1 VNORRAON)

Lecture 18: Refactoring

Kenneth M. Anderson

Object-Oriented Analysis and Design
CSCI 4448/6448 - Spring Semester, 2005

2 RN AUR AR

Credit where Credit is Due

e Some of the material for this lecture and lecture 19 is taken from
“Refactoring: Improving the Design of Existing Code” by Martin
Fowler; as such, some material is copyright © Addison Wesley, 1999

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

3 RN AUR AR

Goals for this lecture

& Introduce the concept of Refactoring and cover a few examples

¢e In lecture 19, we will present a tutorial that will introduce a few
additional refactoring techniques

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

4 VNORRAON)

What is Refactoring

& Refactoring is the process of changing a software system such that

¢» the external behavior of the system does not change
& e.g. functional requirements are maintained
¢s but the internal structure of the system is improved
& This is sometimes called

¢ “Improving the design after it has been written”

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

5 VNORRAON)

(Very) Simple Example

¢« Consolidate Duplicate Conditional Fragments (page 243); This

if (isSpecialDeal()) {
total = price * 0.95;
send ()

} else {
total = price * 0.98;
send ()

}

& becomes this

if (isSpecialDeal()) {
total = price * 0.95;
} else {
total = price * 0.98;
}

send() ;

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

6 RN AUR AR

Refactoring is thus Dangerous!

&» Manager’s point-of-view

¢s If my programmers spend time “cleaning up the code” then that’s less
time implementing required functionality (and my schedule is slipping
as itis!)
& To address this concern
¢» Refactoring needs to be systematic, incremental, and safe

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

7 VNORRAON)

Refactoring is Useful Too

¢ The idea behind refactoring is to acknowledge that it will be difficult
to get a design right the first time and, as a program’s requirements
change, the design may need to change

¢s refactoring provides techniques for evolving the design in small
incremental steps

& Benefits
¢» Often code size is reduced after a refactoring

¢» Confusing structures are transformed into simpler structures

¢ Which are easier to maintain and understand

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

8 RN AUR AR

A “cookbook” can be useful

& “New” Book

¢ Refactoring: Improving the Design of Existing Code

¢ by Martin Fowler (and Kent Beck, John Brant, William Opdyke, and Don
Roberts)

¢ Similar to the Gang of Four’s Design Patterns

¢s Provides “refactoring patterns”

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

9 RN AUR AR

Principles in Refactoring

& Fowler’s definition

¢ Refactoring (noun)

& a change made to the internal structure of software to make it easier to
understand and cheaper to modify without changing its observable
behavior

¢» Refactoring (verb)

¢ to restructure software by applying a series of refactorings without
changing its observable behavior

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

10 VNORRAON)

Principles, continued

¢ The purpose of refactoring is

ss to make software easier to understand and modify
¢ contrast this with performance optimization

¢ again functionality is not changed, only internal structure; however
performance optimizations often involve making code harder to
understand (but faster!)

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

Ydddddy

Principles, continued

¢» When you systematically apply refactoring, you wear two hats
¢» adding function

& functionality is added to the system without spending any time cleaning
the code

& refactoring

¢» no functionality is added, but the code is cleaned up, made easier to
understand and modify, and sometimes is reduced in size

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

Ydddddy

Principles, continued

e How do you make refactoring safe?

es First, use refactoring “patterns”

& Fowler’s book assigns “names” to refactorings in the same way that the
GoF’s book assigned names to patterns

& Second, test constantly!

¢s This ties into the extreme programming paradigm, you write tests before

you write code, after you refactor code, you run the tests and make sure
they all still pass

& if a test fails, the refactoring broke something, but you know about it right
away and can fix the problem before you move on

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

13 VNORRAON)

Why should you refactor?

¢ Refactoring improves the design of software

¢ without refactoring, a design will “decay” as people make changes to
a software system

¢ Refactoring makes software easier to understand
¢» because structure is improved, duplicated code is eliminated, etc.
¢» Refactoring helps you find bugs

¢» Refactoring promotes a deep understanding of the code at hand, and
this understanding aids the programmer in finding bugs and
anticipating potential bugs

& Refactoring helps you program faster

¢» because a good design enables progress

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

14 VNORRAON)

When should you refactor?

s The Rule of Three

¢ Three “strikes” and you refactor

& refers to duplication of code
¢ Refactor when you add functionality

¢ do it before you add the new function to make it easier to add the
function

¢ or do it after to clean up the code after the function is added

efactor when you need to fix a bug

ee R
Refactor as you do a code review

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

15 ARAVRRRON)

Problems with Refactoring

& Databases

¢» Business applications are often tightly coupled to underlying
databases

¢ code is easy to change; databases are not
¢» Changing Interfaces (!)
¢» Some refactorings require that interfaces be changed
& if you own all the calling code, no problem
& if not, the interface is “published” and can’t change
¢» Major design changes cannot be accomplished via refactoring

¢e This is why extreme programming says that software engineers need to
have “courage”!

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

16 VNORRAON)

Refactoring: Where to Start?

¢» How do you identify code that needs to be refactored?

¢» Fowler uses an olfactory analogy (attributed to Kent Beck)
¢» Look for “Bad Smells” in Code
¢s A very valuable chapter in Fowler’s book

¢s It presents examples of “bad smells” and then suggests refactoring
techniques to apply

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

17 VNORRAON)

Bad Smells in Code

¢ Duplicated Code

¢» bad because if you modify one instance of duplicated code but not the
others, you (may) have introduced a bug!

& Long Method

¢» long methods are more difficult to understand

¢ performance concerns with respect to lots of short methods are largely
obsolete

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

18 VNORRAON)

Bad Smells in Code

&% Large Class

¢» Large classes try to do too much, which reduces cohesion
& Long Parameter List

¢s hard to understand, can become inconsistent
& Divergent Change

& Related to cohesion

¢» symptom: one type of change requires changing one subset of
methods; another type of change requires changing another subset

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

19 VNORRAON)

Bad Smells in Code

¢ Shotgun Surgery

¢ a change requires lots of little changes in a lot of different classes
& Feature Envy
¢» A method requires lots of information from some other class
¢« move it closer!
& Data Clumps

¢» attributes that clump together (are used together) but are not part of
the same class

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

20 VNORRAON)

Bad Smells in Code

& Primitive Obsession

¢» characterized by a reluctance to use classes instead of primitive data
types

& Switch Statements

¢s» Switch statements are often duplicated in code; they can typically be
replaced by use of polymorphism (let OO do your selection for you!)

& Parallel Inheritance Hierarchies

¢» Similar to Shotgun Surgery; each time | add a subclass to one
hierarchy, | need to do it for all related hierarchies

¢» Note: some design patterns encourage the creation of parallel
inheritance hierarchies (so they are not always bad!)

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

21 RN AUR AR

Bad Smells in Code

¢ Lazy Class

¢s A class that no longer “pays its way”

¢ e.g. may be a class that was downsized by a previous refactoring, or
represented planned functionality that did not pan out

&% Speculative Generality
¢s “Oh | think we need the ability to do this kind of thing someday”
&» Temporary Field

¢» An attribute of an object is only set in certain circumstances; but an
object should need all of its attributes

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

22 RN AUR AR

Bad Smells in Code

& Message Chains

¢s a client asks an object for another object and then asks that object for
another object etc. Bad because client depends on the structure of
the navigation

& Middle Man

¢s If a class is delegating more than half of its responsibilities to another
class, do you really need it? (involves trade-offs, some design patterns
encourage this (e.g. Decorator))

e Inappropriate Intimacy

¢» Pairs of classes that know too much about each other’s private details
(loss of encapsulation; change one class, the other has to change)

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

23 VNORRAON)

Bad Smells in Code

¢e Alternative Classes with Different Interfaces

¢s Symptom: Two or more methods do the same thing but have different
signatures for what they do

& Incomplete Library Class

¢ A framework class doesn’t do everything you need

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

24 RN AUR AR

Bad Smells in Code

& Data Class

¢» These are classes that have fields, getting and setting methods for the
fields, and nothing else; they are data holders, but objects should be
about data AND behavior

& Refused Bequest
¢ A subclass ignores most of the functionality provided by its superclass
¢s Subclass may not pass the “IS-A” test
& Comments (!)
¢s Comments are sometimes used to hide bad code
)

¢ “...comments often are used as a deodorant” (!)

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

25 VNORRAON)

The Catalog

¢ The refactoring book has 72 refactoring patterns!

¢ I’m only going to cover a few of the more common ones, including
& Extract Method
& Replace Temp with Query
& Move Method
¢» Replace Conditional with Polymorphism

&% Introduce Null Object

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

26 VNORRAON)

Extract Method

& You have a code fragment that can be grouped together

& Turn the fragment into a method whose name explains the purpose
of the fragment

& Example, next slide

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

27 RN AUR AR

Extract Method, continued

void printOwing(double amount) {
printBanner ()
//print details
System.out.println(“name: ” + name);
System.out.println(“amount: ” + amount);

void printOwing (double amount) {
printBanner ()
printDetails (amount)

}

void printDetails(double amount) ({
System.out.println(“name: ” + name);
System.out.println(“amount: ” + amount);

}

4} March 10, 2005 © University of Colorado, Boulder, 2005 4}

28 VNORRAON)

Replace Temp with Query

¢ You are using a temporary variable to hold the result of an
expression

¢» Extract the expression into a method; Replace all references to the
temp with the expression. The new method can then be used in
other methods

o Example, next slide

4} March 10, 2005 © University of Colorado, Boulder, 2005 4}

29 VNORRAON)

Replace Temp with Query,

continued

double basePrice = _quantity * _itemPrice
if (basePrice > 1000)

return basePrice * 0.95;
else

return basePrice * 0.98;

if (basePrice() > 1000)
return basePrice() * 0.95;
else
return basePrice() * 0.98;

double basePrice() {
return _quantity * _itemPrice;

}

4} March 10, 2005 © University of Colorado, Boulder, 2005 4}

30 RN AUR AR

Move Method

e A method is using more features (attributes and operations) of
another class than the class on which it is defined

&» Create a new method with a similar body in the class it uses most.
Either turn the old method into a simple delegation, or remove it
altogether

¢» An example of move method is available on the class website

4} March 10, 2005 © University of Colorado, Boulder, 2005 4}

31 RN

Replace Conditional with

Polymorphism

& You have a conditional that chooses different behavior depending
on the type of an object

¢» Move each “leg” of the conditional to an overriding method in a
subclass. Make the original method abstract

4} March 10, 2005 © University of Colorado, Boulder, 2005 4}

32 RN

Replace Conditional with

Polymorphism, continued

double getSpeed() {
switch (_type) {
case EUROPEAN:
return getBaseSpeed() ;
case AFRICAN:
return getBaseSpeed() - getLoadFactor() *
_numberOfCoconuts;
case NORWEGIAN BLUE:
return (_isNailed) ? 0 : getBaseSpeed(_voltage)

}

throw new RuntimeException (“Unreachable”)

}

4} March 10, 2005 © University of Colorado, Boulder, 2005 4}

33 RN AUR AR

Replace Conditional with

Polymorphism, continued

Bird |
|
getSpeed()
| European | African | Norwegian Blue

etSpeed() etSpeed() getSpeed()

See example available from class website for more details.

4} March 10, 2005 © University of Colorado, Boulder, 2005 4}

34 RN

Introduce Null Object

e Repeated checks for a null value (see below)

& Rather than returning a null value from findCustomer() return an
instance of a “null customer” object

| Customer |

e , | |
Customer ¢ = findCustomer(...); getName()

if (customer == null) {
name = “occupant”

} else {
name = customer.getName ()

} { NullCustomer |
if (customer == null) { { |

| getName() l

4} March 10, 2005 © University of Colorado, Boulder, 2005 4}

35 RN AUR AR

Introduce Null Object

public class nullCustomer {
public String getName () { return “occupant”;}

}

Customer ¢ = findCustomer(...);
name = c.getName() ;
¢ The conditional goes away entirely!!

¢ In Fowler’s book, this technique is presented as a refactoring; in
other contexts, its presented as a design pattern

¢» Either way, its very useful!

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

36 RN AUR AR

Next Lecture

¢e In lecture 19, we will build on this introduction with an extended
refactoring example

¢» multiple steps

» multiple techniques

» The code for this example is available on the class website (located in
the “tutorial” directory of the refactoring.[tar.gz|zip] archive

44} March 10, 2005 © University of Colorado, Boulder, 2005 %1}

