
Lecture 21: Design Patterns

(Part 3)
Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2005

1

March 29, 2005 © University of Colorado, Boulder, 2005

2

Credit where Credit is Due
Some of the material for this lecture is taken from “Head First

Design Patterns” by Eric and Elisabeth Freeman; as such some of

this material is copyright © O’Reilly, 2004

March 29, 2005 © University of Colorado, Boulder, 2005

3

Goals for this (short) lecture
Cover three more useful design patterns

Command

Facade

Proxy

This will bring the number of design patterns covered in this class

to at least 15

Twelve from lectures 13, 17, and 21 plus Double Dispatch, Blackboard,

and Model-View-Controller.

March 29, 2005 © University of Colorado, Boulder, 2005

Command
The Command Pattern encapsulates a request as an object, thereby

letting you parameterize other objects with different requests,

queue or log requests, and support undoable operations

Consider the operation of a restaurant

You, the Customer, give your Waitress an Order

The Waitress takes the Order to the kitchen and says “Order Up”

The Cook prepares your meal from the Order

Think of the order as making calls on the Cook like “makeBurger()”

A request is given to one object but implemented by another one

This decouples the object making the request from the object that

responds to the request

4

March 29, 2005 © University of Colorado, Boulder, 2005

Command’s Structure and Roles

5

Client

Receiver

action()

Invoker

setCommand()

Command

execute()
undo()

ConcreteCommand

execute()
undo()

public void execute() {
 receiver.action()
}

March 29, 2005 © University of Colorado, Boulder, 2005

Back to the analogy...

6

Client

Receiver

action()

Invoker

setCommand()

Command

execute()
undo()

ConcreteCommand

execute()
undo()

public void execute() {
 receiver.action()
}

Waitress

Cook

Order

Customer

March 29, 2005 © University of Colorado, Boulder, 2005

Example: Home Remote Control

7

Imagine a programmable remote control that can control various

devices around your home

e.g. lights, TV, DVD player, etc.

We’ll show code that has commands to turn a light on and off and

an undo button to reverse the previously executed command

First, we need a light class; plays the role of Receiver

public class Light {

public Light(String name) { ... }

public void on() { ... }

public void off() { ... }

}

March 29, 2005 © University of Colorado, Boulder, 2005

Command Interface; LightOn
Next, we need the Command interface

public interface Command {

public void execute();

public void undo();

}

And a Command to turn the Light on

public class LightOnCommand implements Command {

Light light;

public LightOnCommand(Light light) {this.light = light;}

public void execute() {light.on();}

public void undo() {light.off;}

}

8

March 29, 2005 © University of Colorado, Boulder, 2005

LightOffCommand
And, a command to turn the light off

public class LightOffCommand implements Command {

Light light;

public LightOffCommand(Light light) {this.light = light;}

public void execute() {light.off();}

public void undo() {light.on();}

}

9

March 29, 2005 © University of Colorado, Boulder, 2005

Remote Control
The remote control stores three commands; acts as Invoker

public class RemoteControl {

Command onCommand;

Command offCommand;

Command undoCommand;

public void setOnCommand(Command c) {onCommand = c;}

public void setOffCommand(Command c) {offCommand = c;}

public void on() { onCommand.execute(); undoCommand = onCommand;}

public void off() { offComand.execute(); undoCommand = offCommand;}

public void undo() {undoCommand.undo();}

}

10

March 29, 2005 © University of Colorado, Boulder, 2005

Client
The client configures the remote control and then uses it

public static void main(...) {

RemoteControl rc = new RemoteControl();

Light kitchenLight = new Light(“Kitchen”);

LightOnCommand on = new LightOnCommand(kitchenLight);

LightOffCommand off = new LightOffCommand(kitchenLight);

rc.setOnCommand(on);

rc.setOffCommand(off);

rc.on(); -- Light On

rc.undo(); -- Light Off

}

11

March 29, 2005 © University of Colorado, Boulder, 2005

Facade
The Facade Pattern provides a unified interface to a set of

interfaces in a subsystem. The Facade defines a higher level

interface that makes the subsystem easier to use

Principle of Least Knowledge

Talk only to your immediate friends

or, for any one object, try to limit its knowledge of other objects

The principle recommends the following

given an object, code in one of its methods can invoke methods on

the object itself

Objects passed as a parameter to the method

Any object the method creates

Any components of the object (HAS-A relationships)

12

March 29, 2005 © University of Colorado, Boulder, 2005

Facade’s Structure and Roles

13

Client Facade

request()

subsystem classes

Clients ask the Facade to

perform a service; the Facade

responds by making

appropriate calls on the

objects contained within the

subsystem; the Client has no

direct access or knowledge of

the classes contained within

the subsystem

March 29, 2005 © University of Colorado, Boulder, 2005

Example: Home Theater System

14

Imagine a home theater system represented as a bunch of objects

You might have objects like

Amplifier, tuner, DVDPlayer, Projector, CDPlayer, TheaterLights, Screen,

and PopcornPopper

To watch a DVD, you might have to:

Turn the popcorn popper on

Start making popcorn

Dim the lights

Put the screen down

Turn the projector on

Set the projector input to DVD

...

March 29, 2005 © University of Colorado, Boulder, 2005

Watching a DVD via Code
In code, this cooresponds to manipulating a lot of different objects

popper.on();

popper.pop();

lights.dim(10);

screen.down();

projector.on();

projector.setInput(dvd);

...

15

Plus, if you want to watch TV, you may

need a way to undo these settings and

then configure your system for TV

viewing

March 29, 2005 © University of Colorado, Boulder, 2005

Facade to the Rescue
Lets create an object to simplify our interactions with the Home

Theatre “sub system”

For instance:

We would now only call these methods and not interact directly with

the individual components

16

HomeTheaterFacade

watchMovie()
endMovie()
watchTV()
endTV()
playCD()
endCD()

March 29, 2005 © University of Colorado, Boulder, 2005

Implement watchMovie()
watchMovie() would look something like this

public void watchMovie(...) {

popper.on(); popper.pop();

lights.dim(10); screen.down();

projector.on(); ...

}

while endMovie() would look something like this

public void endMovie() {

popper.off; lights.on();

screen.up(); projector.off();

...

}

17

March 29, 2005 © University of Colorado, Boulder, 2005

Proxy
The Proxy Pattern provides a surrogate or placeholder for another

object to control access to it

Use the Proxy pattern to create a representative object that

controls access to another object, which may be remote, expensive

to create or in need of securing

Two common forms of the proxy pattern

Remote Proxy: used in client-server programming; code on the client

side interacts with a proxy object that forwards method invocations to

an object on the server side

Virtual proxy: some objects are expensive to create (example: large,

high-resolution images); client code interacts with a proxy to avoid

creating the expensive object for as long as possible

18

March 29, 2005 © University of Colorado, Boulder, 2005

Proxy’s Structure and Roles

19

Subject
«interface»

request()

RealSubject
request()

Proxy
request()

Client subject

Proxy may
handle request
itself or forward
to RealSubject

March 29, 2005 © University of Colorado, Boulder, 2005

Example: Image Files

20

On the class website, you can download code that implements the

virtual proxy pattern

An ImageProxy class is used to display an “Image Loading” message

while image data is loaded in a background thread

Once the image is loaded, the proxy delegates calls to the actual image

Note: if you compile this code on your own machine, you will need to

modify the useImageProxy.java file to point to image files located on

your computer

