
Lecture 17: Design Patterns (part 2)
Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 4448/6448 - Spring Semester, 2005

1

March 8, 2005 © University of Colorado, Boulder, 2005

2

Last Lecture
Design Patterns

Background and Core Concepts

Examples

Singleton, Factory Method, and Adapter

March 8, 2005 © University of Colorado, Boulder, 2005

3

Goals of Lecture
Cover Additional Design Patterns

State

Iterator

Flyweight

Decorator

Observer

Composite

March 8, 2005 © University of Colorado, Boulder, 2005

4

State
Intent

Allow an object to alter its behavior when its internal state changes

Motivation

TCPConnection example

A TCPConnection class must respond to an open operation differently

based on its current state: established, closed, listening, etc.

Previous Example

In lecture 12, we saw the State pattern being used in our

MessageBuilder example

the MessageBuilder would respond differently to timeout events and

selection events based on its current state

March 8, 2005 © University of Colorado, Boulder, 2005

5

State, continued
Applicability

Use State when

an object’s behavior depends on its state

operations have large, multipart conditional statements that depend on

the object’s state

Participants

Context

defines the interface of interest to clients

maintains an instance of a ConcreteState subclass

State

defines an interface for encapsulating the behavior associated with a

particular state of the Context

ConcreteState

each subclass of State implements a different behavior that implements

the correct behavior for a particular state

March 8, 2005 © University of Colorado, Boulder, 2005

State’s Structure and Roles

6

state->operation()

Context

Request()

State

operation()

ConcreteStateA

operation()

ConcreteStateB

operation()

state

March 8, 2005 © University of Colorado, Boulder, 2005

7

State, continued
Collaborations

Context delegates state-specific requests to the current

ConcreteState object

A context may pass itself as an argument to the State object handling

the request

Context is the primary interface for clients

Either Context or ConcreteState subclasses can decide which state

succeeds another and under what circumstances

In the MessageBuilder example of Lecture 12, each ConcreteState object

returned a pointer to the next state

March 8, 2005 © University of Colorado, Boulder, 2005

8

State, continued
Consequences

State localizes state-specific behavior and partitions behavior for

different states

State makes state transitions explicit

State objects can be shared

Example

See the code distributed with Lecture 12 for an example of the State

Pattern

March 8, 2005 © University of Colorado, Boulder, 2005

9

Iterator
Intent

Provide a way to access the elements of an aggregate object (e.g. a

collection class) sequentially without exposing its underlying

representation

Also Known As

Cursor

Motivation

A collection may have multiple ways of being “traversed”; Iterator lets

you keep traversal operations out of the core collection interface

March 8, 2005 © University of Colorado, Boulder, 2005

10

Iterator, continued
Applicability

Use the Iterator pattern
to access the contents of a collection without exposing its internals

to support multiple traversals of collections

to provide a uniform interface for traversing different collections

Participants
Iterator

defines an interface for accessing and traversing elements

ConcreteIterator
implements Iterator interface and keeps track of current position within

collection

Aggregate (Collection Class Interface)
defines an interface for creating an Iterator (factory method)

ConcreteAggregate (Collection Class)
implements the factory method

March 8, 2005 © University of Colorado, Boulder, 2005

Iterator’s Structure and Roles

11

return new

ConcreteIterator(this)

Aggregate

CreateIterator()

Concrete
Aggregate

CreateIterator()

Iterator

hasNext()
next()
remove()

ConcreteIterator

Client

March 8, 2005 © University of Colorado, Boulder, 2005

12

Iterator, continued
Collaborations

A ConcreteIterator keeps track of the current object in the aggregate

and can compute the next object in the traversal

Consequences

The Iterator pattern supports multiple traversals for each collection

(e.g. inorder, preorder, postorder for trees)

Iterators simplify Aggregate interface

More than one traversal can occur on a single collection at once; as

long as the traversal is read-only

March 8, 2005 © University of Colorado, Boulder, 2005

13

Iterator, continued
Implementation

The Iterator interface in the Java Collection classes

java.util.Iterator (interface)

java.util.List (interface)

java.util.LinkedList (class)

java.util.ListIterator (interface)

implementing subclass is private within List class

March 8, 2005 © University of Colorado, Boulder, 2005

14

Flyweight
Intent

Use sharing to support large numbers of fine-grained objects

efficiently

Motivation

Imagine a text editor that creates one object per character in a

document

For large documents, that is a lot of objects!

but for simple text documents, there are only 26 letters, 10 digits, and a

handful of punctuation marks being referenced by all of the individual

character objects

March 8, 2005 © University of Colorado, Boulder, 2005

15

Flyweight, continued
Applicability

Use flyweight when all of the following are true

An application uses a large number of objects

Storage costs are high because of the sheer quantity of objects

Most object state can be made extrinsic

Many groups of objects may be replaced by relatively few shared objects

once extrinsic state is removed

The application does not depend on object identity. Since flyweight

objects may be shared, identity tests will return true for conceptually

distinct objects

March 8, 2005 © University of Colorado, Boulder, 2005

16

Flyweight, continued
Participants

Flyweight

declares an interface through which flyweights can receive and act on

extrinsic state

ConcreteFlyweight

implements Flyweight interface and adds storage for intrinsic state

UnsharedConcreteFlyweight

not all flyweights need to be shared; unshared flyweights typically have

children which are flyweights

FlyweightFactory

creates and manages flyweight objects

Client

maintains extrinsic state and stores references to flyweights

March 8, 2005 © University of Colorado, Boulder, 2005

Flyweight’s Structure and Roles

17

if (flyweights[key] exists) {

return existing flyweight

} else {

create new flyweight

add to pool of flyweights

return the new flyweight

}

FlyweightFactory

GetFlyweight(key)

Flyweight

op(extrinsicState)

Client

flyweights

ConcreteFlyweight

op(extrinsicState)

intrinsicState

March 8, 2005 © University of Colorado, Boulder, 2005

18

Flyweight, continued
Collaborations

Data that a flyweight needs to process must be classified as intrinsic

or extrinsic

Intrinsic is stored with client; Extrinsic is stored with client

Clients should not instantiate ConcreteFlyweights directly

Consequences

Storage savings is a tradeoff between total reduction in number of

objects verses the amount of intrinsic state per flyweight and whether

or not extrinsic state is computed or stored

greatest savings occur when extrinsic state is computed

March 8, 2005 © University of Colorado, Boulder, 2005

19

Flyweight, continued
See code example (released with lecture 13)

Simple implementation of flyweight pattern

Focus is on factory and flyweight rather than on client

Demonstrates how to do simple sharing of characters

March 8, 2005 © University of Colorado, Boulder, 2005

20

Decorator
Intent

Attach additional responsibilities to an object dynamically. Decorators

provide a flexible alternative to subclassing for extending functionality

Also Known As

Wrapper

Motivation

Sometimes we want to add responsibilities to individual objects, not

to an entire class (like adding scrollbars to windows in GUI toolkits)

March 8, 2005 © University of Colorado, Boulder, 2005

21

Decorator, continued
Applicability

Use Decorator

to add responsibilities to individual objects dynamically

for responsibilities that can be withdrawn

when extension by subclassing is impractical

Participants

Component

defines interface of objects to decorate

ConcreteComponent

defines an object to decorate

Decorator and ConcreteDecorator

Decorator maintains a reference to component and defines an interface

that conforms to Component’s interface; ConcreteDecorator adds

responsibilities to the component

March 8, 2005 © University of Colorado, Boulder, 2005

Decorator’s Structure and Roles

22

Component

Operation()

Concrete
Component

Operation()

Decorator

Operation()

Concrete
DecoratorA
AddedState
Operation()

Concrete
DecoratorB

AddedState
Operation()
AddedOperation()

c
o
m
p
o
n
e
n
t

component->Operation()

super->Operation()

AddedOperation()

March 8, 2005 © University of Colorado, Boulder, 2005

23

Decorator, continued
Collaborations

Decorator forwards requests to its Component object. It may

optionally perform additional operations before and after forwarding

the request

Consequences

More flexibility than static inheritance

Avoids feature-laden classes high up in the hierarchy

A decorator and its component are not identical

Lots of little objects

March 8, 2005 © University of Colorado, Boulder, 2005

24

Observer
Intent

Define a one-to-many dependency between objects so that when one

object changes states, all its dependents are notified and updated

automatically

Also Known As

Dependants, Publish-Subscribe

Motivation

Need a way to update dependant objects while avoiding tight coupling

User Interface Example

March 8, 2005 © University of Colorado, Boulder, 2005

25

Observer, continued
Applicability

Use Observer
when an abstraction has two aspects, one dependent on the other

when a change to one object requires changing others

when an object should notify objects but should not make assumptions

about which objects need to be notified

Participants
Subject

provides interface to add and delete observers

Observer
defines an updating interface for dependants

ConcreteSubject
stores the state being observed

ConcreteObserver
stores state that must be consistent with observed state

March 8, 2005 © University of Colorado, Boulder, 2005

Observer’s Structure and Roles

26

for all o in observers

 o->Update()

Subject

Attach(observer)
Detach(observer
Notify()

Observer

Update()
observers

ConcreteObserver

Update()

observerState

subject

ConcreteSubject

GetState()
SetState()

subjectState

subject->GetState()

... update observer state ...

March 8, 2005 © University of Colorado, Boulder, 2005

27

Observer, continued
Collaborations

ConcreteSubject notifies observers whenever it changes its observed

state

After receiving a notification, ConcreteObserver gets state from

ConcreteSubject

see sequence diagram on page 295 of Design Patterns

March 8, 2005 © University of Colorado, Boulder, 2005

28

Observer, continued
Consequences

Abstract coupling between Subject and Observer

Subjects do not know the concrete subclasses of their observers

Support for broadcast communication

Subject does not know who is listening

Unexpected updates

Change in state may update an unintended object, one we didn’t suspect

was an observer, or should only be observing at well-defined times

March 8, 2005 © University of Colorado, Boulder, 2005

29

Composite
Intent

Compose objects into tree structures to represent part-whole

hierarchies

Composite lets clients treat individual objects and compositions of

objects uniformly

 Motivation

Image programs that allow graphic primitives to be grouped into

collections of objects

Many operations are shared, such as move(), copy(), paste(), draw(), etc.

March 8, 2005 © University of Colorado, Boulder, 2005

30

Composite, continued
Applicability

Use Composite when

you want to represent part-whole hierarchies

you want clients to be able to ignore the difference between

compositions of objects and individual objects

March 8, 2005 © University of Colorado, Boulder, 2005

31

Composite, continued
Participants

Component

declares the shared interface

declares child management operations

empty methods for leaves

defines an interface to retrieve parent

Leaf

implements shared interface

Composite

stores children

implements shared interface by delegating to children

implements child management operations

Client

Manipulates objects using the Component interface

March 8, 2005 © University of Colorado, Boulder, 2005

Composite’s Structure and Roles

32

Component

Operation()
Add(Component)
Remove(Component)
GetChild(int)

Leaf

Operation()

Composite

Operation()
Add(Component)
Remove(Component)
GetChild(int)

c
h
il
d
re
n

for all g in children
 g->Operation()

Client

March 8, 2005 © University of Colorado, Boulder, 2005

33

Composite, continued
Collaborations

Client uses the Component interface to interact with all objects

If the recipient is a leaf, then the request is handled directly

If the recipient is a composite, then the request is delegated to its

children

March 8, 2005 © University of Colorado, Boulder, 2005

34

Composite, continued
Consequences

Composite allows primitive objects and composite objects to be

treated transparently

especially since the child management functions are defined in the

Component interface

Composite simplifies code in the client

It makes it easy to add new types of “leaves”

nothing needs to change to add a new type of component (not even the

client)

Disadvantage: Difficult to create composites that have only certain

types of leaves; you need to subclass the Composite class and use

run-time checks to make sure that only “legal” children are added to it

March 8, 2005 © University of Colorado, Boulder, 2005

Summary
Patterns are a design technique that can help you create more

flexible software designs

They describe generic solutions that can be applied to many different

software systems

We have now seen a number of patterns

Adapter, Blackboard, Composite, Decorator, Double Dispatch, Factory

Method, Flyweight, Iterator, Observable, Singleton, State

Note: some patterns built on previous ones

Factory Method appeared in Iterator

A variation of Singleton appeared in Flyweight

35

March 8, 2005 © University of Colorado, Boulder, 2005

What’s Next?
Refactoring

How to improve the structure of a software system without changing

its functionality

Test-Driven Design

How to evolve software systems by writing test cases FIRST!

Spring Break!

Design Patterns, part 3

Command, Facade, and more...

Refactoring to Design Patterns

Domain-Driven Design

Information from the second textbook...

36

