
Lecture 13: Design Patterns
Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2005

1

February 22, 2005 © University of Colorado, Boulder, 2005

2

Pattern Resources
Pattern Languages of Programming

Technical conference on Patterns

The Portland Pattern Repository

http://c2.com/ppr/

Patterns Homepage

http://hillside.net/

Go to page then click on “Patterns tab”

February 22, 2005 © University of Colorado, Boulder, 2005

3

Design Patterns
Addison-Wesley book published in 1995

Erich Gamma

Richard Helm

Ralph Johnson

John Vlissides

ISBN 0-201-63361-2

Known as “The Gang of Four”

Presents 23 Design Patterns

Material in this lecture and lecture 26 is drawn from this book, and

is thus copyright © 1995 by Addison-Wesley Publishing Company

February 22, 2005 © University of Colorado, Boulder, 2005

4

What are Patterns?
Christopher Alexander talking about buildings and towns

“Each pattern describes a problem which occurs over and over again

in our environment, and then describes the core of the solution to that

problem, in such a way that you can use this solution a million times

over, without ever doing it the same way twice”

Alexander, et al., A Pattern Language. Oxford University Press, 1977

February 22, 2005 © University of Colorado, Boulder, 2005

5

Patterns, continued
Patterns can have different levels of abstraction

In Design Patterns (the book),

Patterns are not classes

Patterns are not frameworks

Instead, Patterns are descriptions of communicating objects and

classes that are customized to solve a general design problem in a

particular context

February 22, 2005 © University of Colorado, Boulder, 2005

6

Patterns, continued
So, patterns are formalized solutions to design problems

They describe techniques for maximizing flexibility, extensibility,

abstraction, etc.

These solutions can typically be translated to code in a

straightforward manner

February 22, 2005 © University of Colorado, Boulder, 2005

7

Elements of a Pattern
Pattern Name

More than just a handle for referring to the pattern

Each name adds to a designer’s vocabulary

Enables the discussion of design at a higher abstraction

The Problem

Gives a detailed description of the problem addressed by the pattern

Describes when to apply a pattern

Often with a list of preconditions

February 22, 2005 © University of Colorado, Boulder, 2005

8

Elements of a Pattern,

continued
The Solution

Describes the elements that make up the design, their relationships,

responsibilities, and collaborations

Does not describe a concrete solution

Instead a template to be applied in many situations

February 22, 2005 © University of Colorado, Boulder, 2005

9

Elements of a Pattern,

continued
The consequences

Describes the results and tradeoffs of applying the pattern

Critical for evaluating design alternatives

Typically include

Impact on flexibility, extensibility, or portability

Space and Time tradeoffs

Language and Implementation issues

February 22, 2005 © University of Colorado, Boulder, 2005

10

Design Pattern Template
Pattern Name and Classification

Creational

Structural

Behavioral

Intent

Also Known As

Motivation and Applicability

Structure and Participants

Collaborations

Consequences

Implementation

Sample Code

Known Uses

Related Patterns

February 22, 2005 © University of Colorado, Boulder, 2005

11

Examples
Singleton

Factory Method

Adapter

February 22, 2005 © University of Colorado, Boulder, 2005

12

Singleton
Intent

Ensure a class has only one instance, and provide a global point of

access to it

Motivation

Some classes represent objects where multiple instances do not

make sense or can lead to a security risk (e.g. Java security

managers)

February 22, 2005 © University of Colorado, Boulder, 2005

13

Singleton, continued
Applicability

Use the Singleton pattern when

there must be exactly one instance of a class, and it must be accessible

to clients from a well-known access point

when the sole instance should be extensible by subclassing, and clients

should be able to use an extended instance without modifying their code

February 22, 2005 © University of Colorado, Boulder, 2005

14

Singleton Structure

Singleton

static Instance()
public SingletonOperation()
public GetSingletonData()

private static uniqueInstance
private singletonData

{return uniqueInstance}

February 22, 2005 © University of Colorado, Boulder, 2005

15

Singleton, continued
Participants

Just the Singleton class

Collaborations

Clients access a Singleton instance solely through Singleton’s

Instance operation

Consequences

Controlled access to sole instance

Reduced name space (versus global variables)

Permits a variable number of instances (if desired)

February 22, 2005 © University of Colorado, Boulder, 2005

16

Implementation
import java.util.Date;

public class Singleton {

 private static Singleton theOnlyOne;

 private Date d = new Date();

 private Singleton() {

 }

 public synchronized static Singleton instance() {

 if (theOnlyOne == null) {

 theOnlyOne = new Singleton();

 }

 return theOnlyOne;

 }

 public Date getDate() {

 return d;

 }

}

February 22, 2005 © University of Colorado, Boulder, 2005

17

Using our Singleton Class
public class useSingleton {

 public static void main(String[] args) {

 Singleton a = Singleton.instance();

 Singleton b = Singleton.instance();

 System.out.println("" + a.getDate());

 System.out.println("" + b.getDate());

 System.out.println("" + a);

 System.out.println("" + b);

 }

}

Output:

Sun Apr 07 13:03:34 MDT 2002

Sun Apr 07 13:03:34 MDT 2002

Singleton@136646

Singleton@136646

February 22, 2005 © University of Colorado, Boulder, 2005

18

Names of Classes in Patterns
Are the class names specified in a pattern required?

No!

Consider an environment where a system has access to only one printer

Would you want to name the class that provides access to the printer

“Singleton”??!!

No, you would want to name it something like “Printer”!

On the other hand

Incorporating the names of a pattern’s roles can help to communicate

their use to designers

“Oh, I see you have a “PrinterObserver” class, are you using the Observable

design pattern?

February 22, 2005 © University of Colorado, Boulder, 2005

19

Names, continued
So, if names are unimportant, what is?

Structure!

We can name our Singleton class anything so long as it

has a private or protected constructor

need a protected constructor to allow subclasses

has a static “instance” operation to retrieve the single instance

February 22, 2005 © University of Colorado, Boulder, 2005

20

Factory Method
Intent

Define an interface for creating an object, but let subclasses decide

which class to instantiate

Also Known As

Virtual Constructor

Motivation

Frameworks define abstract classes, but any particular domain needs

to use specific subclasses; how can the framework create these

subclasses?

See example on page 107 of the design patterns book

February 22, 2005 © University of Colorado, Boulder, 2005

21

Factory Method, continued
Applicability

Use the Factory Method pattern when

a class can’t anticipate the class of objects it must create

a class wants its subclasses to specify the objects it creates

classes delegate responsibility to one of several helper subclasses, and

you want to localize the knowledge of which helper subclass is the

delegate

In a nutshell

A “factory” object creates “products” for a client; the type of products

created depends on the subclass of the factory object used; the client

knows only about the factory, not its subclasses

February 22, 2005 © University of Colorado, Boulder, 2005

22

Factory Method, continued
Participants

Product

Defines the interface of objects the factory method creates

Concrete Product

Implements the Product Interface

Creator

declares the Factory method which returns an object of type Product

Concrete Creator

overrides the factory method to return an instance of a Concrete Product

February 22, 2005 © University of Colorado, Boulder, 2005

23

Factory Method Structure
Product

ConcreteProduct

Creator

FactoryMethod()
AnOperation()

ConcreteCreator

FactoryMethod()

Product p =

FactoryMethod()

return new

ConcreteProduct()

«instantiate»

February 22, 2005 © University of Colorado, Boulder, 2005

24

Factory Method Consequences
Factory methods eliminate the need to bind application-specific

classes into your code

Potential disadvantage is that clients must use subclassing in order

to create a particular ConcreteProduct

In single-inherited systems, this constrains your partitioning choices

Provides hooks for subclasses

Connects parallel class hierarchies

See page 110 of the design patterns book

February 22, 2005 © University of Colorado, Boulder, 2005

25

Implementation
See code example (available on class website)

A factory can return balloons of different colors

The factory hides several specific creators and cycles among them to

create balloons

A client retrieves multiple balloons and displays their colors

February 22, 2005 © University of Colorado, Boulder, 2005

26

Adapter
Intent

Convert the interface of a class into another interface clients expect.

Adapter lets classes work together that could not otherwise because

of incompatible interfaces

Also Known As

Wrapper

Motivation

Sometimes a toolkit class that is designed for reuse is not reusable

because its interface does not match the domain-specific interface an

application requires

Page 139-140 of Design Patterns provides an example

February 22, 2005 © University of Colorado, Boulder, 2005

27

Adapter, continued
Applicability

Use the Adapter pattern when

you want to use an existing class, and its interface does not match the

one you need

you want to create a reusable class that cooperates with unrelated or

unforeseen classes

February 22, 2005 © University of Colorado, Boulder, 2005

28

Adapter, continued
Participants

Target

defines the domain-specific interface that Client uses

Client

collaborates with objects conforming to the Target interface

Adaptee

defines an existing interface that needs adapting

Adapter

adapts the interface of Adaptee to the Target interface

February 22, 2005 © University of Colorado, Boulder, 2005

29

Adapter Structure

Client
Target

Request()

Adapter
Request()

Adaptee
SpecificRequest()

Class Adapter

SpecificRequest()

target.Request()

February 22, 2005 © University of Colorado, Boulder, 2005

30

Adapter Structure

Client
Target

Request()

Adapter
Request()

Adaptee
SpecificRequest()

adapte
e

Object Adapter

adaptee.SpecificRequest()

target.Request()

February 22, 2005 © University of Colorado, Boulder, 2005

31

Adapter, continued
Collaborations

Clients call operations on an Adapter instance. In turn, the adapter

calls Adaptee operations that carry out the request

Consequences

Class Adapters

adapts Adaptee to Target by committing to concrete Adapter class;

Adapter can override Adaptee behavior

Object Adapters

lets a single Adapter work with many Adaptees; makes it harder to

override Adaptee behavior

February 22, 2005 © University of Colorado, Boulder, 2005

32

Implementation
See code example (available on class website)

Very simple implementation of the object adapter but it shows the

basic idea

object adapter chosen simply because I don’t like multiple inheritance

:-)

