
Lecture 14: Interaction Diagrams

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2005

February 24, 2005 © University of Colorado, 2005 2

Goals for this Lecture

! Introduce the notion of interactions

within OO designs

! Review the UML Notation for Interaction

diagrams

February 24, 2005 © University of Colorado, 2005 3

Behavioral Modeling

! Interactions and Interaction diagrams

allow the dynamic behavior of a system

to be modeled

– Class diagrams allow the static structure of

a system to be modeled

! UML has two diagrams for interactions

– sequence diagrams

– collaboration diagrams

February 24, 2005 © University of Colorado, 2005 4

Interactions

! OO systems do not sit idle

– their objects are constantly interacting with

each other by sending messages

! Formally, an interaction is

– a behavior that comprises a set of

messages exchanged among a set of

objects within a context to accomplish a

purpose

February 24, 2005 © University of Colorado, 2005 5

Interaction Diagrams

! Interaction diagrams provide a notation for

specifying interactions, including notations for

– objects, links, messages, and sequencing

! Interaction diagrams allow analysis of

– the flow of messages in a system over time

– the structural relationships between objects and

how messages are passed within that structure

! Interaction diagrams can be applied to

– classes, operations, components, use cases, etc.

February 24, 2005 © University of Colorado, 2005 6

Quick Overview of Concepts

! Objects - instances of classes

! Links - instances of associations

! Messages - a request made by one object on another

object; a message can only be sent across a link

! Sequencing - messages can be sequenced by time;

as we shall see, message order can be indicated via

numbers or via a top-to-bottom order

– a sequence is valid only for a particular thread;

– UML can specify synchronization across threads using a

variety of constructs; we will see these in action soon!

February 24, 2005 © University of Colorado, 2005 7

Interaction Diagrams

! Two types of interaction diagrams

– sequence diagrams

• useful for modeling messages over time

– collaboration diagrams

• useful for modeling messages across object

structures

February 24, 2005 © University of Colorado, 2005 8

Example: Sequence Diagram

c : Client

:Transaction

p: ODBCProxy

«create»

«destroy»

committed

{transient}

setActions(a, d, o)

setValues(d, 3.4)

setValues(a, “CO”)

lifeline

focus of

control

time

February 24, 2005 © University of Colorado, 2005 9

Example: Collaboration Diagram

c : Client

:Transaction p: ODBCProxy

1 : «create»

3 : «destroy»

{transient}

2 : setActions(a, d, o)

2.1 : setValues(d, 3.4)

2.2 : setValues(a, “CO”)

«local»
«global»

link

message

February 24, 2005 © University of Colorado, 2005 10

Semantic Equivalence

! These examples are semantically
equivalent

– you can convert one diagram into the other
with (almost) no loss of information

– however, each view tends to stress
different details

• for instance, the sequence diagram shows
method return information, while the
collaboration diagram contains information on
how the objects are linked

February 24, 2005 © University of Colorado, 2005 11

Details: Links

! A link is a path along which a message can
be sent; there are different types of links
– association: the link is present due to a class

association

– self: an object can send a message to itself

– global: a link to an object is possible because the
object exists in an enclosing scope

– local: a link to an object is possible because the
object exists in a local scope

– parameter: a link to the object is possible
because the object was passed as a parameter

February 24, 2005 © University of Colorado, 2005 12

Details: Messages

! A message is a request for action or a query

for information

! UML supports several pre-defined message

types

– call: invokes an operation on an object

– return: returns a value to the caller

– send: sends a signal to an object

– create: creates an object

– destroy: destroys an object

February 24, 2005 © University of Colorado, 2005 13

Details: Message Type Example

c: Client

: TicketAgent

p : PlanningAssistant

«create»

«destroy»

notify()

setItinerary(i)

calculateRoute()

route

February 24, 2005 © University of Colorado, 2005 14

Iteration and Branching

! Interaction diagrams can support both iteration and branching

! Iteration is indicated with an asterick followed by an optional

iteration expression, followed by the message name; “||”

indicates parallel execution

– * dialDigit()

– * [i := 1..n] updateAccount(i)

– * [i := 1..n] || q[i].calculateScore()

! Branching is indicated with a boolean condition that appears

before the sequence number or message name

– [x >= 0] doThis

– [x < 0] doThat

! See examples in class [UML ref. manual, page. 529 and 530]

February 24, 2005 © University of Colorado, 2005 15

Synchronizing Flows of Control

! In the previous example, notify() was an

asynchronous message between two different flows

of control

! Normally, flows of control are associated with active

objects (e.g. threads) and a designer must take care

to sequence the interactions between distinct flows

– In collaboration diagrams, you can label each flow of control

with a different flow identifier

– but that’s about it…interaction diagrams have weak

notations for synchronizing flows

February 24, 2005 © University of Colorado, 2005 16

Example of Multiple Flows

s: StockTicker

i: IndexWatcher

m: AlertManager

c: CNNNewsFeed

t: TradingManager

a1: Analyst

a2: Analyst

i1 : postValue()

i2 : postAlert()

How do we protect

the AlertManager’s

postAlert routine?

s2 : postAlert()

s1 : postValue()

c1: postBreakingStory()

m1 : postAlert()

February 24, 2005 © University of Colorado, 2005 17

Object Transformation

! Objects evolve over time, and this evolution can be
explicitly captured in Interaction diagrams
– In particular, the «become» stereotype is used to indicate

that two objects in the same diagram are actually the same
object at different points in time

– Less commonly used, the «copy» stereotype can be used to
indicate that an object is an exact copy of some other object;
the copies can then evolve independently

! These stereotypes are typically used in collaboration
diagrams; in sequence diagrams, object evolution is
shown by redrawing a new version of the object lower
on its lifeline

February 24, 2005 © University of Colorado, 2005 18

Object Transformation Example

r: RegistrarAgent

s: Student

c1: Course c2: Course

: School

s: Student

registered = false registered = true

{association} {association}

{
as

so
ci

at
io

n
}

1. «create»

3. register()

2. addStudent(s)

3.4: «become»

3.2: add(s)
3.3: add(s)

3.1: getSchedule()

{self}

