
Lecture 18: Refactoring
Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 4448/6448 - Spring Semester, 2005

1

March 10, 2005 © University of Colorado, Boulder, 2005

2

Credit where Credit is Due
Some of the material for this lecture and lecture 19 is taken from 
“Refactoring: Improving the Design of Existing Code” by Martin 
Fowler; as such, some material is copyright © Addison Wesley, 1999



March 10, 2005 © University of Colorado, Boulder, 2005

3

Goals for this lecture
Introduce the concept of Refactoring and cover a few examples

In lecture 19, we will present a tutorial that will introduce a few 
additional refactoring techniques

March 10, 2005 © University of Colorado, Boulder, 2005

4

What is Refactoring
Refactoring is the process of changing a software system such that

the external behavior of the system does not change

e.g. functional requirements are maintained

but the internal structure of the system is improved

This is sometimes called

“Improving the design after it has been written”



March 10, 2005 © University of Colorado, Boulder, 2005

5

(Very) Simple Example
Consolidate Duplicate Conditional Fragments (page 243); This

if (isSpecialDeal()) {
total = price * 0.95;
send()

} else {
total = price * 0.98;
send()

}

becomes this

if (isSpecialDeal()) {
total = price * 0.95;

} else {
total = price * 0.98;

}
send();

March 10, 2005 © University of Colorado, Boulder, 2005

6

Refactoring is thus Dangerous!
Manager’s point-of-view

If my programmers spend time “cleaning up the code” then that’s less 
time implementing required functionality (and my schedule is slipping 
as it is!)

To address this concern

Refactoring needs to be systematic, incremental, and safe



March 10, 2005 © University of Colorado, Boulder, 2005

7

Refactoring is Useful Too 
The idea behind refactoring is to acknowledge that it will be difficult 
to get a design right the first time and, as a program’s requirements 
change, the design may need to change

refactoring provides techniques for evolving the design in small 
incremental steps

Benefits

Often code size is reduced after a refactoring

Confusing structures are transformed into simpler structures

which are easier to maintain and understand

March 10, 2005 © University of Colorado, Boulder, 2005

8

A “cookbook” can be useful
“New” Book

Refactoring: Improving the Design of Existing Code

by Martin Fowler (and Kent Beck, John Brant, William Opdyke, and Don 
Roberts)

Similar to the Gang of Four’s Design Patterns

Provides “refactoring patterns”



March 10, 2005 © University of Colorado, Boulder, 2005

9

Principles in Refactoring
Fowler’s definition

Refactoring (noun)

a change made to the internal structure of software to make it easier to 
understand and cheaper to modify without changing its observable 
behavior

Refactoring (verb)

to restructure software by applying a series of refactorings without 
changing its observable behavior

March 10, 2005 © University of Colorado, Boulder, 2005

10

Principles, continued
The purpose of refactoring is

to make software easier to understand and modify

contrast this with performance optimization

again functionality is not changed, only internal structure; however 
performance optimizations often involve making code harder to 
understand (but faster!)



March 10, 2005 © University of Colorado, Boulder, 2005

11

Principles, continued
When you systematically apply refactoring, you wear two hats

adding function

functionality is added to the system without spending any time cleaning 
the code

refactoring

no functionality is added, but the code is cleaned up, made easier to 
understand and modify, and sometimes is reduced in size

March 10, 2005 © University of Colorado, Boulder, 2005

12

Principles, continued
How do you make refactoring safe?

First, use refactoring “patterns”

Fowler’s book assigns “names” to refactorings in the same way that the 
GoF’s book assigned names to patterns

Second, test constantly!

This ties into the extreme programming paradigm, you write tests before 
you write code, after you refactor code, you run the tests and make sure 
they all still pass

if a test fails, the refactoring broke something, but you know about it right 
away and can fix the problem before you move on



March 10, 2005 © University of Colorado, Boulder, 2005

13

Why should you refactor?
Refactoring improves the design of software

without refactoring, a design will “decay” as people make changes to 
a software system

Refactoring makes software easier to understand

because structure is improved, duplicated code is eliminated, etc.

Refactoring helps you find bugs

Refactoring promotes a deep understanding of the code at hand, and 
this understanding aids the programmer in finding bugs and 
anticipating potential bugs

Refactoring helps you program faster

because a good design enables progress

March 10, 2005 © University of Colorado, Boulder, 2005

14

When should you refactor?
The Rule of Three

Three “strikes” and you refactor

refers to duplication of code

Refactor when you add functionality

do it before you add the new function to make it easier to add the 
function

or do it after to clean up the code after the function is added

Refactor when you need to fix a bug

Refactor as you do a code review



March 10, 2005 © University of Colorado, Boulder, 2005

15

Problems with Refactoring
Databases

Business applications are often tightly coupled to underlying 
databases

code is easy to change; databases are not

Changing Interfaces (!!)

Some refactorings require that interfaces be changed

if you own all the calling code, no problem

if not, the interface is “published” and can’t change

Major design changes cannot be accomplished via refactoring

This is why extreme programming says that software engineers need to 
have “courage”!

March 10, 2005 © University of Colorado, Boulder, 2005

16

Refactoring: Where to Start?
How do you identify code that needs to be refactored?

Fowler uses an olfactory analogy (attributed to Kent Beck)

Look for “Bad Smells” in Code

A very valuable chapter in Fowler’s book

It presents examples of “bad smells” and then suggests refactoring 
techniques to apply



March 10, 2005 © University of Colorado, Boulder, 2005

17

Bad Smells in Code
Duplicated Code

bad because if you modify one instance of duplicated code but not the 
others, you (may) have introduced a bug!

Long Method

long methods are more difficult to understand

performance concerns with respect to lots of short methods are largely 
obsolete

March 10, 2005 © University of Colorado, Boulder, 2005

18

Bad Smells in Code
Large Class

Large classes try to do too much, which reduces cohesion

Long Parameter List

hard to understand, can become inconsistent

Divergent Change

Related to cohesion

symptom: one type of change requires changing one subset of 
methods; another type of change requires changing another subset



March 10, 2005 © University of Colorado, Boulder, 2005

19

Bad Smells in Code
Shotgun Surgery

a change requires lots of little changes in a lot of different classes

Feature Envy

A method requires lots of information from some other class

move it closer!

Data Clumps

attributes that clump together (are used together) but are not part of 
the same class

March 10, 2005 © University of Colorado, Boulder, 2005

20

Bad Smells in Code
Primitive Obsession

characterized by a reluctance to use classes instead of primitive data 
types

Switch Statements

Switch statements are often duplicated in code; they can typically be 
replaced by use of polymorphism (let OO do your selection for you!)

Parallel Inheritance Hierarchies

Similar to Shotgun Surgery; each time I add a subclass to one 
hierarchy, I need to do it for all related hierarchies

Note: some design patterns encourage the creation of parallel 
inheritance hierarchies (so they are not always bad!)



March 10, 2005 © University of Colorado, Boulder, 2005

21

Bad Smells in Code
Lazy Class

A class that no longer “pays its way”

e.g. may be a class that was downsized by a previous refactoring, or 
represented planned functionality that did not pan out

Speculative Generality

“Oh I think we need the ability to do this kind of thing someday”

Temporary Field

An attribute of an object is only set in certain circumstances; but an 
object should need all of its attributes

March 10, 2005 © University of Colorado, Boulder, 2005

22

Bad Smells in Code
Message Chains

a client asks an object for another object and then asks that object for 
another object etc. Bad because client depends on the structure of 
the navigation

Middle Man

If a class is delegating more than half of its responsibilities to another 
class, do you really need it? (involves trade-offs, some design patterns 
encourage this (e.g. Decorator))

Inappropriate Intimacy

Pairs of classes that know too much about each other’s private details 
(loss of encapsulation; change one class, the other has to change)



March 10, 2005 © University of Colorado, Boulder, 2005

23

Bad Smells in Code
Alternative Classes with Different Interfaces

Symptom: Two or more methods do the same thing but have different 
signatures for what they do

Incomplete Library Class

A framework class doesn’t do everything you need

March 10, 2005 © University of Colorado, Boulder, 2005

24

Bad Smells in Code
Data Class

These are classes that have fields, getting and setting methods for the 
fields, and nothing else; they are data holders, but objects should be 
about data AND behavior

Refused Bequest

A subclass ignores most of the functionality provided by its superclass

Subclass may not pass the “IS-A” test

Comments (!)

Comments are sometimes used to hide bad code

“…comments often are used as a deodorant” (!)



March 10, 2005 © University of Colorado, Boulder, 2005

25

The Catalog
The refactoring book has 72 refactoring patterns!

I’m only going to cover a few of the more common ones, including

Extract Method

Replace Temp with Query

Move Method

Replace Conditional with Polymorphism

Introduce Null Object

March 10, 2005 © University of Colorado, Boulder, 2005

26

Extract Method
You have a code fragment that can be grouped together

Turn the fragment into a method whose name explains the purpose 
of the fragment

Example, next slide



March 10, 2005 © University of Colorado, Boulder, 2005

27

Extract Method, continued
void printOwing(double amount) {

printBanner()
//print details
System.out.println(“name: ” + _name);
System.out.println(“amount: ” + amount);

}
=============================================
void printOwing(double amount) {

printBanner()
printDetails(amount)

}

void printDetails(double amount) {
System.out.println(“name: ” + _name);
System.out.println(“amount: ” + amount);

}

March 10, 2005 © University of Colorado, Boulder, 2005

28

Replace Temp with Query
You are using a temporary variable to hold the result of an 
expression

Extract the expression into a method; Replace all references to the 
temp with the expression. The new method can then be used in 
other methods

Example, next slide



March 10, 2005 © University of Colorado, Boulder, 2005

29

Replace Temp with Query, 
continued

double basePrice = _quantity * _itemPrice
if (basePrice > 1000)

return basePrice * 0.95;
else

return basePrice * 0.98;
==============================
if (basePrice() > 1000)

return basePrice() * 0.95;
else

return basePrice() * 0.98;
…
double basePrice() {

return _quantity * _itemPrice;
}

March 10, 2005 © University of Colorado, Boulder, 2005

30

Move Method
A method is using more features (attributes and operations) of 
another class than the class on which it is defined

Create a new method with a similar body in the class it uses most. 
Either turn the old method into a simple delegation, or remove it 
altogether

An example of move method is available on the class website



March 10, 2005 © University of Colorado, Boulder, 2005

31

Replace Conditional with 
Polymorphism

You have a conditional that chooses different behavior depending 
on the type of an object

Move each “leg” of the conditional to an overriding method in a 
subclass. Make the original method abstract

March 10, 2005 © University of Colorado, Boulder, 2005

32

Replace Conditional with 
Polymorphism, continued
double getSpeed() {

switch (_type) {
case EUROPEAN:

return getBaseSpeed();
case AFRICAN:

return getBaseSpeed() - getLoadFactor() * 
_numberOfCoconuts;

case NORWEGIAN_BLUE:
return (_isNailed) ? 0 : getBaseSpeed(_voltage);

}
throw new RuntimeException(“Unreachable”)

}



March 10, 2005 © University of Colorado, Boulder, 2005

33

Replace Conditional with 
Polymorphism, continued

See example available from class website for more details.

Bird

getSpeed()

European

getSpeed()

African

getSpeed()

Norwegian Blue

getSpeed()

March 10, 2005 © University of Colorado, Boulder, 2005

34

Introduce Null Object
Repeated checks for a null value (see below)

Rather than returning a null value from findCustomer() return an 
instance of a “null customer” object

...
Customer c = findCustomer(...);
...
if (customer == null) {

name = “occupant”
} else {

name = customer.getName()
}
if (customer == null) {
...

Customer

getName()

NullCustomer

getName()



March 10, 2005 © University of Colorado, Boulder, 2005

35

Introduce Null Object
public class nullCustomer {
! public String getName() { return “occupant”;}
}
===========================
Customer c = findCustomer(...);
name = c.getName();

The conditional goes away entirely!!

In Fowler’s book, this technique is presented as a refactoring; in 
other contexts, its presented as a design pattern

Either way, its very useful!

March 10, 2005 © University of Colorado, Boulder, 2005

Next Lecture
In lecture 19, we will build on this introduction with an extended 
refactoring example

multiple steps

multiple techniques

The code for this example is available on the class website (located in 
the “tutorial” directory of the refactoring.[tar.gz|zip] archive

36


