Ydddddy

Lecture 22: Refactoring to
Patterns

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2005

Ydddddy

Credit and Goals

& Credit where credit is due

¢» Some of the material for this lecture is taken from “Refactoring to
Patterns” by Joshua Kerievsky; as such some of this material is
copyright © Pearson Education, Inc., 2005

& Goals of this Lecture
¢» Present the idea of refactoring to patterns
&» Cover several examples

44} March 31, 2005 © University of Colorado, Boulder, 2005 %1}

3 RN AUR AR

Refactoring to Patterns

s Refactoring is the process of transforming code such that
functionality is maintained while improving the code’s structure

+» Refactoring advocates small/safe transformations easy to learn/apply

¢ Design Patterns are solutions to recurring design problems that can
be “rendered” into code in a straightforward way

¢s In existing software systems, design patterns also transform code
& i.e., the code was in state A before the pattern is applied
¢» and in an improved state, state B, after the pattern is applied
¢e As such, design patterns represent “targets” for refactoring

¢» Not only improving a code’s structure but adding a time-tested
solution to a common design problem to the code

44} March 31, 2005 © University of Colorado, Boulder, 2005 %1}

4 VNORRAON)

Refactoring Directions

¢ Viewed in this way, a refactoring can be viewed as taking code to,
towards, or away from a particular design pattern

¢» For example, some refactorings replace one pattern with another

¢ Such a refactoring simultaneously moves away from the original
pattern and to the new pattern

&% An example is a refactoring called “Move Accumulation to Visitor” which
replaces the use of the lterator pattern with the use of the Visitor pattern
o The towards direction is interesting; this occurs when you start a
refactoring that leads to a particular design pattern but you only
complete a few of the steps. The author, Joshua Kerievsky, states
¢ “... this book contains numerous refactorings that provide acceptable

design improvements whether you go towards or all the way to [the
target pattern].”

44} March 31, 2005 © University of Colorado, Boulder, 2005 %1}

5 VNORRAON)

Refactoring Directions, continued

& As an example, the refactoring “Move Embellishment to Decorator”
has as one of its early steps “Replace Conditional with
Polymorphism”
¢» You may decide that the benefits of performing just that step is

“enough” for your current situation and stop
¢» One factor that will contribute to this decision is how much code needs
to change to complete the rest of the pattern

¢ The next step in that refactoring is “Replace Inheritance with
Delegation”

¢» This, again, may provide just enough improvement to the code that
you decide that going “all the way” to the Decorator pattern is not
necessary

& You can always return to the code later to complete the refactoring

44} March 31, 2005 © University of Colorado, Boulder, 2005 %1}

6 RN AUR AR

¢» Replace Conditional Logic With Strategy
¢ Replace Implicit Tree with Composite
¢ Move Embellishment to Decorator

& All of these refactorings go to their respective Patterns

44} March 31, 2005 © University of Colorado, Boulder, 2005 %1}

7 VNORRAON)

Replace Conditional Logic with Strategy

¢« Conditional logic in a method controls which of several variants of a
calculation are executed. Create a Strategy for each variant and
make the method delegate the calculation to a Strategy instance
¢» Strategy is a design pattern that separates an object and its behavior

for a particular method (the behavior is put into its own object; the
original object delegates to this new object)

& Mechanics
¢» Create a strategy class; name it after the behavior being performed by

the calculation; optionally add the word “Strategy” to the class name
¢» Apply Move Method to move the calculation method to the strategy;

the original method now delegates to this new method (compile/test)
¢» Allow clients of the original class to choose a strategy (compile/test)
¢» Apply “Replace Conditional With Polymorphism” to produce strategy

subclasses that remove the conditional logic from the original method

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

8 RN AUR AR

& Consider a Loan class that needs to calculate capital

public class Loan...
public double capital() ({
if (expiry == null && maturity != null)
return commitment * duration() * riskFactor():;
if (expiry != null && maturity == null) ({

if (getUnusedPercentage() != 1.0)
return commitment * getUnusedPercentage() * duration() *
riskFactor () ;

else

return (outstandingRiskAmount() * duration() *
riskFactor()) +
(unusedRiskAmount () * duration() *
unusedRiskFactor());
}
return 0.0;

}

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

9 RN AUR AR

Create a strategy class

s We are strategizing the capital method, so we create the following:
public class CapitalStrategy {
public double capital() {

return 0.0;
}
& Recall that refactoring advocates taking small, safe steps

&e Now, we will use “Move Method” to move the capital() method from
Loan to CapitalStrategy resulting in...

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

10 VNORRAON)

Move Method

¢ The biggest change is the addition of the loan parameter

public class CapitalStrategy...
public double capital (Loan loan) {
if (loan.getExpiry() == null && loan.getMaturity() '!'= null)
return loan.getCommitment() * loan.duration() *
loan.riskFactor () ;
if (loan.getExpiry() '= null && loan.getMaturity() == null) {
if (loan.getUnusedPercentage() != 1.0)
return loan.getCommitment() * loan.getUnusedPercentage() *
loan.duration() * loan.riskFactor();
else
return (loan.outstandingRiskAmount() * loan.duration() *
loan.riskFactor()) +(loan.unusedRiskAmount() *
loan.duration() * loan.unusedRiskFactor()) ;
}

return 0.0;

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

11 VNORRAON)

Move Method

s To complete, the Move Method refactoring, we delegate the original
method’s behavior to the newly created method in CapitalStrategy
public class Loan...

public double capital() {
return new CapitalStrategy () .capital (this);
}
}

&» Now, we transform Loan to have a strategy instance variable and
allow clients to configure it
public class Loan...

private CaptialStrategy capitalStrategy;
public Loan(..., CapitalStrategy strategy) {

capitalStrategy = strategy;

}
public double capital() { return capitalStrategy.capital (this) ;}

}

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

12 RN AUR AR

Replace Conditional with

Polymorphism

¢ The next step is to create subclasses of CapitalStrategy that deal
with the various branches of the original conditional

¢ For instance the first branch (null expiry date, non-null maturity date)
deals with Term loans; as such one of our subclasses will look like this

public class TermLoanStrategy extends CapitalStrategy {
public double capital (Loan loan) {
return loan.getCommitment() * loan.duration() *
loan.riskFactor () ;
}
}

¢s The last step is to add factory methods to Loan to create Loan objects
configured with the correct strategies, for instance
& public class Loan...

& public static Loan newTermLoan(...) {
& return new Loan(..., new TermLoanStrategy()); }

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

13 VNORRAON)

Structure Before/After

Loan

Before capital(): double

Loan -
— CapitalStrategy
/\ tal(): doubl .
fTEBr ﬁzw;zgnLg:ng:Loan capital(Loan): double l
T ———

TermLoanStrategy RevolverStrategy |
capital(Loan): double capital(Loan): double
T ——————

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

14 VNORRAON)

Replace Implicit Tree with

Composite

& Description
¢» You implicitly form a tree structure, using a primitive representation,

such as a String. Replace your primitive representation with a
Composite
& Example
String expectedResult =
“<orders>" +
“<order id=’321'>" +
“<product id=’'£f1234’' color='red’ size='medium’>” +
“<price currency=’'USD’>8.95</price>" +
“Fire Truck</product>”" +
“<product id='pll12’ color='red’>" +
“<price currency='USD’'>230.0</price>" +
“Toy Porshe Convertible</product>” +
“</order>" +
“</orders>";

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

15 ARAVRRRON)

String as Tree

product product
— —
orders order
product price
T — —
4} March 31, 2005 © University of Colorado, Boulder, 2005 4}
16 AR

e Identify an implicit leaf, a part of the implicit tree that could be
modeled with a new class. Create a leaf node class with instance
variables for keeping track of the implicit leaf’s contents and
attributes; Compile and Test

¢» Replace every occurrence of the implicit leaf with an instance of the
new leaf node; Compile and Test

& Repeat steps 1 and 2 for any additional implicit leafs

e Identify an implicit parent and create a parent node class for it; it
needs to implement the “child management” functions of the
Composite pattern; Compile and Test

¢ Replace every occurrence of the implicit parent with an instance of
the new parent node; Compile and Test

&» Repeat steps 4 and 5 until done

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

17 VNORRAON)

¢e | will not show the entire example in this lecture
¢e But | will show you enough to get you started

¢» Assume code like this exists to create (a portion of) our XML string:

private void writePriceTo (StringBuffer xml, Product product) {
xml . append (“<price”) ;
xml . append (“ currency='") ;
xml . append (product.getCurrency()) ;
xml .append (V' >") ;
xml . append (product.getPrice()) ;
xml . append (“</price>") ;
}

¢e This code writes out the <price> tag portions of the string we saw
previously

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

18 VNORRAON)

Generic Node Class

¢ Looking at our implicit tree string, we notice that each tag has

¢e a name

¢» an optional number of attributes
¢s an optional number of children
&% an optional value

¢» Knowing this, we will design a generic TagNode class (using Test-
Driven Design, for instance) that can handle these characteristics

& A portion of a test for this class might look like

TagNode priceTag = new TagNode (“price”);
priceTag.addAttribute (“currency”, “USD”);
priceTag.addValue (“8.95") ;

assertEquals (“<price currency=...”, priceTag.toString())

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

19 VNORRAON)

TagNode Class

public class TagNode ({
private String name = “”;
private String value = “”;
private StringBuffer attributes;
public TagNode (String name) {
this.name = name;
attributes = new StringBuffer (“”);

}

public void addAttribute (String name, String value) {
attributes.append(“ “+attribute+”=’"+value+”’"”) ;

}

public void addValue (String vlaue) {
this.value = value;

}

public String toString() ({
return “<”+name+attributes+”>”+value+”</”+name+”>";

}

}

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

20 VNORRAON)

Update writePriceTo

e Now that we have a class for the price “implict leaf” we can update
the code that creates that portion of the string

private void writePriceTo (StringBuffer xml, Product product) {
TagNode priceNode = new TagNode (“price”) ;
priceNode.addAttribute (“currency”, product.getCurrency()) ;
priceNode.addValue (product.getPrice()) ;

xml . append (priceNode. toString()) ;
}

& This class handles all of our implicit leaves; and it can handle our
implicit parents too, if we add child management functions to it

¢ This is a case where a single node plays all of the roles in the
Composite pattern: Component, Leaf, and Composite

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

21 RN AUR AR

Updates to TagNode

¢ We need to add a collection class to hold a node’s children

private List children;

&» We need to add a method to get a list of our children
private List children() {
if (children == null) {
children = new LinkedList();

}

return children;

}
¢e Note: this is an example of “lazy creation” with respect to an

instance variable; children remains null until the first time we ask
for a list of a node’s children; we do not initialize the instance
variable until we need it

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

22 RN AUR AR

Updates to TagNode continued

¢ We need a method to add a child to a node
public void add(TagNode child) {
children() .add(child) ;

}
¢s Finally, we need to modify the tostring () method to handle a

node’s children
public String toString() {
String result = “<”+namet+attributes+”>"
Iterator itr = children.iterator();
while (itr.hasNext()) {
TagNode node = (TagNode)itr.next():;
result += node.toString();
result += value;
result += ”“</”+name+”>";
return result;

}

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

23 VNORRAON)

Update Price method

¢e We can now update the method that prints our Price info to simply
create a priceNode and add it to its parent (in this case a product)

private void writePriceTo (TagNode parent, Product product) ({
TagNode priceNode = new TagNode (“price”) ;
priceNode.addAttribute (“currency”, product.getCurrency()) ;
priceNode.addValue (product.getPrice()) ;

parent.add (priceNode) ;
}

&e And, we can update the method that previously created the implicit
product node to create an actual product node and call the updated
method above to get a price node added to it

& See next slide

¢» Note: we have not previously shown this method

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

24 RN AUR AR

Updated Product Method

private void writeProductsTo (TagNode orderNode, Order order) {
for (int j=0; j<order.getProductCount(); j++) {
Product product = order.getProduct(j) ;
TagNode productNode = new TagNode (“product”) ;
productNode.addAttribute (“id”, product.getId())
productNode.addAttribute (“color”, product.getColor())

writePriceTo (productTag, product) ;
productTag.addValue (product.getName ()) ;
orderNode. add (productTag)

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

25 VNORRAON)

Repeat until done

¢» To complete this refactoring, you would create similar methods for
order and orders nodes of the tree we showed previously

& Your program now explicitly creates a tree structure using the
Composite pattern and can output the XML for that tree with a
single call:

System.out.println(root.toString()) ;

¢ The advantages of doing this refactoring is that you can now easily
add new types of leaf nodes and parent nodes

¢ Plus, our approach to building the tree allows us to create different
XML representations of the tree if needed; we simply build a
different type of tree, perhaps using different nodes/attributes

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

26 VNORRAON)

Move Embellishment to

Decorator

¢ Description
¢» Code provides an embellishment to a class’s core responsibility; Move
the embellishment code to a decorator
& Background
¢» When adding new features to a system, it is common to add new code
to old classes; the new code is said to “embellish” the old code with
new functionality
¢» The problem with this approach is that the embellishment adds new
fields, methods, and logic, all of which exists for special-case behavior
& Motivating Idea
¢ Try to place the new functionality in a decorator and then wrap the
decorator around the original object at runtime when the new
behavior is needed

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

27 RN AUR AR

Litmus Test

& This refactoring should not be used when the target class has a lot
of public methods (where “a lot” depends on context)

& The reason?

¢» The Decorator pattern requires transparent enclosures: decorators
must implement the entire public interface of the target class

& Also, this refactoring is discouraged in situations where client code
must be aware of the decorators, that is the client code checks the
run-time types of the objects that it points at

¢ For instance, beware client code that looks like this:
& if (variable instance of SomeClass) then

¢s If you dynamically wrap an instance of SomeClass with a decorator,
the above code will fail

44} March 31, 2005 © University of Colorado, Boulder, 2005 %1}

28 VNORRAON)

s Identify or create an enclosure type, an interface or class that
declares the public methods needed by clients of the target class

& Find the conditional logic that adds the embellishment to the target
class and remove that logic by applying “Replace Conditional with
Polymorphism”; Compile and Test.

¢ Step 2 produced one or more subclasses of the embellished class.
Transform these subclasses into delegating classes by applying
“Replace Inheritance with Delegation”; Compile and Test

¢ Each delegating class now assigns its delegate to a new instance of
the target class; Ensure that this assignment logic exists in the
delegating class’s constructor and gets access to the delegate via a
parameter; Compile and Test

44} March 31, 2005 © University of Colorado, Boulder, 2005 %1}

29 VNORRAON)

e Embellishments on StringNode of the HTML Parser project
¢» Open Source HTML parser
¢ http://sourceforge.net/projects/htmiparser/
& StringNode is used to store text found in HTML files
¢» HTML often has text that looks like this:
& “The Testing & Refactoring Workshop”

¢» The string “&” is a character entity that needs to be translated to
the character “&” when displayed to a user or otherwise processed by
client software

¢ One of the embellishments to StringNode handled decoding these
entity references; another embellishment was stripping escape
characters (such as \n, \t, \r, etc.) from StringNodes

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

30 RN AUR AR

Problem

¢» These embellishments were not implemented as decorators on the
StringNode class. Instead, the embellishments were implemented
via options on the HTML Parser class and boolean flags within the
StringNode class

¢ Thus, a programmer who wanted StringNodes to be decoded would
write code like this:

&, Parser parser = Parser.createParser(...);
& parser.setNodeDecoding (true) ;

&» When StringNodes were created, they would be passed this flag as
a parameter

&, StringNode s = new StringNode(..., parser.shouldDecodeNodes()) ;

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

31 RN

Problem, continued

s Then, when a StringNode was asked for its contents, it would check
whether it should decode the text string before returning it to the
client
public class StringNode...

public String toPlainTextString() ({
String result = textBuffer.toString() ;
if (shouldDecode)

result = Translate.decode (result) ;
return result;

}
}

¢ This approach to embellishing StringNode will not scale well;
requiring a new flag in toPlainTextString(), a new method in Parser,
and a new parameter in StringNode’s constructor for each
embellishment

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

32 RN

Applying the Refactoring

& Identifying an enclosure type
¢s The HTML Parser framework had the following class hierarchy
¢» Node—AbstractNode— StringNode

¢» After analysis, the author selects Node as the enclosure type (the
class defining the public interface shared by the target class,
StringNode, and our new decorator, DecodingNode)

¢» The key factor was finding a class that did not define any instance
variables (to avoid having decorators from needlessly inheriting them)

First Step: create new subclass, DecodingNode

¢» Node—AbstractNode— StringNode—DecodingNode
Second Step: make Decoding Node a delegating class
¢» Node—DecodingNode

oo — AbstractNode— StringNode

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

Ydddddy

Second Step: Replace

Conditional with Polymorphism

¢ Our “conditional” in this instance is the code that looked like this in
toPlainTextString():
if (shouldDecode)
result = Translate.decode (result) ;
& First, we encapsulate this field within StringNode, like so
s Change constructor
public StringNode(..., boolean shouldDecode) {

setShouldDecode (shouldDecode)

& Change toPlainTextString()
if (shouldDecode()) {

result = Translate.decode (result) ;

¢» Add instance variable, getter and setter methods (not shown)
private boolean shouldDecode;

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

Ydddddy

Step 2, continued

¢ Now we create our subclass

public class DecodingNode extends StringNode ({
public DecodingNode(...) {
super(...);
}
protected boolean shouldDecode() {
return true; -- Decoding Node always decodes

}
}

e We update StringNode to no longer require the shouldDecode
parameter to its constructor and update its shouldDecode() method
to always return false; we also delete the shouldDecode instance
variable and its associated setter method

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

35 RN AUR AR

¢e We now add a factory method to the StringNode class that returns
the appropriate object based on a shouldDecode parameter; this
method returns a value of type Node, the enclosure type
public class StringNode...
public static Node createStringNode(..., boolean shouldDecode) {
if (shouldDecode)
return new DecodingNode(...);
return new StringNode(...);

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

36 RN AUR AR

Step 2, continued

&« We can now remove the conditional in StringNode’s
toPlainTextString() and add an overriding version of this method in
DecodingNode

¢s In StringNode the method goes from this

public String toPlainTextString() ({
String result = textBuffer.toString() ;
if (shouldDecode()) {
result = Translate.decode (result) ;
return result;

}
¢s to this

public String toPlainTextString() ({
return textBuffer.toString() ;

}

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

37 RN

Step 2 completed

¢ In DecodingNode, we add

public String toPlainTextString() ({
return Translate.decode (super.toPlainTextString()) ;

}
¢» and we can delete the shouldDecode() methods in both classes
& And we are now done with Step 2.

¢» We compile and test to make sure that everything still works

¢» We failed to show one step, which was having the Parser call the new
factory method that we added to StringNode

& We are now ready to convert DecodingNode to a decorator

¢» We start by using the refactoring “Replace Inheritance with
Delegation”

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

38 RN AUR AR

Step 3: Replace Inheritance wit

Delegation

s First, we add a field to DecodingNode that points to itself
private Node delegate = this;

¢ The enclosure type is used to set-up the Decorator pattern

o We now replace any calls to StringNode methods with calls to the
delegate
public class DecodingNode extends StringNode...

public String toPlainTextString() ({
return Translate.decode (delegate.toPlainTextString()) ;

}
}
¢» This code will compile but not run, since it causes an infinite loop; The
delegate object currently points to the calling object!

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

39 RN AUR AR

Step 3, continued

e We now break the inheritance relationship between the two classes

public class DecodingNode implements Node

e DecodingNode now implements the enclosure type interface rather
than being a direct subclass of StringNode

¢» We do this to keep our factory method code happy!

e We now set up the delegate instance variable to point to an
instance of a StringNode

public class DecodingNode implements Node. ..
private Node delegate = null;
public DecodingNode(...) {
delegate = new StringNode(...);

}

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

40 VNORRAON)

Step 3 completed

¢ In DecodingNode, we now implement all of Node’s public methods
¢» Each one simply delegates the task to the delegate instance variable
public void accept(NodeVisitor visitor) { delegate.accept(visitor); }
&% Finally, to make DecodingNode a decorator, we change its

constructor to accept a Node variable to define its delegate
public class DecodingNode implements Node. ..
public DecodingNode (Node delegate) {
this.delegate = delegate;}

e And we update our factory method to use the new constructor
public class StringNode...
public static Node createStringNode(..., boolean shouldDecode) {
if (shouldDecode)
return new DecodingNode (new StringNode(...)):;
return new StringNode(...);

b}

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

41 VNORRAON)

Structure before/after

:Client toPlainTextString() :StringNode

B efO re toPlainTextString()

toPlainTextString() :DecodingNode

Afte r :Client

—
toPlainTextString()
:StringNode
toPIainTextString: =
4} March 31, 2005 © University of Colorado, Boulder, 2005 4}
42 RAURAURND

& Design Patterns can serve as “larger grain” targets for refactoring
¢s As we’ve seen, these “larger grain” refactorings often consist of
multiple “fine grain” refactorings, each which provide some benefit to
the overall code
& This lecture shows how OO techniques build on each other
¢ you can take your knowledge of design patterns and look for ways to
include them into existing systems
¢» you can use your knowledge of refactorings to ensure that these
transformations are incremental and safe

& You ensure safety by writing test cases before the refactoring and
making sure that the changes do not break the functionality of the

existing system
& What’s Next? Domain-Driven Design

4} March 31, 2005 © University of Colorado, Boulder, 2005 4}

