
Lecture 22: Refactoring to

Patterns
Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2005

1

March 31, 2005 © University of Colorado, Boulder, 2005

2

Credit and Goals
Credit where credit is due

Some of the material for this lecture is taken from “Refactoring to

Patterns” by Joshua Kerievsky; as such some of this material is

copyright © Pearson Education, Inc., 2005

Goals of this Lecture

Present the idea of refactoring to patterns

Cover several examples

March 31, 2005 © University of Colorado, Boulder, 2005

3

Refactoring to Patterns
Refactoring is the process of transforming code such that

functionality is maintained while improving the code’s structure

Refactoring advocates small/safe transformations easy to learn/apply

Design Patterns are solutions to recurring design problems that can

be “rendered” into code in a straightforward way

In existing software systems, design patterns also transform code

i.e., the code was in state A before the pattern is applied

and in an improved state, state B, after the pattern is applied

As such, design patterns represent “targets” for refactoring

Not only improving a code’s structure but adding a time-tested

solution to a common design problem to the code

March 31, 2005 © University of Colorado, Boulder, 2005

Refactoring Directions
Viewed in this way, a refactoring can be viewed as taking code to,

towards, or away from a particular design pattern

For example, some refactorings replace one pattern with another

Such a refactoring simultaneously moves away from the original

pattern and to the new pattern

An example is a refactoring called “Move Accumulation to Visitor” which

replaces the use of the Iterator pattern with the use of the Visitor pattern

The towards direction is interesting; this occurs when you start a

refactoring that leads to a particular design pattern but you only

complete a few of the steps. The author, Joshua Kerievsky, states

“... this book contains numerous refactorings that provide acceptable

design improvements whether you go towards or all the way to [the

target pattern].”

4

March 31, 2005 © University of Colorado, Boulder, 2005

Refactoring Directions, continued
As an example, the refactoring “Move Embellishment to Decorator”

has as one of its early steps “Replace Conditional with

Polymorphism”

You may decide that the benefits of performing just that step is

“enough” for your current situation and stop

One factor that will contribute to this decision is how much code needs

to change to complete the rest of the pattern

The next step in that refactoring is “Replace Inheritance with

Delegation”

This, again, may provide just enough improvement to the code that

you decide that going “all the way” to the Decorator pattern is not

necessary

You can always return to the code later to complete the refactoring

5

March 31, 2005 © University of Colorado, Boulder, 2005

Examples
Replace Conditional Logic With Strategy

Replace Implicit Tree with Composite

Move Embellishment to Decorator

All of these refactorings go to their respective Patterns

6

March 31, 2005 © University of Colorado, Boulder, 2005

Replace Conditional Logic with Strategy

Conditional logic in a method controls which of several variants of a

calculation are executed. Create a Strategy for each variant and

make the method delegate the calculation to a Strategy instance

Strategy is a design pattern that separates an object and its behavior

for a particular method (the behavior is put into its own object; the

original object delegates to this new object)

Mechanics

Create a strategy class; name it after the behavior being performed by

the calculation; optionally add the word “Strategy” to the class name

Apply Move Method to move the calculation method to the strategy;

the original method now delegates to this new method (compile/test)

Allow clients of the original class to choose a strategy (compile/test)

Apply “Replace Conditional With Polymorphism” to produce strategy

subclasses that remove the conditional logic from the original method

7

March 31, 2005 © University of Colorado, Boulder, 2005

Example
Consider a Loan class that needs to calculate capital

public class Loan...
public double capital() {

if (expiry == null && maturity != null)
return commitment * duration() * riskFactor();

if (expiry != null && maturity == null) {
if (getUnusedPercentage() != 1.0)

return commitment * getUnusedPercentage() * duration() *
riskFactor();

else
return (outstandingRiskAmount() * duration() *
riskFactor()) +
 (unusedRiskAmount() * duration() *
unusedRiskFactor());

}
return 0.0;

}

8

March 31, 2005 © University of Colorado, Boulder, 2005

Create a strategy class
We are strategizing the capital method, so we create the following:

public class CapitalStrategy {

public double capital() {

return 0.0;

}

}

Recall that refactoring advocates taking small, safe steps

Now, we will use “Move Method” to move the capital() method from

Loan to CapitalStrategy resulting in...

9

March 31, 2005 © University of Colorado, Boulder, 2005

Move Method
The biggest change is the addition of the loan parameter

public class CapitalStrategy...
public double capital(Loan loan) {

if (loan.getExpiry() == null && loan.getMaturity() != null)
return loan.getCommitment() * loan.duration() *
loan.riskFactor();

if (loan.getExpiry() != null && loan.getMaturity() == null) {
if (loan.getUnusedPercentage() != 1.0)

return loan.getCommitment() * loan.getUnusedPercentage() *
loan.duration() * loan.riskFactor();

else
return (loan.outstandingRiskAmount() * loan.duration() *
loan.riskFactor()) +(loan.unusedRiskAmount() *
loan.duration() * loan.unusedRiskFactor());

}
return 0.0;

}

10

March 31, 2005 © University of Colorado, Boulder, 2005

Move Method
To complete, the Move Method refactoring, we delegate the original

method’s behavior to the newly created method in CapitalStrategy
public class Loan...

public double capital() {
return new CapitalStrategy().capital(this);

}
}

Now, we transform Loan to have a strategy instance variable and

allow clients to configure it
public class Loan...

private CaptialStrategy capitalStrategy;
public Loan(..., CapitalStrategy strategy) {

...
capitalStrategy = strategy;

}
public double capital() { return capitalStrategy.capital(this);}

}

11

March 31, 2005 © University of Colorado, Boulder, 2005

Replace Conditional with

Polymorphism
The next step is to create subclasses of CapitalStrategy that deal

with the various branches of the original conditional

For instance the first branch (null expiry date, non-null maturity date)

deals with Term loans; as such one of our subclasses will look like this

public class TermLoanStrategy extends CapitalStrategy {
public double capital(Loan loan) {

return loan.getCommitment() * loan.duration() *
loan.riskFactor();

}
}

The last step is to add factory methods to Loan to create Loan objects

configured with the correct strategies, for instance

public class Loan...
public static Loan newTermLoan(...) {

return new Loan(..., new TermLoanStrategy()); }

12

March 31, 2005 © University of Colorado, Boulder, 2005

Structure Before/After

13

Loan
capital(): doubleBefore

After
Loan

capital(): double
newTermLoan(): Loan

CapitalStrategy
capital(Loan): double

TermLoanStrategy
capital(Loan): double

RevolverStrategy
capital(Loan): double

March 31, 2005 © University of Colorado, Boulder, 2005

Replace Implicit Tree with

Composite

14

Description
You implicitly form a tree structure, using a primitive representation,

such as a String. Replace your primitive representation with a

Composite

Example
String expectedResult =

“<orders>” +
“<order id=’321’>” +

“<product id=’f1234’ color=’red’ size=’medium’>” +
“<price currency=’USD’>8.95</price>” +
“Fire Truck</product>” +

“<product id=’p1112’ color=’red’>” +
“<price currency=’USD’>230.0</price>” +
“Toy Porshe Convertible</product>” +

“</order>” +
“</orders>”;

March 31, 2005 © University of Colorado, Boulder, 2005

String as Tree

15

orders order

product

product price

product

March 31, 2005 © University of Colorado, Boulder, 2005

Mechanics
Identify an implicit leaf, a part of the implicit tree that could be

modeled with a new class. Create a leaf node class with instance

variables for keeping track of the implicit leaf’s contents and

attributes; Compile and Test

Replace every occurrence of the implicit leaf with an instance of the

new leaf node; Compile and Test

Repeat steps 1 and 2 for any additional implicit leafs

Identify an implicit parent and create a parent node class for it; it

needs to implement the “child management” functions of the

Composite pattern; Compile and Test

Replace every occurrence of the implicit parent with an instance of

the new parent node; Compile and Test

Repeat steps 4 and 5 until done

16

March 31, 2005 © University of Colorado, Boulder, 2005

Example
I will not show the entire example in this lecture

But I will show you enough to get you started

Assume code like this exists to create (a portion of) our XML string:

private void writePriceTo(StringBuffer xml, Product product) {
xml.append(“<price”);
xml.append(“ currency=’”);
xml.append(product.getCurrency());
xml.append(“’>”);
xml.append(product.getPrice());
xml.append(“</price>”);

}

This code writes out the <price> tag portions of the string we saw

previously

17

March 31, 2005 © University of Colorado, Boulder, 2005

Generic Node Class
Looking at our implicit tree string, we notice that each tag has

a name

an optional number of attributes

an optional number of children

an optional value

Knowing this, we will design a generic TagNode class (using Test-

Driven Design, for instance) that can handle these characteristics

A portion of a test for this class might look like

TagNode priceTag = new TagNode(“price”);

priceTag.addAttribute(“currency”, “USD”);

priceTag.addValue(“8.95”);

assertEquals(“<price currency=...”, priceTag.toString());

18

March 31, 2005 © University of Colorado, Boulder, 2005

TagNode Class
public class TagNode {

private String name = “”;
private String value = “”;
private StringBuffer attributes;

public TagNode(String name) {
this.name = name;
attributes = new StringBuffer(“”);

}

public void addAttribute(String name, String value) {
attributes.append(“ “+attribute+”=’”+value+”’”);

}

public void addValue(String vlaue) {
this.value = value;

}

public String toString() {
return “<”+name+attributes+”>”+value+”</”+name+”>”;

}
}

19

March 31, 2005 © University of Colorado, Boulder, 2005

Update writePriceTo
Now that we have a class for the price “implict leaf” we can update

the code that creates that portion of the string

private void writePriceTo(StringBuffer xml, Product product) {
TagNode priceNode = new TagNode(“price”);
priceNode.addAttribute(“currency”, product.getCurrency());
priceNode.addValue(product.getPrice());
xml.append(priceNode.toString());

}

This class handles all of our implicit leaves; and it can handle our

implicit parents too, if we add child management functions to it

This is a case where a single node plays all of the roles in the

Composite pattern: Component, Leaf, and Composite

20

March 31, 2005 © University of Colorado, Boulder, 2005

Updates to TagNode
We need to add a collection class to hold a node’s children

private List children;

We need to add a method to get a list of our children

private List children() {

if (children == null) {

children = new LinkedList();

}

return children;

}

Note: this is an example of “lazy creation” with respect to an

instance variable; children remains null until the first time we ask

for a list of a node’s children; we do not initialize the instance

variable until we need it

21

March 31, 2005 © University of Colorado, Boulder, 2005

Updates to TagNode continued
We need a method to add a child to a node
public void add(TagNode child) {

children().add(child);
}

Finally, we need to modify the toString() method to handle a

node’s children
public String toString() {

String result = “<”+name+attributes+”>”

Iterator itr = children.iterator();

while (itr.hasNext()) {

TagNode node = (TagNode)itr.next();

result += node.toString();

result += value;

result += ”</”+name+”>”;

return result;

}

22

March 31, 2005 © University of Colorado, Boulder, 2005

Update Price method
We can now update the method that prints our Price info to simply

create a priceNode and add it to its parent (in this case a product)

private void writePriceTo(TagNode parent, Product product) {
TagNode priceNode = new TagNode(“price”);
priceNode.addAttribute(“currency”, product.getCurrency());
priceNode.addValue(product.getPrice());
parent.add(priceNode);

}

And, we can update the method that previously created the implicit

product node to create an actual product node and call the updated

method above to get a price node added to it

See next slide

Note: we have not previously shown this method

23

March 31, 2005 © University of Colorado, Boulder, 2005

Updated Product Method
private void writeProductsTo(TagNode orderNode, Order order) {

for (int j=0; j<order.getProductCount(); j++) {

Product product = order.getProduct(j);

TagNode productNode = new TagNode(“product”);

productNode.addAttribute(“id”, product.getId());

productNode.addAttribute(“color”, product.getColor());

...

writePriceTo(productTag, product);

productTag.addValue(product.getName());

orderNode.add(productTag)

}

}

24

March 31, 2005 © University of Colorado, Boulder, 2005

Repeat until done!
To complete this refactoring, you would create similar methods for

order and orders nodes of the tree we showed previously

Your program now explicitly creates a tree structure using the

Composite pattern and can output the XML for that tree with a

single call:

System.out.println(root.toString());

The advantages of doing this refactoring is that you can now easily

add new types of leaf nodes and parent nodes

Plus, our approach to building the tree allows us to create different

XML representations of the tree if needed; we simply build a

different type of tree, perhaps using different nodes/attributes

25

March 31, 2005 © University of Colorado, Boulder, 2005

Move Embellishment to

Decorator
Description

Code provides an embellishment to a class’s core responsibility; Move

the embellishment code to a decorator

Background

When adding new features to a system, it is common to add new code

to old classes; the new code is said to “embellish” the old code with

new functionality

The problem with this approach is that the embellishment adds new

fields, methods, and logic, all of which exists for special-case behavior

Motivating Idea

Try to place the new functionality in a decorator and then wrap the

decorator around the original object at runtime when the new

behavior is needed

26

March 31, 2005 © University of Colorado, Boulder, 2005

Litmus Test
This refactoring should not be used when the target class has a lot

of public methods (where “a lot” depends on context)

The reason?

The Decorator pattern requires transparent enclosures: decorators

must implement the entire public interface of the target class

Also, this refactoring is discouraged in situations where client code

must be aware of the decorators, that is the client code checks the

run-time types of the objects that it points at

For instance, beware client code that looks like this:

if (variable instance of SomeClass) then

If you dynamically wrap an instance of SomeClass with a decorator,

the above code will fail

27

March 31, 2005 © University of Colorado, Boulder, 2005

Mechanics
Identify or create an enclosure type, an interface or class that

declares the public methods needed by clients of the target class

Find the conditional logic that adds the embellishment to the target

class and remove that logic by applying “Replace Conditional with

Polymorphism”; Compile and Test.

Step 2 produced one or more subclasses of the embellished class.

Transform these subclasses into delegating classes by applying

“Replace Inheritance with Delegation”; Compile and Test

Each delegating class now assigns its delegate to a new instance of

the target class; Ensure that this assignment logic exists in the

delegating class’s constructor and gets access to the delegate via a

parameter; Compile and Test

28

March 31, 2005 © University of Colorado, Boulder, 2005

Example
Embellishments on StringNode of the HTML Parser project

Open Source HTML parser

http://sourceforge.net/projects/htmlparser/

 StringNode is used to store text found in HTML files

HTML often has text that looks like this:

“The Testing & Refactoring Workshop”

The string “&” is a character entity that needs to be translated to

the character “&” when displayed to a user or otherwise processed by

client software

One of the embellishments to StringNode handled decoding these

entity references; another embellishment was stripping escape

characters (such as \n, \t, \r, etc.) from StringNodes

29

March 31, 2005 © University of Colorado, Boulder, 2005

Problem
These embellishments were not implemented as decorators on the

StringNode class. Instead, the embellishments were implemented

via options on the HTML Parser class and boolean flags within the

StringNode class

Thus, a programmer who wanted StringNodes to be decoded would

write code like this:

Parser parser = Parser.createParser(...);
parser.setNodeDecoding(true);

When StringNodes were created, they would be passed this flag as

a parameter

StringNode s = new StringNode(..., parser.shouldDecodeNodes());

30

March 31, 2005 © University of Colorado, Boulder, 2005

Problem, continued
Then, when a StringNode was asked for its contents, it would check

whether it should decode the text string before returning it to the

client

public class StringNode...
public String toPlainTextString() {

String result = textBuffer.toString();
if (shouldDecode)

result = Translate.decode(result);
return result;

}
}

This approach to embellishing StringNode will not scale well;

requiring a new flag in toPlainTextString(), a new method in Parser,

and a new parameter in StringNode’s constructor for each

embellishment

31

March 31, 2005 © University of Colorado, Boulder, 2005

Applying the Refactoring
Identifying an enclosure type

The HTML Parser framework had the following class hierarchy

Node!AbstractNode!StringNode

After analysis, the author selects Node as the enclosure type (the

class defining the public interface shared by the target class,

StringNode, and our new decorator, DecodingNode)

The key factor was finding a class that did not define any instance

variables (to avoid having decorators from needlessly inheriting them)

First Step: create new subclass, DecodingNode

Node!AbstractNode!StringNode!DecodingNode

Second Step: make Decoding Node a delegating class

Node!DecodingNode

 !AbstractNode!StringNode

32

March 31, 2005 © University of Colorado, Boulder, 2005

Second Step: Replace

Conditional with Polymorphism
Our “conditional” in this instance is the code that looked like this in

toPlainTextString():

if (shouldDecode)

result = Translate.decode(result);

First, we encapsulate this field within StringNode, like so

Change constructor

public StringNode(..., boolean shouldDecode) {

...

setShouldDecode(shouldDecode)

Change toPlainTextString()
if (shouldDecode()) {

result = Translate.decode(result);

Add instance variable, getter and setter methods (not shown)
private boolean shouldDecode;

33

March 31, 2005 © University of Colorado, Boulder, 2005

Step 2, continued
Now we create our subclass

public class DecodingNode extends StringNode {
public DecodingNode(...) {

super(...);
}
protected boolean shouldDecode() {

return true; -- Decoding Node always decodes
}

}

We update StringNode to no longer require the shouldDecode

parameter to its constructor and update its shouldDecode() method

to always return false; we also delete the shouldDecode instance

variable and its associated setter method

34

March 31, 2005 © University of Colorado, Boulder, 2005

Step 2, continued
We now add a factory method to the StringNode class that returns

the appropriate object based on a shouldDecode parameter; this

method returns a value of type Node, the enclosure type

public class StringNode...

public static Node createStringNode(..., boolean shouldDecode) {

if (shouldDecode)

return new DecodingNode(...);

return new StringNode(...);

}

}

35

March 31, 2005 © University of Colorado, Boulder, 2005

Step 2, continued
We can now remove the conditional in StringNode’s

toPlainTextString() and add an overriding version of this method in

DecodingNode

In StringNode the method goes from this

public String toPlainTextString() {
String result = textBuffer.toString();
if (shouldDecode()) {

result = Translate.decode(result);
return result;

}

to this

public String toPlainTextString() {
return textBuffer.toString();

}

36

March 31, 2005 © University of Colorado, Boulder, 2005

Step 2 completed
In DecodingNode, we add

public String toPlainTextString() {
return Translate.decode(super.toPlainTextString());

}

and we can delete the shouldDecode() methods in both classes

And we are now done with Step 2.

We compile and test to make sure that everything still works

We failed to show one step, which was having the Parser call the new

factory method that we added to StringNode

We are now ready to convert DecodingNode to a decorator

We start by using the refactoring “Replace Inheritance with

Delegation”

37

March 31, 2005 © University of Colorado, Boulder, 2005

Step 3: Replace Inheritance wit

Delegation
First, we add a field to DecodingNode that points to itself

private Node delegate = this;

The enclosure type is used to set-up the Decorator pattern

We now replace any calls to StringNode methods with calls to the

delegate

public class DecodingNode extends StringNode...
public String toPlainTextString() {

return Translate.decode(delegate.toPlainTextString());
}

}

This code will compile but not run, since it causes an infinite loop; The

delegate object currently points to the calling object!

38

March 31, 2005 © University of Colorado, Boulder, 2005

Step 3, continued
We now break the inheritance relationship between the two classes

public class DecodingNode implements Node

DecodingNode now implements the enclosure type interface rather

than being a direct subclass of StringNode

We do this to keep our factory method code happy!

We now set up the delegate instance variable to point to an

instance of a StringNode

public class DecodingNode implements Node...
private Node delegate = null;
public DecodingNode(...) {

delegate = new StringNode(...);
}

39

March 31, 2005 © University of Colorado, Boulder, 2005

Step 3 completed
In DecodingNode, we now implement all of Node’s public methods

Each one simply delegates the task to the delegate instance variable
public void accept(NodeVisitor visitor) { delegate.accept(visitor); }

Finally, to make DecodingNode a decorator, we change its

constructor to accept a Node variable to define its delegate
public class DecodingNode implements Node...

public DecodingNode(Node delegate) {
this.delegate = delegate;}

And we update our factory method to use the new constructor
public class StringNode...

public static Node createStringNode(..., boolean shouldDecode) {

if (shouldDecode)

return new DecodingNode(new StringNode(...));

return new StringNode(...);

}}

40

March 31, 2005 © University of Colorado, Boulder, 2005

Structure before/after

41

:ClientBefore

After

:StringNode
toPlainTextString()

toPlainTextString()

:DecodingNode

:StringNode
toPlainTextString()

toPlainTextString()

:Client toPlainTextString()

March 31, 2005 © University of Colorado, Boulder, 2005

Summary

42

Design Patterns can serve as “larger grain” targets for refactoring

As we’ve seen, these “larger grain” refactorings often consist of

multiple “fine grain” refactorings, each which provide some benefit to

the overall code

This lecture shows how OO techniques build on each other

you can take your knowledge of design patterns and look for ways to

include them into existing systems

you can use your knowledge of refactorings to ensure that these

transformations are incremental and safe

You ensure safety by writing test cases before the refactoring and

making sure that the changes do not break the functionality of the

existing system

What’s Next? Domain-Driven Design

