1 VNORRAON)

Lecture 21: Design Patterns
(Part 3)

Kenneth M. Anderson

Object-Oriented Analysis and Design
CSCI 6448 - Spring Semester, 2005

2 RN AUR AR

Credit where Credit is Due

&« Some of the material for this lecture is taken from “Head First
Design Patterns” by Eric and Elisabeth Freeman; as such some of
this material is copyright © O’Reilly, 2004

44} March 29, 2005 © University of Colorado, Boulder, 2005 %1}

3 RN AUR AR

Goals for this (short) lecture

& Cover three more useful design patterns

& Command
& Facade
¢ Proxy

& This will bring the number of design patterns covered in this class
to at least 15

¢» Twelve from lectures 13, 17, and 21 plus Double Dispatch, Blackboard,
and Model-View-Controller.

44} March 29, 2005 © University of Colorado, Boulder, 2005 %1}

4 VNORRAON)

Command

¢» The Command Pattern encapsulates a request as an object, thereby
letting you parameterize other objects with different requests,
queue or log requests, and support undoable operations

&» Consider the operation of a restaurant
¢s You, the Customer, give your Waitress an Order
e The Waitress takes the Order to the kitchen and says “Order Up”

e The Cook prepares your meal from the Order

¢» Think of the order as making calls on the Cook like “makeBurger()”
e A request is given to one object but implemented by another one

¢» This decouples the object making the request from the object that
responds to the request

44} March 29, 2005 © University of Colorado, Boulder, 2005 %1}

5 VNORRAON)

Command’s Structure and Roles

Command
Invoker P execute()

setCommandﬂ undo

Receiver ConcreteCommand public void execute() {
action() execute() -------- receiver.action()
undo() }
Client
—
4} March 29, 2005 © University of Colorado, Boulder, 2005 4}
6 IV

Back to the analogy...

Invoker Command
P execute() Order
setCommandﬂ undo
Waitress
Cook
- ConcreteCommand public void execute() {
actr:)?'n((:)e lver execute() -------- receiver.action()
undo() }
Client Customer
—

4} March 29, 2005 © University of Colorado, Boulder, 2005 4}

7 VNORRAON)

Example: Home Remote Control

¢ Imagine a programmable remote control that can control various
devices around your home

¢s e.g. lights, TV, DVD player, etc.

o We’ll show code that has commands to turn a light on and off and
an undo button to reverse the previously executed command

s First, we need a light class; plays the role of Receiver
public class Light {

public Light(String name) { ... }
public void on() { ... }
public void off() { ... }
}
4} March 29, 2005 © University of Colorado, Boulder, 2005 4}
8 RAURAURND

Command Interface; LightOn

¢e Next, we need the Command interface
public interface Command {
public void execute() ;

public void undo() ;
}

¢¢ And a Command to turn the Light on
public class LightOnCommand implements Command {
Light light;
public LightOnCommand (Light light) {this.light = light;}
public void execute() {light.on();}
public void undo() {light.off;}

}

4} March 29, 2005 © University of Colorado, Boulder, 2005 4}

9 RN AUR AR

LightOffCommand

e And, a command to turn the light off
public class LightOffCommand implements Command {
Light light;
public LightOffCommand (Light light) {this.light = light;}
public void execute() {light.off();}
public void undo() {light.on();}

4} March 29, 2005 © University of Colorado, Boulder, 2005 4}

10 VNORRAON)

Remote Control

¢e The remote control stores three commands; acts as Invoker
public class RemoteControl {

Command onCommand;

Command offCommand;

Command undoCommand;

public void setOnCommand (Command c) {onCommand = c;}

public void setOffCommand (Command c) {offCommand = c;}

public void on() { onCommand.execute(); undoCommand = onCommand;}
public void off() { offComand.execute(); undoCommand = offCommand;}

public void undo() {undoCommand.undo() ;}

4} March 29, 2005 © University of Colorado, Boulder, 2005 4}

11 VNORRAON)

Client

& The client configures the remote control and then uses it

public static void main(...) {
RemoteControl rc = new RemoteControl() ;
Light kitchenlight = new Light(“Kitchen”) ;
LightOnCommand on = new LightOnCommand (kitchenLight) ;
LightOffCommand off = new LightOffCommand (kitchenLight) ;
rc.setOnCommand (on) ;
rc.setOffCommand (off) ;

rc.on(); -- Light On
rc.undo(); -- Light Off
}
4} March 29, 2005 © University of Colorado, Boulder, 2005 4}
12 RAURAURND

Facade

¢» The Facade Pattern provides a unified interface to a set of
interfaces in a subsystem. The Facade defines a higher level
interface that makes the subsystem easier to use

& Principle of Least Knowledge
¢ Talk only to your immediate friends
¢ or, for any one object, try to limit its knowledge of other objects
¢ The principle recommends the following
¢ given an object, code in one of its methods can invoke methods on

& the object itself

¢» Objects passed as a parameter to the method

& Any object the method creates

¢s Any components of the object (HAS-A relationships)

4} March 29, 2005 © University of Colorado, Boulder, 2005 4}

13 VNORRAON)

Facade’s Structure and Roles

[Chent |
| |

subsystem classes / \

Clients ask the Facade to
perform a service; the Facade
responds by making
appropriate calls on the

\\ objects contained within the

subsystem; the Client has no
direct access or knowledge of
the classes contained within
the subsystem

4} March 29, 2005 © University of Colorado, Boulder, 2005 4}

14 VNORRAON)

Example: Home Theater System

¢ Imagine a home theater system represented as a bunch of objects

¢» You might have objects like

¢» Amplifier, tuner, DVDPlayer, Projector, CDPlayer, TheaterLights, Screen,
and PopcornPopper

¢» To watch a DVD, you might have to:
&% Turn the popcorn popper on
& Start making popcorn
& Dim the lights
&% Put the screen down
¢ Turn the projector on
& Set the projector input to DVD

4} March 29, 2005 © University of Colorado, Boulder, 2005 4}

15 ARAVRRRON)

Watching a DVD via Code

& In code, this cooresponds to manipulating a lot of different objects

popper.on();
popper.pop();
lights.dim(10); Plus, if you want to watch TV, you may
screen.down(); need a way to undo these settings and
oct . then configure your system for TV
projector.on(); viewing
projector.setinput(dvd);
4} March 29, 2005 © University of Colorado, Boulder, 2005 4}
16 IVLIIL L

Facade to the Rescue

¢ Lets create an object to simplify our interactions with the Home
Theatre “sub system”

& For instance:

HomeTheaterFacade
watchMovie()
endMovie()
watchTV()
endTV()
playCD()
endCD()

&» We would now only call these methods and not interact directly with
the individual components

4} March 29, 2005 © University of Colorado, Boulder, 2005 4}

17 VNORRAON)

Implement watchMovie()

e watchMovie() would look something like this
public void watchMovie(...) {

popper.on(); popper.pop();
lights.dim(10) ; screen.down() ;
projector.on() ;

}
& while endMovie() would look something like this

public void endMovie() {
popper.off; lights.on();
screen.up () ; projector.off();

4} March 29, 2005 © University of Colorado, Boulder, 2005 4}

18 VNORRAON)

¢» The Proxy Pattern provides a surrogate or placeholder for another
object to control access to it

& Use the Proxy pattern to create a representative object that
controls access to another object, which may be remote, expensive
to create or in need of securing

¢» Two common forms of the proxy pattern

¢» Remote Proxy: used in client-server programming; code on the client
side interacts with a proxy object that forwards method invocations to
an object on the server side

¢» Virtual proxy: some objects are expensive to create (example: large,
high-resolution images); client code interacts with a proxy to avoid
creating the expensive object for as long as possible

4} March 29, 2005 © University of Colorado, Boulder, 2005 4}

Ydddddy

Proxy’s Structure and Roles

' Subject .
Proxy may «interface»
handle request l request() l
itself or forward
to RealSubject
/ \
\ / \
\ / . A
| Client | \ Proxy | subject RealSubject |
| | » i request() | » i request() |
4} March 29, 2005 © University of Colorado, Boulder, 2005 4}
RN AR

Example: Image Files

& On the class website, you can download code that implements the

virtual proxy pattern
¢» An ImageProxy class is used to display an “Image Loading” message
while image data is loaded in a background thread

& Once the image is loaded, the proxy delegates calls to the actual image

¢» Note: if you compile this code on your own machine, you will need to
modify the uselmageProxy.java file to point to image files located on

your computer

© University of Colorado, Boulder, 2005

- March 29, 2005

