19, 2005 © University of Colorado, Boulder, 2005

28

Skill Risks
Do the members of the project team have the necessary skills and 

background to tackle the project?

If not, try

Training

Consulting

Mentoring

Hiring people with the required skills



April 19, 2005 © University of Colorado, Boulder, 2005

29

Political Risks
How well does the proposed project mesh with corporate culture?

Consider the attempt to use Lotus Notes at Arthur Anderson

Lotus Notes attempts to promote collaboration

Arthur Anderson consultants compete with each other!

Consider e-mail: any employee can ignore the org chart and mail the 

CEO!

Will the project directly compete with another business unit?

Will it be at odds with some higher level manager’s business plan?

Any of these can kill a project…

April 19, 2005 © University of Colorado, Boulder, 2005

30

Reference
Lotus Notes vs. Arthur Anderson

Orlikowski, W. J. (1992). "Learning from Notes: Organizational Issues 

in Groupware Implementation". Proceedings of ACM CSCW'92 

Conference on Computer-Supported Cooperative Work: 362-369.



April 19, 2005 © University of Colorado, Boulder, 2005

31

Ending Elaboration
Baseline architecture constructed

List of Use cases (with estimates)

Domain Model

Technology Platform

AND

Risks identified

Plan constructed

Use cases assigned to iterations

April 19, 2005 © University of Colorado, Boulder, 2005

32

Construction
Each iteration produces a software product that implements the 

assigned Use cases

Additional analysis and design may be necessary as the 

implementation details get addressed for the first time

Extensive testing should be performed and the product should be 

released to (some subset of) the client for early feedback



April 19, 2005 © University of Colorado, Boulder, 2005

33

Transition
Final phase before release 1.0

Optimizations can now be performed

Optimizing too early may result in the wrong part of the system being 

optimized

Largest boosts in performance come from replacing non-scalable 

algorithms or mitigating bottlenecks


