
Lecture 20: Test-Driven
Development
Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2005

1

March 17, 2005 © University of Colorado, Boulder, 2005

2

Credit where Credit is Due
Some of the material for this lecture is taken from “Test-Driven
Development” by Kent Beck; as such some of this material is
copyright © Addison Wesley, 2003

March 17, 2005 © University of Colorado, Boulder, 2005

3

Goals for this lecture
Introduce the concept of Test-Driven Development (TDD)

Present an example

March 17, 2005 © University of Colorado, Boulder, 2005

4

Test-Driven Development
The idea is simple

No production code is written except to make a failing test pass

Implication

You have to write test cases before you write code

March 17, 2005 © University of Colorado, Boulder, 2005

5

Writing Test Cases First
This means that when you first write a test case, you may be testing
code that does not exist

And since that means the test case will not compile, obviously the test
case “fails”

After you write the skeleton code for the objects referenced in the test
case, it will now compile, but also may not pass

So, then you write the simplest code that will then make the test case
pass

March 17, 2005 © University of Colorado, Boulder, 2005

Example
Consider writing a program to score the game of bowling

You might start with the following test

public class TestGame extends TestCase {

public void testOneThrow() {

Game g = new Game();

g.addThrow(5);

assertEquals(5, g.getScore());

}

}

When you compile this program, it fails because the “Game” class
does not yet exist

6

March 17, 2005 © University of Colorado, Boulder, 2005

Example, continued
You would now write the Game class

public class Game {

public void addThrow(int pins) {

}

public int getScore() {

return 0;

}

}

The test code now compiles but the test will still fail

In Test-Driven Design, Beck recommends taking small, simple steps

So, we get the test case to compile before we get it to pass

7

March 17, 2005 © University of Colorado, Boulder, 2005

Example, continued
Once we confirm that the test still fails, we would then write the
simplest code to make the test case pass; that would be

public class Game {

public void addThrow(int pins) {

}

public int getScore() {

return 5;

}

}

The test case now passes!

8

March 17, 2005 © University of Colorado, Boulder, 2005

9

TDD Life Cycle
The life cycle of test-driven development is

Quickly add a test

Run all tests and see the new one fail

Make a simple change

Run all tests and see them all pass

Refactor to remove duplication

This cycle is followed until you have met your goal; note that this
cycle simply adds testing to the “add functionality; refactor” loop of
refactoring covered in the last two lectures

March 17, 2005 © University of Colorado, Boulder, 2005

10

TDD Life Cycle, continued
Kent Beck likes to perform TDD within a Testing Framework, such
as JUnit, within such frameworks

failing tests are indicated with a “red bar”

passing tests are shown with a “green bar”

As such, the TDD life cycle is sometimes described as

“red bar/green bar/refactor”

March 17, 2005 © University of Colorado, Boulder, 2005

11

Example Background:
Multi-Currency Money

Lets design a system that will allow us to perform financial
transactions with money that may be in different currencies

e.g. if we know that the exchange rate from Swiss Francs to U.S.
Dollars is 2 to 1 then we can calculate expressions like

5 USD + 10 CHF = 10 USD

or

5 USD + 10 CHF = 20 CHF

March 17, 2005 © University of Colorado, Boulder, 2005

12

Starting From Scratch
Lets start developing such an example

How do we start?

TDD recommends writing a list of things we want to test

This list can take any format, just keep it simple

Example

$5 + 10 CHF = $10 if rate is 2:1

$5 * 2 = $10

March 17, 2005 © University of Colorado, Boulder, 2005

13

First Test
The first test case looks a bit complex, lets start with the second

5 USD * 2 = 10 USD

First, we write a test case

public void testMultiplication() {

Dollar five = new Dollar(5);

five.times(2);

assertEquals(10, five.amount)

}

March 17, 2005 © University of Colorado, Boulder, 2005

14

Discussion on Test Case
public void testMultiplication() {

Dollar five = new Dollar(5);

five.times(2);

assertEquals(10, five.amount)

}

What benefits does this provide?

target class plus some of its interface

we are designing the interface of the Dollar class by thinking about how
we would want to use it

We have made a testable assertion about the state of that class after
we perform a particular sequence of operations

March 17, 2005 © University of Colorado, Boulder, 2005

15

What’s Next?
We need to update our test list

The test case revealed some things about Dollar that we will want to
clean up

We are representing the amount as an integer, which will make it difficult
to represent values like 1.5 USD; how will we handle rounding of factional
amounts?

Dollar.amount is public; violates encapsulation

What about side effects?; we first declared our variable as “five” but after
we performed the multiplication it now equals “ten”

March 17, 2005 © University of Colorado, Boulder, 2005

16

Update Testing List
The New List

5 USD + 10 CHF = 10 USD

$5 * 2 = $10

make “amount” private

Dollar side-effects?

Money rounding?

Now, we need to fix the compile errors

no class Dollar, no constructor, no method: times(), no field: amount

March 17, 2005 © University of Colorado, Boulder, 2005

17

First version of Dollar Class
public class Dollar {

public Dollar(int amount) {

}

public void times(int multiplier) {

}

public int amount;

}

Now our test compiles and fails!

March 17, 2005 © University of Colorado, Boulder, 2005

18

Too Slow?
Note: we did the simplest thing to make the test compile;

now, we are going to do the simplest thing to make the test pass

Is this process too slow?

Yes, as you get familiar with the TDD life cycle you will gain
confidence and make bigger steps

No, taking small simple steps avoids mistakes; beginning
programmers try to code too much before invoking the compiler; they
then spend the rest of their time debugging!

March 17, 2005 © University of Colorado, Boulder, 2005

19

How do we make the test
pass?

Here’s one way

public void times(int multiplier) {

amount = 5 * 2;

}

The test now passes, we received a “green bar”!

Now, we need to “refactor to remove duplication”

But where is the duplication?

Hint: its between the Dollar class and the test case

March 17, 2005 © University of Colorado, Boulder, 2005

20

Refactoring
To remove the duplication of the test data and the hard-wired code
of the times method, we think the following

“We are trying to get a 10 at the end of our test case and we’ve
been given a 5 in the constructor and a 2 was passed as a
parameter to the times method”

So, lets hook things up

March 17, 2005 © University of Colorado, Boulder, 2005

21

First version of Dollar Class
public class Dollar {

public Dollar(int amount) {

 this.amount = amount;

}

public void times(int multiplier) {

 amount = amount * multiplier;

}

public int amount;

}

Now our test compiles and passes, and we didn’t have to cheat!

March 17, 2005 © University of Colorado, Boulder, 2005

22

One loop complete!
Before writing the next test case, we update our testing list

5 USD + 10 CHF = 10 USD

$5 * 2 = $10

make “amount” private

Dollar side-effects?

Money rounding?

March 17, 2005 © University of Colorado, Boulder, 2005

23

One more example
Lets address the “Dollar Side-Effects” item and then move on to
general lessons

So, lets write the next test case

When we called the times operation our variable “five” was pointing at
an object whose amount equaled “ten”; not good

the times operation had a side effect which was to change the value of a
previously created “value object”

Think about it, as much as you might like to, you can’t change a 5 dollar
bill into a 500 dollar bill; the 5 dollar bill remains the same throughout
multiple financial transactions

March 17, 2005 © University of Colorado, Boulder, 2005

24

Next test case
The behavior we want is

public void testMultiplication() {

Dollar five = new Dollar(5);

Dollar product = five.times(2);

assertEquals(10, product.amount);

product = five.times(3);

assertEquals(15, product.amount);

assertEquals(5, five.amount);

}

Note: the last “assert” is redundant; it is implicitly shown to be true by
the second “assert”; I decided to make it explicit

March 17, 2005 © University of Colorado, Boulder, 2005

25

Test fails
The test fails because it won’t compile;

We need to change the signature of the times method; previously it
returned void and now it needs to return Dollar

public Dollar times(int multiplier) {

amount = amount * multiplier;

return null;

}

The test compiles but still fails; as Kent Beck likes to say
“Progress!”

March 17, 2005 © University of Colorado, Boulder, 2005

26

Test Passes
To make the test pass, we need to return a new Dollar object whose
amount equals the result of the multiplication

public Dollar times(int multiplier) {

return new Dollar(amount * multiplier);

}

Test Passes; Cross “Dollar Side Effects?” off the testing list; second
loop complete! (there was no need to refactor in this case);

March 17, 2005 © University of Colorado, Boulder, 2005

27

Discussion of the Example
There is still a long way to go

only scratched the surface

But

we saw the life cycle performed twice

we saw the advantage of writing tests first

we saw the advantage of keeping things simple

we saw the advantage of keeping a testing list to keep track of our
progress

Plus, as we write new code, we will know if we are breaking things
because our old test cases will fail if we do; if the old tests stay
green, we can proceed with confidence

March 17, 2005 © University of Colorado, Boulder, 2005

28

Principles of TDD
Testing List

keep a record of where you want to go;

Beck keeps two lists, one for his current coding session and one for
“later”; You won’t necessarily finish everything in one go!

Test First

Write tests before code, because you probably won’t do it after

Writing test cases gets you thinking about the design of your
implementation; does this code structure make sense? what should
the signature of this method be?

March 17, 2005 © University of Colorado, Boulder, 2005

29

Principles of TDD, continued
Assert First

How do you write a test case?

By writing its assertions first!

Suppose you are writing a client/server system and you want to test
an interaction between the server and the client

Suppose that for each transaction, some string has to have been read
from the server and that the socket used to talk to the server should be
closed after the transaction

Lets write the test case

March 17, 2005 © University of Colorado, Boulder, 2005

30

Assert First
public void testCompleteTransaction {

…

assertTrue(reader.isClosed());

assertEquals(“abc”, reply.contents());

}

Now write the code that will make these asserts possible

March 17, 2005 © University of Colorado, Boulder, 2005

31

Assert First, continued
public void testCompleteTransaction {

Server writer = Server(defaultPort(), “abc”)

Socket reader = Socket(“localhost”, defaultPort());

Buffer reply = reader.contents();

assertTrue(reader.isClosed());

assertEquals(“abc”, reply.contents());

}

Now you have a test case that can drive development

if you don’t like the interface above for server and socket; then
write a different test case

or refactor the test case, after you get the above test to pass

March 17, 2005 © University of Colorado, Boulder, 2005

32

Principles of TDD, continued
Evident Data

How do you represent the intent of your test data

Even in test cases, we’d like to avoid magic numbers; consider this
rewrite of our second “times” test case

public void testMultiplication() {

Dollar five = new Dollar(5);

Dollar product = five.times(2);

assertEquals(5 * 2, product.amount);

product = five.times(3);

assertEquals(5 * 3, product.amount);

}

Replace the “magic numbers” with expressions

March 17, 2005 © University of Colorado, Boulder, 2005

33

Summary
Test-Driven Design is a “mini” software development life cycle that
helps to organize coding sessions and make them more productive

Write a failing test case

Make the simplest change to make it pass

Refactor to remove duplication

Repeat!

March 17, 2005 © University of Colorado, Boulder, 2005

34

Reflections
Test-Driven Design builds on the practices of Agile Design Methods

If you decide to adopt it, not only do you “write code only to make
failing tests pass” but you also get

an easy way to integrate refactoring into your daily coding practices

an easy way to introduce “integration testing/building your system every
day” into your work environment

because you need to run all your tests to make sure that your new code
didn’t break anything; this has the side effect of making refactoring safe

courage to try new things, such as unfamiliar design pattern, because
now you have a safety net

